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Abstract

With the increased prevalence of virtualization in the modern computing envi­

ronment, the security of that technology becomes of paramount importance. Vir­

tual Machine Introspection (VMI) is one of the technologies that has emerged to 

provide security for virtual environments by examining and then interpreting the 

state of an active Virtual Machine (VM). VMI has seen use in systems administra­

tion, digital forensics, intrusion detection, and honeypots. As with any technology, 

VMI has both productive uses as well as harmful uses. The research presented in 

this dissertation aims to enable a guest VM to determine if it is under examination 

by an external VMI agent. To determine if a VM is under examination a series of 

statistical analyses are performed on timing data generated by the guest itself.
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Chapter 1 

Introduction

Computers have become ubiquitous in our society over the past several decades. 

One of the negative consequences of this change is that these systems are vulner­

able to a great number of threats. One method introduced in the past decade to 

combat such threats is Virtual Machine Introspection (VMI) which aims to analyze 

the state of a virtualized Operating System (OS) called a guest. While research into 

VMI has been extensive [1 ,2 ,3 ,4 ,5 ,6 ,7 ,8 ]  the security implications of VMI remain 

largely unexplored. This dissertation will concern itself with the detectability and 

reliability of VMI. This chapter will focus on the technical information and current 

literature necessary to put the rest of the dissertation into context.

1.1 Computer Security

The three pillars of computer security are integrity, availability, and confidential­

ity [9]. The integrity of a computer system is the property that it will behave as 

intended by both the user and the designer or programmer. The availability of a 

system is the property that a system can be used by a user at any time required. 

The confidentiality of a system is the property that it can only be accessed by au­

thorized users. We consider the security of a system to be breached if any one of 

these is violated.

For an example let's consider Gmail [10]. A user expects that an email sent to 

their boss will go to their boss. The user also expects the email client will deliver
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the message exactly as written. These are examples of integrity. A user with an 

Internet connection can access Gmail at any time day or night. This is an example 

of availability. A login mechanism is used to enforce confidentiality. The user 

expects that no one else will be able to access their emails. This is an example of 

confidentiality of a system.

A VMI agent can breach the security of a computer's system by either attacking 

the integrity or the confidentiality of that system. The breach of confidentiality can 

occur when a VMI agent reads the pages of a target system and a breach in the 

integrity can occur if the VMI agent alters the pages of a target system.

1.2 Technical Background

In order to begin to understand the nature of VMI and, by extension, Virtualiza­

tion, we must discuss some of the details of the operation of the 64-bit x86 pro­

cessor (x86-64), some of the relevant design and functions of the Xen and KVM 

hypervisors, as well as the basics of VMI and the VMI tool suites we will be using 

for the remainder of this dissertation.

1.2.1 Privileges

In earlier versions of the x86 line (pre-80286) the processors existed in what we now 

call real mode. In real mode processes have unlimited access to physical memory 

as well as access to all peripherals. This means that processes can easily access the
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memory of other processes either accidentally or intentionally. This can cause a 

great deal of instability as well as security vulnerabilities.

To address this situation Intel introduced protected mode with the 80286 [11]. 

Protected mode is enabled by setting the PE flag in the CR0 register on the CPU and 

enables memory protection features such as paging and virtual memory. Protected 

mode is disabled at boot in order to ensure backwards compatibility and the PE bit 

must be set by the OS in order to enter protected mode. Once protected mode is 

enabled it cannot be disabled until the system is rebooted.

In the 32-bit x86 line of processors, introduced after the 80286, protected mode 

enables 4 separate privilege levels called rings. Ring 0 has the most privilege, 

Ring 1 has fewer privileges, Ring 2 fewer still, and Ring 3 the fewest privileges. 

While all privilege levels were intended to be used, only rings 0 and 3 were used 

in commodity operating systems such as Windows [12] and Linux [13]. When the 

x86-64 processors were released the privilege stack was reduced to two privilege 

levels (fig 1.1). In 2006 a third ring called Host Mode by Intel and Root Mode 

by AMD (which we will call Host/Root Mode for the duration of this dissertation 

and is colloquially referred to as Ring -1) was added to the x86-64 line of processors 

[14].
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Figure 1.1: Augmented x86-64 privilege Stack



1.2.2 Virtualization

Virtualization itself is not a new concept. It began in the 1960s with the IBM Sys­

tem 360 [15]. This system, like most others for the next nearly four decades, used 

the trap and emulate model. In this model a virtual machine (VM) will proceed 

unaltered until it reaches an instruction which it cannot execute due to an insuffi­

cient privilege level [16]. The guest operating system then faults to the hypervisor 

which performs some set of instructions. This set of instructions will then perform 

an operation with an identical effect to the original instruction.

In 1974 Popek and Goldberg [16] formalized the conditions, which were suf­

ficient to allow a CPU architecture to support virtualization. To begin they define 

a Virtual Machine Monitor (VMM) as a piece of software which provides a pro­

gramming environment which is "essentially identical" [16] to the machine being 

virtualized (fidelity), only causes a minor performance decrease (efficiency), and 

is in complete control of the resources (resource control or safety).

Popek and Goldberg then separate CPU instructions into three different classi­

fications. Privileged instructions are those which will cause a fault if run in user 

mode (such as the Intel CLI [17] instruction), control sensitive instructions which 

change the configuration of resources in a system (the Intel CLI instruction also 

falls into this category), and behavior sensitive instructions whose effects vary 

based on the configuration of resources (such as the POPD [17] instruction which
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varies based on privilege level). Control sensitive and behavior sensitive instruc­

tions are collectively referred to as sensitive instructions.

With these requirements and definitions acting somewhat as axioms, Popek 

and Goldberg give us two theorems [16]:

Theorem 1.2.1 (Popek Theorem 1) "For any conventional third generation computer, 

a virtual machine monitor may be constructed i f  the set o f sensitive instructions fo r  that 

computer is a subset o f the set o f privileged instructions" [16]

Theorem 1.2.2 (Popek Theorem 2) "A conventional third generation computer is re­

cursively virtualizable i f  it is virtualizeable and a VMM without any timing dependencies 

can be constructed for  it." [16]

The proofs for these theorems can be found in the original work by Popek and 

Goldberg. The first theorem says that a VMM can only be constructed for an archi­

tecture if the sensitive instructions are a proper subset of the privileged instructions 

and the second says an architecture is not virtualizable if a VMM without timing 

dependencies cannot be constructed for it.

This model is not appropriate for x86 virtualization however as many of the x86 

assembly instructions, such as POPD [17] (which pops an element off the floating 

point stack), are sensitive but not privileged. This violates the conditions required 

for VMM construction of Popek's first theorem and by extension x86 cannot be 

virtualized via the trap and emulate method.
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In 1999 VMWare patented their techniques for binary translation, which they 

introduced in 1998 [18], allowing the x86 architecture to be virtualized. In binary 

translation the hypervisor runs one ring below the guest OS (in Host/Root mode 

on x86-64). The translator reads guest memory starting at the instruction pointer 

(eip/rip) and caches up to 12 instructions (fewer if a terminating instruction is 

reached) in a Translator Unit (TU). Unprivileged and non-sensitive instructions 

(such as M OV  or XOR) are translated IDENT (identically) with no changes made.

Privileged and sensitive instructions however are translated producing Com­

pile Code Fragments (CCF) using non-privileged instructions. Agesen et al. [19] 

use the CLI instruction as an example. The CLI instruction clears the interrupt flag 

on the physical CPU. Since the guest VM cannot (and should not) clear the inter­

rupt flag on the physical CPU the interrupt flag is cleared on the VCPU (vcpuflag) 

using the AND instruction. Once a TU is translated into a CCF it is then run on the 

CPU.

This began the boom in x86 virtualization; in particular, the debut of Xen in 

2003 [20], which introduced the paravirtualization method for x86 virtualization. 

In paravirtualization, like binary translation, the hypervisor runs at Ring 0, the 

guest OS runs at Ring 1, and user code runs at Ring 3. Paravirtualization works 

by using a modified kernel, replacing instructions which will require hypervisor 

support such as those involving memory management with hypercalls [20]. These 

hypercalls result in the hypervisor performing some operations which result in
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the state being presented to the VM which from its perspective appears as if it 

has been performed on physical hardware rather than on a VM. This allows the 

guest to run, without any modification to user space code, much like trap and 

emulate and binary translation. This method, however, traditionally requires that 

a specific kernel be used, which greatly increases the time between versions and 

makes the virtual environment sensitive to OS changes. As of Linux version 3.0 

however the introduction of Paravirt Ops into the Linux kernel has added native 

paravirtualization support removing this limitation [21]. Due to the nature of 

paravirtualization we are limited in a practical but not theoretical sense to open 

source operating systems such as Linux [13] and BSD [22].

The 64-bit line of x86 processors was introduced by AMD in 2003 and this line 

only had 2 levels of privilege unlike the 4 in the 32 bit lines. As a result there was 

no longer room to run a hypervisor, guest OS, and user code each on their own 

privilege level. In 2006, Intel (VT-x [23]) and AMD (AMD-V [14]) both added 

hardware virtualization to their x86 line of processors. Hardware virtualization 

adds another layer in the privilege stack below Ring 0 called the Host Mode and 

Root Mode for Intel and AMD respectively. These are colloquially, though not 

formally, referred to as Ring -1. A structure called a Virtual Machine Control Block 

(VMCB) is defined in hardware. This structure holds the list of all instructions to 

be intercepted. Certain instructions are required to fault but others can be added 

to the VMCB by the hypervisor. This method allows the guest OS to run on Ring
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0 of the hardware as it would normally expect to. The guest runs normally until 

it has to run an instruction which requires a fault (as defined in the VMCB). The 

instruction which caused the fault is then trapped and handled by the hypervisor. 

Any operating system can be virtualized in this manner, however it does require 

special hardware instructions (though those are now available on almost all Intel 

and AMD CPUs) and the shifts to the Host/Root mode are time consuming and 

need to be reduced to the smallest number possible to keep the process efficient.

Shortly after the advent of X86 hardware virtualization [23] [14] the hyper­

visor KVM (for Kernel Virtual Machine) was introduced by Kivity et al. [24] and 

was included as part of the main line Linux [13] kernel the same year. As part of 

the Linux kernel KVM is able to reduce some of the code base by incorporating 

certain aspects of the Linux kernel such as the scheduler in order to handle man­

aging resources of virtual machines. Throughout this experiment we will be using 

either Xen or KVM as appropriate. Due to the differing architectures of the two 

hypervisors there will be some approaches that will work with one and not the 

other. Where applicable we will comment on why one was chosen for a specific 

experiment over the other.

1.2.3 X86-64 Memory Architecture

Modern commodity CPUs use an architecture known as the Von Neumann Ar­

chitecture [25]. At the most basic level a computer based on the Von Neumann
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Architecture consists of a CPU which processes data and instructions, memory, 

mass storage, and input/output devices. Due to limitations on the throughput be­

tween the different parts of a computer we encounter what's known as the Von 

Neumann Bottleneck [25]. Data on a CPU register is fast to access, RAM is slower, 

disk drives slower still, and network based storage the slowest available.

To address this problem CPU cache was introduced. Cache is a small amount 

of extremely fast RAM which exists on the CPU in order to alleviate, but not elim­

inate, the Von Neumann Bottleneck. In most modern X86-64 CPUs there are three 

levels of cache: L1, L2, and L3. L1 is the smallest and fastest with L2 being slightly 

larger but slower and L3 being even larger and slower. On the some of the newest 

cores such as the Haswell core a fourth level of cache is added [26]. This cache is 

shared between the CPU and the integrated Intel GPU.

On a modern CPU the process of accessing memory begins by checking the 

Translation Lookaside Buffer (TLB) (fig 1.2). The TLB is a small amount of cache 

which holds virtual address translations in the form of Page Table Entries (PTEs). 

These entries (discussed further in section 1.2.4) map virtual memory to physical 

memory. The Sandy Bridge and Haswell Cores have two levels of TLB. The L2 TLB 

maps both data and instructions whereas the L1 TLB is split into an instruction and 

a data TLB [27]. If the entry is in the TLB we have a TLB hit. If this occurs we look 

to see if our physical address is in the L1 cache. If this is the case we have an L1 

cache hit and the data is loaded into the CPU. If this is not the case we have an L1
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cache miss. If this occurs we look to see if our physical address is in the L2 cache. 

Again if it is we have an L2 cache hit and load our data to the CPU. If an L2 cache 

miss occurs we have to check the L3 cache. Unlike the L1 and L2 caches the L3 

cache is shared by all cores on a CPU. If our physical address is in the L3 cache 

we have an L3 cache hit and our data is given to the CPU. Otherwise it requires 

looking to see if the data is in DRAM. In the event of a TLB miss a walk of the page 

table is necessary (1.2.4).

Each of the steps described before contributes to our Average Memory Access 

Time (AMAT). The formula for computing AMAT is described in equation 1.1, 

where H i is the time per hit on the some memory element (e.g. cache or the TLB), 

AMP i is the average penalty per miss on that element, and M i is the probability 

that a miss will occur on that element. This is summed over all the elements of 

memory.

n
AMAT = £  Hi + AMPi x M{ (1.1)

i=0

1.2.4 Virtual Memory and Paging

In a modern programming environment memory is abstracted so that each process 

sees its address space as one contiguous region. This is a convenient abstraction 

made possible through virtual memory. In modern x86 and x86-64 virtual memory 

is provided through a system called paging. In paging memory is broken into
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Figure 1.2: X86-64 Memory Hierarchy



segments called pages which are typically 4kb (though larger pages are supported 

up to 2MB and 1GB for 32-bit and 64-bit x86 respectively). A data structure called 

the page table is used to map virtual memory that the process sees to physical 

memory. In the x86 architecture this mapping is handled by hardware known as 

the Memory Management Unit (MMU).

The x86-64 processor uses a 4 level paging system to translate virtual addresses 

to physical addresses when 4kb pages are used and a 48-bit address space are used. 

The levels are organized in a tree structure. The CR3 holds location of the page 

directory for the process. The first 16 bits are unused and next 36 bits are broken 

into four segments of 9-bits each. The first is called the Page Map Level 4 page 

(PML4), the next is called the Page Pointers Directory page (PDP), the next is called 

the Page Directory page (PD), and the final segment is called the Page Table page 

(PT). The remaining 12 bits are for the page offset, which tells us where in the page 

the memory is located fig 1.3 [28].

1.3 Xen

Xen is a type-1 or "bare metal" hypervisor. This means that Xen runs directly on 

the physical hardware and is not itself hosted in another environment. This is 

in contrast to a type-2 hypervisor like VMWare Player which is hosted inside a 

Linux or Windows environment. Administration of Xen and its VMs is done via a 

special paravirtualized guest called the Dom0. All other guests in Xen can be either 

paravirtualized or hardware virtualized. For the remainder of this dissertation we
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Figure 1.3: Page Table in x86-64 [29]



will assume all DomU guests (those guests which are not Dom0) are hardware 

virtualized unless otherwise specified.

1.3.1 Xen Virtual Memory Management

As Xen supports two different types of virtualization it also supports three differ­

ent kinds of virtual memory management. Traditionally software virtualization 

uses a shadow paging scheme [20] which keeps an additional "shadow" page ta­

ble. This provides an additional layer of abstraction between the guests and the 

physical hardware.

Since paravirtualized guests use hypercalls for sensitive instructions Xen is not 

required to keep a full shadow page table for its memory management, instead 

using a technique known as direct paging. In direct paging guests invoke a hyper­

call which directly maps their page table entries from virtual memory to physical 

memory as opposed to the extra paging layer provided in shadow page tables [20], 

essentially moving control of memory management from the OS to the hypervisor.

Since hardware virtualized (HVM) guests are not modified in the way that par- 

avirtualized guests are, they do not have the option of this direct paging technique 

and instead have the option of either hardware assisted paging (HAP) or shadow 

paging. HAP uses a technique called Second Level Address Translation (SLAT; see 

fig 1.4) which is included in Intel processors since the Nehelem line and in AMD 

processors since the Barcelona line. Their technologies are called Extended Page

15
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Figure 1.4: Diagram of Hardware Accelerated Paging using SLAT

Tables (EPT) and Rapid Virtualization Indexing (RVI) respectively. In SLAT the 

guest OS still maintains a logical page to physical page mapping (fig 1.4). How­

ever these physical pages are in pseudo pages and do not correspond directly to 

physical memory. Instead the hypervisor maintains the pseudo physical to ma­

chine page (or actual physical page) mapping.

HVM guests also have the option of using a shadow page table (SPT) similar 

to that used in VMWare [18]. Like HAP shadow paging works by adding another 

layer of abstraction to paging. In this model the processes use the software page 

tables provided by the OS just like they would normally. When a guest OS tries to 

update a page a shadow page is allocated. This shadow page can be then altered 

with no constraints. When the page is ready to be moved into the regular page 

table (i.e. permanent changes have been accepted) references are updated such 

that they point to the new page rather than the original.



1.4 KVM

Like Xen, KVM is a type-1 (i.e. Bare Metal) hypervisor. Unlike Xen, which is an 

independent hypervisor loading up a paravirtualized Linux VM as the adminis­

trative unit, KVM is itself integrated into the Linux kernel, which allows the use 

of a non-virtualized Linux environment for administration (as opposed to the par- 

avirtualized Linux environment used in Xen). As a result of being part of the Linux 

kernel, KVM is able to use portions of the Linux kernel, for instance KVM uses the 

Completely Fair Scheduler [30] used in the kernel to schedule CPU time for VMs. 

Other functions such as memory management are also done using the internal 

Linux mechanisms.

1.4.1 KVM  Page Merging

In version 2.6.2 of the Linux Kernel a scheme called Kernel Samepage Merging 

[31] was introduced. In this scheme pages which are identical among processes 

are merged in order to save memory. To accomplish this processes which may be 

candidates for merging register themselves with the kernel. The kernel then scans 

the registered areas of virtual memory by taking the hash of those pages. Pages 

which have unique hashes are skipped for the remainder of the scan, while pages 

which have the same hashes are then checked byte by byte to ensure they are iden­

tical and avoid hash collision. Identical pages are then merged by first marking 

all page table entries where page occurs as unwriteable. Next all page table entries
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which refer to that page are updated so they point to only one instance of the page. 

The remaining unmerged copies of the merged page are then freed and a final di­

rect memory comparison is made to ensure that the pages have not changed. These 

merged pages can only remain merged so long as the processes or VMs using them 

are only reading from them. To address this KVM uses a Copy-On-Write (COW) 

scheme. With this technique pages remain merged until one guests attempts to 

write to it. When that occurs a copy of the page is made for that guest and the 

remaining guests continue to use the merged page.

1.5 Virtual Machine Introspection

Garfinkle and Rosenblum [7] introduced Virtual Machine Introspection (VMI) in 

2003. In VMI the state of a running VM is interpreted by some external entity, 

usually either another VM or by the host system. To accomplish this memory 

is mapped or copied from the target VM to the VMI program. Memory is then 

interpreted to determine some portion of the internal state of the target VM. While 

the original work was used for intrusion detection a number of other applications 

have emerged in the years following.

Memory outside of a given context has no intrinsic meaning, only inside a given 

context or process does it have meaning. As such memory in a guest OS has no 

meaning outside of that guest. This problem is known as the semantic gap. The 

typical way to solve the problem [7], [8] is to use a template approach for each in­

dividual OS. In this approach certain areas of memory are marked as being where
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certain structures in kernel memory are located. That way a VMI agent can look 

for the relevant areas in memory and interpret them at run time. The process of 

determining the location of these kernel structures can be time consuming, error 

prone, and must be repeated for each version of a running kernel. Work is being 

done to address the problem of the semantic gap and is addressed later in this 

dissertation.

At its most fundamental level VMI represents a mapping of memory from the 

guest to an area outside of the guest (be it another VM as in the case of Xen or 

an administrative Linux OS as in the case of KVM). In this case we can study one 

method for VMI without losing generality. For our experiments we will use VMI- 

Tools [32]. It is an open source framework to allow easy development of VMI 

applications, supports Linux and KVM, and has appeared in a number of works 

on VMI (though in some of these works it appeared under its former title XenAc- 

cess) [3, 33, 34, 35, 36].

1.6 Virtual Machine Introspection Literature

Gu et al. [5] introduced a scheme for active VMI. In this scheme for VMI a process 

is injected from the hypervisor to the guest VM. This process is hidden inside an 

innocuous process already running inside the VM. These processes are called the 

implanted process and the victim process respectively and are both chosen by the 

host administrator at runtime. When the victim process is scheduled to be run, 

the hypervisor captures the context switch. The implanted process the replaces the
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victim process. To accomplish this the relevant instruction pointers are changed 

as well as the relevant stack pointers etc. When the OS resumes to continue the 

context switch the implanted process is run in place of the victim process. Once 

the implanted process has completed or the hypervisor determines it is time to 

switch the context back the contexts are switched and the victim process runs are 

executed normally.

In the initial experiments ltrace, a program to scan the libraries called by a 

process, is implemented as the implanted process. This allows them to implant 

ltrace into a running VM and are able to trace the library calls of selected processes. 

While this does accomplish some of the goals of conventional VMI it can also be 

unusable for applications such as digital forensics in which a VM must remain 

unaltered in any capacity in order to be of use in a courtroom setting.

Dolann-Gavitt et al. introduce a system called Virtuoso [4] which is aimed at 

bridging the semantic gap. The execution of Virtuoso is broken into three phases: 

The training phase, the analysis phase, and the runtime phase.

In the training phase Virtuoso attempts to gain information about the guest. 

Inside the guest a program must be written to access the information desired. For 

instance if one were trying to write a VMI program to access the Process Identifiers 

(PIDs) then one would write an in guest program which would access the PIDs. 

This program would then be run repeatedly and each time it was run a syscall 

trace (such as with Linux strace) would be taken of that program. After running
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this program repeatedly an extensive list of execution paths would be generated. 

Using this combination of execution paths the analysis phase can begin.

The collection of syscall traces, while it does contain the necessary execution 

paths, also contains a great deal of extraneous noise. This is because the system 

trace follows the entire execution through the system not just the relevant infor­

mation. Parts of the trace, which are known a priori to be unnecessary such as 

hardware interrupts or memory management, are thrown out immediately. Then 

a dynamic data slice [37] is then done. The slices are merged into a unified pro­

gram which can be turned from an in guest program to an out-of-guest program.

The translated code cannot be run directly on the host. So Virtuoso creates 

a runtime environment for the translated code. The run time environment is in­

stalled on the host machine and has the ability to run the translated code. This 

gives the code created by Virtuoso an appropriate context from which to access the 

VM resources (e.g. CPU registers or main memory) in a read-only manner.

While Virtuoso does make significant progress in bridging the semantic gap it 

does not change the fundamental nature of introspection. The tools generated by 

Virtuoso still simply read and interpret memory from the guest, which means that 

our study will still apply to Virtuoso without having to directly address Virtuoso.

Like Virtuoso, Fu and Lin [6] make an attempt at bridging the semantic gap 

and automatically generating VMI utilities. The process begins with an untrusted 

target VM (called the product-VM) and a secure trusted VM (called the secure-
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VM). Three techniques are then used to extract information from the product VM. 

These are syscall execution context identification, redirectable data identification, 

and kernel data re-direction.

The context being executed is identified using a stack to keep track of times 

IRET and int are called. Global kernel data is then identified using an adapted form 

of taint analysis. With the relevant information located and the contexts identified 

they are then able to redirect the kernel information between the product-VM and 

the secure-VM. This allows native system monitoring utilities to be run on the 

secure-VM as VMI targeting the product-VM unaltered.

When certain native Linux utilities such as lsmod [38] were run on product-VM 

and the secure-VM, identical results were produced. However certain utilities like 

date [39] and ps [40] produce similar results on the product-VM and secure-VM, 

however these results were not identical. This was found to be due to the timing of 

the snapshots they were using for the analysis as certain programs are quite time 

sensitive. While this has approached an automatic bridge for the semantic gap this 

work is still reliant on semantic information about system calling conventions and 

can be altered if they are changed between kernels. This seems like a promising 

tool to use for VMI however as of this publication the source code has not yet been 

released for use by the public, so it will remain unstudied in this work.
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1.6.1 Uses for Virtual Machine Introspection

In this section we will discuss current uses for VMI especially as they related to 

information assurance and security.

In Crawford and Peterson [41] VMI is leveraged to address the insider threat 

problem. The insider threat problem is the situation that occurs when current or 

past members of an organization have both malicious intent and legitimate access 

to a system or systems [42]. To accomplish their goal they break their approach 

into four steps: Development of a taxonomy of malicious insider behavior, devel­

opment of a taxonomy of VMI observables, malicious insider detection, and data 

validation.

To develop a taxonomy they began by setting up a number of possible high- 

level uses cases. The activities identified in this taxonomy are printing activity, 

disabling defensive tools (e.g. anti-virus), abusing removable media (e.g. putting 

sensitive information onto a flash drive), sudden change in employee behavior, use 

of remote access, and strange clipboard activity. Once they determine major uses 

cases they wish to look for they decompose each scenario into individual observ­

able attacks and each attack is broken down into seven areas of analysis. These 

areas are the attacker (who is doing something or can do something), which tools 

are used, which vulnerabilities are used, what actions are taken in order to achieve 

the desired effect, which systems are targeted, what the result of this unauthorized
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attack is, and what the objective of that result is. Using this taxonomy they can 

break many insider threat problems into simple terms.

The next step is to determine which parts of a system can be observed by VMI. 

The observables consist of "registry information, hexadecimal patterns, and clip­

board information." Each of the potential malicious activities is performed while 

the observables are being monitored by VMI. If those observable areas create signa­

ture patterns then they can be used to identify the insider threat actions from VMI. 

The relevant observables are provided in the work from Crawford and Peterson 

[41].

The third step is essentially the experiment portion of the paper. During the 

experiment VMI is used as well as Windows event logs. VMI and Windows event 

logs are analyzed while certain potentially malicious operations described earlier 

were performed. The experiment recorded which actions set showed as being ma­

licious and which ones did not.

The final step is the analysis phase. For each attack in the scope of the research 

they perform it manually several times to determine if their tools developed from 

the third phase are capable of detecting it. Their results showed that they were 

able to detect 18 different types of insider attacks. They report a high false positive 

rate though they don't give the specific rate of either detection or false positives. 

The authors indicate that while this work shows potential more work needs to be
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done on determining which observables correlate to which observables can indi­

cate attacks in order to increase the accuracy of their detection.

Harrison et al. [43] have proposed using VMI combined with the related yet 

distinct field of Forensic Memory Analysis (FMA). Harrison's goal is to put to­

gether an entirely out-of-band passive sensor to monitor for malicious software 

such as kernel rootkits. Like all current VMI approaches FMA is adversely af­

fected by the semantic gap. In order to address this situation a file system was 

built using FUSE [44], which translated the page table such that the memory of 

the VM was able to be read as one contiguous "file." The volatility framework for 

FMA is then used in order to analyze the contents of the memory. A rule learn­

ing algorithm called IREP++ [45] is used as a classifier in order determine if any 

intrusions are made into the system (such as kernel rootkits) were made and the 

results are logged into a postreSQL database. This is an interesting approach to 

side-stepping rather than attempting to directly solve the semantic gap. Volatility 

however like many VMI approaches still relies on a priori knowledge of the loca­

tion of data structures inside the kernel which may leave this approach vulnerable 

to attacks which manipulate those structures.

Hay and Nance [46] developed a method for using VMI to read the plaintext 

for encrypted data with the VIX tool suite [8]. While direct attacks on modern cryp­

tographic systems such as AES is generally computationally intractable three basic 

facts are noted: Before being encrypted cipher text exists in an unencrypted form,
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after being decrypted cipher text exists in an unencrypted form, and encryption 

requires that somewhere on the system cryptographic keys exist. To take advan­

tage of the first two it is a simple matter of observing the state of VM while the 

plaintext is in memory. The third requires two steps; recover the key while it exists 

in memory and use that key as to recover the plaintext using the appropriate de­

cryption algorithm. This use of VMI is an instance of security software which has 

great use for law enforcement and intelligence agencies as well as great potential 

to be misused as well.

1.7 Information Leakage and Side Channel Attacks

In this section we discuss the current state of research into information leakage and 

side channel attacks.

1.7.1 Side Channel Attacks

While a number of side-channel attacks have been explored in the past [47,48, 49] 

a formal model of the information leakage due to these attacks was first introduced 

by Demme et al. [50]. Demme introduces the Side-channel Vulnerability Factor 

(SVF) in order to determine exactly how vulnerable a certain cross-channel attack 

makes a system.

The SFV begins with an oracle, which contains the truth about the execution 

of the victim. The side-channel produces the information that an attacker is able 

to measure. An example of an oracle could be number of accesses to a certain
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page and the side-channel could be the average power consumption on the host. 

A perfect side-channel would be able to trace the oracle trace directly. The SVF 

also requires a distance metric. The distance metric could vary from problem to 

problem. For instance if the data were represented by vectors the Euclidean or 

Manhattan distances could be used.

Next they establish a similarity matrix for both the oracle and side-channel 

traces. These similarity matrices are necessary since oracle and side-channel are by 

their very nature measuring different things (such as pages accesses versus cache 

access time).

Next they establish a similarity matrix for both the oracle and side-channel 

traces. These similarity matrices are necessary since oracle and side-channel are by 

their very nature measuring different things (such as pages accesses versus cache 

access time). The similarity matrix M is defined as being of length S and size |S|2. 

Each element of M  is defined as
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M(i, j) = <
D(Si , Sj ) i f i  >  j

(1.2)

0 otherwise

where D is our distance function. This creates a triangular matrix with no diag­

onal. The matrices are compared element wise and the Pearson correlation coef­

ficient between the two is computed. The further from 0 the Pearson Correlation 

Coefficient is the more information is leaked through a side channel. A coefficient



of 1 will mean the channel is perfectly transparent and a coefficient of 0 will mean 

that the channel is totally opaque.

This SFV will be able to provide us with a measure to tell how our different ap­

proaches to information leakage will be relative to each other. As well as a measure 

of how much information leaks from VMI relative to other types of information.

1.7.2 Determining Co-Residency

Ristenpart et al. [48] introduced a scheme for determining co-residence by mea­

suring the load on the cache. In their paper they did a variant on the cache-probe 

technique which relies on the architecture of the x86 cache. It begins by allocating 

a buffer B of size b bytes, where s is the size of the cache line. Their initial attack is 

broken into three pieces

1. Prime: Read B at s byte offsets. (Ensuring that B is in cache)

2. Trigger: Wait until the number of CPU cycles passed jumps by some large 

value (to determine if the VM has been interrupted by the Xen credit sched­

uler)

3. Probe: Measure how long it takes to read B.

In step 3 B is accessed in pseudorandom order in order to prevent the hardware 

pre-fetcher from hiding the latency. These latencies correlate strongly with use of 

cache during the trigger step. However due to Xen's scheduling algorithm this is
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not quite enough to measure the cache latency. For that they expand the prime- 

probe attack even further to the following.

1. Allocate B contiguous bytes.

2. Sleep briefly (to build up credits with Xen's scheduler)

3. Prime: Read all of B to make sure it's fully cached

4. Trigger: Busy loop until the number of CPU cycles jumps by a large value

5. Probe: Measure how long it takes to read B

Through this load measurement and comparison to VMs running known services 

they are able to determine which VMs are co-resident.

Zhang et al. [49] put forth another scheme for determining co-residency of VMs 

on the Amazon EC2 cloud [51] by measuring the load on the cache. In this attack 

we consider two entities U and V  each of which share a common cache. Then a 

similar prime-probe method as above is used though it is modified to function as 

follows

1. Prime - U fills a cache set by reading a region from its own memory

2. Idle - U waits for a specified interval during which the cache is used by V

3. Probe - U times the reading of the same cache set in order to learn of V's 

activities
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In their initial trials the VM represented by U attempted to determine if V  was 

co-resident by running one prime-probe trial and averaging the time across all 

cache sets. If this time was below a certain threshold a foe-absent classification 

was issued and if it was below that threshold a foe-present classification was is­

sued. This proved to be extremely unreliable for two primary reasons: The Xen 

scheduler balances load by shifting VMs to different cores which may not share 

physical caches and because friendly VM activity on other cores, especially IO ac­

tivity, will cause activity in the Dom0 which will introduce significant noise into 

the cache. In order to deal with this high level of noise a multi-probe classifier was 

implemented. In this classifier they looked at the results of 2000 prime-probe trials 

and noticed a pattern appearing to be two overlapping normal distributions. They 

then use these statistics to determine the classification.

In Owens and Wang [52] a scheme using the memory de-duplication tech­

niques provided by commodity hypervisors (specifically ESXi [53] in this case). 

They begin by assuming that an attacker can instantiate VMs in the same environ­

ment as the targeted VM and that the attacker has root control over any VMs it 

instantiates. Further they assume the standard 4kb pages size. To begin their pro­

cedure they first determine which pages are unique to a specific OS version and 

are present in all versions of that OS. They must also determine which of those 

pages are relevant to their analysis, for example a memory dump of Windows XP
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SP3 contains 59,238 pages of zeros [52]. These are not useful to the analysis. They 

are then able to determine which pages are signature pages for each OS.

At this point they take advantage of the de-duplication mechanism in ESXi. 

When ESXi writes a non de-duplicated page a simple write is performed. How­

ever when writing to a de-duplicated page a copy is made of that page and then 

it can be written to. The memory allocation and copy of the new page takes a 

measurable level of overhead. While there is overhead from the copy it can also 

be easily confused with the computational overhead from reading a page which 

has been swapped out having not been used recently. To handle this a read op­

eration is performed on the signature page immediately before attempting an OS 

fingerprinting operation. They are then able to plot the timing results and can 

demonstrate which OS is being run on the host.

Xiao et al. [54] explored the implications of memory de-duplication on secu­

rity in a more general sense by putting together both a reliable attack using this 

technique and a reliable defense against similar techniques. For their offensive ap­

proach Xiao shows that one can transmit data between two co-located VMs using 

the memory de-duplication.

They begin with two co-located VMs with a hypervisor which uses memory 

de-duplication. Each VM creates a number of identical pages. This can be easily 

accomplished by reading an identical file into memory. Then the sender encodes 

the information which it wants to transmit to the receiver. It does so by writing to
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certain pages and not to others. The sender and the receiver then sleep for some 

amount of time to allow the pages to be merged by the hypervisor's memory de­

duplication mechanism. The receiver then writes to each of the pages and times 

the amount of time it takes to make these changes. Because of the Copy-On-Write 

(COW) nature of these systems it takes slightly longer to write to a de-duplicated 

pages as it makes a copy before writing to it. In this way memory can be encoded 

into bits. A page which has been merged representing a 0 and a page which has 

not representing a 1. So if both VMs allocate 8 pages in this manner and wishes 

to transmit 10011001 the sender would alter pages 1, 4, 5, and 8 so they would not 

merge.

In addition to transmission they were also able to determine that one was in 

a virtualized environment using the artifacts of memory de-duplication. A file is 

read into memory and then all pages in memory are written to and the write access 

times are recorded. Then the file is read in its entirety into two different memory 

locations. Since every page of the file has an exact duplicate in memory the hyper­

visor's de-duplication mechanism (if present and virtualized) is likely to merge the 

pages after an appropriate amount of time. Then one of the identical pages can be 

written to, if the environment is virtualized with memory de-duplication then the 

write access time will be significantly higher than the original write access times 

due to COW.
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As a defensive mechanism against these attacks Xiao suggests a kernel runtime 

integrity scheme. There several hypervisor based mechanisms for determining the 

presence of kernel rootkits running in guests [55, 56]. These all require extensive 

knowledge of the kernel in order to bridge the semantic gap. Xiao [54] proposes 

examining the kernel for the sections of data, such as the syscall table, which are 

meant to be read-only. Inside the kernel binary read only data is designated by the 

.rodata section. This data is copied and read by a C program inside which holds 

an exact copy of the read only kernel data in memory.

A statistic gathered by Linux called the Proportional Set Size (PSS) is then 

used in order to determine whether kernel integrity has been threatened. The 

PSS value is the number of unique pages and the weighted number of the du­

plicated pages a process has. For instance a process with 100 unique pages and 

100 duplicated pages would have a PSS of 150 [54]. This value is stored in the file 

/proc/$pid/sm aps. A simple shell script can then determine if the PSS value has 

increased significantly to determine if kernel integrity has been violated.

These side-channels are directly applicable to determining whether or not a VM 

is being monitored by VMI. Linux uses a technique called Kernel Same Page Merg­

ing (KSM) to reduce memory commitment from processes in a manner similar to 

how ESXi de-duplicates pages for VMs. The KVM hypervisor treats all VMs as if 

they are Linux processes. As a result it is possible that identical pages between a 

VM and some Linux process can be merged thus causing a measurable delay when
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these pages are written to. If the VMI program happens to hold a page identical to 

one in a guest VM then it's possible that the VMI process can be detected through 

this delay.

Zhang et al. [49] introduced a scheme for reading cryptographic keys used by 

another VM sharing the same physical hardware and hypervisor. A similar prime- 

probe technique to was used, but this time specifically used on the instruction 

cache (icache) as opposed to the data cache (dcache). It does so with the stan­

dard icache technique introduced by Aciicmez [57]. A icache line is loaded with 

NOPs and then filled again with NOPs and the time difference between the two 

is noted. Further steps are needed however, as information from another VM is 

being sought the Xen scheduler has to be taken into account. To handle this inter­

processor interrupts (IPIs) are used. In symmetric multiprocessing (SMP) systems 

processors are allowed to interrupt each other or even themselves through an IPI. 

To make sure the attacking VCPU has precedence another VCPU (called the inter­

rupting VCPU or IVCPU) runs in a continual loop sending IPIs to the attacking 

VCPU.

This attack searches for instructions which are a square, a multiply, or a modulus- 

reduce instruction. In order to do so they use multiclass support vector machine 

[58] to pick out when these instructions are being used. While this is fairly good at 

picking out instructions the SVM is subject to the hardware and software noise in­

troduced by the system (things such as TLB misses, or context switches.) To handle
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Figure 1.5: Topologies used in active traffic colocation test from Bates et al. [60] 

(left) local test system (center) successful co-location (right) failed co-location

this hidden Markov models [59] are used to filter the noise. This allows them to 

determine the cryptographic key in as little as 40,000-50,000 brute force attempts. 

While this may seem like a great deal we keep in mind that 50,000 brute force at­

tempts will take less than 1 s on commodity hardware making this a reasonably 

effective attack.

These previous works have been directed almost entirely at exploring side- 

channel attacks aimed at the hypervisor layer. Bates et al. [60] take a lower level 

approach and investigate whether co-residency of one or more VMs on a hypervi­

sor can be determined via active traffic analysis techniques. They begin by assum­

ing that they are on a normal cloud instance such as EC2 [51] that has been patched 

against previous co-residency attacks [61,48].

Their attack (fig 1.5) then creates a large number of instances on that cloud ser­

vice, which they term flooders. Each flooder announces its presence to an external 

machine called the client. Another instance created in the cloud is called the server.



Upon receiving a signal from the server the client sends signals out to the flooders, 

at which point the flooders begin to send outbound traffic on their machines phys­

ical interface to a packet sink which is not the client. This outbound traffic causes 

a delay in the server flow.

These delays in server flow form a watermark in the signal from the client and 

the server. The network flow between the client and server can be given by T and 

divided into n segments of ti. Watermarks of this kind require two different levels 

of packet delay to encode their signal represented by ± d . Since negative delays are 

not possible in this environment they take no delay to represent —d and a delay to 

represent +d. Using this scheme they are able to encode bit values using —d as a 0 

and +d  as a 1.

Due to the nature of virtualization and network traffic in general a certain 

amount of noise can affect the signal. These can come from sources such as net­

work congestion or hypervisor scheduling (as described above in the Xen Credit 

Scheduler for instance.) When the client receives the signal a Kolmogorov-Smirnov 

(KS) [62] test is done for independence. If a signal is embedded in the traffic flow it 

will demonstrate a different discrete distribution from one without a signal. With 

the KS test they are able to determine a signal's independence with a 95% confi­

dence.

This attack is interesting in that it operates at the hardware layer rather than at 

the hypervisor layer. It is possible that VMI targeted at the network stack of a VM
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(such as the VIX ifconfig [8]) could cause a change in the delay, which could be 

detected in the traffic. However this delay is unlikely to be substantial or consistent 

enough to useful to detect information leakage from VMI.

1.7.3 Defense Against Attacks

Martin et al. [63] introduced a scheme to protect against micro-architectural at­

tacks by obscuring the way the RDTSC instruction works. Micro-architectural at­

tacks such as the cache timing attacks described above [49, 48, 61] rely on precise 

timing of micro-architectural events in order to gather their information. Martin 

proposes a scheme by which they add two delays to the RDTSC counter. One, 

called the real offset, delays the execution of the RDTSC instruction. The other, 

called the apparent offset, which adds a random delay to the end of the RDTSC in­

struction. These delays can turned off in the OS so that system critical portions of 

the OS such as the scheduler are not interfered with. While this can be quite effec­

tive against certain types of attacks like those listed above it can be easily worked 

around if an attacker can gain kernel access (for example through a kernel module) 

and gives their malicious process rights to use the unaltered scheduler. While this 

may pose a challenge for some side-channel attacks their threat model differs from 

ours significantly enough that it poses no hindrance.
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Chapter 2 

Experiment Design and Analysis Techniques 

2.1 Motivation and Goals

With the increase in the use of VMI [32, 8, 64, 3, 46] in research settings as well as 

the migration of VMI to the commercial sphere [65] the study of the security of 

this technique has taken on paramount importance. With the use of VMI to extract 

cryptographic keys from live memory [46] the dangers of misuse of VMI have 

gone from the theoretical to the practical.

In this dissertation our goal is to detect the use of VMI on a guest VM from 

within that VM. Our threshold for success will the answer to a simple yes or 

no question: "Can the guest VM detect that it is being monitored by some VMI 

agent?" Any results which exceed this threshold will also be taken as confirmation 

of detection of VMI.

2.2 Threat Model

We begin by defining the Trusted Computing Base (TCB) as the set of all hardware 

and software which is essential to the security of a computer system [42]. Vulner­

abilities in the TCB will be considered vulnerabilities in the whole of the system. 

Components outside the TCB should not be able to elevate privileges that they are 

granted by the OS or hypervisor.

For the following experiments we will assume that the hypervisor as well as 

all associated interfaces such as libvirt or xencntrl are part of the TCB. All VMI

39



agents will also be assumed to be part of the TCB. The guest VM will be outside of 

the TCB and therefore all malicious code must be executed on the guest VM. We 

further assume that the malicious VM is isolated from all other VMs.

The attacker on the malicious VM will be assumed to have root access to the 

VM and therefore will be allowed to install malicious kernel modules as well as 

run malicious user code.

2.3 Experimental Setup

The hosts in our experiments will use version 4.2 of Xen [20] and version 3.2.0 

of KVM [24] along with version 1.6.2 of QEMU [66] (the userspace component 

to KVM). Guests are Ubuntu Server VMs with Linux kernel version 3.11.0-12- 

generic [13]. Guests are allocated 1GB of RAM and 1VCPU. Unless otherwise 

stated all VMs are clones of the original VM.

For experiments concerning the detection of VMI a simple system will be used 

where one guest VM is run on a physical host system (fig 2.1).

2.4 VM I Agents

For the detection of VMI all experiments will be done using VMITools [32]. Since 

the primary means of doing VMI is to copy a page from memory and interpret 

it [32, 8, 64, 3], any toolsuite which does this can be used for this experiment 

without the loss of generality. There will be three VMI programs used for these 

experiments: map-addr, process-list, and module-list.
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Figure 2.1: Experimental Setup

The map-addr program simply maps an address from the guest's memory to 

the memory of the VMI agent. The process-list command maps the processes cur­

rently running on a VM. In Linux the list of running processes is stored in the task­

list [67]. The task list is a doubly linked list where each node in the list represents 

a process being handled by the OS. The process-list program begins by mapping 

the head node of the task list from the guest to the VMI agent. The first task struct 

is then decoded. The desired information, such as pids and process names, is dis­

played to the user and the location of the next task in the list is recorded. The 

next node in the task list is processed in the same way. This continues until the 

list comes back to the head of the task list, indicating that the entire list has been 

traversed (alg. 1). The module list works in much the same way (alg. 2).
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Result: A list of the processes running on a target VM

current_task = Domain.task_list_head;

repeat

adr=current_task.nextTask.adr;

map Task Struct at adr to host ;

translate nextTaskStruct ;

current_task = taskStruct at adr ;

until current_task.adr==Domain.task_list_head.adr;
Algorithm 1: The Process-List Program

Result: A list of the modules running on a target VM 

current_module = Domain.module_list_head; 

repeat

adr=current_task.nextModule.adr;

map Module Struct at adr to host ;

translate nextModuleStruct ;

current_Module = ModuleStruct at adr ;

until current_module.adr==Domain.module_list_head.adr;
Algorithm 2: The Module-List Program



2.5 Experiments

In this dissertation we propose four experiments to determine if the guest VM has 

been monitored by some VMI agent.

For our first experiment we wish to analyze data produced by the Linux utility 

Sysstat [68]. Sysstat measures over 200 fields used by Linux such as page faults per 

second, context switches per second, and percentage of swap space used. Since the 

host, guest, and VMI agent all use the same physical resources it is possible that 

patterns can emerge in those values which can identify the use of VMI on the guest. 

This experiment also allows us to use an existing tool, which would be convenient 

for administrators who already run Sysstat.

For our second experiment we propose to look at main memory as a shared 

resource between the host and the guest. To determine whether this is viable we 

propose to analyze the time it takes to map and unmap a page in memory. With 

main memory, CPU cache, and the page table being shared between VMs, it's pos­

sible that the use of a VMI agent on the guest will cause a distinguishable difference 

in the time taken to do the mapping and unmapping of a page. It is hoped that this 

difference will allow us determine whether VMI has been used on a target VM.

Our third experiment is similar to the first experiment in that in-memory timing 

is used to determine if a guest is being monitored by VMI. In this case we are 

directly examining the CPU cache. If they are on the same socket a guest and a 

VMI agent will share the same L3 cache. If they are on the same core they will share
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the same L2 and L1 cache as well. For our experiment we propose measuring how 

long it takes to write an element in memory. Between each measurement we flush 

all three caches. We hypothesize there will be a small dip in the time required 

to access memory after it has been flushed from cache if a VMI agent has been 

accessing memory in that program.

Our fourth experiment takes advantage of the fact that KVM uses several fea­

tures of the Linux kernel: in this case the scheduler and the KSM mechanism. KVM 

uses the Linux scheduler, in this case the Completely Fair Scheduler (CFS) [30], to 

manage VMs essentially as Linux processes. As a result of being treated as Linux 

processes, KVM VMs are subject to memory de-duplication using KSM [24]. We 

hypothesize that the memory de-duplication can be measured as in [54, 52] if a 

VMI agent copies a page from the guest's memory to the host's memory.

2.6 On Timing

In this chapter we will be discussing the analysis of a number of different tim­

ings. For these timings we used the C++11 chrono object [69]. The C ++ chrono 

object offers a high-resolution timer, the resolution of which is dependent on the 

system. In Linux the high-resolution timer offers nanosecond resolution. In order 

to determine the resolution and any computational overhead for the chrono object 

we take a sample inside the guest VM. In this sample we simply take two time 

measurements one after the other and log the difference between them. We take 

1,000,000 measurements like this and plot them; see fig 2.2. What we see is that
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Experimental Index Experimental Index

Figure 2.2: Raw Timing for Xen and KVM

while we have nanosecond resolution there is a significant amount of overhead 

involved in the start of a timing measurement. In order to compensate for this we 

take the minimum value of our measurements and subtract it from all subsequent 

measurements.

The minimum value is quite close in both KVM and Xen at 119 ns and 539 ns, 

respectively. These measurements represent the bare minimum amount of time 

it takes to perform a timing measurement so we can subtract it as overhead on 

subsequent measurements.
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2.7 Analysis Tools Definitions and Terms

We begin our discussion of our common analysis techniques by defining the terms

property in common that is the subject of some statistical analysis. A sample is 

a subset selected from a larger population [70]. For example, we might consider 

a population as all people over 1.8m tall and a sample could be 1,000 randomly 

chosen people over 1.8m tall.

Next let us consider a sample X  drawn from some population. Further let us

define an individual element in X  as x; where {x 1 , x2, ....., xn -1 , xn} C X. Next we

assume that each x; has the probability p;. Further we assume that all values in X  

are independent and identically distributed (iid). That is, no element in X depends 

on another and all elements are pulled from the same distribution. We define the 

sample mean of X  as [71]

dard deviation of the dataset [71] by equ. 2.2. The standard deviation gives a 

measure of how dispersed the sample is from the average. Finally we define the

population and sample. A population is the complete set of data that have one

(2.1)

This represents the "average" value of the dataset. We further define the stan-

variance of X  which is simply s2.

(2.2)



2.8 Hypothesis Testing

In this set of experiments we will be using statistical hypothesis testing in order 

to analyze our data. Hypothesis testing is the process of using a statistical test to 

determine whether a hypothesis about some model is false. We begin by defining 

the null hypothesis H0 as some claim that we initially assume to be true [70]. The 

alternate hypothesis is the claim that we assume to be true if we reject H0.

When discussing hypothesis testing we will be comparing two random sam­

ples. The first sample is X  where x; has a probability of px; and {x 1 , x2,..., xnx-1 , xnx} e 

X . The second sample is Y where has a probability of py and {y1, y2,..., yny-1, yny} e 

Y.

Using an appropriate statistical test (discussed in sections 2.8.1 and 2.8.2) we 

will be able to compute our test statistic. A test statistic is the result of a function 

of our data which gives us one number upon which we can base our rejection of 

H0. Given the test statistic we can then compute our p-value. The p-value is the 

probability of obtaining a test statistic t, which is at least as contradictory to H0 as 

the value obtained, under the assumption that H0 is true [70]. That is, a p-value 

gives us the probability that our test statistic would have been produced if H0 were 

true. The smaller the p-value, the more the data contradicts H0. Note this is not 

the same as saying the p-value is the probability that H  is true nor is it the error 

associated with our test. Next we have the rejection region which is the set of
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values for which we reject H0. If the p-value falls in our rejection region we reject 

H0.

When we discuss hypothesis testing we must also discuss the types of errors 

associated with it. A false positive, also called a type I error, is when one asserts 

that H0 is true when it is in fact false. A false negative, also called a type II error, 

is when the null is false but is not rejected. For brevity we will call the number of 

true positives generated by some process as TP, the number of true negatives as 

TN, the number of false positives as FP, and the number of false negatives as FN. 

We further define the term accuracy as

TP + TN
““ y = TP + TN + FP + FN (23)

Accuracy gives us a measure of how close to the "correct" result the predicted 

results are. This will serve our metric for determining how good a classification is. 

It should be noted that accuracy gives equal weight to both types of errors. While 

this m aybe inappropriate for some purposes, such as those injudicial proceedings, 

it will be fine for the purposes of this dissertation.

2.8.1 Welch's t-test

The first hypothesis which will be used is Welch's t-test [72]. In Welch's t-test we 

look at the two samples and calculate a t-statistic. This is more appropriate for our 

purposes than the more common student t-test as it does not assume both samples
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X  and Y have the same variance. Based on this statistic we can determine whether 

or not to reject the null hypothesis.

We begin by computing the t-statistic to test the null hypothesis that the two 

populations X  and Y share a mean via the following formula:

t = 4 ^  (2.4)si + £y
nx ny

Now that we have the t-statistic we can begin to compute the p-value. First how­

ever we need to determine the degrees of freedom V for our test. For each of our

random samples X  and Y the degrees of freedom are given by Vx = nx — 1 and

Vy = wy — 1. We can then approximate the degrees of freedom for Welch's t-test 

using the Welch-Satterthwaite equation [73, 72]

2 S2
( 4 + % 2nx ny' _ _v

V -  — — V  (Z5)S4 + sy
n2xVx n2yVy

With the degrees of freedom for the test we can compute the p-value by using the 

probability density function (pdf) for student's t-distribution.
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f(t)  = - g g > ( 1  + ^  (2.6)
v/VSr( V)' 2

where T(fl), the gamma function, is defined as

r™ ..
r(fl) = / xa 1exdx 

0
(2.7)
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We now obtain the p-value by integrating the pdf of student's t-distribution from t 

to ™.

f(t)dt (Z8)

With the p-value in hand we can determine whether or not to reject the null hy­

pothesis by selecting a critical value. If the p-value is smaller than that critical value 

then we can reject the null hypothesis that the two distributions share a mean. For 

all t-tests in this dissertation we will assume a critical value of 10—6. We will be 

performing all of our t-tests with the scipy library [74]. It should be noted that 

many of the p-values obtained in this dissertation are 0. For a finite dataset it is 

impossible to obtain a p-value of 0; a vanishing value of p is a limitation of the 

software and should be taken as less than 10—6. We chose 10—6 as our critical value 

as it is an order of magnitude higher than the highest p-value we obtained exper­

imentally. While these values may initially appear suspicious it should be noted 

they can easily be verified by performing the integral numerically using a different 

function in scipy [74]. It can also be intuitively verified if one looks at the student-t 

distribution for one degree of freedom (fig 2.3). We see that as x increases P(x) 

asymptotically approaches 0.

Finally we note that Welch's t-test assumes that the data being tested follows 

a normal distribution. However it was noted in [75] that the t-test is robust with
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Figure 2.3: t-distribution for one degree of freedom

non-normal data. As such even though our data is not normal it can still be appli­

cable.

2.8.2 Mann-Whitney U Test

The Mann Whitney U-test [71], also called the Wilcoxon rank-sum test, tests the 

null hypothesis that one sample tends to have larger values than another. We be­

gin the Mann Whitney U-test using the same populations, means, and standard 

deviations as in Welch's t-test. Then we check to see whether or not the following 

four assumptions are satisfied.

1. X  and Y are independent of each other



2. All observations are ordinal (i.e. it can be distinguished that one observation 

is greater than another)

3. Under the null hypothesis the distributions of both populations are equal

4. Under the alternate hypothesis the probability of an observation from one 

population exceeding an observation from the other is not 0.5.

In order to perform the test we compute the U-statistic. There are two methods 

for computing the U-statistic: one for small data sets (less than 20 elements) and 

one for larger data sets. As all of the datasets used in this dissertation are on the 

order of 106 elements we will only be discussing the latter.

The first step is to rank all the observations. The smallest observation is as­

signed the rank 1, the next smallest value is assigned the rank 2, and so on. Ties 

are equal to the midpoint of the assigned rankings. So in the set {2 ,4 ,4 ,7 }  the ranks 

{1 ,2 .5 ,2 .5 ,4 } would be assigned.

The next step is to sum the ranks of all observations taken over X  and call it R1 . 

The sum of the ranks from observations taken over Y is given by R2. We can then 

then compute the U-statistics
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U1= W1W2 + W1(n2 + 1) -  R  (2.9)

U2 = n1n2 + W2(n̂  + 1) -  R2 (2.10)



where ” 1 and ” 2 are the number of elements in R  and R2, respectively. When 

adding equ. 2.9 and 2.10 together we get the sum as
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U1 + U 2 = 2 W1W2 + W1(n̂ 1 + 1) + W2(n̂  + 1) -  r 1 -  R  (2.11)

Since we know that R1 + R2 = N(N2+1) where N = ” 1 + n2 we can expand equ. 2.11 to

, T  . I T  , n1(n1 + 1) , «2(«2 + 1) (”1 + ”2)(”1 + ”2 + 1)
U1 + U2 = 2 mn2 + ----- 2------+ ------ 2---------------------- 2------------- (2.12)

Equ. 2.12 simplifies to

i t . it on n , n1(n1 + 1) , «2(«2 + 1) /W1(W1+1) n2(n2 + 1) i n n N ,010N
U1 + U2 = 2W1W2 + ----- 2----- + ------ 2-------- (------ 2----- + ------ 2----- + ” 1'”2) (2.13)

Simplifying see that U1 + U2 = ” 1”2. This allows us with a bit of algebra to simplify 

equ. 2.9 and 2.10 slightly to

U ,=  r  -  (2.14)

7T D ”2(”2 + 1) ,01CN
U2 = R2 -----------2--- (2.15)

The smaller of U1 and U2 is chosen for computing the p-value which are ob­

tained through a table of critical values [71]. As with the t-test we will be using the

scipy implementation [74] for our Mann Whitney U-tests.



If we assume the null hypothesis that the samples taken when the VM is mon­

itored by VMI and when it is not monitored by VMI have the same mean, we can 

determine via these two tests whether or not to reject this hypothesis.

2.9 Mutual Information

Mutual information is a quantity which measures the amount of certainty gained 

about a population X  when measuring some random variable Y. In particular 

let Y G 0,1 represent whether or not the VM is monitored by some VMI agent 

and let X  G R” represent the measured data from a given experiment. The mutual 

information [76] then specifies how many bits of information are gained about 

Y when sampling the random variable X. Given a joint probability distribution 

P(Y = y, X  = x), when the mutual information is given by

1(Y: X ) = J X J Y P(y ,x)1og2( ™ ) (" 16)

To estimate the mutual information, we use the implementation provided by 

scikit-learn [77] where X  is approximated by histograms over a large number of 

sample measurements. Mutual information will allow us to determine how much 

samples are needed in order to make a classification between two samples.

In this dissertation we will be using the mutual information to determine the 

fewest number of measurements we can take in order to correctly classify whether 

or not a guest has been monitored by some VMI agent.
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Chapter 3 

Sysstat Experiment

3.1 Introduction and Motivation

In our first chapter investigating methods of detecting VMI we first ask "What are 

the shared resources we need to investigate?" and "How can we get the informa­

tion we need from these shared resources?" Since all physical hardware is shared 

between the host and the guest we have an abundance to choose from such as 

memory, CPU, disk, and the network. We can get this information directly from 

the OS itself as a fair amount of information is recorded by the OS. In this experi­

ment we will take that information provided by the OS and analyze it to determine 

if it can yield information about the use of VMI on that guest.

3.2 Sysstat

Modern OS's log a large amount of information for performance and monitoring 

purposes such as the page fault rate, CPU frequency, and disk IO rates. In the 

Linux OS a program called Sysstat [68] makes this information easily available to 

the user. In this experiment we attempt to analyze the data produced by Sysstat in 

order to determine if a VM is being monitored by a VMI agent. We hope the use 

of an extant tool like Sysstat will allow easy monitoring of this field by a system 

administrator and will require minimal setup on their part.
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3.3 Experiment

We begin our experiment, which we call the SAR Experiment, with the same ap­

paratus as described in section 2.3. For our first step we synchronize the clocks 

on the host and guest. We do this using the NTP protocol [78] available in Linux. 

Synchronizing the clock on the host and guest allows us to compare measurements 

taken by Sysstat on the guest to times when a VMI agent was used by the host.

On the guest Sysstat is run to gather all of the data it's capable of gathering. The 

interval is set to 1s as it is the smallest measurement Sysstat can take. One hour of 

data was taken. The command used to gather the data is

sar -A 1 3600

On the host we run a script called collectData.py. This script runs a VMI program 

specified by the user and at a time interval also specified by the user. For our 

experiment we run the VMI programs process-list, module-list, and map-addr. We 

do our measurements at intervals of 100 s, 50 s, 25 s, 10 s, and 5 s. Each time a 

measurement is made the time stamp is noted.

3.4 Data and PreProcessing

The data in Sysstat is recorded in a difficult to read binary format. However if 

one captures the live output of Sysstat (as we did in our experiments) it becomes 

human readable and far easier to parse. After being parsed it still requires a fair 

amount of preprocessing. To begin with many of the fields are non-numeric such
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as the network interface being monitored or which CPU is being monitored. We 

can immediately discard these fields as non-numeric fields will be significantly 

more difficult for us to use machine learning techniques on, in addition since we 

only have one of each interface (one CPU and one network adapter for instance) it 

is unnecessary to keep this information.

The next portion of our preprocessing involves removing of all fields which are 

uniformly zero. These are removed as they do not contribute any information to 

our classification, yet they can still add to the computation time required to per­

form our classification. The question is why are some fields uniformly zero? For 

instance major faults per second (fig 3.1)(those which require going to disk for 

a page) is uniformly zero yet page faults per second (total page faults including 

major faults) is not (fig 3.2). The fields which are uniformly zero are not neces­

sarily the same for Xen and KVM. These fields are also not necessarily zero when 

the measurements are taken on a non-virtualized OS. This implies that the fault 

to the hypervisor caused in some cases (such as in the case of a major fault) the 

measurement to be reported as a 0 to the OS.

Further complicating matters is that the majority of the measurements taken 

by Sysstat are not of the same unit. This poses two problems: you cannot directly 

compare measurements of different units and that different measurements are of­

ten of different scales. For instance you cannot compare amperes and meters as 

one measures electrical current and one measures distance. Further an every day
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Figure 3.1: A graph of major faults per second over time for KVM while monitored 

by VMI every 10 s
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Figure 3.2: A graph of page faults per second over time for KVM while monitored 

by VMI every 10 s



measurement of current may be on the order of 10-3 A but measurements of dis­

tance might be on the order of 1 m. So while a change of 10-3 might be insignificant 

for a measurement of distance it might be very significant for measurement of cur­

rent. To address this problem a common technique called standardization (which 

yields a Z-score) is used. To compute the Z-score of a data set we first split the data 

set into features. A feature is a type of measurement in our data set such as page 

faults per second. Since our data is conveniently divided into fields we will use 

each field as one feature. For each feature we compute the mean (X) and the stan­

dard deviation (s). Then for each datum x in the feature we compute and replace 

itw ith Z as defined in equ. 3.1.

Z = ^  (3.1)
s2

After the features are scored we must classify them. To do so we compare the 

time stamps taken by Sysstat on the guest and the time stamps taken when VMI 

was run on the host. Data points from the guest that are within 0.5 s of a time 

stamp noted on the host are marked as being monitored which we denote with a

1. All other points are marked as unmonitored denoted by a 0.

After processing the data we still had more than 150 features available each 

with 3600 measurements which can be quite a large dataset when using machine 

learning algorithms which suffer from the so-called "curse of dimensionality" [79].
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So we try to remove more of the features which may not be of interest to us or 

which may be redundant.
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3.5 Analysis

3.5.1 Information Gains

Suppose we have a dataset S  with si samples of class i and m classes total (in our 

case two for monitored and unmonitored). The amount of information needed to 

classify a sample is given by

Now let us denote a feature by F. A feature F is made up of v subsets {s1, s2,..., sv } 

where sj is the subset of F with the valuefv. Now we let sj contain s j samples of 

class i. Classes are broadly any way we can classify data; though for our purposes 

the classes will be whether a VM was monitored or not by VMI. We can then com­

pute the entropy of the feature with equ. 3.3

s s
1(s1, •••, sm) = — ^  ]j“Vlog2]pjs si=1

(3.2)

(3.3)

The information gain is then computed as

Gain(F) = J(s1 ,•••, sm) — E(F) (3.4)
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Table 3.1: Features and information gains for our top 10 features

feature info gain

membuffer 0.2002

memcache 0.1475

wtps 0.1351

memfree 0.1350

memusedpercent 0.1281

pgfree/s 0.0531

sys 0.0328

swapusedpercent 0.0324

idle 0.0312

pgscank/s 0.0271

Using the information gain we are able to select the features which contribute 

the most information to classifying the datum. We select the features which have 

the 10 highest information gains and use those for our analysis. These features are 

all CPU or memory related.
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Table 3.2: Accuracy Rating for Xen monitored by the process-list command

times 100 s 50 s 25 s 10 s 5 s

Linear SVM 0.991 0.9833 0.958 0.963 0.802

SVM 0.990 0.983 0.958 0.963 0.802

SGD 0.990 0.016 0.958 0.963 0.802

KNN 0.990 0.991 0.973 0.984 0.892

Nearest Centroid 0.990 0.991 0.973 0.985 0.892

Running Tree 0.988 0.984 0.973 0.963 0.884

Gradient Boosting 0.988 0.990 0.966 0.973 0.833

3.5.2 Classificaton

Next we split our data into testing and training sets. To do this we use the function 

train_test_split provided by scikit-learn [80]. We split our data into 60% for our 

training data set and 40% for our testing data set.

With our testing and training set randomly chosen we can begin the classifi­

cation of our data. We begin by looking at the available classifiers provided by 

scikit-learn. We ran tests using the Linear Support Vector Machine Classifier, Reg­

ular SVM classifier, GD classifier, KNN classifier, Nearest Centroid, Tree Classifier, 

and Gradient Boosting Classifier. The results are shown in table 3.2. Results from 

KVM are not shown but are analogous.
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Table 3.3: Raw scores for Xen with the linear support vector machine classifier

times 100 s 50 s 25 s 10 s 5 s

True Positives 0 0 0 0 0

False Positives 0 0 0 0 0

True Negatives 1427 1416 1380 1386 1156

False Negatives 13 24 60 54 284

While it does appear that we get extremely high accuracy with each of our 

classifiers (as high as 99.1% accuracy) the accuracy decreases significantly the more 

frequently VMI is used on the target VM. When we look at the raw scores (table 

3.3) we see a slightly different picture.

We see that there are no actual positives marked by our classifier. The classifiers 

are marking each of the points as negative and thus decreasing the accuracy when 

more positive points are included. The implication of this technique is that it will 

not be useful for determining whether or not we have been monitored by VMI. 

Why is this likely the case? Measurements taken by Sysstat are at their finest grain 

1 s, the measurements taken by our VMI tools happen on the order of 10—6 s. It 

therefore appears that a finer grained measurement will be needed to determine if 

our guest VM has been monitored by VMI.



Chapter 4 

Using Page Allocation Timings to Detect VMI 

4.1 Motivation

In the previous chapter we were unable to detect VMI use with Sysstat as it proved 

to be too coarse grained. In this chapter we look at the shared resource of main 

memory, which is shared by both hosts and guests across the entire system. In ad­

dition events in memory occur on the order of 10—7 s which would be fine enough 

grained to pick up VMI. In the x86-64 processor main memory is handled by the 

Memory Management Unit (MMU), which uses a process called paging to control 

which data and instructions are held in main memory.

When a VMI program is used on a guest, memory is mapped from the memory 

space of the guest to the memory space of the host (which, for brevity, we will 

refer to as guest-space and host-space respectively). We believe this mapping from 

guest-space to host-space will affect which pages are in memory to a degree that is 

measurable in the time required to map a page in memory.

4.2 Experimental Design

For our initial experiment, which we call the MMap Experiment, we aim to deter­

mine whether or not a guest VM can detect that it is being monitored by a VMI 

process. We begin by using the same experimental hardware described in chapter

2. For our experimental setup we use a KVM and a Xen host. Each host runs a 

single VM of Ubuntu 14.04 as described in chapter 2.
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On the host the VMI agent was run continuously. We did three trials: one where 

the process-list command was run, one where the module-list command was run, 

and one where the map-addr command was run. In each case the VMI program is 

continually run on the guest VM.

On the guest side a probe is set up. This probe uses the C++11 chrono ob­

ject [69] which gives us nanosecond resolution. For each iteration the time stamp 

is recorded, a page is mapped and unmapped from memory using the mmap func­

tion [81], and then the timestamp is again recorded. The difference between the 

second time stamp and the first time stamp are taken and this result is recorded as 

the time taken to map and unmap a page. As mentioned earlier however a small 

correction is made and the overhead time in the previous section is subtracted from 

the result to give our final result. A control sample where no VMI agent is being 

run on the guest is also taken.

1. Mark Timestamp t0

2. Map page in memory

3. Unmap page in memory

4. Mark Timestamp t1

5. Record t1-t0
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4.3 Results and Analysis

The first step of our analysis is to compare the histograms of the control data with 

data where VMI is used. It can be seen immediately (figs 4.1 and 4.2) that not only 

are the samples with VMI different from the control sample but they are also dif­

ferent from each other as well. One should note that these histograms are zoomed 

in to give a better insight into the data. There are still small pockets of data after 

the 10,000 ms bin but these are so small as to be not evident in the histograms. 

The next step is to determine whether or not these datasets are statistically differ­

ent from the data in the control sample. To do this we use two statistical tests, 

which determine whether or not two populations share the same mean. The first 

is Welch's t-test [72] which determines whether the mean of two populations is 

the same. The second is the Mann Whitney U-test which again measures whether 

the two means of the population are the same.

In both cases we begin with the null hypothesis that the mean of a sample not 

being monitored by VMI is the same as the mean of a sample which was being 

monitored by some form of VMI. The results of these tests are shown in table 4.1. 

As we can see the results of the likelihood of the means of the two populations 

being the same is extremely low. It should be noted here that while all of the p- 

values are 0 this is strictly speaking not possible for finite populations. Instead this 

is a limitation of IEEE floating point arithmetic and a value of 0 should be taken as 

a value of less than 10—6.
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Figure 4.1: Histograms of the mmap time when a Xen VM is not observed by VMI 

(left) and observed by the process-list command (right)

Table 4.1: t-stats for Xen and KVM compared to the null hypothesis that no VMI is 

being used

Hypervisor mapPage modList procList

Xen -4361 -5678 -1691

KVM -903 -1000 -632
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Figure 4.2: Histograms of the mmap time when a KVM VM is not observed by 

VMI (left) and observed by the process-list command (right)

Table 4.2: U-stats for Xen and KVM compared to the null hypothesis that no VMI 

is being used

Hypervisor mapPage modList procList

Xen 3.73 ■ 108 8.71 ■ 108 7.43 ■ 108

KVM 8.34 ■ 108 1.02 ■ 109 3.26 ■ 108



The next question to arise is this: are these patterns unique to VMI or can they 

be reproduced by other means? To answer this we first consider which factors can 

impact time taken to map a page are page faults and cache misses [82]. At the 

scale of time being dealt with in this experiment, cache misses will likely not be a 

significant factor given that they tend to be in the 100 ns range. As a result we will 

instead focus on page faults.

4.4 Elimination Experiments

For this portion of the experiment we will test whether a VM with more memory 

will cause similar patterns in the time it takes to map a page to those caused when 

a VM is being monitored by a VMI agent. We begin this portion of the experiment 

by cloning our initial VM but changing configuration so the VM has 4GB of RAM 

instead of the 1GB of RAM it had earlier. The probe process as described in section

4.2 is repeated. The results are compared to the null hypothesis that the target VM 

is being monitored by the process-list program.

We can see that these histograms are distinctly different (fig 4.3). We then com­

pare the two samples using the Mann-Whitney U test and the t-test. We can see 

that the p-values are well outside our critical range and thus we reject the null 

hypothesis that two samples are the same.

Next we test whether a VM which has more VCPUs can be confused with the 

signal of a VMI agent. We begin this portion of the experiment by cloning our 

initial VM but changing configuration so the VM has 3 VCPUs instead of the one
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Figure 4.3: Histograms of the mmap time when a KVM VM observed by the 

process-list command (left) and when a KVM VM has 4GB of RAM (right)
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it had earlier. The probe process described in section 4.2 is repeated. We again 

make the null hypothesis that the target VM is being monitored by the process-list 

program.

72

Figure 4.4: Histograms of the time when a KVM VM observed by the process-list 

command (left) and when a KVM VM has 3VCPUs (right)

We next attempt to determine whether or not the number of VMs running on 

the same host will produce a signal similar to the one produced by a VM being 

monitored by a VMI agent. We begin our experiment by making three identical 

clones of our initial VM (now called VM-A) which will be labeled VM-B, VM-C,
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Table 4.3: U-stat and f-stat for populations taken when the VM had 4GB of RAM 

or 3VCPUs compared to the null hypothesis that they were being monitored by a 

VMI agent.

Machine Configuration Mann-Whitney t-test

3VCPU 1.184■107 174.0

4GB RAM 1.373■107 147.1

and VM-D as shown in fig 4.5. We run an experiment initially where only VMs 

A and B are running. The probe described in section 4.2 was run on VM-A while 

VM-B was idle. We repeat this process with VMs A-C running and again with VMs 

A-D running. We then compare each of these samples taken to the samples when 

a VM is being monitored by VMI 4.6.

Figure 4.5: Diagram of multi-VM experiment
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Figure 4.6: KVM monitored by the Process-list command (left) and KVM running 

4VMs (right)
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4.5 Conclusion

In this chapter we successfully introduced a method for detecting VMI as well as 

distinguishing between which VMI agent was used. It can also distinguish be­

tween multiple VMs being used as well as different levels of resource allocation. 

While it is impossible to exhaustively test all scenarios we consider this experiment 

to be a success as it did detect VMI. However it was not without its limitations. The 

VMI agent had to be run continuously without break on the VM in order for this



method to be successful. This means that while successful in a technical sense it 

isn't especially realistic.

75





Chapter 5 

Using Cache Timings to Detect VMI

5.1 Motivation and Introduction

In this chapter we discuss a statistical analysis of the time taken to write to a page 

after it has been forcibly ejected from cache. When we look at resources shared 

between a host and guest, one of the obvious ones is the CPU cache. When a VMI 

agent fetches memory from a guest VM it ends up in the CPU cache. The question 

is can this caching be measured by the guest VM? We hypothesize that there will 

be a measurable decrease in the time taken to access a page at intervals where VMI 

has been performed on the VM. In order to make this more general we aim our 

experiment at the L3 cache specifically. While each core has its own L1 and L2 

caches, the L3 cache is shared across all the cores on a CPU. This will mean we will 

be able to tell if a VM has been monitored by VMI agent regardless of which core 

it's on.

5.2 Experiment

We begin this experiment, which we call the Cache Experiment, with the same 

physical setup described in chapter 2. Since this experiment will be specifically 

measuring the L3 cache timings we don't need to pin the hypervisor and VM to the 

same VCPU. This experiment is broken into two portions: the monitoring portion 

and the host portion.
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When a VMI agent is used on a VM the memory being analyzed is copied or 

mapped from the VM to the VMI agent. This will move this data into the CPU 

cache of the CPU on which the VMI agent is being run. Suppose the VMI agent 

were co-located on the same CPU as the VM being monitored. This would mean 

that the VMI agent would be able to fetch the memory from cache rather than 

having to go out to main memory. This would cause a significant decrease in the 

time taken to fetch the data. Now suppose that the process inside the target VM 

which is being monitored by the VMI agent flushes cache lines which its memory 

occupies. This should cause a measurable increase in the amount of time required 

to access the data which has been evicted.

For this experiment a process (the monitoring process) will be run on the guest 

VM. This process begins by allocating a page of memory and fill it with random 

values using the Mersenne Twister algorithm [83]. The Mersenne Twister pseudo­

random number generator is chosen to increase the probability that page will be 

distinct from all other pages in memory. This is to ensure when the data is evicted 

from cache it will not be inadvertently loaded by other processes, which have the 

same data in memory. While most pseudo-random number generators would be 

acceptable the Mersenne Twister is common and included as part of the new C ++ 

standard library.

The monitoring process will then take one time stamp using the chrono ob­

ject described in section 2.6, write to a random element in the page, then take
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another time stamp, and record the difference between the timestamps. The mon­

itoring process then flushes the cache using the X86 CLFLUSH instruction [84]. 

This instruction flushes a cache line from all levels of cache on the CPU. Since the 

CLFLUSH instruction only flushes a cache line the page is simply iterated through 

until all cache lines are flushed. This process is then repeated 1,000,000 times.

On the host side the VMI agent will fetch the memory from that process and 

page. The VMI agent was run at regular intervals during the experiment. Trials 

were performed where the VMI agent was run every 50 ^ s, 100 ^s, 200 ^s, 1 ms, 

and 10 ms. Trials were also performed where the target VM was not monitored by 

a VMI agent.

5.3 Analysis

The result were plotted and it was expected that noticeable drops in the time taken 

to write to a page would be present at regular intervals where the VMI agent had 

mapped the guest data. From fig 5.1 we can see that these drops in the mem­

ory access time are not present. Why is this the case? According to Hennesy and 

Patterson [85], cache misses take approximately 25 ns. This is a full order of mag­

nitude less than the overhead taken for our timing measurements. Can anything 

be salvaged from these results?

When one looks at a histogram of the results one can see that the histograms 

are slightly different so we employ our statistical tests to determine if they can be 

distinguished that way. For the initial set of tests the t-test and Mann-Whitney
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Figure 5.1: KVM memory access timings (ns) zoomed to show 5,000 results
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Table 5.1: T Tests for Xen and KVM vs the null hypothesis that no VMI has been 

used

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 106 Samples -9.196 -44.15 -18.40 -4.742 -32.22

Xen 100 Samples -40.66 -29.62 -32.62 -28.71 -34.00

KVM 106 Samples -12.25 -12.33 -11.29 -12.25 -11.36

KVM 100 Samples -32.63 -34.63 -3.159 -33.29 -13.43

U-test are run between pairs of populations with the control population being un­

monitored by VMI and the variable population being monitored by VMI at some 

regular interval. Table 5.1 shows the results. In all the tests performed the p-value 

was less than 10-6 . A p-value this small indicates that we can reject the null hy­

pothesis that both samples were drawn from the same population. As a result we 

can take conclude that VMI has been detected by this probe. In these tests 1,000,000 

samples were used. This is an extremely large sample size and may not be useful 

for real time applications. The question now becomes: how far can the sample be 

reduced and produce acceptable results?

To determine this, we model the experiment as two random variables and con­

sidering the mutual information between them as discussed in chapter 3. The 

results of the mutual information between the timing data and the presence or 

absence of VMI are shown in table 5.3, and demonstrate that by taking timing
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Table 5.2: Mann-Whitney U-stats for Xen and KVM vs the null hypothesis that the 

no VMI has been used

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 106 Samples 4.046■109 3.960 ■ 109 4.368 ■ 109 4.020 ■ 109 4.293 ■ 109

Xen 100 Samples 138.0 175.0 24.5 100.0 33.0

KVM 106 Samples 3.086 ■ 109 2.657 ■ 109 2.422 ■ 109 2.803 ■ 109 2.589 ■ 109

KVM 100 Samples 100.0 81.0 176.0 55.5 73.0

Table 5.3: Information Gain Results for Xen and KVM in bits

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 0.061 0.060 0.060 0.060 0.064

KVM 0.070 0.069 0.071 0.070 0.073



measurements, we gain as much as 0.08 bits of certainty about the VMI hypothe­

sis.

This indicates that the number of samples required can be reduced significantly 

from the original 1,000,000. To test this hypothesis, we reduce the sample size to 

100 samples which is a 10,000 fold decrease in sample size. We perform the t-test 

again to determine if this reduction in sample size will still give positive results. 

We can see from tables 5.1 and 5.2 that we are still able to determine the difference 

between the different samples. Again all p-values computed for these tests are less 

than 10-6 .

5.4 Support Vector Machines

5.4.1 Theory

After discovering that we need less than 100 samples in order to classify whether 

a sample has been monitored by a VMI agent we need a good machine learning 

classifier to test this on. For this classification we will use Support Vector Machines 

(SVM) introduced originally by Cortez and Vapnik [58] in 1995. SVMs begin by 

assuming data has the form
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{xk,yk} e  Rn x { - 1 , 1} (5.1)

where Xk is some data point and yk is its classification (in our case monitored by 

VMI or not). We now wish to find a maximum margin hyperplane parameterized
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by ((w), b). This hyperplane is selected such that it will separate the classes y* = 1 

and yi = - 1 .  Next we must choose a ((w), b) such that we have the greatest distance 

between

Now we make the assumption that the data is linearly separable. While it may 

seem like this is severely limiting at first we can make this assumption using the 

"kernel trick" and map our features to some high-dimensional feature space. This 

will not be necessary in our case however given that our data is quite composed of 

a single feature repeated 100 times. By assuming our data is linearly separable we 

can select a ((w), b) such that there are no points in between the planes denoted by 

equ. 5.2 and 5.3.

By examining fig 5.2 we can see that we want to minimize the distance . In 

order to ensure that no points are in the margin we add the constraints

w x - b = 1 (5.2)

and

w x - b  = - 1 (5.3)

w ■ xi -  b >  1 (5.4)

and

w ■ x* -  b <  - 1 (5.5)
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Figure 5.2: A simple two dimensional example of an SVM
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for yi = 1 and y* = —1 respectively. This can then be reduced to the form

yk x (w ■ x; — b) >  1 (5.6)

for 1 <  i <  n.

5.4.2 Experiment

Since we have determined that fewer than 100 samples is necessary to make a 

classification we begin by transforming our data into units of 100. Since we initially 

took 1,000,000 samples this is an easy transform, giving us a 10,000 x 100 data set. 

The first 100 sequential samples are transformed into one 100 dimensional data 

point, the next 100 are turned into the second data point and so forth. Each data 

point is labeled with a 1 for monitored by VMI and 0 for unmonitored by VMI. 

Since we know which samples were taken while being monitored by a VMI agent 

and which ones were not we can easily label our data.

We then split the data into a training set and a testing set using the frain_fesf_spZif 

function in the cross_vaZidafion module provided by Scikif-Zearn [80]. Despite being 

in the cross validation namespace the cross_yaZidafion.frain_fesf_spZif function does 

not perform any kind of cross validation. It instead generates a testing and training 

set randomly from the data. We take 60% of the data for the training set and the 

remaining 40% for the testing set. We then train our support vector machine using 

Scikif-Zearn and test it using the same. For our initial test we only tested whether
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Table 5.4: Accuracy at classifying whether or not VMI was used at certain intervals 

for Xen and KVM

hypervisor 50 ^s 100 ^s 200 ^s 1 ms 10 ms

Xen 0.9930 0.9905 0.9893 0.9940 0.9860

KVM 0.9858 0.9876 0.9870 0.9881 0.9881

our SVM could distinguish whether or not VMI was used on the target VM. We 

then fitted our SVM with our training data. Each point in the testing set was then 

classified using the SVM derived from our training data.

5.4.3 Results

For this experiment we tested our dataset which was unmonitored by VMI against 

the data sets which were taken when VMI was used at the intervals 50 ^s, 100 ^s, 

200 ^s, 1 ms, and 10 ms. The results of the accuracy are shown in table 5.4.

The accuracy is as high as 99.24%. In order to make sure this experiment does 

not suffer from the same failing as the experiment in chapter 2 we look at the 

false positive to determine if the accuracy is not skewed. We look at the results for 

Xen and KVM comparing a set of data taken when the guest was monitored every 

100 ^s to the set where the guest was unmonitored by VMI. We can see from fig 5.5 

that the false positive rate is as low as 0.98% and 1.3% for Xen and KVM respec­

tively. These results are representative of all the samples taken. This qualifies as
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Table 5.5: The Raw Scores for Xen and KVM under the null hypothesis that the 

50 ^s set and set with no VMI are the same

hypervisor TP FP TN FN

Xen 3994 39 3930 37

KVM 3983 51 3918 48

a successful test for our purposes, however it is not perfect. As with all statistical 

methods it suffers from the base rate fallacy. That is while an overwhelming ma­

jority of points may be correctly classified, the sheer volume of data points which 

are involved would result in an incredibly large number of improperly classified 

data points.

5.5 Conclusion

In this chapter we were able to successfully demonstrate a technique to detect VMI 

used on a VM at set intervals. While this technique was successful boasting up­

wards of 99.24% accuracy it is not without its limitations. It cannot detect VMI 

with much success if it is used more than 10 ms apart. Further like all statistical 

methods it is subject to the base rate fallacy making its utility limited unless paired 

with another method which is not statistics based.



Chapter 6 

Leveraging Kernel Samepage Merging to Detect VM I

6.1 Motivation and Introduction

Two side-channel attacks using same page merging were detailed by [52, 54]. 

Based on these examples we propose to leverage same page merging to construct a 

side-channel for the detection of the use of VMI on a target VM. In this experiment 

we leverage the memory de-duplication mechanism available in Linux called Ker­

nel Same-Page Merging (KSM) [31]. KSM works by scanning the running Linux 

processes and marking those pages which produce identical hashes as candidates 

for merging. Those which are marked as candidates are then checked byte by byte 

to ensure they are indeed identical. The page table entries for the merged copies 

are all switched to point to only one of the previous pages (see fig 6.1). The other 

pages are then marked as being reclaimable by the OS. A copy-on-write scheme is 

employed in KSM much the same as it is in ESXi.

Since KVM is part of the Linux kernel [13] it leverages much of the existing 

kernel code to perform such tasks as scheduling and storage management. As a 

result VMs being run on a KVM hypervisor are subject to memory de-duplication 

with others VMs as well as processes running on the host. Since a VMI agent 

and a VM running on the same physical host are both treated as processes by the 

Linux kernel we hypothesize that the shared memory between the two can be de­

duplicated. Further if these pages have been merged then they will be subject to

89



90

Process A Process B

Main Memory

Before Page Merging

Process A Process B

Main Memory

After Page Merging

Figure 6.1: Kernel Samepage Merging

COW and therefore writing to these pages will be measurably slower than ordi­

narily writing to a page.

6.2 Experiment

For this experiment, which we call the Page Merging Experiment, we use the same 

apparatus as before. Only KVM is used for this experiment however. While Xen 

does employ a memory de-duplication technique it is only applicable to hardware 

virtualized guests. Since the Dom0 VM is necessarily paravirtualized [20] and the



VMI agent typically runs on the Dom0 this experiment is inappropriate for use 

with Xen.

As in chapter 3 this experiment is broken into two portions; the host portion 

and the guest portion. On the guest a monitoring process is run. This process 

allocates 10,000 pages in memory and again fills them with random values using 

the Mersenne Twister [83] to ensure that the values in the page are unique with 

a high degree of probability. The address of the data in memory is then printed 

as well as the process ID (PID). The data in the pages is printed to ensure that it 

is not optimized out by the compiler for having no output which is dependent 

on the data in those pages. While these prints are slower than the measurements 

being timed, they are not themselves timed and will not contribute any measurable 

overhead.

On the host side the memory for each of the pages in the monitoring process on 

the target VM is mapped one time by our VMI agent. These pages are again printed 

out to avoid the possibility of the compiler optimizing out the operations. The 

program then waits, keeping the memory mapped from the target VM in memory.

On the guest side a random number is added to a random element in each of 

the previously mapped and seeded pages. The process then pauses for 1 s between 

each write. The resulting memory access times are then printed and analyzed (see 

the following section).

91



92

Table 6.1: T-Tests for KVM vs the null hypothesis that the no VMI has been used

Number of VMs VMI Apache and No VMI Apache with VMI

1VM -44.15 -18.40 -4.742

2VMs -29.62 -32.62 -28.71

3VMs N /A -8.368 N /A

6.3 Results

We begin our analysis by plotting both the timing data taken when the VM has not 

been monitored by VMI and data taken when the VM was monitored by our VMI 

agent (see fig 6.2). While fig 6.2 does not show a clear increase in the time taken 

to access a page, it does show that the two plots are slightly different. Are the two 

plots substantially different or do they merely look different? To answer this we 

again perform the t-test to check our data against the null hypothesis that both 

samples are the same. We see the results in table 6.1 and note that all p-values are 

less 10—6 . Based on these results we conclude that the two samples are different 

and we have thus detected the use of VMI on these pages.

As in chapter 4 we test other results to make sure that our signal is not easily 

reproducible. We repeat our experiment with two VMs running, three VMs run­

ning, and when apache is being run on the targeted VMs. The comparisons are 

shown in table 6.1.
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VMI (left) and monitored by VMI (right)



These results are discouraging in the case when multiple VMs are running. 

With t-statistics of -29 .62 , -32 .62 , and -28 .71  it is difficult to distinguish which 

state the VM is in. We still reject H0 we just do so more weakly when VMI and 

Apache are used. This makes this result somewhat suspect. When we run the 

t-test between the samples with apache and no VMI and the sample where VMI 

is run on the guest we get a t-stat of 4.960 with a p-value of 7 ■ 10-7 . This being 

below our critical value of 0.001 we reject the null hypothesis that those two are 

the same. While we can tell the case where Apache is running on a VM with and 

without VMI it is difficult for us to tell those two apart when comparing them to 

the sample that runs on one VM with no VMI.

This indicates that for this to be useful several tests must be performed rather 

than one simple t-test as in our previous results.

6.4 Conclusion

While we were able to detect the use of VMI on a specific page due to the KSM 

feature available in the kernel we had difficulties distinguishing the use of VMI 

versus the use of an Apache web server. This approach has both benefits and 

drawbacks. It allows us to determine whether or not a specific page has been 

accessed in memory which can be of use if a set page is being monitored regularly. 

The drawback however is that this specific page has to be accessed in order to be 

detectable by this scheme. In addition the fact that there can be a fairly substantial
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amount of time for the pages to merge can make this scheme somewhat difficult to 

add into a real time detection scheme.
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Chapter 7 

Conclusion and Future Work

In this dissertation we were able to detect the use of VMI on a single guest with a 

high degree of accuracy. We consider this a success. These successes are not with­

out limitations however. The Sar method of detecting VMI did not work as it was 

too coarsely grained. The Page Merging and the MMap Method managed to detect 

VMI with a fair degree of accuracy, however they were limited by the amount of 

data needed to take or the time needed to make a successful measurement.

However we did have one method which was able to detect VMI with an ex­

tremely reliable accuracy. In addition it was able to determine individual points 

where VMI had been used, not just whether it had been used during the entire 

course of taking measurements. This method is however limited to systems where 

all the CPUs being discussed share the same L3 cache. This is not possible during 

cases where a machine has multiple sockets.

Our next experiment would be to scale this experiment to single socket CPUs 

which are connected on a cluster. Our hypothesis is that as long as all the mem­

bers of the cluster are single socket machines, it will show the same results as our 

experiment on the cache timing.

We also wish to see if main memory or disk latency can be used to determine 

whether or not VMI has been used across CPU sockets.
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What does this mean however, for the users? For the paranoid user (or sensible 

user) there are steps that can be taken to make one's computer far more secure. The 

first thing they would need to is generate a cache profile which reflects the user's 

computer use. This profile must be taken at a time when the user knows that they 

are not being monitored by VMI. This becomes problematic because the the system 

being analyzed must be virtualized for this to be a relevant comparison. If the user 

attempts to take their baseline measurements while their system is non-virtualized 

these measurements will be useless if their system becomes virtualized due to the 

difference in time required to make a timing measurement in a virtualized vs non­

virtualized system.

Assuming that the user is able to create this idealized environment for this sys­

tem to work, there are countermeasures which can be taken against VMI. For in­

stance the DKSM attack [1] can shift around the location of kernel structures such 

that most VMI agents become unable to bridge the semantic gap. In addition some 

VMI agents are somewhat buggy. The VIX toolsuite [8] contains known bugs. 

The process-list implementation in VIX has a hard limitation of 300 processes. If a 

guest has more than 300 processes running a segmentation fault will occur in VIX. 

Armed with this knowledge a guest can defend themselves against some forms of 

introspection.

From the introspector's side there countermeasures which can be taken to pre­

vent the detection and circumvention of VMI. Kernel integrity monitoring of VMs
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such as that in vShield [65] can prevent the user from implementing a DKSM style 

attack by only inspecting kernels which have not been altered. In addition VMI 

tools can be corrected and hardened such that they do not have trivially exploitable 

vulnerabilities.

Can the VMI agent get away without being detected however? Martin et al.

[63] introduced a scheme where random values are added to the timestamps when 

rdtsc faults to the hypervisor. This will prevent most microarchitectural attacks, 

such as the ones presented in this paper, from being successful. However there 

is a tradeoff with their technique as not all applications will run correctly when 

the timestamps from the OS are altered. Since these modifcations require direct 

alteration of the hypervisor, this gives way to the possibility of detecting such al­

terations in the future which may give away the introspector in a different light.

While we have made advances in this dissertation we can see that the back and 

forth in security between attacker and defender is not going to be solved in this 

dissertation.
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