
ON THE DETECTION OF VIRTUAL MACHINE INTROSPECTION FROM

INSIDE A GUEST VIRTUAL MACHINE

By

Brandon Ashlee Marken

RECOMMENDED:

Dr. Christopher Hartman

Dr. Ronald Bariy

Dr. Orion Lawlor

Advisory Committee Chair

Dr^uon Genetti Chair,

Department of Computer Science

APPROVED:

A

DISSERTATION

Presented to the Faculty

of the University of Alaska Fairbanks

in Partial Fulfillment of the Requirements

for the Degree of

DOCTOR OF PHILOSOPHY

By

Brandon Ashlee Marken, B.S., M.S.

Fairbanks, Alaska

December 2015

ON THE DETECTION OF VIRTUAL MACHINE INTROSPECTION FROM

INSIDE A GUEST VIRTUAL MACHINE

v

Abstract

With the increased prevalence of virtualization in the modern computing envi­

ronment, the security of that technology becomes of paramount importance. Vir­

tual Machine Introspection (VMI) is one of the technologies that has emerged to

provide security for virtual environments by examining and then interpreting the

state of an active Virtual Machine (VM). VMI has seen use in systems administra­

tion, digital forensics, intrusion detection, and honeypots. As with any technology,

VMI has both productive uses as well as harmful uses. The research presented in

this dissertation aims to enable a guest VM to determine if it is under examination

by an external VMI agent. To determine if a VM is under examination a series of

statistical analyses are performed on timing data generated by the guest itself.

Page

Signature P a g e .. i

Title Page .. iii

Abstract ... v

Table of C o n ten ts.. vii

List of F ig u re s .. xi

List of Tables ..xiii

A ckn o w led g em en ts.. xv

Chapter 1 Introduction.. 1

1.1 Computer Security ... 1

1.2 Technical Background .. 2

1.2.1 Privileges .. 2

1.2.2 Virtualization ... 5

1.2.3 X86-64 Memory A rch itectu re.. 9

1.2.4 Virtual Memory and P agin g ... 11

1.3 Xen .. 13

1.3.1 Xen Virtual Memory M anagem ent.. 15

1.4 K V M ... 17

1.4.1 KVM Page Merging .. 17

1.5 Virtual Machine Introspection .. 18

vii

Table of Contents

viii

Page

1.6 Virtual Machine Introspection Literature ... 19

1.6.1 Uses for Virtual Machine Introspection .. 23

1.7 Information Leakage and Side Channel Attacks 26

1.7.1 Side Channel Attacks ... 26

1.7.2 Determining Co-Residency ... 28

1.7.3 Defense Against Attacks ... 37

Chapter 2 Experiment Design and Analysis T ech n iq u es..................................... 39

2.1 Motivation and Goals ... 39

2.2 Threat Model .. 39

2.3 Experimental Setup ... 40

2.4 VMI Agents .. 40

2.5 Experiments .. 43

2.6 On Timing ... 44

2.7 Analysis Tools Definitions and Terms ...46

2.8 Hypothesis Testing ... 47

2.8.1 Welch's t - t e s t ... 48

2.8.2 Mann-Whitney U T e s t ... 51

2.9 Mutual Inform ation...54

Chapter 3 Sysstat Experim ent... 55

3.1 Introduction and M otivation.. 55

3.2 Sysstat ... 55

3.3 Experiment ... 56

3.4 Data and PreProcessing ... 56

3.5 Analysis .. 61

3.5.1 Information Gains .. 61

3.5.2 Classificaton ... 63

Chapter 4 Using Page Allocation Timings to Detect V M I65

4.1 Motivation ... 65

4.2 Experimental Design ... 65

4.3 Results and Analysis ... 67

4.4 Elimination Experim ents... 70

4.5 C onclusion... 74

Chapter 5 Using Cache Timings to Detect V M I ... 77

5.1 Motivation and Introduction.. 77

5.2 Experim ent... 77

5.3 A n a ly s is .. 79

5.4 Support Vector Machines ... 83

5.4.1 T h e o ry ...83

5.4.2 Experiment ... 86

5.4.3 R e su lts ...87

5.5 Conclusion ... 88

ix

Chapter 6 Leveraging Kernel Samepage Merging to Detect VM I 89

6.1 Motivation and Introduction ... 89

6.2 Experiment .. 90

6.3 Results .. 92

6.4 Conclusion .. 94

Chapter 7 Conclusion and Future W o rk ..97

7.1 References .. 99

x

Page

1.1 Augmented x86-64 privilege S t a c k ... 4

1.2 X86-64 Memory H ierarchy.. 12

1.3 Page Table in x86-64 [29] 14

1.4 Diagram of Hardware Accelerated Paging using SLAT 16

1.5 Topologies used in active traffic colocation test from Bates et al. [60]

(left) local test system (center) successful co-location (right) failed

co-location .. 35

2.1 Experimental Setup ... 41

2.2 Raw Timing for Xen and KVM .. 45

2.3 t-distribution for one degree of freedom .. 51

3.1 A graph of major faults per second over time for KVM while moni­

tored by VMI every 10 s .. 58

3.2 A graph of page faults per second over time for KVM while moni­

tored by VMI every 10 s .. 59

4.1 Histograms of the mmap time when a Xen VM is not observed by

VMI (left) and observed by the process-list command (right) 68

4.2 Histograms of the mmap time when a KVM VM is not observed by

VMI (left) and observed by the process-list command (right) 69

xi

List of Figures

4.3 Histograms of the mmap time when a KVM VM observed by the

process-list command (left) and when a KVM VM has 4GB of RAM

(rig h t)... 71

4.4 Histograms of the time when a KVM VM observed by the process-

list command (left) and when a KVM VM has 3VCPUs (right) 72

4.5 Diagram of multi-VM experiment ... 73

4.6 KVM monitored by the Process-list command (left) and KVM run­

ning 4VMs (right) ... 74

5.1 KVM memory access timings (ns) zoomed to show 5,000 results . . . 80

5.2 A simple two dimensional example of an S V M .. 85

6.1 Kernel Samepage Merging ... 90

6.2 Histogram of the Memory Access Times for KVM not monitored by

VMI (left) and monitored by VMI (right) .. 93

xii

Page

3.1 Features and information gains for our top 10 features..............................62

3.2 Accuracy Rating for Xen monitored by the process-list command . . 63

3.3 Raw scores for Xen with the linear support vector machine classifier 64

4.1 f-stats for Xen and KVM compared to the null hypothesis that no

VMI is being used ... 68

4.2 U-stats for Xen and KVM compared to the null hypothesis that no

VMI is being used ... 69

4.3 U-stat and f-stat for populations taken when the VM had 4GB of

RAM or 3VCPUs compared to the null hypothesis that they were

being monitored by a VMI agent... 73

5.1 T Tests for Xen and KVM vs the null hypothesis that no VMI has

been used .. 81

5.2 Mann-Whitney U-stats for Xen and KVM vs the null hypothesis that

the no VMI has been used .. 82

5.3 Information Gain Results for Xen and KVM in b i t s 82

5.4 Accuracy at classifying whether or not VMI was used at certain in­

tervals for Xen and KVM .. 87

xiii

List of Tables

5.5 The Raw Scores for Xen and KVM under the null hypothesis that

the 50 ^s set and set with no VMI are the s a m e ... 88

6.1 T-Tests for KVM vs the null hypothesis that the no VMI has been used 92

xiv

I would like to begin by thanking my committee for their contribution to this work.

In particular I would like to give special thanks my original advisor Brian Hay for

his guidance in the first years of my doctoral program. A special thanks as well to

my advisor Orion Lawlor both for his guidance during my program and for taking

me on as a graduate student with short notice. Thanks to Jon Genetti for helping

me navigate some of the more difficult issues in the university bureaucracy.

In addition to them two teachers from high school played an important part in

me choosing a career as a scientist. Paul Schwartz and Wade Roach from Dimond

High School in Anchorage got me to focus on science as a career goal rather than

simply choosing some path of least resistance. By giving me challenges as opposed

to worksheets I was able to discover my love of the scientific process.

In my time as a graduate student at University of Alaska Fairbanks I had the

pleasure of consulting with other graduate students both past and present. Using

them as a sounding board helped me overcome problems that would have other­

wise taken me far longer. In particular special thanks are due to Kevin Galloway,

Mike Moss, Ann Tupek, and Christopher Granade for their assistance.

Finally I would like to thank my family and friends not already mentioned. In

particular my wonderful wife Jennifer for her support in this endeavor. Without

her support (and reminders to keep working on my dissertation rather than play­

ing Fallout) this likely would not have come to fruition. I would also like to extend

xv

Acknowledgements

my gratitude to my in-laws for their support during these years. Finally, I must

remember to thank my mother, who I inadvertently left out of my M.S. write up.

This thanks is for her love and support as my mother and not simply because she

has been threatening me with physical violence since 2010 lest I forget her in my

doctoral dissertation.

xvi

Chapter 1

Introduction

Computers have become ubiquitous in our society over the past several decades.

One of the negative consequences of this change is that these systems are vulner­

able to a great number of threats. One method introduced in the past decade to

combat such threats is Virtual Machine Introspection (VMI) which aims to analyze

the state of a virtualized Operating System (OS) called a guest. While research into

VMI has been extensive [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8] the security implications of VMI remain

largely unexplored. This dissertation will concern itself with the detectability and

reliability of VMI. This chapter will focus on the technical information and current

literature necessary to put the rest of the dissertation into context.

1.1 Computer Security

The three pillars of computer security are integrity, availability, and confidential­

ity [9]. The integrity of a computer system is the property that it will behave as

intended by both the user and the designer or programmer. The availability of a

system is the property that a system can be used by a user at any time required.

The confidentiality of a system is the property that it can only be accessed by au­

thorized users. We consider the security of a system to be breached if any one of

these is violated.

For an example let's consider Gmail [10]. A user expects that an email sent to

their boss will go to their boss. The user also expects the email client will deliver

1

the message exactly as written. These are examples of integrity. A user with an

Internet connection can access Gmail at any time day or night. This is an example

of availability. A login mechanism is used to enforce confidentiality. The user

expects that no one else will be able to access their emails. This is an example of

confidentiality of a system.

A VMI agent can breach the security of a computer's system by either attacking

the integrity or the confidentiality of that system. The breach of confidentiality can

occur when a VMI agent reads the pages of a target system and a breach in the

integrity can occur if the VMI agent alters the pages of a target system.

1.2 Technical Background

In order to begin to understand the nature of VMI and, by extension, Virtualiza­

tion, we must discuss some of the details of the operation of the 64-bit x86 pro­

cessor (x86-64), some of the relevant design and functions of the Xen and KVM

hypervisors, as well as the basics of VMI and the VMI tool suites we will be using

for the remainder of this dissertation.

1.2.1 Privileges

In earlier versions of the x86 line (pre-80286) the processors existed in what we now

call real mode. In real mode processes have unlimited access to physical memory

as well as access to all peripherals. This means that processes can easily access the

2

memory of other processes either accidentally or intentionally. This can cause a

great deal of instability as well as security vulnerabilities.

To address this situation Intel introduced protected mode with the 80286 [11].

Protected mode is enabled by setting the PE flag in the CR0 register on the CPU and

enables memory protection features such as paging and virtual memory. Protected

mode is disabled at boot in order to ensure backwards compatibility and the PE bit

must be set by the OS in order to enter protected mode. Once protected mode is

enabled it cannot be disabled until the system is rebooted.

In the 32-bit x86 line of processors, introduced after the 80286, protected mode

enables 4 separate privilege levels called rings. Ring 0 has the most privilege,

Ring 1 has fewer privileges, Ring 2 fewer still, and Ring 3 the fewest privileges.

While all privilege levels were intended to be used, only rings 0 and 3 were used

in commodity operating systems such as Windows [12] and Linux [13]. When the

x86-64 processors were released the privilege stack was reduced to two privilege

levels (fig 1.1). In 2006 a third ring called Host Mode by Intel and Root Mode

by AMD (which we will call Host/Root Mode for the duration of this dissertation

and is colloquially referred to as Ring -1) was added to the x86-64 line of processors

[14].

3

4

Figure 1.1: Augmented x86-64 privilege Stack

1.2.2 Virtualization

Virtualization itself is not a new concept. It began in the 1960s with the IBM Sys­

tem 360 [15]. This system, like most others for the next nearly four decades, used

the trap and emulate model. In this model a virtual machine (VM) will proceed

unaltered until it reaches an instruction which it cannot execute due to an insuffi­

cient privilege level [16]. The guest operating system then faults to the hypervisor

which performs some set of instructions. This set of instructions will then perform

an operation with an identical effect to the original instruction.

In 1974 Popek and Goldberg [16] formalized the conditions, which were suf­

ficient to allow a CPU architecture to support virtualization. To begin they define

a Virtual Machine Monitor (VMM) as a piece of software which provides a pro­

gramming environment which is "essentially identical" [16] to the machine being

virtualized (fidelity), only causes a minor performance decrease (efficiency), and

is in complete control of the resources (resource control or safety).

Popek and Goldberg then separate CPU instructions into three different classi­

fications. Privileged instructions are those which will cause a fault if run in user

mode (such as the Intel CLI [17] instruction), control sensitive instructions which

change the configuration of resources in a system (the Intel CLI instruction also

falls into this category), and behavior sensitive instructions whose effects vary

based on the configuration of resources (such as the POPD [17] instruction which

5

varies based on privilege level). Control sensitive and behavior sensitive instruc­

tions are collectively referred to as sensitive instructions.

With these requirements and definitions acting somewhat as axioms, Popek

and Goldberg give us two theorems [16]:

Theorem 1.2.1 (Popek Theorem 1) "For any conventional third generation computer,

a virtual machine monitor may be constructed i f the set o f sensitive instructions fo r that

computer is a subset o f the set o f privileged instructions" [16]

Theorem 1.2.2 (Popek Theorem 2) "A conventional third generation computer is re­

cursively virtualizable i f it is virtualizeable and a VMM without any timing dependencies

can be constructed for it." [16]

The proofs for these theorems can be found in the original work by Popek and

Goldberg. The first theorem says that a VMM can only be constructed for an archi­

tecture if the sensitive instructions are a proper subset of the privileged instructions

and the second says an architecture is not virtualizable if a VMM without timing

dependencies cannot be constructed for it.

This model is not appropriate for x86 virtualization however as many of the x86

assembly instructions, such as POPD [17] (which pops an element off the floating

point stack), are sensitive but not privileged. This violates the conditions required

for VMM construction of Popek's first theorem and by extension x86 cannot be

virtualized via the trap and emulate method.

6

In 1999 VMWare patented their techniques for binary translation, which they

introduced in 1998 [18], allowing the x86 architecture to be virtualized. In binary

translation the hypervisor runs one ring below the guest OS (in Host/Root mode

on x86-64). The translator reads guest memory starting at the instruction pointer

(eip/rip) and caches up to 12 instructions (fewer if a terminating instruction is

reached) in a Translator Unit (TU). Unprivileged and non-sensitive instructions

(such as M OV or XOR) are translated IDENT (identically) with no changes made.

Privileged and sensitive instructions however are translated producing Com­

pile Code Fragments (CCF) using non-privileged instructions. Agesen et al. [19]

use the CLI instruction as an example. The CLI instruction clears the interrupt flag

on the physical CPU. Since the guest VM cannot (and should not) clear the inter­

rupt flag on the physical CPU the interrupt flag is cleared on the VCPU (vcpuflag)

using the AND instruction. Once a TU is translated into a CCF it is then run on the

CPU.

This began the boom in x86 virtualization; in particular, the debut of Xen in

2003 [20], which introduced the paravirtualization method for x86 virtualization.

In paravirtualization, like binary translation, the hypervisor runs at Ring 0, the

guest OS runs at Ring 1, and user code runs at Ring 3. Paravirtualization works

by using a modified kernel, replacing instructions which will require hypervisor

support such as those involving memory management with hypercalls [20]. These

hypercalls result in the hypervisor performing some operations which result in

7

the state being presented to the VM which from its perspective appears as if it

has been performed on physical hardware rather than on a VM. This allows the

guest to run, without any modification to user space code, much like trap and

emulate and binary translation. This method, however, traditionally requires that

a specific kernel be used, which greatly increases the time between versions and

makes the virtual environment sensitive to OS changes. As of Linux version 3.0

however the introduction of Paravirt Ops into the Linux kernel has added native

paravirtualization support removing this limitation [21]. Due to the nature of

paravirtualization we are limited in a practical but not theoretical sense to open

source operating systems such as Linux [13] and BSD [22].

The 64-bit line of x86 processors was introduced by AMD in 2003 and this line

only had 2 levels of privilege unlike the 4 in the 32 bit lines. As a result there was

no longer room to run a hypervisor, guest OS, and user code each on their own

privilege level. In 2006, Intel (VT-x [23]) and AMD (AMD-V [14]) both added

hardware virtualization to their x86 line of processors. Hardware virtualization

adds another layer in the privilege stack below Ring 0 called the Host Mode and

Root Mode for Intel and AMD respectively. These are colloquially, though not

formally, referred to as Ring -1. A structure called a Virtual Machine Control Block

(VMCB) is defined in hardware. This structure holds the list of all instructions to

be intercepted. Certain instructions are required to fault but others can be added

to the VMCB by the hypervisor. This method allows the guest OS to run on Ring

8

0 of the hardware as it would normally expect to. The guest runs normally until

it has to run an instruction which requires a fault (as defined in the VMCB). The

instruction which caused the fault is then trapped and handled by the hypervisor.

Any operating system can be virtualized in this manner, however it does require

special hardware instructions (though those are now available on almost all Intel

and AMD CPUs) and the shifts to the Host/Root mode are time consuming and

need to be reduced to the smallest number possible to keep the process efficient.

Shortly after the advent of X86 hardware virtualization [23] [14] the hyper­

visor KVM (for Kernel Virtual Machine) was introduced by Kivity et al. [24] and

was included as part of the main line Linux [13] kernel the same year. As part of

the Linux kernel KVM is able to reduce some of the code base by incorporating

certain aspects of the Linux kernel such as the scheduler in order to handle man­

aging resources of virtual machines. Throughout this experiment we will be using

either Xen or KVM as appropriate. Due to the differing architectures of the two

hypervisors there will be some approaches that will work with one and not the

other. Where applicable we will comment on why one was chosen for a specific

experiment over the other.

1.2.3 X86-64 Memory Architecture

Modern commodity CPUs use an architecture known as the Von Neumann Ar­

chitecture [25]. At the most basic level a computer based on the Von Neumann

9

Architecture consists of a CPU which processes data and instructions, memory,

mass storage, and input/output devices. Due to limitations on the throughput be­

tween the different parts of a computer we encounter what's known as the Von

Neumann Bottleneck [25]. Data on a CPU register is fast to access, RAM is slower,

disk drives slower still, and network based storage the slowest available.

To address this problem CPU cache was introduced. Cache is a small amount

of extremely fast RAM which exists on the CPU in order to alleviate, but not elim­

inate, the Von Neumann Bottleneck. In most modern X86-64 CPUs there are three

levels of cache: L1, L2, and L3. L1 is the smallest and fastest with L2 being slightly

larger but slower and L3 being even larger and slower. On the some of the newest

cores such as the Haswell core a fourth level of cache is added [26]. This cache is

shared between the CPU and the integrated Intel GPU.

On a modern CPU the process of accessing memory begins by checking the

Translation Lookaside Buffer (TLB) (fig 1.2). The TLB is a small amount of cache

which holds virtual address translations in the form of Page Table Entries (PTEs).

These entries (discussed further in section 1.2.4) map virtual memory to physical

memory. The Sandy Bridge and Haswell Cores have two levels of TLB. The L2 TLB

maps both data and instructions whereas the L1 TLB is split into an instruction and

a data TLB [27]. If the entry is in the TLB we have a TLB hit. If this occurs we look

to see if our physical address is in the L1 cache. If this is the case we have an L1

cache hit and the data is loaded into the CPU. If this is not the case we have an L1

10

cache miss. If this occurs we look to see if our physical address is in the L2 cache.

Again if it is we have an L2 cache hit and load our data to the CPU. If an L2 cache

miss occurs we have to check the L3 cache. Unlike the L1 and L2 caches the L3

cache is shared by all cores on a CPU. If our physical address is in the L3 cache

we have an L3 cache hit and our data is given to the CPU. Otherwise it requires

looking to see if the data is in DRAM. In the event of a TLB miss a walk of the page

table is necessary (1.2.4).

Each of the steps described before contributes to our Average Memory Access

Time (AMAT). The formula for computing AMAT is described in equation 1.1,

where H i is the time per hit on the some memory element (e.g. cache or the TLB),

AMP i is the average penalty per miss on that element, and M i is the probability

that a miss will occur on that element. This is summed over all the elements of

memory.

n
AMAT = £ Hi + AMPi x M{ (1.1)

i=0

1.2.4 Virtual Memory and Paging

In a modern programming environment memory is abstracted so that each process

sees its address space as one contiguous region. This is a convenient abstraction

made possible through virtual memory. In modern x86 and x86-64 virtual memory

is provided through a system called paging. In paging memory is broken into

11

12

Figure 1.2: X86-64 Memory Hierarchy

segments called pages which are typically 4kb (though larger pages are supported

up to 2MB and 1GB for 32-bit and 64-bit x86 respectively). A data structure called

the page table is used to map virtual memory that the process sees to physical

memory. In the x86 architecture this mapping is handled by hardware known as

the Memory Management Unit (MMU).

The x86-64 processor uses a 4 level paging system to translate virtual addresses

to physical addresses when 4kb pages are used and a 48-bit address space are used.

The levels are organized in a tree structure. The CR3 holds location of the page

directory for the process. The first 16 bits are unused and next 36 bits are broken

into four segments of 9-bits each. The first is called the Page Map Level 4 page

(PML4), the next is called the Page Pointers Directory page (PDP), the next is called

the Page Directory page (PD), and the final segment is called the Page Table page

(PT). The remaining 12 bits are for the page offset, which tells us where in the page

the memory is located fig 1.3 [28].

1.3 Xen

Xen is a type-1 or "bare metal" hypervisor. This means that Xen runs directly on

the physical hardware and is not itself hosted in another environment. This is

in contrast to a type-2 hypervisor like VMWare Player which is hosted inside a

Linux or Windows environment. Administration of Xen and its VMs is done via a

special paravirtualized guest called the Dom0. All other guests in Xen can be either

paravirtualized or hardware virtualized. For the remainder of this dissertation we

13

14

Figure 1.3: Page Table in x86-64 [29]

will assume all DomU guests (those guests which are not Dom0) are hardware

virtualized unless otherwise specified.

1.3.1 Xen Virtual Memory Management

As Xen supports two different types of virtualization it also supports three differ­

ent kinds of virtual memory management. Traditionally software virtualization

uses a shadow paging scheme [20] which keeps an additional "shadow" page ta­

ble. This provides an additional layer of abstraction between the guests and the

physical hardware.

Since paravirtualized guests use hypercalls for sensitive instructions Xen is not

required to keep a full shadow page table for its memory management, instead

using a technique known as direct paging. In direct paging guests invoke a hyper­

call which directly maps their page table entries from virtual memory to physical

memory as opposed to the extra paging layer provided in shadow page tables [20],

essentially moving control of memory management from the OS to the hypervisor.

Since hardware virtualized (HVM) guests are not modified in the way that par-

avirtualized guests are, they do not have the option of this direct paging technique

and instead have the option of either hardware assisted paging (HAP) or shadow

paging. HAP uses a technique called Second Level Address Translation (SLAT; see

fig 1.4) which is included in Intel processors since the Nehelem line and in AMD

processors since the Barcelona line. Their technologies are called Extended Page

15

16

SLA T Base Pointer

CR3

Guest
Virtual

Address

Figure 1.4: Diagram of Hardware Accelerated Paging using SLAT

Tables (EPT) and Rapid Virtualization Indexing (RVI) respectively. In SLAT the

guest OS still maintains a logical page to physical page mapping (fig 1.4). How­

ever these physical pages are in pseudo pages and do not correspond directly to

physical memory. Instead the hypervisor maintains the pseudo physical to ma­

chine page (or actual physical page) mapping.

HVM guests also have the option of using a shadow page table (SPT) similar

to that used in VMWare [18]. Like HAP shadow paging works by adding another

layer of abstraction to paging. In this model the processes use the software page

tables provided by the OS just like they would normally. When a guest OS tries to

update a page a shadow page is allocated. This shadow page can be then altered

with no constraints. When the page is ready to be moved into the regular page

table (i.e. permanent changes have been accepted) references are updated such

that they point to the new page rather than the original.

1.4 KVM

Like Xen, KVM is a type-1 (i.e. Bare Metal) hypervisor. Unlike Xen, which is an

independent hypervisor loading up a paravirtualized Linux VM as the adminis­

trative unit, KVM is itself integrated into the Linux kernel, which allows the use

of a non-virtualized Linux environment for administration (as opposed to the par-

avirtualized Linux environment used in Xen). As a result of being part of the Linux

kernel, KVM is able to use portions of the Linux kernel, for instance KVM uses the

Completely Fair Scheduler [30] used in the kernel to schedule CPU time for VMs.

Other functions such as memory management are also done using the internal

Linux mechanisms.

1.4.1 KVM Page Merging

In version 2.6.2 of the Linux Kernel a scheme called Kernel Samepage Merging

[31] was introduced. In this scheme pages which are identical among processes

are merged in order to save memory. To accomplish this processes which may be

candidates for merging register themselves with the kernel. The kernel then scans

the registered areas of virtual memory by taking the hash of those pages. Pages

which have unique hashes are skipped for the remainder of the scan, while pages

which have the same hashes are then checked byte by byte to ensure they are iden­

tical and avoid hash collision. Identical pages are then merged by first marking

all page table entries where page occurs as unwriteable. Next all page table entries

17

which refer to that page are updated so they point to only one instance of the page.

The remaining unmerged copies of the merged page are then freed and a final di­

rect memory comparison is made to ensure that the pages have not changed. These

merged pages can only remain merged so long as the processes or VMs using them

are only reading from them. To address this KVM uses a Copy-On-Write (COW)

scheme. With this technique pages remain merged until one guests attempts to

write to it. When that occurs a copy of the page is made for that guest and the

remaining guests continue to use the merged page.

1.5 Virtual Machine Introspection

Garfinkle and Rosenblum [7] introduced Virtual Machine Introspection (VMI) in

2003. In VMI the state of a running VM is interpreted by some external entity,

usually either another VM or by the host system. To accomplish this memory

is mapped or copied from the target VM to the VMI program. Memory is then

interpreted to determine some portion of the internal state of the target VM. While

the original work was used for intrusion detection a number of other applications

have emerged in the years following.

Memory outside of a given context has no intrinsic meaning, only inside a given

context or process does it have meaning. As such memory in a guest OS has no

meaning outside of that guest. This problem is known as the semantic gap. The

typical way to solve the problem [7], [8] is to use a template approach for each in­

dividual OS. In this approach certain areas of memory are marked as being where

18

certain structures in kernel memory are located. That way a VMI agent can look

for the relevant areas in memory and interpret them at run time. The process of

determining the location of these kernel structures can be time consuming, error

prone, and must be repeated for each version of a running kernel. Work is being

done to address the problem of the semantic gap and is addressed later in this

dissertation.

At its most fundamental level VMI represents a mapping of memory from the

guest to an area outside of the guest (be it another VM as in the case of Xen or

an administrative Linux OS as in the case of KVM). In this case we can study one

method for VMI without losing generality. For our experiments we will use VMI-

Tools [32]. It is an open source framework to allow easy development of VMI

applications, supports Linux and KVM, and has appeared in a number of works

on VMI (though in some of these works it appeared under its former title XenAc-

cess) [3, 33, 34, 35, 36].

1.6 Virtual Machine Introspection Literature

Gu et al. [5] introduced a scheme for active VMI. In this scheme for VMI a process

is injected from the hypervisor to the guest VM. This process is hidden inside an

innocuous process already running inside the VM. These processes are called the

implanted process and the victim process respectively and are both chosen by the

host administrator at runtime. When the victim process is scheduled to be run,

the hypervisor captures the context switch. The implanted process the replaces the

19

victim process. To accomplish this the relevant instruction pointers are changed

as well as the relevant stack pointers etc. When the OS resumes to continue the

context switch the implanted process is run in place of the victim process. Once

the implanted process has completed or the hypervisor determines it is time to

switch the context back the contexts are switched and the victim process runs are

executed normally.

In the initial experiments ltrace, a program to scan the libraries called by a

process, is implemented as the implanted process. This allows them to implant

ltrace into a running VM and are able to trace the library calls of selected processes.

While this does accomplish some of the goals of conventional VMI it can also be

unusable for applications such as digital forensics in which a VM must remain

unaltered in any capacity in order to be of use in a courtroom setting.

Dolann-Gavitt et al. introduce a system called Virtuoso [4] which is aimed at

bridging the semantic gap. The execution of Virtuoso is broken into three phases:

The training phase, the analysis phase, and the runtime phase.

In the training phase Virtuoso attempts to gain information about the guest.

Inside the guest a program must be written to access the information desired. For

instance if one were trying to write a VMI program to access the Process Identifiers

(PIDs) then one would write an in guest program which would access the PIDs.

This program would then be run repeatedly and each time it was run a syscall

trace (such as with Linux strace) would be taken of that program. After running

20

this program repeatedly an extensive list of execution paths would be generated.

Using this combination of execution paths the analysis phase can begin.

The collection of syscall traces, while it does contain the necessary execution

paths, also contains a great deal of extraneous noise. This is because the system

trace follows the entire execution through the system not just the relevant infor­

mation. Parts of the trace, which are known a priori to be unnecessary such as

hardware interrupts or memory management, are thrown out immediately. Then

a dynamic data slice [37] is then done. The slices are merged into a unified pro­

gram which can be turned from an in guest program to an out-of-guest program.

The translated code cannot be run directly on the host. So Virtuoso creates

a runtime environment for the translated code. The run time environment is in­

stalled on the host machine and has the ability to run the translated code. This

gives the code created by Virtuoso an appropriate context from which to access the

VM resources (e.g. CPU registers or main memory) in a read-only manner.

While Virtuoso does make significant progress in bridging the semantic gap it

does not change the fundamental nature of introspection. The tools generated by

Virtuoso still simply read and interpret memory from the guest, which means that

our study will still apply to Virtuoso without having to directly address Virtuoso.

Like Virtuoso, Fu and Lin [6] make an attempt at bridging the semantic gap

and automatically generating VMI utilities. The process begins with an untrusted

target VM (called the product-VM) and a secure trusted VM (called the secure-

21

VM). Three techniques are then used to extract information from the product VM.

These are syscall execution context identification, redirectable data identification,

and kernel data re-direction.

The context being executed is identified using a stack to keep track of times

IRET and int are called. Global kernel data is then identified using an adapted form

of taint analysis. With the relevant information located and the contexts identified

they are then able to redirect the kernel information between the product-VM and

the secure-VM. This allows native system monitoring utilities to be run on the

secure-VM as VMI targeting the product-VM unaltered.

When certain native Linux utilities such as lsmod [38] were run on product-VM

and the secure-VM, identical results were produced. However certain utilities like

date [39] and ps [40] produce similar results on the product-VM and secure-VM,

however these results were not identical. This was found to be due to the timing of

the snapshots they were using for the analysis as certain programs are quite time

sensitive. While this has approached an automatic bridge for the semantic gap this

work is still reliant on semantic information about system calling conventions and

can be altered if they are changed between kernels. This seems like a promising

tool to use for VMI however as of this publication the source code has not yet been

released for use by the public, so it will remain unstudied in this work.

22

1.6.1 Uses for Virtual Machine Introspection

In this section we will discuss current uses for VMI especially as they related to

information assurance and security.

In Crawford and Peterson [41] VMI is leveraged to address the insider threat

problem. The insider threat problem is the situation that occurs when current or

past members of an organization have both malicious intent and legitimate access

to a system or systems [42]. To accomplish their goal they break their approach

into four steps: Development of a taxonomy of malicious insider behavior, devel­

opment of a taxonomy of VMI observables, malicious insider detection, and data

validation.

To develop a taxonomy they began by setting up a number of possible high-

level uses cases. The activities identified in this taxonomy are printing activity,

disabling defensive tools (e.g. anti-virus), abusing removable media (e.g. putting

sensitive information onto a flash drive), sudden change in employee behavior, use

of remote access, and strange clipboard activity. Once they determine major uses

cases they wish to look for they decompose each scenario into individual observ­

able attacks and each attack is broken down into seven areas of analysis. These

areas are the attacker (who is doing something or can do something), which tools

are used, which vulnerabilities are used, what actions are taken in order to achieve

the desired effect, which systems are targeted, what the result of this unauthorized

23

attack is, and what the objective of that result is. Using this taxonomy they can

break many insider threat problems into simple terms.

The next step is to determine which parts of a system can be observed by VMI.

The observables consist of "registry information, hexadecimal patterns, and clip­

board information." Each of the potential malicious activities is performed while

the observables are being monitored by VMI. If those observable areas create signa­

ture patterns then they can be used to identify the insider threat actions from VMI.

The relevant observables are provided in the work from Crawford and Peterson

[41].

The third step is essentially the experiment portion of the paper. During the

experiment VMI is used as well as Windows event logs. VMI and Windows event

logs are analyzed while certain potentially malicious operations described earlier

were performed. The experiment recorded which actions set showed as being ma­

licious and which ones did not.

The final step is the analysis phase. For each attack in the scope of the research

they perform it manually several times to determine if their tools developed from

the third phase are capable of detecting it. Their results showed that they were

able to detect 18 different types of insider attacks. They report a high false positive

rate though they don't give the specific rate of either detection or false positives.

The authors indicate that while this work shows potential more work needs to be

24

done on determining which observables correlate to which observables can indi­

cate attacks in order to increase the accuracy of their detection.

Harrison et al. [43] have proposed using VMI combined with the related yet

distinct field of Forensic Memory Analysis (FMA). Harrison's goal is to put to­

gether an entirely out-of-band passive sensor to monitor for malicious software

such as kernel rootkits. Like all current VMI approaches FMA is adversely af­

fected by the semantic gap. In order to address this situation a file system was

built using FUSE [44], which translated the page table such that the memory of

the VM was able to be read as one contiguous "file." The volatility framework for

FMA is then used in order to analyze the contents of the memory. A rule learn­

ing algorithm called IREP++ [45] is used as a classifier in order determine if any

intrusions are made into the system (such as kernel rootkits) were made and the

results are logged into a postreSQL database. This is an interesting approach to

side-stepping rather than attempting to directly solve the semantic gap. Volatility

however like many VMI approaches still relies on a priori knowledge of the loca­

tion of data structures inside the kernel which may leave this approach vulnerable

to attacks which manipulate those structures.

Hay and Nance [46] developed a method for using VMI to read the plaintext

for encrypted data with the VIX tool suite [8]. While direct attacks on modern cryp­

tographic systems such as AES is generally computationally intractable three basic

facts are noted: Before being encrypted cipher text exists in an unencrypted form,

25

after being decrypted cipher text exists in an unencrypted form, and encryption

requires that somewhere on the system cryptographic keys exist. To take advan­

tage of the first two it is a simple matter of observing the state of VM while the

plaintext is in memory. The third requires two steps; recover the key while it exists

in memory and use that key as to recover the plaintext using the appropriate de­

cryption algorithm. This use of VMI is an instance of security software which has

great use for law enforcement and intelligence agencies as well as great potential

to be misused as well.

1.7 Information Leakage and Side Channel Attacks

In this section we discuss the current state of research into information leakage and

side channel attacks.

1.7.1 Side Channel Attacks

While a number of side-channel attacks have been explored in the past [47,48, 49]

a formal model of the information leakage due to these attacks was first introduced

by Demme et al. [50]. Demme introduces the Side-channel Vulnerability Factor

(SVF) in order to determine exactly how vulnerable a certain cross-channel attack

makes a system.

The SFV begins with an oracle, which contains the truth about the execution

of the victim. The side-channel produces the information that an attacker is able

to measure. An example of an oracle could be number of accesses to a certain

26

page and the side-channel could be the average power consumption on the host.

A perfect side-channel would be able to trace the oracle trace directly. The SVF

also requires a distance metric. The distance metric could vary from problem to

problem. For instance if the data were represented by vectors the Euclidean or

Manhattan distances could be used.

Next they establish a similarity matrix for both the oracle and side-channel

traces. These similarity matrices are necessary since oracle and side-channel are by

their very nature measuring different things (such as pages accesses versus cache

access time).

Next they establish a similarity matrix for both the oracle and side-channel

traces. These similarity matrices are necessary since oracle and side-channel are by

their very nature measuring different things (such as pages accesses versus cache

access time). The similarity matrix M is defined as being of length S and size |S|2.

Each element of M is defined as

27

M(i, j) = <
D(Si , Sj) i f i > j

(1.2)

0 otherwise

where D is our distance function. This creates a triangular matrix with no diag­

onal. The matrices are compared element wise and the Pearson correlation coef­

ficient between the two is computed. The further from 0 the Pearson Correlation

Coefficient is the more information is leaked through a side channel. A coefficient

of 1 will mean the channel is perfectly transparent and a coefficient of 0 will mean

that the channel is totally opaque.

This SFV will be able to provide us with a measure to tell how our different ap­

proaches to information leakage will be relative to each other. As well as a measure

of how much information leaks from VMI relative to other types of information.

1.7.2 Determining Co-Residency

Ristenpart et al. [48] introduced a scheme for determining co-residence by mea­

suring the load on the cache. In their paper they did a variant on the cache-probe

technique which relies on the architecture of the x86 cache. It begins by allocating

a buffer B of size b bytes, where s is the size of the cache line. Their initial attack is

broken into three pieces

1. Prime: Read B at s byte offsets. (Ensuring that B is in cache)

2. Trigger: Wait until the number of CPU cycles passed jumps by some large

value (to determine if the VM has been interrupted by the Xen credit sched­

uler)

3. Probe: Measure how long it takes to read B.

In step 3 B is accessed in pseudorandom order in order to prevent the hardware

pre-fetcher from hiding the latency. These latencies correlate strongly with use of

cache during the trigger step. However due to Xen's scheduling algorithm this is

28

not quite enough to measure the cache latency. For that they expand the prime-

probe attack even further to the following.

1. Allocate B contiguous bytes.

2. Sleep briefly (to build up credits with Xen's scheduler)

3. Prime: Read all of B to make sure it's fully cached

4. Trigger: Busy loop until the number of CPU cycles jumps by a large value

5. Probe: Measure how long it takes to read B

Through this load measurement and comparison to VMs running known services

they are able to determine which VMs are co-resident.

Zhang et al. [49] put forth another scheme for determining co-residency of VMs

on the Amazon EC2 cloud [51] by measuring the load on the cache. In this attack

we consider two entities U and V each of which share a common cache. Then a

similar prime-probe method as above is used though it is modified to function as

follows

1. Prime - U fills a cache set by reading a region from its own memory

2. Idle - U waits for a specified interval during which the cache is used by V

3. Probe - U times the reading of the same cache set in order to learn of V's

activities

29

In their initial trials the VM represented by U attempted to determine if V was

co-resident by running one prime-probe trial and averaging the time across all

cache sets. If this time was below a certain threshold a foe-absent classification

was issued and if it was below that threshold a foe-present classification was is­

sued. This proved to be extremely unreliable for two primary reasons: The Xen

scheduler balances load by shifting VMs to different cores which may not share

physical caches and because friendly VM activity on other cores, especially IO ac­

tivity, will cause activity in the Dom0 which will introduce significant noise into

the cache. In order to deal with this high level of noise a multi-probe classifier was

implemented. In this classifier they looked at the results of 2000 prime-probe trials

and noticed a pattern appearing to be two overlapping normal distributions. They

then use these statistics to determine the classification.

In Owens and Wang [52] a scheme using the memory de-duplication tech­

niques provided by commodity hypervisors (specifically ESXi [53] in this case).

They begin by assuming that an attacker can instantiate VMs in the same environ­

ment as the targeted VM and that the attacker has root control over any VMs it

instantiates. Further they assume the standard 4kb pages size. To begin their pro­

cedure they first determine which pages are unique to a specific OS version and

are present in all versions of that OS. They must also determine which of those

pages are relevant to their analysis, for example a memory dump of Windows XP

30

SP3 contains 59,238 pages of zeros [52]. These are not useful to the analysis. They

are then able to determine which pages are signature pages for each OS.

At this point they take advantage of the de-duplication mechanism in ESXi.

When ESXi writes a non de-duplicated page a simple write is performed. How­

ever when writing to a de-duplicated page a copy is made of that page and then

it can be written to. The memory allocation and copy of the new page takes a

measurable level of overhead. While there is overhead from the copy it can also

be easily confused with the computational overhead from reading a page which

has been swapped out having not been used recently. To handle this a read op­

eration is performed on the signature page immediately before attempting an OS

fingerprinting operation. They are then able to plot the timing results and can

demonstrate which OS is being run on the host.

Xiao et al. [54] explored the implications of memory de-duplication on secu­

rity in a more general sense by putting together both a reliable attack using this

technique and a reliable defense against similar techniques. For their offensive ap­

proach Xiao shows that one can transmit data between two co-located VMs using

the memory de-duplication.

They begin with two co-located VMs with a hypervisor which uses memory

de-duplication. Each VM creates a number of identical pages. This can be easily

accomplished by reading an identical file into memory. Then the sender encodes

the information which it wants to transmit to the receiver. It does so by writing to

31

certain pages and not to others. The sender and the receiver then sleep for some

amount of time to allow the pages to be merged by the hypervisor's memory de­

duplication mechanism. The receiver then writes to each of the pages and times

the amount of time it takes to make these changes. Because of the Copy-On-Write

(COW) nature of these systems it takes slightly longer to write to a de-duplicated

pages as it makes a copy before writing to it. In this way memory can be encoded

into bits. A page which has been merged representing a 0 and a page which has

not representing a 1. So if both VMs allocate 8 pages in this manner and wishes

to transmit 10011001 the sender would alter pages 1, 4, 5, and 8 so they would not

merge.

In addition to transmission they were also able to determine that one was in

a virtualized environment using the artifacts of memory de-duplication. A file is

read into memory and then all pages in memory are written to and the write access

times are recorded. Then the file is read in its entirety into two different memory

locations. Since every page of the file has an exact duplicate in memory the hyper­

visor's de-duplication mechanism (if present and virtualized) is likely to merge the

pages after an appropriate amount of time. Then one of the identical pages can be

written to, if the environment is virtualized with memory de-duplication then the

write access time will be significantly higher than the original write access times

due to COW.

32

As a defensive mechanism against these attacks Xiao suggests a kernel runtime

integrity scheme. There several hypervisor based mechanisms for determining the

presence of kernel rootkits running in guests [55, 56]. These all require extensive

knowledge of the kernel in order to bridge the semantic gap. Xiao [54] proposes

examining the kernel for the sections of data, such as the syscall table, which are

meant to be read-only. Inside the kernel binary read only data is designated by the

.rodata section. This data is copied and read by a C program inside which holds

an exact copy of the read only kernel data in memory.

A statistic gathered by Linux called the Proportional Set Size (PSS) is then

used in order to determine whether kernel integrity has been threatened. The

PSS value is the number of unique pages and the weighted number of the du­

plicated pages a process has. For instance a process with 100 unique pages and

100 duplicated pages would have a PSS of 150 [54]. This value is stored in the file

/proc/$pid/sm aps. A simple shell script can then determine if the PSS value has

increased significantly to determine if kernel integrity has been violated.

These side-channels are directly applicable to determining whether or not a VM

is being monitored by VMI. Linux uses a technique called Kernel Same Page Merg­

ing (KSM) to reduce memory commitment from processes in a manner similar to

how ESXi de-duplicates pages for VMs. The KVM hypervisor treats all VMs as if

they are Linux processes. As a result it is possible that identical pages between a

VM and some Linux process can be merged thus causing a measurable delay when

33

these pages are written to. If the VMI program happens to hold a page identical to

one in a guest VM then it's possible that the VMI process can be detected through

this delay.

Zhang et al. [49] introduced a scheme for reading cryptographic keys used by

another VM sharing the same physical hardware and hypervisor. A similar prime-

probe technique to was used, but this time specifically used on the instruction

cache (icache) as opposed to the data cache (dcache). It does so with the stan­

dard icache technique introduced by Aciicmez [57]. A icache line is loaded with

NOPs and then filled again with NOPs and the time difference between the two

is noted. Further steps are needed however, as information from another VM is

being sought the Xen scheduler has to be taken into account. To handle this inter­

processor interrupts (IPIs) are used. In symmetric multiprocessing (SMP) systems

processors are allowed to interrupt each other or even themselves through an IPI.

To make sure the attacking VCPU has precedence another VCPU (called the inter­

rupting VCPU or IVCPU) runs in a continual loop sending IPIs to the attacking

VCPU.

This attack searches for instructions which are a square, a multiply, or a modulus-

reduce instruction. In order to do so they use multiclass support vector machine

[58] to pick out when these instructions are being used. While this is fairly good at

picking out instructions the SVM is subject to the hardware and software noise in­

troduced by the system (things such as TLB misses, or context switches.) To handle

34

35

Figure 1.5: Topologies used in active traffic colocation test from Bates et al. [60]

(left) local test system (center) successful co-location (right) failed co-location

this hidden Markov models [59] are used to filter the noise. This allows them to

determine the cryptographic key in as little as 40,000-50,000 brute force attempts.

While this may seem like a great deal we keep in mind that 50,000 brute force at­

tempts will take less than 1 s on commodity hardware making this a reasonably

effective attack.

These previous works have been directed almost entirely at exploring side-

channel attacks aimed at the hypervisor layer. Bates et al. [60] take a lower level

approach and investigate whether co-residency of one or more VMs on a hypervi­

sor can be determined via active traffic analysis techniques. They begin by assum­

ing that they are on a normal cloud instance such as EC2 [51] that has been patched

against previous co-residency attacks [61,48].

Their attack (fig 1.5) then creates a large number of instances on that cloud ser­

vice, which they term flooders. Each flooder announces its presence to an external

machine called the client. Another instance created in the cloud is called the server.

Upon receiving a signal from the server the client sends signals out to the flooders,

at which point the flooders begin to send outbound traffic on their machines phys­

ical interface to a packet sink which is not the client. This outbound traffic causes

a delay in the server flow.

These delays in server flow form a watermark in the signal from the client and

the server. The network flow between the client and server can be given by T and

divided into n segments of ti. Watermarks of this kind require two different levels

of packet delay to encode their signal represented by ± d . Since negative delays are

not possible in this environment they take no delay to represent —d and a delay to

represent +d. Using this scheme they are able to encode bit values using —d as a 0

and +d as a 1.

Due to the nature of virtualization and network traffic in general a certain

amount of noise can affect the signal. These can come from sources such as net­

work congestion or hypervisor scheduling (as described above in the Xen Credit

Scheduler for instance.) When the client receives the signal a Kolmogorov-Smirnov

(KS) [62] test is done for independence. If a signal is embedded in the traffic flow it

will demonstrate a different discrete distribution from one without a signal. With

the KS test they are able to determine a signal's independence with a 95% confi­

dence.

This attack is interesting in that it operates at the hardware layer rather than at

the hypervisor layer. It is possible that VMI targeted at the network stack of a VM

36

(such as the VIX ifconfig [8]) could cause a change in the delay, which could be

detected in the traffic. However this delay is unlikely to be substantial or consistent

enough to useful to detect information leakage from VMI.

1.7.3 Defense Against Attacks

Martin et al. [63] introduced a scheme to protect against micro-architectural at­

tacks by obscuring the way the RDTSC instruction works. Micro-architectural at­

tacks such as the cache timing attacks described above [49, 48, 61] rely on precise

timing of micro-architectural events in order to gather their information. Martin

proposes a scheme by which they add two delays to the RDTSC counter. One,

called the real offset, delays the execution of the RDTSC instruction. The other,

called the apparent offset, which adds a random delay to the end of the RDTSC in­

struction. These delays can turned off in the OS so that system critical portions of

the OS such as the scheduler are not interfered with. While this can be quite effec­

tive against certain types of attacks like those listed above it can be easily worked

around if an attacker can gain kernel access (for example through a kernel module)

and gives their malicious process rights to use the unaltered scheduler. While this

may pose a challenge for some side-channel attacks their threat model differs from

ours significantly enough that it poses no hindrance.

37

Chapter 2

Experiment Design and Analysis Techniques

2.1 Motivation and Goals

With the increase in the use of VMI [32, 8, 64, 3, 46] in research settings as well as

the migration of VMI to the commercial sphere [65] the study of the security of

this technique has taken on paramount importance. With the use of VMI to extract

cryptographic keys from live memory [46] the dangers of misuse of VMI have

gone from the theoretical to the practical.

In this dissertation our goal is to detect the use of VMI on a guest VM from

within that VM. Our threshold for success will the answer to a simple yes or

no question: "Can the guest VM detect that it is being monitored by some VMI

agent?" Any results which exceed this threshold will also be taken as confirmation

of detection of VMI.

2.2 Threat Model

We begin by defining the Trusted Computing Base (TCB) as the set of all hardware

and software which is essential to the security of a computer system [42]. Vulner­

abilities in the TCB will be considered vulnerabilities in the whole of the system.

Components outside the TCB should not be able to elevate privileges that they are

granted by the OS or hypervisor.

For the following experiments we will assume that the hypervisor as well as

all associated interfaces such as libvirt or xencntrl are part of the TCB. All VMI

39

agents will also be assumed to be part of the TCB. The guest VM will be outside of

the TCB and therefore all malicious code must be executed on the guest VM. We

further assume that the malicious VM is isolated from all other VMs.

The attacker on the malicious VM will be assumed to have root access to the

VM and therefore will be allowed to install malicious kernel modules as well as

run malicious user code.

2.3 Experimental Setup

The hosts in our experiments will use version 4.2 of Xen [20] and version 3.2.0

of KVM [24] along with version 1.6.2 of QEMU [66] (the userspace component

to KVM). Guests are Ubuntu Server VMs with Linux kernel version 3.11.0-12-

generic [13]. Guests are allocated 1GB of RAM and 1VCPU. Unless otherwise

stated all VMs are clones of the original VM.

For experiments concerning the detection of VMI a simple system will be used

where one guest VM is run on a physical host system (fig 2.1).

2.4 VM I Agents

For the detection of VMI all experiments will be done using VMITools [32]. Since

the primary means of doing VMI is to copy a page from memory and interpret

it [32, 8, 64, 3], any toolsuite which does this can be used for this experiment

without the loss of generality. There will be three VMI programs used for these

experiments: map-addr, process-list, and module-list.

40

41

Figure 2.1: Experimental Setup

The map-addr program simply maps an address from the guest's memory to

the memory of the VMI agent. The process-list command maps the processes cur­

rently running on a VM. In Linux the list of running processes is stored in the task­

list [67]. The task list is a doubly linked list where each node in the list represents

a process being handled by the OS. The process-list program begins by mapping

the head node of the task list from the guest to the VMI agent. The first task struct

is then decoded. The desired information, such as pids and process names, is dis­

played to the user and the location of the next task in the list is recorded. The

next node in the task list is processed in the same way. This continues until the

list comes back to the head of the task list, indicating that the entire list has been

traversed (alg. 1). The module list works in much the same way (alg. 2).

42

Result: A list of the processes running on a target VM

current_task = Domain.task_list_head;

repeat

adr=current_task.nextTask.adr;

map Task Struct at adr to host ;

translate nextTaskStruct ;

current_task = taskStruct at adr ;

until current_task.adr==Domain.task_list_head.adr;
Algorithm 1: The Process-List Program

Result: A list of the modules running on a target VM

current_module = Domain.module_list_head;

repeat

adr=current_task.nextModule.adr;

map Module Struct at adr to host ;

translate nextModuleStruct ;

current_Module = ModuleStruct at adr ;

until current_module.adr==Domain.module_list_head.adr;
Algorithm 2: The Module-List Program

2.5 Experiments

In this dissertation we propose four experiments to determine if the guest VM has

been monitored by some VMI agent.

For our first experiment we wish to analyze data produced by the Linux utility

Sysstat [68]. Sysstat measures over 200 fields used by Linux such as page faults per

second, context switches per second, and percentage of swap space used. Since the

host, guest, and VMI agent all use the same physical resources it is possible that

patterns can emerge in those values which can identify the use of VMI on the guest.

This experiment also allows us to use an existing tool, which would be convenient

for administrators who already run Sysstat.

For our second experiment we propose to look at main memory as a shared

resource between the host and the guest. To determine whether this is viable we

propose to analyze the time it takes to map and unmap a page in memory. With

main memory, CPU cache, and the page table being shared between VMs, it's pos­

sible that the use of a VMI agent on the guest will cause a distinguishable difference

in the time taken to do the mapping and unmapping of a page. It is hoped that this

difference will allow us determine whether VMI has been used on a target VM.

Our third experiment is similar to the first experiment in that in-memory timing

is used to determine if a guest is being monitored by VMI. In this case we are

directly examining the CPU cache. If they are on the same socket a guest and a

VMI agent will share the same L3 cache. If they are on the same core they will share

43

the same L2 and L1 cache as well. For our experiment we propose measuring how

long it takes to write an element in memory. Between each measurement we flush

all three caches. We hypothesize there will be a small dip in the time required

to access memory after it has been flushed from cache if a VMI agent has been

accessing memory in that program.

Our fourth experiment takes advantage of the fact that KVM uses several fea­

tures of the Linux kernel: in this case the scheduler and the KSM mechanism. KVM

uses the Linux scheduler, in this case the Completely Fair Scheduler (CFS) [30], to

manage VMs essentially as Linux processes. As a result of being treated as Linux

processes, KVM VMs are subject to memory de-duplication using KSM [24]. We

hypothesize that the memory de-duplication can be measured as in [54, 52] if a

VMI agent copies a page from the guest's memory to the host's memory.

2.6 On Timing

In this chapter we will be discussing the analysis of a number of different tim­

ings. For these timings we used the C++11 chrono object [69]. The C ++ chrono

object offers a high-resolution timer, the resolution of which is dependent on the

system. In Linux the high-resolution timer offers nanosecond resolution. In order

to determine the resolution and any computational overhead for the chrono object

we take a sample inside the guest VM. In this sample we simply take two time

measurements one after the other and log the difference between them. We take

1,000,000 measurements like this and plot them; see fig 2.2. What we see is that

44

45

Experimental Index Experimental Index

Figure 2.2: Raw Timing for Xen and KVM

while we have nanosecond resolution there is a significant amount of overhead

involved in the start of a timing measurement. In order to compensate for this we

take the minimum value of our measurements and subtract it from all subsequent

measurements.

The minimum value is quite close in both KVM and Xen at 119 ns and 539 ns,

respectively. These measurements represent the bare minimum amount of time

it takes to perform a timing measurement so we can subtract it as overhead on

subsequent measurements.

46

2.7 Analysis Tools Definitions and Terms

We begin our discussion of our common analysis techniques by defining the terms

property in common that is the subject of some statistical analysis. A sample is

a subset selected from a larger population [70]. For example, we might consider

a population as all people over 1.8m tall and a sample could be 1,000 randomly

chosen people over 1.8m tall.

Next let us consider a sample X drawn from some population. Further let us

define an individual element in X as x; where {x 1 , x2,, xn -1 , xn} C X. Next we

assume that each x; has the probability p;. Further we assume that all values in X

are independent and identically distributed (iid). That is, no element in X depends

on another and all elements are pulled from the same distribution. We define the

sample mean of X as [71]

dard deviation of the dataset [71] by equ. 2.2. The standard deviation gives a

measure of how dispersed the sample is from the average. Finally we define the

population and sample. A population is the complete set of data that have one

(2.1)

This represents the "average" value of the dataset. We further define the stan-

variance of X which is simply s2.

(2.2)

2.8 Hypothesis Testing

In this set of experiments we will be using statistical hypothesis testing in order

to analyze our data. Hypothesis testing is the process of using a statistical test to

determine whether a hypothesis about some model is false. We begin by defining

the null hypothesis H0 as some claim that we initially assume to be true [70]. The

alternate hypothesis is the claim that we assume to be true if we reject H0.

When discussing hypothesis testing we will be comparing two random sam­

ples. The first sample is X where x; has a probability of px; and {x 1 , x2,..., xnx-1 , xnx} e

X . The second sample is Y where has a probability of py and {y1, y2,..., yny-1, yny} e

Y.

Using an appropriate statistical test (discussed in sections 2.8.1 and 2.8.2) we

will be able to compute our test statistic. A test statistic is the result of a function

of our data which gives us one number upon which we can base our rejection of

H0. Given the test statistic we can then compute our p-value. The p-value is the

probability of obtaining a test statistic t, which is at least as contradictory to H0 as

the value obtained, under the assumption that H0 is true [70]. That is, a p-value

gives us the probability that our test statistic would have been produced if H0 were

true. The smaller the p-value, the more the data contradicts H0. Note this is not

the same as saying the p-value is the probability that H is true nor is it the error

associated with our test. Next we have the rejection region which is the set of

47

values for which we reject H0. If the p-value falls in our rejection region we reject

H0.

When we discuss hypothesis testing we must also discuss the types of errors

associated with it. A false positive, also called a type I error, is when one asserts

that H0 is true when it is in fact false. A false negative, also called a type II error,

is when the null is false but is not rejected. For brevity we will call the number of

true positives generated by some process as TP, the number of true negatives as

TN, the number of false positives as FP, and the number of false negatives as FN.

We further define the term accuracy as

TP + TN
““ y = TP + TN + FP + FN (23)

Accuracy gives us a measure of how close to the "correct" result the predicted

results are. This will serve our metric for determining how good a classification is.

It should be noted that accuracy gives equal weight to both types of errors. While

this m aybe inappropriate for some purposes, such as those injudicial proceedings,

it will be fine for the purposes of this dissertation.

2.8.1 Welch's t-test

The first hypothesis which will be used is Welch's t-test [72]. In Welch's t-test we

look at the two samples and calculate a t-statistic. This is more appropriate for our

purposes than the more common student t-test as it does not assume both samples

48

X and Y have the same variance. Based on this statistic we can determine whether

or not to reject the null hypothesis.

We begin by computing the t-statistic to test the null hypothesis that the two

populations X and Y share a mean via the following formula:

t = 4 ^ (2.4)si + £y
nx ny

Now that we have the t-statistic we can begin to compute the p-value. First how­

ever we need to determine the degrees of freedom V for our test. For each of our

random samples X and Y the degrees of freedom are given by Vx = nx — 1 and

Vy = wy — 1. We can then approximate the degrees of freedom for Welch's t-test

using the Welch-Satterthwaite equation [73, 72]

2 S2
(4 + % 2nx ny' _ _v

V - — — V (Z5)S4 + sy
n2xVx n2yVy

With the degrees of freedom for the test we can compute the p-value by using the

probability density function (pdf) for student's t-distribution.

49

f(t) = - g g > (1 + ^ (2.6)
v/VSr(V)' 2

where T(fl), the gamma function, is defined as

r™ ..
r(fl) = / xa 1exdx

0
(2.7)

50

We now obtain the p-value by integrating the pdf of student's t-distribution from t

to ™.

f(t)dt (Z8)

With the p-value in hand we can determine whether or not to reject the null hy­

pothesis by selecting a critical value. If the p-value is smaller than that critical value

then we can reject the null hypothesis that the two distributions share a mean. For

all t-tests in this dissertation we will assume a critical value of 10—6. We will be

performing all of our t-tests with the scipy library [74]. It should be noted that

many of the p-values obtained in this dissertation are 0. For a finite dataset it is

impossible to obtain a p-value of 0; a vanishing value of p is a limitation of the

software and should be taken as less than 10—6. We chose 10—6 as our critical value

as it is an order of magnitude higher than the highest p-value we obtained exper­

imentally. While these values may initially appear suspicious it should be noted

they can easily be verified by performing the integral numerically using a different

function in scipy [74]. It can also be intuitively verified if one looks at the student-t

distribution for one degree of freedom (fig 2.3). We see that as x increases P(x)

asymptotically approaches 0.

Finally we note that Welch's t-test assumes that the data being tested follows

a normal distribution. However it was noted in [75] that the t-test is robust with

51

Figure 2.3: t-distribution for one degree of freedom

non-normal data. As such even though our data is not normal it can still be appli­

cable.

2.8.2 Mann-Whitney U Test

The Mann Whitney U-test [71], also called the Wilcoxon rank-sum test, tests the

null hypothesis that one sample tends to have larger values than another. We be­

gin the Mann Whitney U-test using the same populations, means, and standard

deviations as in Welch's t-test. Then we check to see whether or not the following

four assumptions are satisfied.

1. X and Y are independent of each other

2. All observations are ordinal (i.e. it can be distinguished that one observation

is greater than another)

3. Under the null hypothesis the distributions of both populations are equal

4. Under the alternate hypothesis the probability of an observation from one

population exceeding an observation from the other is not 0.5.

In order to perform the test we compute the U-statistic. There are two methods

for computing the U-statistic: one for small data sets (less than 20 elements) and

one for larger data sets. As all of the datasets used in this dissertation are on the

order of 106 elements we will only be discussing the latter.

The first step is to rank all the observations. The smallest observation is as­

signed the rank 1, the next smallest value is assigned the rank 2, and so on. Ties

are equal to the midpoint of the assigned rankings. So in the set {2 ,4 ,4 ,7 } the ranks

{1 ,2 .5 ,2 .5 ,4 } would be assigned.

The next step is to sum the ranks of all observations taken over X and call it R1 .

The sum of the ranks from observations taken over Y is given by R2. We can then

then compute the U-statistics

52

U1= W1W2 + W1(n2 + 1) - R (2.9)

U2 = n1n2 + W2(n̂ + 1) - R2 (2.10)

where ” 1 and ” 2 are the number of elements in R and R2, respectively. When

adding equ. 2.9 and 2.10 together we get the sum as

53

U1 + U 2 = 2 W1W2 + W1(n̂ 1 + 1) + W2(n̂ + 1) - r 1 - R (2.11)

Since we know that R1 + R2 = N(N2+1) where N = ” 1 + n2 we can expand equ. 2.11 to

, T . I T , n1(n1 + 1) , «2(«2 + 1) (”1 + ”2)(”1 + ”2 + 1)
U1 + U2 = 2 mn2 + ----- 2------+ ------ 2---------------------- 2------------- (2.12)

Equ. 2.12 simplifies to

i t . it on n , n1(n1 + 1) , «2(«2 + 1) /W1(W1+1) n2(n2 + 1) i n n N ,010N
U1 + U2 = 2W1W2 + ----- 2----- + ------ 2-------- (------ 2----- + ------ 2----- + ” 1'”2) (2.13)

Simplifying see that U1 + U2 = ” 1”2. This allows us with a bit of algebra to simplify

equ. 2.9 and 2.10 slightly to

U ,= r - (2.14)

7T D ”2(”2 + 1) ,01CN
U2 = R2 -----------2--- (2.15)

The smaller of U1 and U2 is chosen for computing the p-value which are ob­

tained through a table of critical values [71]. As with the t-test we will be using the

scipy implementation [74] for our Mann Whitney U-tests.

If we assume the null hypothesis that the samples taken when the VM is mon­

itored by VMI and when it is not monitored by VMI have the same mean, we can

determine via these two tests whether or not to reject this hypothesis.

2.9 Mutual Information

Mutual information is a quantity which measures the amount of certainty gained

about a population X when measuring some random variable Y. In particular

let Y G 0,1 represent whether or not the VM is monitored by some VMI agent

and let X G R” represent the measured data from a given experiment. The mutual

information [76] then specifies how many bits of information are gained about

Y when sampling the random variable X. Given a joint probability distribution

P(Y = y, X = x), when the mutual information is given by

1(Y: X) = J X J Y P(y ,x)1og2(™) (" 16)

To estimate the mutual information, we use the implementation provided by

scikit-learn [77] where X is approximated by histograms over a large number of

sample measurements. Mutual information will allow us to determine how much

samples are needed in order to make a classification between two samples.

In this dissertation we will be using the mutual information to determine the

fewest number of measurements we can take in order to correctly classify whether

or not a guest has been monitored by some VMI agent.

54

Chapter 3

Sysstat Experiment

3.1 Introduction and Motivation

In our first chapter investigating methods of detecting VMI we first ask "What are

the shared resources we need to investigate?" and "How can we get the informa­

tion we need from these shared resources?" Since all physical hardware is shared

between the host and the guest we have an abundance to choose from such as

memory, CPU, disk, and the network. We can get this information directly from

the OS itself as a fair amount of information is recorded by the OS. In this experi­

ment we will take that information provided by the OS and analyze it to determine

if it can yield information about the use of VMI on that guest.

3.2 Sysstat

Modern OS's log a large amount of information for performance and monitoring

purposes such as the page fault rate, CPU frequency, and disk IO rates. In the

Linux OS a program called Sysstat [68] makes this information easily available to

the user. In this experiment we attempt to analyze the data produced by Sysstat in

order to determine if a VM is being monitored by a VMI agent. We hope the use

of an extant tool like Sysstat will allow easy monitoring of this field by a system

administrator and will require minimal setup on their part.

55

3.3 Experiment

We begin our experiment, which we call the SAR Experiment, with the same ap­

paratus as described in section 2.3. For our first step we synchronize the clocks

on the host and guest. We do this using the NTP protocol [78] available in Linux.

Synchronizing the clock on the host and guest allows us to compare measurements

taken by Sysstat on the guest to times when a VMI agent was used by the host.

On the guest Sysstat is run to gather all of the data it's capable of gathering. The

interval is set to 1s as it is the smallest measurement Sysstat can take. One hour of

data was taken. The command used to gather the data is

sar -A 1 3600

On the host we run a script called collectData.py. This script runs a VMI program

specified by the user and at a time interval also specified by the user. For our

experiment we run the VMI programs process-list, module-list, and map-addr. We

do our measurements at intervals of 100 s, 50 s, 25 s, 10 s, and 5 s. Each time a

measurement is made the time stamp is noted.

3.4 Data and PreProcessing

The data in Sysstat is recorded in a difficult to read binary format. However if

one captures the live output of Sysstat (as we did in our experiments) it becomes

human readable and far easier to parse. After being parsed it still requires a fair

amount of preprocessing. To begin with many of the fields are non-numeric such

56

as the network interface being monitored or which CPU is being monitored. We

can immediately discard these fields as non-numeric fields will be significantly

more difficult for us to use machine learning techniques on, in addition since we

only have one of each interface (one CPU and one network adapter for instance) it

is unnecessary to keep this information.

The next portion of our preprocessing involves removing of all fields which are

uniformly zero. These are removed as they do not contribute any information to

our classification, yet they can still add to the computation time required to per­

form our classification. The question is why are some fields uniformly zero? For

instance major faults per second (fig 3.1)(those which require going to disk for

a page) is uniformly zero yet page faults per second (total page faults including

major faults) is not (fig 3.2). The fields which are uniformly zero are not neces­

sarily the same for Xen and KVM. These fields are also not necessarily zero when

the measurements are taken on a non-virtualized OS. This implies that the fault

to the hypervisor caused in some cases (such as in the case of a major fault) the

measurement to be reported as a 0 to the OS.

Further complicating matters is that the majority of the measurements taken

by Sysstat are not of the same unit. This poses two problems: you cannot directly

compare measurements of different units and that different measurements are of­

ten of different scales. For instance you cannot compare amperes and meters as

one measures electrical current and one measures distance. Further an every day

57

m
aj

flt
s

58

0.06

0.04

0.02

0.00

- 0.02

-0 .0 4

majfltsover time for KVMModListlOs
n-----------------1---------------- 1-----------------1---------------- 1---------------- r

-0 .0 6 _l______________ I______________ I______________ I______________ I______________ I_

0 500 1000 1500 2000 2500 3000 3500
Experimental Index

4000

Figure 3.1: A graph of major faults per second over time for KVM while monitored

by VMI every 10 s

fa
ul

ts

59

„0„„ faultsover time for KVMModListlOs
I 8 OO1-

1600­

1400­

1200­

1000­

800­

600­

400­

200­

0 =
0 500 1000 1500 2000 2500 3000 3500

Experimental Index
4000

Figure 3.2: A graph of page faults per second over time for KVM while monitored

by VMI every 10 s

measurement of current may be on the order of 10-3 A but measurements of dis­

tance might be on the order of 1 m. So while a change of 10-3 might be insignificant

for a measurement of distance it might be very significant for measurement of cur­

rent. To address this problem a common technique called standardization (which

yields a Z-score) is used. To compute the Z-score of a data set we first split the data

set into features. A feature is a type of measurement in our data set such as page

faults per second. Since our data is conveniently divided into fields we will use

each field as one feature. For each feature we compute the mean (X) and the stan­

dard deviation (s). Then for each datum x in the feature we compute and replace

itw ith Z as defined in equ. 3.1.

Z = ^ (3.1)
s2

After the features are scored we must classify them. To do so we compare the

time stamps taken by Sysstat on the guest and the time stamps taken when VMI

was run on the host. Data points from the guest that are within 0.5 s of a time

stamp noted on the host are marked as being monitored which we denote with a

1. All other points are marked as unmonitored denoted by a 0.

After processing the data we still had more than 150 features available each

with 3600 measurements which can be quite a large dataset when using machine

learning algorithms which suffer from the so-called "curse of dimensionality" [79].

60

So we try to remove more of the features which may not be of interest to us or

which may be redundant.

61

3.5 Analysis

3.5.1 Information Gains

Suppose we have a dataset S with si samples of class i and m classes total (in our

case two for monitored and unmonitored). The amount of information needed to

classify a sample is given by

Now let us denote a feature by F. A feature F is made up of v subsets {s1, s2,..., sv }

where sj is the subset of F with the valuefv. Now we let sj contain s j samples of

class i. Classes are broadly any way we can classify data; though for our purposes

the classes will be whether a VM was monitored or not by VMI. We can then com­

pute the entropy of the feature with equ. 3.3

s s
1(s1, •••, sm) = — ^]j“Vlog2]pjs si=1

(3.2)

(3.3)

The information gain is then computed as

Gain(F) = J(s1 ,•••, sm) — E(F) (3.4)

62

Table 3.1: Features and information gains for our top 10 features

feature info gain

membuffer 0.2002

memcache 0.1475

wtps 0.1351

memfree 0.1350

memusedpercent 0.1281

pgfree/s 0.0531

sys 0.0328

swapusedpercent 0.0324

idle 0.0312

pgscank/s 0.0271

Using the information gain we are able to select the features which contribute

the most information to classifying the datum. We select the features which have

the 10 highest information gains and use those for our analysis. These features are

all CPU or memory related.

63

Table 3.2: Accuracy Rating for Xen monitored by the process-list command

times 100 s 50 s 25 s 10 s 5 s

Linear SVM 0.991 0.9833 0.958 0.963 0.802

SVM 0.990 0.983 0.958 0.963 0.802

SGD 0.990 0.016 0.958 0.963 0.802

KNN 0.990 0.991 0.973 0.984 0.892

Nearest Centroid 0.990 0.991 0.973 0.985 0.892

Running Tree 0.988 0.984 0.973 0.963 0.884

Gradient Boosting 0.988 0.990 0.966 0.973 0.833

3.5.2 Classificaton

Next we split our data into testing and training sets. To do this we use the function

train_test_split provided by scikit-learn [80]. We split our data into 60% for our

training data set and 40% for our testing data set.

With our testing and training set randomly chosen we can begin the classifi­

cation of our data. We begin by looking at the available classifiers provided by

scikit-learn. We ran tests using the Linear Support Vector Machine Classifier, Reg­

ular SVM classifier, GD classifier, KNN classifier, Nearest Centroid, Tree Classifier,

and Gradient Boosting Classifier. The results are shown in table 3.2. Results from

KVM are not shown but are analogous.

64

Table 3.3: Raw scores for Xen with the linear support vector machine classifier

times 100 s 50 s 25 s 10 s 5 s

True Positives 0 0 0 0 0

False Positives 0 0 0 0 0

True Negatives 1427 1416 1380 1386 1156

False Negatives 13 24 60 54 284

While it does appear that we get extremely high accuracy with each of our

classifiers (as high as 99.1% accuracy) the accuracy decreases significantly the more

frequently VMI is used on the target VM. When we look at the raw scores (table

3.3) we see a slightly different picture.

We see that there are no actual positives marked by our classifier. The classifiers

are marking each of the points as negative and thus decreasing the accuracy when

more positive points are included. The implication of this technique is that it will

not be useful for determining whether or not we have been monitored by VMI.

Why is this likely the case? Measurements taken by Sysstat are at their finest grain

1 s, the measurements taken by our VMI tools happen on the order of 10—6 s. It

therefore appears that a finer grained measurement will be needed to determine if

our guest VM has been monitored by VMI.

Chapter 4

Using Page Allocation Timings to Detect VMI

4.1 Motivation

In the previous chapter we were unable to detect VMI use with Sysstat as it proved

to be too coarse grained. In this chapter we look at the shared resource of main

memory, which is shared by both hosts and guests across the entire system. In ad­

dition events in memory occur on the order of 10—7 s which would be fine enough

grained to pick up VMI. In the x86-64 processor main memory is handled by the

Memory Management Unit (MMU), which uses a process called paging to control

which data and instructions are held in main memory.

When a VMI program is used on a guest, memory is mapped from the memory

space of the guest to the memory space of the host (which, for brevity, we will

refer to as guest-space and host-space respectively). We believe this mapping from

guest-space to host-space will affect which pages are in memory to a degree that is

measurable in the time required to map a page in memory.

4.2 Experimental Design

For our initial experiment, which we call the MMap Experiment, we aim to deter­

mine whether or not a guest VM can detect that it is being monitored by a VMI

process. We begin by using the same experimental hardware described in chapter

2. For our experimental setup we use a KVM and a Xen host. Each host runs a

single VM of Ubuntu 14.04 as described in chapter 2.

65

On the host the VMI agent was run continuously. We did three trials: one where

the process-list command was run, one where the module-list command was run,

and one where the map-addr command was run. In each case the VMI program is

continually run on the guest VM.

On the guest side a probe is set up. This probe uses the C++11 chrono ob­

ject [69] which gives us nanosecond resolution. For each iteration the time stamp

is recorded, a page is mapped and unmapped from memory using the mmap func­

tion [81], and then the timestamp is again recorded. The difference between the

second time stamp and the first time stamp are taken and this result is recorded as

the time taken to map and unmap a page. As mentioned earlier however a small

correction is made and the overhead time in the previous section is subtracted from

the result to give our final result. A control sample where no VMI agent is being

run on the guest is also taken.

1. Mark Timestamp t0

2. Map page in memory

3. Unmap page in memory

4. Mark Timestamp t1

5. Record t1-t0

66

4.3 Results and Analysis

The first step of our analysis is to compare the histograms of the control data with

data where VMI is used. It can be seen immediately (figs 4.1 and 4.2) that not only

are the samples with VMI different from the control sample but they are also dif­

ferent from each other as well. One should note that these histograms are zoomed

in to give a better insight into the data. There are still small pockets of data after

the 10,000 ms bin but these are so small as to be not evident in the histograms.

The next step is to determine whether or not these datasets are statistically differ­

ent from the data in the control sample. To do this we use two statistical tests,

which determine whether or not two populations share the same mean. The first

is Welch's t-test [72] which determines whether the mean of two populations is

the same. The second is the Mann Whitney U-test which again measures whether

the two means of the population are the same.

In both cases we begin with the null hypothesis that the mean of a sample not

being monitored by VMI is the same as the mean of a sample which was being

monitored by some form of VMI. The results of these tests are shown in table 4.1.

As we can see the results of the likelihood of the means of the two populations

being the same is extremely low. It should be noted here that while all of the p-

values are 0 this is strictly speaking not possible for finite populations. Instead this

is a limitation of IEEE floating point arithmetic and a value of 0 should be taken as

a value of less than 10—6.

67

68

Figure 4.1: Histograms of the mmap time when a Xen VM is not observed by VMI

(left) and observed by the process-list command (right)

Table 4.1: t-stats for Xen and KVM compared to the null hypothesis that no VMI is

being used

Hypervisor mapPage modList procList

Xen -4361 -5678 -1691

KVM -903 -1000 -632

69

0 O l ^ 017101̂ ^ ccess Times Unmonitored Memory Access Times Monitored

0.016

0.014

0.012

£ 0.010
a;3
£ 0.008

0.006

0.004

0.002

0.000
104 103 10q

Memory Access Times (ns) Memory Access Times (ns)

Figure 4.2: Histograms of the mmap time when a KVM VM is not observed by

VMI (left) and observed by the process-list command (right)

Table 4.2: U-stats for Xen and KVM compared to the null hypothesis that no VMI

is being used

Hypervisor mapPage modList procList

Xen 3.73 ■ 108 8.71 ■ 108 7.43 ■ 108

KVM 8.34 ■ 108 1.02 ■ 109 3.26 ■ 108

The next question to arise is this: are these patterns unique to VMI or can they

be reproduced by other means? To answer this we first consider which factors can

impact time taken to map a page are page faults and cache misses [82]. At the

scale of time being dealt with in this experiment, cache misses will likely not be a

significant factor given that they tend to be in the 100 ns range. As a result we will

instead focus on page faults.

4.4 Elimination Experiments

For this portion of the experiment we will test whether a VM with more memory

will cause similar patterns in the time it takes to map a page to those caused when

a VM is being monitored by a VMI agent. We begin this portion of the experiment

by cloning our initial VM but changing configuration so the VM has 4GB of RAM

instead of the 1GB of RAM it had earlier. The probe process as described in section

4.2 is repeated. The results are compared to the null hypothesis that the target VM

is being monitored by the process-list program.

We can see that these histograms are distinctly different (fig 4.3). We then com­

pare the two samples using the Mann-Whitney U test and the t-test. We can see

that the p-values are well outside our critical range and thus we reject the null

hypothesis that two samples are the same.

Next we test whether a VM which has more VCPUs can be confused with the

signal of a VMI agent. We begin this portion of the experiment by cloning our

initial VM but changing configuration so the VM has 3 VCPUs instead of the one

70

71

Memory Access Times with 4GB Ram

Memory Access Times (ns) Memory Access Times (ns)

Figure 4.3: Histograms of the mmap time when a KVM VM observed by the

process-list command (left) and when a KVM VM has 4GB of RAM (right)

4

it had earlier. The probe process described in section 4.2 is repeated. We again

make the null hypothesis that the target VM is being monitored by the process-list

program.

72

Figure 4.4: Histograms of the time when a KVM VM observed by the process-list

command (left) and when a KVM VM has 3VCPUs (right)

We next attempt to determine whether or not the number of VMs running on

the same host will produce a signal similar to the one produced by a VM being

monitored by a VMI agent. We begin our experiment by making three identical

clones of our initial VM (now called VM-A) which will be labeled VM-B, VM-C,

73

Table 4.3: U-stat and f-stat for populations taken when the VM had 4GB of RAM

or 3VCPUs compared to the null hypothesis that they were being monitored by a

VMI agent.

Machine Configuration Mann-Whitney t-test

3VCPU 1.184■107 174.0

4GB RAM 1.373■107 147.1

and VM-D as shown in fig 4.5. We run an experiment initially where only VMs

A and B are running. The probe described in section 4.2 was run on VM-A while

VM-B was idle. We repeat this process with VMs A-C running and again with VMs

A-D running. We then compare each of these samples taken to the samples when

a VM is being monitored by VMI 4.6.

Figure 4.5: Diagram of multi-VM experiment

74

0 o^5m0ry ^ ccess T imes Monitored by VMI Memory Access Times With 4 VMs

0.025

0.020

u
3 0.015CT<D

0.010

0.005

0.000
10J 104 103

Memory Access Times (ns) Memory Access Times (ns)

Figure 4.6: KVM monitored by the Process-list command (left) and KVM running

4VMs (right)

4

4.5 Conclusion

In this chapter we successfully introduced a method for detecting VMI as well as

distinguishing between which VMI agent was used. It can also distinguish be­

tween multiple VMs being used as well as different levels of resource allocation.

While it is impossible to exhaustively test all scenarios we consider this experiment

to be a success as it did detect VMI. However it was not without its limitations. The

VMI agent had to be run continuously without break on the VM in order for this

method to be successful. This means that while successful in a technical sense it

isn't especially realistic.

75

Chapter 5

Using Cache Timings to Detect VMI

5.1 Motivation and Introduction

In this chapter we discuss a statistical analysis of the time taken to write to a page

after it has been forcibly ejected from cache. When we look at resources shared

between a host and guest, one of the obvious ones is the CPU cache. When a VMI

agent fetches memory from a guest VM it ends up in the CPU cache. The question

is can this caching be measured by the guest VM? We hypothesize that there will

be a measurable decrease in the time taken to access a page at intervals where VMI

has been performed on the VM. In order to make this more general we aim our

experiment at the L3 cache specifically. While each core has its own L1 and L2

caches, the L3 cache is shared across all the cores on a CPU. This will mean we will

be able to tell if a VM has been monitored by VMI agent regardless of which core

it's on.

5.2 Experiment

We begin this experiment, which we call the Cache Experiment, with the same

physical setup described in chapter 2. Since this experiment will be specifically

measuring the L3 cache timings we don't need to pin the hypervisor and VM to the

same VCPU. This experiment is broken into two portions: the monitoring portion

and the host portion.

77

When a VMI agent is used on a VM the memory being analyzed is copied or

mapped from the VM to the VMI agent. This will move this data into the CPU

cache of the CPU on which the VMI agent is being run. Suppose the VMI agent

were co-located on the same CPU as the VM being monitored. This would mean

that the VMI agent would be able to fetch the memory from cache rather than

having to go out to main memory. This would cause a significant decrease in the

time taken to fetch the data. Now suppose that the process inside the target VM

which is being monitored by the VMI agent flushes cache lines which its memory

occupies. This should cause a measurable increase in the amount of time required

to access the data which has been evicted.

For this experiment a process (the monitoring process) will be run on the guest

VM. This process begins by allocating a page of memory and fill it with random

values using the Mersenne Twister algorithm [83]. The Mersenne Twister pseudo­

random number generator is chosen to increase the probability that page will be

distinct from all other pages in memory. This is to ensure when the data is evicted

from cache it will not be inadvertently loaded by other processes, which have the

same data in memory. While most pseudo-random number generators would be

acceptable the Mersenne Twister is common and included as part of the new C ++

standard library.

The monitoring process will then take one time stamp using the chrono ob­

ject described in section 2.6, write to a random element in the page, then take

78

another time stamp, and record the difference between the timestamps. The mon­

itoring process then flushes the cache using the X86 CLFLUSH instruction [84].

This instruction flushes a cache line from all levels of cache on the CPU. Since the

CLFLUSH instruction only flushes a cache line the page is simply iterated through

until all cache lines are flushed. This process is then repeated 1,000,000 times.

On the host side the VMI agent will fetch the memory from that process and

page. The VMI agent was run at regular intervals during the experiment. Trials

were performed where the VMI agent was run every 50 ^ s, 100 ^s, 200 ^s, 1 ms,

and 10 ms. Trials were also performed where the target VM was not monitored by

a VMI agent.

5.3 Analysis

The result were plotted and it was expected that noticeable drops in the time taken

to write to a page would be present at regular intervals where the VMI agent had

mapped the guest data. From fig 5.1 we can see that these drops in the mem­

ory access time are not present. Why is this the case? According to Hennesy and

Patterson [85], cache misses take approximately 25 ns. This is a full order of mag­

nitude less than the overhead taken for our timing measurements. Can anything

be salvaged from these results?

When one looks at a histogram of the results one can see that the histograms

are slightly different so we employ our statistical tests to determine if they can be

distinguished that way. For the initial set of tests the t-test and Mann-Whitney

79

Tim
e

in
na

no
se

co
nd

s
80

Figure 5.1: KVM memory access timings (ns) zoomed to show 5,000 results

81

Table 5.1: T Tests for Xen and KVM vs the null hypothesis that no VMI has been

used

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 106 Samples -9.196 -44.15 -18.40 -4.742 -32.22

Xen 100 Samples -40.66 -29.62 -32.62 -28.71 -34.00

KVM 106 Samples -12.25 -12.33 -11.29 -12.25 -11.36

KVM 100 Samples -32.63 -34.63 -3.159 -33.29 -13.43

U-test are run between pairs of populations with the control population being un­

monitored by VMI and the variable population being monitored by VMI at some

regular interval. Table 5.1 shows the results. In all the tests performed the p-value

was less than 10-6 . A p-value this small indicates that we can reject the null hy­

pothesis that both samples were drawn from the same population. As a result we

can take conclude that VMI has been detected by this probe. In these tests 1,000,000

samples were used. This is an extremely large sample size and may not be useful

for real time applications. The question now becomes: how far can the sample be

reduced and produce acceptable results?

To determine this, we model the experiment as two random variables and con­

sidering the mutual information between them as discussed in chapter 3. The

results of the mutual information between the timing data and the presence or

absence of VMI are shown in table 5.3, and demonstrate that by taking timing

82

Table 5.2: Mann-Whitney U-stats for Xen and KVM vs the null hypothesis that the

no VMI has been used

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 106 Samples 4.046■109 3.960 ■ 109 4.368 ■ 109 4.020 ■ 109 4.293 ■ 109

Xen 100 Samples 138.0 175.0 24.5 100.0 33.0

KVM 106 Samples 3.086 ■ 109 2.657 ■ 109 2.422 ■ 109 2.803 ■ 109 2.589 ■ 109

KVM 100 Samples 100.0 81.0 176.0 55.5 73.0

Table 5.3: Information Gain Results for Xen and KVM in bits

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 0.061 0.060 0.060 0.060 0.064

KVM 0.070 0.069 0.071 0.070 0.073

measurements, we gain as much as 0.08 bits of certainty about the VMI hypothe­

sis.

This indicates that the number of samples required can be reduced significantly

from the original 1,000,000. To test this hypothesis, we reduce the sample size to

100 samples which is a 10,000 fold decrease in sample size. We perform the t-test

again to determine if this reduction in sample size will still give positive results.

We can see from tables 5.1 and 5.2 that we are still able to determine the difference

between the different samples. Again all p-values computed for these tests are less

than 10-6 .

5.4 Support Vector Machines

5.4.1 Theory

After discovering that we need less than 100 samples in order to classify whether

a sample has been monitored by a VMI agent we need a good machine learning

classifier to test this on. For this classification we will use Support Vector Machines

(SVM) introduced originally by Cortez and Vapnik [58] in 1995. SVMs begin by

assuming data has the form

83

{xk,yk} e Rn x { - 1 , 1} (5.1)

where Xk is some data point and yk is its classification (in our case monitored by

VMI or not). We now wish to find a maximum margin hyperplane parameterized

84

by ((w), b). This hyperplane is selected such that it will separate the classes y* = 1

and yi = - 1 . Next we must choose a ((w), b) such that we have the greatest distance

between

Now we make the assumption that the data is linearly separable. While it may

seem like this is severely limiting at first we can make this assumption using the

"kernel trick" and map our features to some high-dimensional feature space. This

will not be necessary in our case however given that our data is quite composed of

a single feature repeated 100 times. By assuming our data is linearly separable we

can select a ((w), b) such that there are no points in between the planes denoted by

equ. 5.2 and 5.3.

By examining fig 5.2 we can see that we want to minimize the distance . In

order to ensure that no points are in the margin we add the constraints

w x - b = 1 (5.2)

and

w x - b = - 1 (5.3)

w ■ xi - b > 1 (5.4)

and

w ■ x* - b < - 1 (5.5)

85

Figure 5.2: A simple two dimensional example of an SVM

86

for yi = 1 and y* = —1 respectively. This can then be reduced to the form

yk x (w ■ x; — b) > 1 (5.6)

for 1 < i < n.

5.4.2 Experiment

Since we have determined that fewer than 100 samples is necessary to make a

classification we begin by transforming our data into units of 100. Since we initially

took 1,000,000 samples this is an easy transform, giving us a 10,000 x 100 data set.

The first 100 sequential samples are transformed into one 100 dimensional data

point, the next 100 are turned into the second data point and so forth. Each data

point is labeled with a 1 for monitored by VMI and 0 for unmonitored by VMI.

Since we know which samples were taken while being monitored by a VMI agent

and which ones were not we can easily label our data.

We then split the data into a training set and a testing set using the frain_fesf_spZif

function in the cross_vaZidafion module provided by Scikif-Zearn [80]. Despite being

in the cross validation namespace the cross_yaZidafion.frain_fesf_spZif function does

not perform any kind of cross validation. It instead generates a testing and training

set randomly from the data. We take 60% of the data for the training set and the

remaining 40% for the testing set. We then train our support vector machine using

Scikif-Zearn and test it using the same. For our initial test we only tested whether

87

Table 5.4: Accuracy at classifying whether or not VMI was used at certain intervals

for Xen and KVM

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 0.9930 0.9905 0.9893 0.9940 0.9860

KVM 0.9858 0.9876 0.9870 0.9881 0.9881

our SVM could distinguish whether or not VMI was used on the target VM. We

then fitted our SVM with our training data. Each point in the testing set was then

classified using the SVM derived from our training data.

5.4.3 Results

For this experiment we tested our dataset which was unmonitored by VMI against

the data sets which were taken when VMI was used at the intervals 50 ^s, 100 ^s,

200 ^s, 1 ms, and 10 ms. The results of the accuracy are shown in table 5.4.

The accuracy is as high as 99.24%. In order to make sure this experiment does

not suffer from the same failing as the experiment in chapter 2 we look at the

false positive to determine if the accuracy is not skewed. We look at the results for

Xen and KVM comparing a set of data taken when the guest was monitored every

100 ^s to the set where the guest was unmonitored by VMI. We can see from fig 5.5

that the false positive rate is as low as 0.98% and 1.3% for Xen and KVM respec­

tively. These results are representative of all the samples taken. This qualifies as

88

Table 5.5: The Raw Scores for Xen and KVM under the null hypothesis that the

50 ^s set and set with no VMI are the same

hypervisor TP FP TN FN

Xen 3994 39 3930 37

KVM 3983 51 3918 48

a successful test for our purposes, however it is not perfect. As with all statistical

methods it suffers from the base rate fallacy. That is while an overwhelming ma­

jority of points may be correctly classified, the sheer volume of data points which

are involved would result in an incredibly large number of improperly classified

data points.

5.5 Conclusion

In this chapter we were able to successfully demonstrate a technique to detect VMI

used on a VM at set intervals. While this technique was successful boasting up­

wards of 99.24% accuracy it is not without its limitations. It cannot detect VMI

with much success if it is used more than 10 ms apart. Further like all statistical

methods it is subject to the base rate fallacy making its utility limited unless paired

with another method which is not statistics based.

Chapter 6

Leveraging Kernel Samepage Merging to Detect VM I

6.1 Motivation and Introduction

Two side-channel attacks using same page merging were detailed by [52, 54].

Based on these examples we propose to leverage same page merging to construct a

side-channel for the detection of the use of VMI on a target VM. In this experiment

we leverage the memory de-duplication mechanism available in Linux called Ker­

nel Same-Page Merging (KSM) [31]. KSM works by scanning the running Linux

processes and marking those pages which produce identical hashes as candidates

for merging. Those which are marked as candidates are then checked byte by byte

to ensure they are indeed identical. The page table entries for the merged copies

are all switched to point to only one of the previous pages (see fig 6.1). The other

pages are then marked as being reclaimable by the OS. A copy-on-write scheme is

employed in KSM much the same as it is in ESXi.

Since KVM is part of the Linux kernel [13] it leverages much of the existing

kernel code to perform such tasks as scheduling and storage management. As a

result VMs being run on a KVM hypervisor are subject to memory de-duplication

with others VMs as well as processes running on the host. Since a VMI agent

and a VM running on the same physical host are both treated as processes by the

Linux kernel we hypothesize that the shared memory between the two can be de­

duplicated. Further if these pages have been merged then they will be subject to

89

90

Process A Process B

Main Memory

Before Page Merging

Process A Process B

Main Memory

After Page Merging

Figure 6.1: Kernel Samepage Merging

COW and therefore writing to these pages will be measurably slower than ordi­

narily writing to a page.

6.2 Experiment

For this experiment, which we call the Page Merging Experiment, we use the same

apparatus as before. Only KVM is used for this experiment however. While Xen

does employ a memory de-duplication technique it is only applicable to hardware

virtualized guests. Since the Dom0 VM is necessarily paravirtualized [20] and the

VMI agent typically runs on the Dom0 this experiment is inappropriate for use

with Xen.

As in chapter 3 this experiment is broken into two portions; the host portion

and the guest portion. On the guest a monitoring process is run. This process

allocates 10,000 pages in memory and again fills them with random values using

the Mersenne Twister [83] to ensure that the values in the page are unique with

a high degree of probability. The address of the data in memory is then printed

as well as the process ID (PID). The data in the pages is printed to ensure that it

is not optimized out by the compiler for having no output which is dependent

on the data in those pages. While these prints are slower than the measurements

being timed, they are not themselves timed and will not contribute any measurable

overhead.

On the host side the memory for each of the pages in the monitoring process on

the target VM is mapped one time by our VMI agent. These pages are again printed

out to avoid the possibility of the compiler optimizing out the operations. The

program then waits, keeping the memory mapped from the target VM in memory.

On the guest side a random number is added to a random element in each of

the previously mapped and seeded pages. The process then pauses for 1 s between

each write. The resulting memory access times are then printed and analyzed (see

the following section).

91

92

Table 6.1: T-Tests for KVM vs the null hypothesis that the no VMI has been used

Number of VMs VMI Apache and No VMI Apache with VMI

1VM -44.15 -18.40 -4.742

2VMs -29.62 -32.62 -28.71

3VMs N /A -8.368 N /A

6.3 Results

We begin our analysis by plotting both the timing data taken when the VM has not

been monitored by VMI and data taken when the VM was monitored by our VMI

agent (see fig 6.2). While fig 6.2 does not show a clear increase in the time taken

to access a page, it does show that the two plots are slightly different. Are the two

plots substantially different or do they merely look different? To answer this we

again perform the t-test to check our data against the null hypothesis that both

samples are the same. We see the results in table 6.1 and note that all p-values are

less 10—6 . Based on these results we conclude that the two samples are different

and we have thus detected the use of VMI on these pages.

As in chapter 4 we test other results to make sure that our signal is not easily

reproducible. We repeat our experiment with two VMs running, three VMs run­

ning, and when apache is being run on the targeted VMs. The comparisons are

shown in table 6.1.

93

^gMemory Access Times Unmonitored Memory Access Times Monitored

0.14

0.12

0.10
u
3 0.08CT
e

LL.

0.06

0.04

0.02

0 0 0 ? , A "3 ■> A
102 103 104 102 103 104

Memory Access Times(ns) Memory Access Times (ns)

Figure 6.2: Histogram of the Memory Access Times for KVM not monitored by

VMI (left) and monitored by VMI (right)

These results are discouraging in the case when multiple VMs are running.

With t-statistics of -29 .62 , -32 .62 , and -28 .71 it is difficult to distinguish which

state the VM is in. We still reject H0 we just do so more weakly when VMI and

Apache are used. This makes this result somewhat suspect. When we run the

t-test between the samples with apache and no VMI and the sample where VMI

is run on the guest we get a t-stat of 4.960 with a p-value of 7 ■ 10-7 . This being

below our critical value of 0.001 we reject the null hypothesis that those two are

the same. While we can tell the case where Apache is running on a VM with and

without VMI it is difficult for us to tell those two apart when comparing them to

the sample that runs on one VM with no VMI.

This indicates that for this to be useful several tests must be performed rather

than one simple t-test as in our previous results.

6.4 Conclusion

While we were able to detect the use of VMI on a specific page due to the KSM

feature available in the kernel we had difficulties distinguishing the use of VMI

versus the use of an Apache web server. This approach has both benefits and

drawbacks. It allows us to determine whether or not a specific page has been

accessed in memory which can be of use if a set page is being monitored regularly.

The drawback however is that this specific page has to be accessed in order to be

detectable by this scheme. In addition the fact that there can be a fairly substantial

94

amount of time for the pages to merge can make this scheme somewhat difficult to

add into a real time detection scheme.

95

Chapter 7

Conclusion and Future Work

In this dissertation we were able to detect the use of VMI on a single guest with a

high degree of accuracy. We consider this a success. These successes are not with­

out limitations however. The Sar method of detecting VMI did not work as it was

too coarsely grained. The Page Merging and the MMap Method managed to detect

VMI with a fair degree of accuracy, however they were limited by the amount of

data needed to take or the time needed to make a successful measurement.

However we did have one method which was able to detect VMI with an ex­

tremely reliable accuracy. In addition it was able to determine individual points

where VMI had been used, not just whether it had been used during the entire

course of taking measurements. This method is however limited to systems where

all the CPUs being discussed share the same L3 cache. This is not possible during

cases where a machine has multiple sockets.

Our next experiment would be to scale this experiment to single socket CPUs

which are connected on a cluster. Our hypothesis is that as long as all the mem­

bers of the cluster are single socket machines, it will show the same results as our

experiment on the cache timing.

We also wish to see if main memory or disk latency can be used to determine

whether or not VMI has been used across CPU sockets.

97

What does this mean however, for the users? For the paranoid user (or sensible

user) there are steps that can be taken to make one's computer far more secure. The

first thing they would need to is generate a cache profile which reflects the user's

computer use. This profile must be taken at a time when the user knows that they

are not being monitored by VMI. This becomes problematic because the the system

being analyzed must be virtualized for this to be a relevant comparison. If the user

attempts to take their baseline measurements while their system is non-virtualized

these measurements will be useless if their system becomes virtualized due to the

difference in time required to make a timing measurement in a virtualized vs non­

virtualized system.

Assuming that the user is able to create this idealized environment for this sys­

tem to work, there are countermeasures which can be taken against VMI. For in­

stance the DKSM attack [1] can shift around the location of kernel structures such

that most VMI agents become unable to bridge the semantic gap. In addition some

VMI agents are somewhat buggy. The VIX toolsuite [8] contains known bugs.

The process-list implementation in VIX has a hard limitation of 300 processes. If a

guest has more than 300 processes running a segmentation fault will occur in VIX.

Armed with this knowledge a guest can defend themselves against some forms of

introspection.

From the introspector's side there countermeasures which can be taken to pre­

vent the detection and circumvention of VMI. Kernel integrity monitoring of VMs

98

such as that in vShield [65] can prevent the user from implementing a DKSM style

attack by only inspecting kernels which have not been altered. In addition VMI

tools can be corrected and hardened such that they do not have trivially exploitable

vulnerabilities.

Can the VMI agent get away without being detected however? Martin et al.

[63] introduced a scheme where random values are added to the timestamps when

rdtsc faults to the hypervisor. This will prevent most microarchitectural attacks,

such as the ones presented in this paper, from being successful. However there

is a tradeoff with their technique as not all applications will run correctly when

the timestamps from the OS are altered. Since these modifcations require direct

alteration of the hypervisor, this gives way to the possibility of detecting such al­

terations in the future which may give away the introspector in a different light.

While we have made advances in this dissertation we can see that the back and

forth in security between attacker and defender is not going to be solved in this

dissertation.

7.1 References

[1] S. Bahram, X. Jiang, Z. Wang, M. Grace, J. Li, D. Srinivasan, J. Rhee, and D. Xu,

"DKSM: Subverting virtual machine introspection for fun and profit," in Reli­

able Distributed Systems, 2010 29th IEEE Symposium on. IEEE, 2010, pp. 82-91.

99

[2] J. Pfoh, C. Schneider, and C. Eckert, "Exploiting the x86 architecture to derive

virtual machine state information," in Emerging Security Information Systems

and Technologies (SECURWARE), 2010 Fourth International Conference on. IEEE,

2010, pp. 166-175.

[3] B. Dolan-Gavitt, B. Payne, and W. Lee, "Leveraging forensic tools for virtual

machine introspection," 2011.

[4] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee, "Virtuoso: Narrow­

ing the semantic gap in virtual machine introspection," in Security and Privacy

(SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 297-312.

[5] Z. Gu, Z. Deng, D. Xu, and X. Jiang, "Process implanting: A new active intro­

spection framework for virtualization," in Reliable Distributed Systems (SRDS),

2011 30th IEEE Symposium on. IEEE, 2011, pp. 147-156.

[6] Y. Fu and Z. Lin, "Bridging the semantic gap in virtual machine introspec­

tion via online kernel data redirection," ACM Transactions on Information and

System Security (TISSEC), vol. 16, no. 2, p. 7, 2013.

[7] T. Garfinkel and M. Rosenblum, "A Virtual Machine Introspection Based Ar­

chitecture for Intrusion Detection." in NDSS, 2003.

[8] K. N. B. Hay, "Forensics examination of volatile system data using virtual

introspection," ACM SIGOPS Operating Systems Review, vol. 42, no. 3, pp. 74­

82, 2008.

100

[9] M. Bishop, Computer security: art and science. Addison-Wesley, 2012, vol. 200.

[10] "gmail," http://www.gmail.com, September 2015.

[11] iAPX 286 Programmer's Reference Manual, 1983, vol. 2014. [Online].

Available: http://bitsavers.trailing-edge.com /pdf/intel/80286/210498-001_

1983_iAPX_286_Programmers_Reference_1983.pdf

[12] Microsoft Windows, 2014, vol. 2014. [Online]. Available: http ://w indow s.

m icrosoft.com /en-us/windows/hom e

[13] "The linux kernel archives," 2014. [Online]. Available: https://w w w .kernel.

org /

[14] A. A. V. Codenamed, "Pacifica," Technology: Secure Virtual Machine Architecture

Reference Manual, pp. 1-124, 2005.

[15] T. V. Vleck, The IBM 360/67 and CP/CMS, dec 2010, vol. 2014, no. March 17

2014.

[16] G. J. Popek and R. P. Goldberg, "Formal requirements for virtualizable third

generation architectures," Communications o f the ACM, vol. 17, no. 7, pp. 412­

4 2 1 ,1974.

[17] Intel, Intel 64 and IA-32 Architectures Software Developer Manuals, 2015. [On­

line]. Available: http://w w w .intel.com /content/w w w /us/en/processors/

architectures-software-developer-manuals.html

101

http://www.gmail.com
http://bitsavers.trailing-edge.com/pdf/intel/80286/210498-001_
http://windows
https://www.kernel
http://www.intel.com/content/www/us/en/processors/

[18] M. Rosenblum, "VMWare's virtual platform," in Proceedings o f Hot Chips,

1999, pp. 185-196.

[19] O. Agesen, A. Garthwaite, J. Sheldon, and P. Subrahmanyam, "The evolution

of an x86 virtual machine monitor," ACM SIGOPS Operating Systems Review,

vol. 44, no. 4, pp. 3-18, 2010.

[20] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer,

I. Pratt, and A. Warfield, "Xen and the art of virtualization," ACM SIGOPS

Operating Systems Review, vol. 37, no. 5, pp. 164-177,2003.

[21] Understanding Full Virtualization, Paravirtualization, and Hardware Assist, vol.

5-21-14. [Online]. Available: http://w w w .vm w are.com /files/pdf/VM w are_

paravirtualization.pdf

[22] M. K. McKusick and G. V. Neville-Neil, The design and implementation o f the

FreeBSD operating system. Addison-Wesley Professional, 2004.

[23] G. Neiger, A. Santoni, F. Leung, D. Rodgers, and R. Uhlig, "Intel Virtualization

Technology: Hardware Support for Efficient Processor Virtualization." Intel

Technology Journal, vol. 10, no. 3,2006.

[24] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori, "KVM: the linux vir­

tual machine monitor," in Proceedings o f the Linux Symposium, vol. 1, 2007, pp.

225-230.

102

http://www.vmware.com/files/pdf/VMware_

[25] J. Von Neumann, "First draft of a report on the EDVAC," IEEE Annals o f the

History o f Computing, vol. 15, no. 4, pp. 27-75,1993.

[26] A. Fog, "The microarchitecture of intel, amd and via cpus," An optimization

guide fo r assembly programmers and compiler makers. Copenhagen University Col­

lege o f Engineering, 2011.

[27] D. Kanter, "Inside nehalem: IntelaAZs future processor and system," April

2008. [Online]. Available: http://www.realworldtech.com/nehalem/8Z

[28] "File:X86 Paging 64bit.svg Wikimedia Commons," apr 2009. [Online].

Available: http://upload.w ikim edia.org/w ikipedia/com m ons/9/9b/X86_

Paging_64bit.svg?uselang=de

[29] AMD Corporation, "The AMD x86-64 architecture programmers overview,"

p. 63, January 2001, publication # 24108.

[30] C. S. Pabla, "Completely fair scheduler," Linux Journal, vol. 2009, no. 184, p. 4,

2009.

[31] A. Arcangeli, I. Eidus, and C. Wright, "Increasing memory density by using

KSM," in Proceedings o f the linux symposium, 2009, pp. 19-28.

[32] B. Payne, VMITools Library., mar 2014, no. March 28 2014.

103

http://www.realworldtech.com/nehalem/8Z
http://upload.wikimedia.org/wikipedia/commons/9/9b/X86_

[33] F. Zhao, Y. Jiang, G. Xiang, H. Jin, and W. Jiang, "Vrfps: A novel virtual

machine-based real-time file protection system," in Software Engineering Re­

search, Management and Applications, 2009. SERA'09. 7th ACIS International Con­

ference on. IEEE, 2009, pp. 217-224.

[34] T. K. Lengyel, J. Neumann, S. Maresca, B. D. Payne, and A. Kiayias, "Virtual

Machine Introspection in a Hybrid Honeypot Architecture." CSET, 2012.

[35] E. Weingartner, C. Terwelp, and K. Wehrle, "Promox: A protocol stack moni­

toring framework," Electronic Communications o f the EASST, vol. 17,2009.

[36] B. Marken and B. Hay, "Using memory map timings to discover information

leakage to a live vm from the hypervisor," in Services (SERVICES), 2014 IEEE

World Congress on. IEEE, 2014, pp. 48-52.

[37] H. Agrawal and J. R. Horgan, "Dynamic program slicing," in ACM SIGPLAN

Notices, vol. 25. ACM, 1990, pp. 246-256.

[38] M. Kerrisk, lsmod(8) - Linux manual page, accessed: 5-21-2014. [Online].

Available: http://m an7.org/linux/m an-pages/m an8/lsm od.8.htm l

[39] D. MacKenzie, date(1) : print/set system date/time - Linux man page, accessed:

5-21-2014. [Online]. Available: http ://linux.die.net/m an/1/date

[40] B. Lankester, ps(1) - Linux manual page, accessed: 9-17-2015. [Online].

Available: h ttp ://linux.d ie.net/m an/1/ps

104

http://man7.org/linux/man-pages/man8/lsmod.8.html
http://linux.die.net/man/1/date
http://linux.die.net/man/1/ps

[41] M. Crawford and G. Peterson, "Insider threat detection using virtual machine

introspection," in System Sciences (HICSS), 2013 46th Hawaii International Con­

ference on. IEEE, 2013, pp. 1821-1830.

[42] J. Rushby, "Critical system properties: Survey and taxonomy," Reliability En­

gineering & System Safety, vol. 43, no. 2, pp. 189-219,1994.

[43] C. Harrison, D. Cook, R. McGraw, and J. Hamilton, "Constructing a cloud-

based IDS by merging VMI with FMA," in Trust, Security and Privacy in Com­

puting and Communications (TrustCom), 2012 IEEE 11th International Conference

on. IEEE, 2012, pp. 163-169.

[44] A. Rajgarhia and A. Gehani, "Performance and extension of user space file

systems," in Proceedings o f the 2010 ACM Symposium on Applied Computing.

ACM, 2010, pp. 206-213.

[45] O. Dain, R. Cunningham, and S. Boyer, "Irep++, a faster rule learning algo­

rithm." in SDM. SIAM, 2004, pp. 138-146.

[46] B. Hay and K. Nance, "Circumventing cryptography in virtualized environ­

ments," in Malicious and Unwanted Software (MALWARE), 2012 7th International

Conference on. IEEE, 2012, pp. 32-38.

[47] S. Yu, X. Gui, and J. Lin, "An approach with two-stage mode to detect cache-

based side channel attacks," in Information Networking (ICOIN), 2013 Interna­

tional Conference on. IEEE, 2013, pp. 186-191.

105

[48] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, "Hey, you, get off of

my cloud: exploring information leakage in third-party compute clouds," in

Proceedings of the 26th ACM conference on Computer and communications security.

ACM, 2009, pp. 199-212.

[49] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, "Cross-vm side channels

and their use to extract private keys," in Proceedings of the 2022 ACM conference

on Computer and communications security. ACM, 2012, pp. 305-316.

[50] J. Demme, R. Martin, A. Waksman, and S. Sethumadhavan, "Side-channel

vulnerability factor: a metric for measuring information leakage," in ACM

SIGARCH Computer Architecture News, vol. 40, no. 3. IEEE Computer Society,

2012, pp. 106-117.

[51] Amazon, AWS-Amazon Elastic Computing Cloud (EC2) - Scalable Cloud Hosting,

vol. 2014, no. 9/27. [Online]. Available: http://aw s.am azon.com /ec2/

[52] R. Owens and W. Wang, "Non-interactive OS fingerprinting through memory

de-duplication technique in virtual machines," in Performance Computing and

Communications Conference (IPCCC), 2022 IEEE 30th International. IEEE, 2011,

p p .1- 8.

[53] C. Chaubal, "The architecture of vmware ESXi," VMware White Paper, 2008.

106

http://aws.amazon.com/ec2/

[54] J. Xiao, Z. Xu, H. Huang, and H. Wang, "Security implications of memory

deduplication in a virtualized environment," in Dependable Systems and Net­

works (DSN), 2013 43rd Annual IEEE/IFIP International Conference on. IEEE,

2013, pp. 1-12.

[55] J. Butler and S. Sparks, Windows Rootkits o f 2005, part one, 2005, vol.

2014. [Online]. Available: http://w w w .sym antec.com /connect/articles/

windows-rootkits-2005-part-one

[56] G. Hoglund, A *REAL* NT Rootkit, Patching the NT Kernel, 1999, vol. 9.

[Online]. Available: http ://phrack.org/issues/55/5.htm l

[57] O. Aciigmez, "Yet another microarchitectural attack:: exploiting i-cache," in

Proceedings o f the 2007 ACM workshop on Computer security architecture. ACM,

2007, pp. 11-18.

[58] C. Cortes and V. Vapnik, "Support-vector networks," Machine learning, vol. 20,

no. 3, pp. 273-297,1995.

[59] C. M. Bishop, Pattern recognition and machine learning. springer New York,

2006, vol. 1.

107

http://www.symantec.com/connect/articles/
http://phrack.org/issues/55/5.html

[60] A. Bates, B. Mood, J. Pletcher, H. Pruse, M. Valafar, and K. Butler, "Detecting

co-residency with active traffic analysis techniques," in Proceedings of the

2022 ACM Workshop on Cloud computing security workshop, ser. CCSW '12.

Raleigh, North Carolina, USA: ACM, 2012, pp. 1-12. [Online]. Available:

http://doi.acm .org/10.1145/2381913.2381915

[61] Y. Zhang, A. Juels, A. Oprea, and M. K. Reiter, "Homealone: Co-residency

detection in the cloud via side-channel analysis," in Security and Privacy (SP),

2022 IEEE Symposium on. IEEE, 2011, pp. 313-328.

[62] A. N. Pettitt and M. A. Stephens, "The Kolmogorov-Smirnov goodness-of-

fit statistic with discrete and grouped data," Technometrics, vol. 19, no. 2, pp.

205-210, 1977.

[63] R. Martin, J. Demme, and S. Sethumadhavan, "Timewarp: rethinking time­

keeping and performance monitoring mechanisms to mitigate side-channel

attacks," vol. 40, no. 3, pp. 118-129, 2012.

[64] A. More and S. Tapaswi, "Dynamic malware detection and recording us­

ing virtual machine introspection," in Best Practices Meet (BPM), 2023 DSCI.

IEEE, 2013, pp. 1-6.

[65] VMWare, VMware vShield Endpoint: Virtualization Security, 2014, vol. 2014.

[66] F. Bellard, "QEMU, a fast and portable dynamic translator." in USENIX An­

nual Technical Conference, FREENIX Track, 2005, pp. 41-46.

108

http://doi.acm.org/10.1145/2381913.2381915

[67] "Linux cross reference: Linux/include/linux/sched.h," h ttp ://lx r.

free-electrons.com /source/include/linux/sched.h, accessed: 2015-10-17.

[68] S. Godard, "Sysstat utilities home page," 2010.

[69] Anon, Chrono - C ++ Reference, 2014, vol. 2014.

[70] J. Devore, Probability and Statistics fo r Engineering and the Sciences. Cengage

Learning, 2011.

[71] D. Wackerly, W. Mendenhall, and R. Scheaffer, Mathematical statistics with ap­

plications. Cengage Learning, 2007.

[72] B. L. Welch, "The generalization of student's problem when several different

population variances are involved," Biometrika, pp. 28-35,1947.

[73] F. E. Satterthwaite, "An approximate distribution of estimates of variance

components," Biometrics bulletin, pp. 110-114,1946.

[74] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open source scientific

tools fo r Python, 2001, [Online; accessed 2015-01-04]. [Online]. Available:

http://www.scipy.org/

[75] T. Lumley, P. Diehr, S. Emerson, and L. Chen, "The importance of the normal­

ity assumption in large public health data sets," Annual review o f public health,

vol. 23, no. 1, pp. 151-169, 2002.

109

http://lxr
http://www.scipy.org/

[76] T. M. Cover and J. A. Thomas, Elements of information theory. John Wiley &

Sons, 2012.

[77] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Ma­

chine Learning in Python," Journal of Machine Learning Research, vol. 12, pp.

2825-2830,2011.

[78] D. L. Mills, "Internet time synchronization: the network time protocol," Com­

munications, IEEE Transactions on, vol. 39, no. 10, pp. 1482-1493,1991.

[79] R. Marimont and M. Shapiro, "Nearest neighbour searches and the curse of

dimensionality," IMA Journal of Applied Mathematics, vol. 24, no. 1, pp. 59-70,

1979.

[80] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,

D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, "Scikit-learn: Ma­

chine Learning in Python," Journal of Machine Learning Research, vol. 12, pp.

2825-2830,2011.

[81] "mmap(2) - linux manual page," Jan. 2014. [Online]. Available: http:

//m an7.org/linux/m an-pages/m an2/m m ap.2.htm l

110

[82] R. Bryant and O. David Richard, Computer systems: a programmer's perspective.

Prentice Hall, 2003.

[83] M. Matsumoto and T. Nishimura, "Mersenne twister: a 623-dimensionally

equidistributed uniform pseudo-random number generator," ACM Transac­

tions on Modeling and Computer Simulation (TOMACS), vol. 8, no. 1, pp. 3-30,

1998.

[84] Intel Virtualization Technology List, 2014, vol. 2014.

[85] J. L. Hennessy and D. A. Patterson, Computer architecture: a quantitative ap­

proach. Elsevier, 2012.

111

