334 research outputs found

    SGXIO: Generic Trusted I/O Path for Intel SGX

    Full text link
    Application security traditionally strongly relies upon security of the underlying operating system. However, operating systems often fall victim to software attacks, compromising security of applications as well. To overcome this dependency, Intel introduced SGX, which allows to protect application code against a subverted or malicious OS by running it in a hardware-protected enclave. However, SGX lacks support for generic trusted I/O paths to protect user input and output between enclaves and I/O devices. This work presents SGXIO, a generic trusted path architecture for SGX, allowing user applications to run securely on top of an untrusted OS, while at the same time supporting trusted paths to generic I/O devices. To achieve this, SGXIO combines the benefits of SGX's easy programming model with traditional hypervisor-based trusted path architectures. Moreover, SGXIO can tweak insecure debug enclaves to behave like secure production enclaves. SGXIO surpasses traditional use cases in cloud computing and makes SGX technology usable for protecting user-centric, local applications against kernel-level keyloggers and likewise. It is compatible to unmodified operating systems and works on a modern commodity notebook out of the box. Hence, SGXIO is particularly promising for the broad x86 community to which SGX is readily available.Comment: To appear in CODASPY'1

    On the detection of virtual machine introspection from inside a guest virtual machine

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2015With the increased prevalence of virtualization in the modern computing environment, the security of that technology becomes of paramount importance. Virtual Machine Introspection (VMI) is one of the technologies that has emerged to provide security for virtual environments by examining and then interpreting the state of an active Virtual Machine (VM). VMI has seen use in systems administration, digital forensics, intrusion detection, and honeypots. As with any technology, VMI has both productive uses as well as harmful uses. The research presented in this dissertation aims to enable a guest VM to determine if it is under examination by an external VMI agent. To determine if a VM is under examination a series of statistical analyses are performed on timing data generated by the guest itself

    Thin Hypervisor-Based Security Architectures for Embedded Platforms

    Get PDF
    Virtualization has grown increasingly popular, thanks to its benefits of isolation, management, and utilization, supported by hardware advances. It is also receiving attention for its potential to support security, through hypervisor-based services and advanced protections supplied to guests. Today, virtualization is even making inroads in the embedded space, and embedded systems, with their security needs, have already started to benefit from virtualization’s security potential. In this thesis, we investigate the possibilities for thin hypervisor-based security on embedded platforms. In addition to significant background study, we present implementation of a low-footprint, thin hypervisor capable of providing security protections to a single FreeRTOS guest kernel on ARM. Backed by performance test results, our hypervisor provides security to a formerly unsecured kernel with minimal performance overhead, and represents a first step in a greater research effort into the security advantages and possibilities of embedded thin hypervisors. Our results show that thin hypervisors are both possible and beneficial even on limited embedded systems, and sets the stage for more advanced investigations, implementations, and security applications in the future

    Exploring the Integration of Memory Management and Trusted Computing

    Get PDF
    This thesis addresses vulnerabilities in current Trusted Computing architecture by exploring a design for a better Trusted Platform Module (TPM); one that integrates more closely with the CPU\u27s Memory Management Unit (MMU). We establish that software-based attacks on trusted memory can be carried out undetectably by an adversary on current TCG/TPM implementations. We demonstrate that an attacker with sufficient privileges can compromise the integrity of a TPM-protected system by modifying critical loaded code and static data after measurement has taken place. More specifically, these attacks illustrate the Time Of Check vs. Time of Use (TOCTOU) class of attacks. We propose to enhance the MMU, enabling it to detect when memory containing trusted code or data is being maliciously modified at run-time. On detection, it should be able to notify the TPM of these modifications. We seek to use the concepts of selective memory immutability as a security tool to harden the MMU, which will result in a more robust TCG/TPM implementation. To substantiate our ideas for this proposed hardware feature, we designed and implemented a software prototype system, which employs the monitoring capabilities of the Xen virtual machine monitor. We performed a security evaluation of our prototype and validated that it can detect all our software-based TOCTOU attacks. We applied our prototype to verify the integrity of data associated with an application, as well as suggested and implemented ways to prevent unauthorized use of data by associating it with its owner process. Our performance evaluation reveals minimal overhead

    Agent-Based Cloud Resource Management for Secure Cloud Infrastructures

    Get PDF
    The cloud offers clear benefits for computations as well as for storage for diverse application areas. Security concerns are by far the greatest barriers to the wider uptake of cloud computing, particularly for privacy-sensitive applications. The aim of this article is to propose an approach for establishing trust between users and providers of cloud infrastructures (IaaS model) based on certified trusted agents. Such approach would remove barriers that prevent security sensitive applications being moved to the cloud. The core technology encompasses a secure agent platform for providing the execution environment for agents and the secure attested software base which ensures the integrity of the host platform. In this article we describe the motivation, concept, design and initial implementation of these technologies
    • …
    corecore