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Abstract

This thesis addresses vulnerabilities in current Trusted Computing architecture by explor-

ing a design for a better Trusted Platform Module (TPM); one that integrates more closely

with the CPU’s Memory Management Unit (MMU). We establish that software-based

attacks on trusted memory can be carried out undetectably byan adversary on current

TCG/TPM implementations. We demonstrate that an attacker with sufficient privileges can

compromise the integrity of a TPM-protected system by modifying critical loaded code and

static data after measurement has taken place. More specifically, these attacks illustrate the

Time Of Check vs. Time of Use (TOCTOU) class of attacks.

We propose to enhance the MMU, enabling it to detect when memory containing trusted

code or data is being maliciously modified at run-time. On detection, it should be able to

notify the TPM of these modifications. We seek to use the concepts of selective memory

immutability as a security tool to harden the MMU, which willresult in a more robust

TCG/TPM implementation. To substantiate our ideas for thisproposed hardware feature,

we designed and implemented a software prototype system, which employs the monitoring

capabilities of the Xen virtual machine monitor.

We performed a security evaluation of our prototype and validated that it can detect all

our software-based TOCTOU attacks. We applied our prototype to verify the integrity of

data associated with an application, as well as suggested and implemented ways to pre-

vent unauthorized use of data by associating it with its owner process. Our performance

evaluation reveals minimal overhead.
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Chapter 1

Introduction

For many, ”Trusted Computing” is a term that has come to mean that the system will behave

as expected, consistently. TheTrusted Computing Group(TCG) 1 [19] is a consortium that

works toward developing and advancing open standards for trusted computing across plat-

forms of multiple types. Their main goals are to increase thetrust level of a system by

allowing it to be remotely verifiable and to aid users in protecting their sensitive informa-

tion, such as passwords and keys, from compromise. The core component of the proposal

is theTrusted Platform Module(TPM) .

A TPM is a micro-controller chip, mounted on the motherboardof a computer, that can

be used to provide a range of hardware-based security features to programs that know how

to use them. In the last few years, major vendors of computer systems have been shipping

machines that have included TPMs, with associated BIOS support.

TPMs provide a hardware-basedroot of trustthat can be extended to include associated

software. Each link in the chain of trust extends its trust tothe subsequent one. A TPM

provides internal storage space for storing cryptographickeys and other security critical in-

formation. It provides cryptographic functions for encryption/decryption, signing/verifying

as well as hardware-based random number generation. TPM functionalities can be used to

1Formerly known as theTrusted Computing Platform Alliance(TCPA)
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attest the initial configuration of the underlying computing platform, as well as to seal and

bind data to a specific platform configuration.

However, current TPM-based approaches of attesting to the integrity of critical code

and data are not foolproof and can be circumvented2 by malicious adversaries. While it is

hard to tamper with the hardware, it is much easier to subvertthe software.

A major drawbackof the TCG architecture is that it only provides load-time guaran-

tees. Integrity measurements are taken just before the software is loaded into memory, and

it is assumed that the loaded in-memory software remains unchanged. However, this is not

necessarily true – an adversary can exploit the difference between when software is mea-

sured and when it is actually used, to induce run-time vulnerabilities. This is an instance

of theTime Of Check vs. Time of Use(TOCTOU) class of attacks.

In its current implementation, the TPM holds only static measurements and so these

malicious changes will not be reflected in its state. Code that is correct at the time of

hashing may be modified by the time of its use. Change-after-hashing is a considerable

threat to securing elements in the TCG architecture.

A possiblesolutionto this limitation is to have the CPU’sMemory Management Unit

(MMU) modified to work more closely with the TPM. The MMU should be made aware of

the software that has been measured at load-time, and shouldbe able to signal to the TPM

when the memory corresponding to that loaded software is being changed in malicious

ways at run-time.

To explore and test our ideas with regard to this solution to the limitations in the TCG

architecture, we use the monitoring capabilities of Xen – anopen-sourceVirtual Machine

Monitor (VMM) for x86. Our implementation is a software proof-of-concept demonstra-

tion of a proposed hardware (MMU) feature.

2Evan Sparks and Kwang-Hyun Baek of the Dartmouth PKI/Trust laboratory are investigating power
analysis, physical, and software attacks on TPMs.
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1.1 Contribution

This thesis makes the following contributions:

• demonstration of a vulnerability in the current TCG/TPM architecture, a set of software-

based attacks which exploit this vulnerability, and the realization that such vulnera-

bilities allow for undetectable tampering of trusted memory;

• a working prototype system with minimal overhead that allows for the detection of

such attacks by monitoring trusted page table entries and physical frames of RAM;

• the application of our prototype to verify the integrity of data, such as configuration

files, associated with an application;

• a suggestion and implementation of how to associate sensitive data with the process

that owns it, so as to prevent unauthorized use of the data; and

• the recommendation of having a closer binding between the MMU and the TPM, so

that the detection that is currently done by Xen could be doneby the MMU.

1.2 Motivating Example

Certification Authorities(CA) are the keystone of mostPublic Key Infrastructures(PKI).

They act as trusted third parties by using their private key to sign certificates. Each cer-

tificate binds together a public key and some information (usually identity – such as name,

address, organization etc.) about the holder of the corresponding private key. However,

CAs are known to be expensive and complicated to install and maintain. The CA-in-a-

Box [6] project aimed at addressing these problems by helping small enterprises (such as,

a university) deploy PKI in an easy and cost-effective manner.

3



That project developed tools using open-source software (OpenSSL [13] & OpenCA [12])

and a TPM, allowing enterprises to set-up a hardware secure CA by simply booting a CD.

The TPM is used in that project to enforce the following features of the CA’s long-lived

private key:

• ensuring that it is only used for authorized operations.

• guaranteeing that it cannot be compromised by an adversary.

The TPM is used to hold the CA’s private key3, as well as to add assurance that the key

would only be used when the system was correctly configured asthe CA – by wrapping

the private key to specified values in a specified subset of thePCRs. The TPM would then

decrypt and use (i.e., not release to the outside) that key only when those PCRs have those

values.

However, as described earlier, current TCG/TPM implementations suffer from the TOC-

TOU limitation. Therefore, at run-time, there should be a way of detecting compromise to

the platform configuration and thus preventing the CA from using its private key.

We will use this example as the motivating problem for addressing the TOCTOU issues

within the TCG architecture.

1.3 Thesis Outline

This thesis is organized as follows: Chapter2 briefly describes the build blocks needed for

our prototype. Chapter3 gives a detailed explanation of the design and implementation

of our prototype system. Chapter4 describes software-based TOCTOU attacks on TPM

measured memory, and ways to detect them using our prototypesystem. We also show

how to apply our prototype to verify the integrity of data associated with an application,

3We assume that the CA’s private key is implemented as a RSA credential, that is used only within the
TPM and is protected by it.

4



and ways to tie data with the process that owns it. Chapter5 discusses some areas for

possible future work. Chapter6 examines related work. Finally, Chapter7 presents a

summary and concluding remarks.

5



Chapter 2

Background

This chapter gives a brief summary of the building blocks of our prototype.

2.1 The TPM

TPMs have shielded locations calledPlatform Configuration Registers(PCR) , each 160-

bits long, that hold a digest of integrity measurements. TheTPM has to provide at least 16

PCRs in TCG 1.1b [21] and 24 PCRs in TCG 1.2 [20] inside its protected memory.

The contents of a PCR can only beextended, and can only be reset by a reboot1. Ex-

tending a PCR implies that when a new value is to be stored in a particular PCR, it is

concatenated with the previously stored PCR value, and a hash of the combined value is

taken. The syntax of the operation is:

Extend(PCR[i], new value): PCR[i] = SHA1(PCR[i], new value)

While this allows a large number of values to be measured and stored without simply

overwriting previous measurements, it also prevents malicious users from substituting a

known good value for one that indicates tampering.

1This concerns only PCR[0-15]. PCR[17-20] (as provided in TCG 1.2) can be reset anytime by Locality
4. “Locality” is a concept that allows the TPM to be aware of which trusted process on the platform is sending
it commands. There are six Localities defined (numbers 0 to 4 and Legacy).
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Figure 2.1:Generic Architecture Diagram of the TCG Authenticated BootProcess.

2.1.1 Attestation

On system start-up, a hardware component, called theCore Root of Trust Measurement2

(CRTM), hashes the BIOS and other firmware related configuration files and extends the

result into a specific PCR on the TPM. The BIOS proceeds to hashthe next piece of soft-

ware that is executed, which is usually the boot-loader contained in theMaster Boot Record

(MBR) of the system, and extends the result into a specific PCRon the TPM. If the boot-

loader is TCG-enabled (e.g., Trusted-Grub [2]) it will continue the chain of trust by extend-

ing the hash value of the software it loads (e.g., the operating system) into another PCR.

This chain of hash values stored in the PCRs is called theplatform configuration. The TPM

can sign this platform configuration using a protected key, to attest it to a remote challenger.

The TCG authenticated boot process is shown in Figure2.1.

2.1.2 Sealing and Wrapping

To ensure that certain sensitive data on a platform can only be accessed under a specific

platform configuration, a sealing mechanism is provided. The platform configuration is

defined by the set (or subset) of values contained in the PCRs.Sensitive data is encrypted

2This is usually the BIOS boot block, as it is the first piece of code that executes on system start-up.

7



using a public key3 and cannot be decrypted unless the system is in the same platform

configuration as it were at the time of sealing.

The TPM can also be used to create RSA key pairs (a public key and a private key),

where the usage of the private key is bound to a platform configuration. More specifically,

such key pairs, calledwrappedkeys, have their private key encrypted by a specified parent

key, and are bound to a set of values in a specified subset of thePCRs. The PCR subset is

specified at key pair creation time. The TPM will decrypt and use (i.e., not release to the

outside) the private key, only if those subset of PCRs have the same values as were present

at key pair creation time.

Essentially, secrets are accessible only when the platformis in a defined configuration.

Figure 2.2:TPM Wrapped Key

3The corresponding private key is stored encrypted within the TPM.
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2.2 x86 Memory Management

Our prototype is implemented on the Intel x86 architecture.We chose this because it is the

most popular processor architecture in use today. This section recaps features of the x86

virtual memory architecture that are relevant to understanding the working of our prototype.

Page Tables(PT) are data structures used by the virtual memory subsystem to store

mappings between virtual memory addresses and physical addresses. When an instruction

attempts to access a virtual memory address, the hardware (MMU) converts that virtual

address to a physical address by walking the page tables, andthen accesses the physical

memory.

Linux on the x86 architecture usually uses a two-level page table structure for virtual

address translation, as shown in Figure2.3. The first level table is called aPage Global

Directory (PGD) . The x86’sCR3 privileged register holds the physical base address of the

currently active process’s PGD. The PGD points to second-level PT pages.

With 32-bit virtual addresses, the most significant 10 bits (bit 31 to bit 22) of the address

are used as an index into the PGD. The PGD is the size of a page, i.e. 4 Kilobytes, and

has210 entries, each of which is 4 bytes long. Each entry in the PGD contains the physical

address of the base of a second-level PT page.

The next 10 bits (bit 21 to bit 12) of the virtual address determine an index into the

PT page. The PT page is also the size of a page. The PT page has2
10 entries, each of

which is 4 bytes. The most significant 20 bits of aPage Table Entry(PTE) contain the most

significant bits of the physical address of a frame in RAM, while the other 12 bits are used

as permission and status bits.

The last 12 bits (bit 11 to bit 0) of the virtual address are used as an offset within the

physical frame.

9



Figure 2.3:Two-level x86 Page Table structure.
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2.3 The Xen Hypervisor

Xen [22] is a free and open-source VMM (also called a hypervisor) forx86 that allows

for the simultaneous execution of multiple guest operatingsystems on the same physical

hardware. It provides features like secure isolation, resource control, quality-of-service

guarantees, and live migration of virtual machines [3]. Operating systems need to be ex-

plicitly ported/modified to run on Xen, although compatibility is maintained for user-level

applications and libraries. The latest IntelVanderpol Technology(VT) [8] and AMD Paci-

fica [1] processors support hardware-assisted virtualization, which allow Xen to execute

unmodified operating system binaries.

The components of a Xen-enabled system, as sketched in Figure 2.4, include the Xen

hypervisor (Ring4 0), a privileged domain5 (Ring 1), multiple unprivileged domains (Ring

1) and some user-level control and management tools (Ring 3). The privileged domain is

commonly referred to asDomain-0, and the unprivileged domains asDomain-U. Control

software running in the privileged domain has access to a control interface running in the

hypervisor that can be used to create, suspend, migrate and terminate unprivileged domains.

Xen replaces the interrupts mechanism from devices with an asynchronous event mech-

anism. CPU resources are dynamically distributed among domains. To provide strong

isolation, main memory is statically partitioned between domains by specifying the initial

memory allocation for each domain at the time of their creation. The hypervisor is re-

sponsible for managing its own memory as well as that of the domains it hosts. Memory

management in Xen is further discussed in Section2.3.3.

4In x86 architecture, there are four privilege levels, called rings, numbered from 0 to 3, with 0 being the
most privileged.

5“Domain” is Xen terminology for a virtual machine.
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Figure 2.4:Standard layout for a Xen-enabled system hosting a privileged domain (Domain-0) and
an unprivileged domain (Domain-U).

2.3.1 Paravirtualization

Xen’s high performance virtualization is achieved by employing a technique calledparavir-

tualization. Paravirtualization requires operating systems to be aware that they are running

in a virtual machine. This virtualization technique presents a software interface to virtual

machines, that is similar, but not exactly alike, to that of the underlying hardware. This

requires explicit porting of the operating systems to be able to run atop the VMM. The

porting essentially entails replacing the guest OS’s privileged instructions with appropriate

calls (hypercalls, Section2.3.2) to the VMM.

The hypervisor also maintains avirtual CPU for each domain. When a guest OS would

like to write to a protected register (which is disallowed since it takes a privileged instruc-

tion to do so), the hypervisor writes the value to the corresponding virtual register in the

virtual CPU.

12



2.3.2 Hypercalls

Domains communicate with Xen using software interrupts called hypercalls. Hypercalls

are calls from Ring 1 to Ring 0 that allow Guest OSes to requestXen to perform operations

on their behalf. This is done in a manner similar to how systemcalls, from Ring 3 to Ring

0, allow applications to invoke privileged operations in a traditional OS.

On x86/32 machines the instruction required isINT 0x82. Currently there are about

thirty five hypercalls. We have added three additional hypercalls for our prototype.

2.3.3 Memory Management

Memory management is one of the more important aspects of Xen. As the same physical

memory is used by multiple domains, caution has to be taken topreserve isolation and

security. Unprivileged domains should be restricted from accessing each other’s memory.

Guest OSes are responsible for allocating and managing their own hardware page tables,

which have to be registered with Xen. Guest OSes are limited to read-only access to their

page tables, i.e. they are disallowed from creating writable mappings to frames containing

active page tables. Each page table update is intercepted and validated by the hypervisor

to ensure that domains only manipulate their own page tables. Domains may batch these

operations to make sequential updates more efficient.

Domains are allocated physical memory at creation time by the hypervisor. The mem-

ory is not necessarily a contiguous chunk in the physical RAM. However, as most operating

systems are not equipped to operate in a fragmented6 physical address space, Xen intro-

duces a new type of memory, referred to aspseudo-physicalmemory, which is distinct from

machinememory. Machine memory refers to the physical memory (RAM) installed in the

machine, while pseudo-physical memory is a per-VM abstraction, providing a guest OS

6 In most operating systems physical addresses of kernel symbols, given its linear address, are calculated
by subtracting a constant offset. For example, for the LinuxKernel the offset is 0xC0000000.
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with the illusion that its memory is a contiguous range of physical pages. The translation

between these two addresses is not transparent, and guest OSes need to do this translation

for themselves. Xen maintains globally readable tables that provide the mapping between

machine and pseudo-physical memory addresses and vice versa.

Xen Page Tables

To make PT updates by the guest OS visible to the hypervisor, all of the pages that are

currently part of a PT are mapped read-only in the guest. Guest OSes are only allowed

read access to their PTs, with all updates being performed bythe hypervisor. Xen currently

offers three PT update modes to the guests that it hosts:

Hypercall Mode In this mode, guest OSes have to explicitly make hypercalls (mmu update)

to update their PTs. The hypervisor validates the updates being requested. If none of the

memory constraints are violated, the PT is updated.

Writable Page Table Mode In this mode, guest OSes are led to believe that their PTEs

are directly writable. Guest attempts to write to their PTEscause a page fault (because the

PTs are mapped read-only), which is trapped and emulated by the hypervisor. If none of

the memory constraints are violated, the PT is updated.

Shadow Page Table Mode This mode is mainly used by the guest OS when live migra-

tion is being performed. In this mode, there are two sets of PTs; the guest OS sees a set of

PTs, that are distinct from the ones seen by the hypervisor. The hypervisor sees the actual

hardware page tables (pointed to by theCR3 register). The hypervisor is responsible for

propagating changes made to the guest’s PTs to the real ones,and vice versa.
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2.3.4 Event Channels

The hypervisor controls access to physical devices to ensure isolation, dependability and

efficient usage. Access is managed using an event mechanism.

Interrupts are handled within the hypervisor. On receivingan interrupt, the hypervisor

issues to the corresponding Domain an asynchronous event notication. Notications are

delivered to Domains through event channels. The hypervisor communicates these events

with a Domain through a shared memory page.

Domain-0 has direct access all the system hardware. A driverused by Domain-0 to

provide access to a virtual device to other domains is calledabackend device driver, while

a driver that a domain uses to control a virtual driver is called afrontend device driver. This

set-up is shown in Figure2.5.

A Domain has a set of event channel connection points, calledports, which connect

to one end of a channel. The opposite end of the channel connects to either aphysical

Interrupt Request(IRQ) , avirtual IRQor a port in an alternate Domain. A physical IRQ is

synonymous with the native IRQ of a device, while a virtual IRQ refers to an IRQ managed

by the hypervisor. This mechanism allows an event generatedby a backend driver to be

delivered to the frontend driver as a virtual IRQ.

We created a new Xen virtual IRQ for our prototype to notify Domain-0 of tampering

with trusted memory.

2.4 Virtual TPMs

For our prototype we will be using the unprivileged Domain-1as our test system. Unpriv-

ileged VMs cannot access the system’s hardware TPM, and so, to provide Domain-1 with

TPM access, we need to make use of virtual TPMs.

In a virtual machine-based environment,Virtual TPM (vTPM) [4] support provides
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TPM functionality to the different virtual machines running on the platform. vTPM sup-

port has to be explicitly requested for by the VMs, by having it specified in their creation

configuration files. The vTPM interface gives each domain theimpression that it is access-

ing its own exclusive TPM, as if it were a hardware TPM.

The vTPM interface is implemented using a split device driver architecture, as shown

in Figure 2.5. The virtual device is provided using two collaborating drivers (as dis-

cussed earlier): the frontend device driver, which runs in an unprivileged user Domain

(Domain-U), and the backend device driver, which runs in a privileged domain with access

to the real device hardware (currently Domain 0). The frontend exports a character device

/dev/tpm0 to user-level applications for communicating with the vTPM. This is consis-

tent with the interface provided if a hardware TPM is available on the system. The backend

provides a single interface/dev/vtpm where the vTPM has threads waiting for requests

from the different domains that have a corresponding frontend.

The frontend driver receives IO requests from its kernel andforwards these onto the

backend. The backend receives these IO requests, and is responsible for verifying that they

are safe and do not violate isolation guarantees. It then issues these requests to the actual

hardware TPM. On IO completion, the backend notifies the frontend, which correspond-

ingly reports IO completion to its own kernel.

The vTPM implementation exists as a user-level process in Domain0. The vTPM man-

ager (vtpm managerd) is used for the creation, deletion, suspension and migration of

vTPM instances. It is also responsible for multiplexing requests from the different VMs to

their respective vTPM instances. TPM commands are delivered from a Domain-U to the

vTPM manager, which dispatches it to a software TPM. The software TPM provides TPM

functionality to virtual machines.

In order to distinguish which VM the TPM command was issued from, a 4-byte vTPM

instance number is concatenated to the beginning of each TPMcommand packet by the
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backend device driver. The instance number pinpoints whichunique vTPM instance a VM

can interface with.

Figure 2.5:vTPM architecture for Xen.
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Chapter 3

Design and Implementation

In this chapter, we discuss the major design choices behind this implementation. We will

also explore the actual execution of this prototype.

3.1 Reasons for using Xen

The reasons for using a virtual machine-based system, such as Xen, to explore and test our

ideas with respect to the TOCTOU issues with the TCG architecture are as follows:

• Xen is being used in this project not for its virtualization features, but as a layer

that runs directly below the operating system – similar to the placement of the hard-

ware layer in a non-virtualized environment. Its placementhelps us study possible

hardware features.

• In a Xen based system, all memory updates trap into the thin hypervisor layer –

making it easy to monitor and keep tabs on changing memory.

• Redesigning the MMU hardware is tricky, so we do not want to attempt that until we

were certain that the end goal was useful.
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• A potentially better alternative to using Xen would have been to use an open-source

x86 emulator (such as Bochs [5] or QEMU [14]). However, as of their current im-

plementation, none of these emulators have support for emulating a TPM. Also, the

only currently existing software-based TPM emulator [18] does not integrate with

any of these. Integrating them would be a major task in itself.

• In the long run, Xen might prove to be an end in itself and we might be able to just

use Xen, rather than modifying the MMU, even for real deployment.

3.2 Role of Xen

We could have used Xen in our implementation to address the TCG/TPM TOCTOU limi-

tation via two different approaches, as explained below. Wechoose to go with the first of

these.

3.2.1 Transparent layer

The strategic placement of the thin Xen hypervisor layer between the machine’s hardware

and the operating system could be seen as a way to prototype changes that could be made

in hardware (i.e. in the MMU).

With this approach, the purpose of Xen would be to solely demonstrate a proposed

hardware change, and would not be intended to be integrated into theTCG Software Stack1

(TSS) .

Xen’s role would be that of a “transparent” layer, manifesting features that would ide-

ally be present in hardware.

1The TCG Software Stack is the software supporting the platform’s TPM.
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Figure 3.1:Extending the Authenticated Boot Process into the virtualized environment.

3.2.2 Part of the TSS

Alternatively, Xen could be used with the purpose of incorporating it into the TSS. The

trusted boot sequence would now include the measurement of the Xen hypervisor exe-

cutable, the Domain-0 Kernel and applications running in Domain-0, subsequent to the

system being booted by a trusted boot-loader. The advantageof this model is that our

Trusted Computing Base(TCB) will be extended all the way up to the hosting virtual ma-

chine environment.

The TCG trust management architecture is currently defined only up to the bootstrap

loader, for this implementation we will need to extend the chain of trust up to applications

running in Domain-0, as shown in Figure3.1.

However, as the hypervisor layer is not currently part of theTCG trust management

architecture, incorporating it into the TSS will necessitate a revision of the TCG specifica-

tion.

3.3 TPM Status

Employing Xen to monitor measured memory and update the TPM when that measured

memory is altered could have two possible implications on the TPM’s status, as explained
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below. We choose to go with the second implementation.

3.3.1 Dynamic TPM

The idea here is to update the TPM’s state every time the measured memory of an ap-

plication is changed. At all times then, the TPM’s state willreflect the current memory

configuration of a particular application, and of the systemas a whole. This would allow a

remote verifier to be aware of the current state of the application in memory, and to make

trust judgments based on these presently stored PCR values.

When the hypervisor detects a write to the monitored area of an application’s memory, it

would invoke a re-measurement of the application in memory.The re-measurement would

involve, calculating a SHA1 hash of the critical area of the binary in memory (as opposed

to the initial measurement stored in the PCR, which was of thebinary image on disk). This

remeasured value would be extended to the TPM.

In this case, monitoring of memory writes would be enabled for the entire lifetime of

an application, as the TPM state would need to be updated eachtime the application’s

measured memory changed.

3.3.2 Static (Tamper-indicating) TPM

The idea here is, to update the TPM’s state only the first time that the measured memory of

an application is changed. This would allow a remote verifierto easily recognize that the

state of the application in memory has changed, and hence detect tampering.

When the hypervisor detects the first write to a critical areaof an application’s memory,

it would not invoke a re-measurement of the application; instead, wouldmerely extend the

TPM with a random value.

In this case, monitoring of memory writes could be turned offafter the first update to

the TPM, as that update would be sufficient to indicate tampering. Monitoring subsequent
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writes (tampering) will not provide any further benefit. This strategy will not have as much

of a negative impact on performance as the first approach.

3.4 Implementation Outline

The prototype implementation consists of three primary components: the instrumented

Linux Kernel for reporting, the modified Xen hypervisor for monitoring, and the invalida-

tion in the TPM.

The steps below are carried out after the application is measured and extended into the

vTPM of the Domain under test.

3.4.1 Reporting

The paravirtualized Kernel of the Domain under test (in our prototype – Domain-1), has

been instrumented to allow it to report to the hypervisor – the PTEs, and physical frames

that these PTEs map to, of the memory to be monitored, as shownin Figure3.2

To enable this feature, two new hypercalls have been added tothe Xen hypervisor:

• HYPERVISOR report ptes reports to the hypervisor a list of PTEs that map the

memory that needs to be monitored. The PTEs are essentially the entries that map

the.text section of the binary into memory.

• HYPERVISOR report frames reports to the hypervisor a list of physical mem-

ory addresses that need to be monitored. The addresses are the physical base ad-

dresses of each frame that contain memory that needs to be monitored.

These hypercalls make use of a new function that we have addedto the Kernel:

• virt to phys() walks a process’s page tables in software to translate virtual ad-

dresses to physical addresses. We pass to this function the start and end virtual ad-
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Figure 3.2:Reporting to the hypervisor the PTEs and frames to be monitored.

dresses of the.text section of the binary to be monitored. Using the fact that

there are 4096 bytes of data on each page2, it calculates the number of virtual pages

spanned by the address range passed to it. It then accesses anaddress on each page

of the range, so as to have it mapped into memory. This step is required to overcome

potential problems due todemand loading.3 At this point, the whole of the.text

section of the binary is mapped into memory. This step however, has performance

implications in that it slows down application start-up, asshown in Section4.4. The

function then walks the page tables of the process to translate the virtual addresses

to physical addresses (physical base address) of each framein the range. A data

structure containing a list of these addresses is returned to the calling function.

Also, on program exit (normal or abnormal), we need to have the monitored PTES

and frame addresses removed from the monitored list. This requirement is fulfilled by

2Our experimental system has a 4Kb page size.
3Demand loading is a lazy loading technique, where only accessed pages are loaded into memory.
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instrumenting the Kernel’sdo exit function to invoke a new hypercall:

• HYPERVISOR report exit reports to the hypervisor when an application that is

being monitored exits. The hypervisor’s monitoring code then deletes the relevant

entries from its monitored lists.

3.4.2 Monitoring

Once the required PTEs and frame addresses are passed down toXen, it will monitor them

to detect any modifications made to them, as shown in Figure3.3.

Figure 3.3:Monitoring the reported PTEs and frames for updation.

Writes to these physical memory addresses, or updates to these PTEs to make them

map to a different subset of memory pages or make them into writable mappings, will be

treated as tampering. The reason for this is that since we aremonitoring the read-only code

section of an application, neither of the above updates are legitimately required.
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The most convenient and reliable method of detecting these types of updates is to ‘hook’

into Xen’s page table updation code. As mentioned earlier, all page table updates in a Xen

system go through the hypervisor. This enables us to put in code that can track specific

addresses and PTEs.

The default mode of page table updates on our experimental setup is the Writable Page

Table mode, as described in Section2.3.3. In this mode, writes to page table pages are

trapped and emulated by the hypervisor, using theptwr emulated update() func-

tion.

Amongst other parameters, this function receives the address of the PTE that needs to

be updated and the new value to be written into it. After doinga few sanity checks, it

invokes Xen’supdate l1e() function to do the actual update.

update l1e() is the function that we instrument to detect tampering. Amongst other

parameters, this function receives the old PTE value and thenew PTE value that it needs to

be updated to. To detect tampering, we perform the followingchecks:

• For PTEs: we check to see if theold PTE value passed in is part of our monitored

list. If it is, it means that a ‘trusted PTE’ is being updated to either point to a different

set of frames, or to make it writable. The alternate set of frames are considered as

potentially malicious frames, and the updated writable permission leaves the corre-

sponding trusted memory open for overwriting with malicious code. This scenario is

described in more detail in Section4.1.2and Section4.1.3.

• For frames: We first check to see if thenewPTE value passed in has its writable bit

set. If it does, we calculate the physical address of the frame it points to. We then

inspect if this physical address is part of our monitored list. If it is, it means that a

‘trusted frame’ is being mapped writable by this new PTE. Thewritable mapping,

created by this new PTE is interpreted as a means to overwritethe ‘trusted frame’

with potentially malicious code. This scenario is described in more detail in Sec-
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tion 4.1.1.

Once the tampering is detected in the hypervisor layer, we need to be able to indicate

this fact to Domain-0. We do this by creating a new virtual interrupt,VIRQ TAMPER,

that a guest OS may receive from Xen.VIRQ TAMPER, is a global virtualInterrupt Re-

quest(IRQ) , that can be allocated once per guest, and is used in ourprototype to indicate

tampering with trusted memory.

3.4.3 Invalidating

Once tampering of trusted memory is detected in the hypervisor layer, the Domain under

test needs to have its integrity measurements updated. Thisis done by way of updating the

Domain’s platform configuration in its virtual TPM, as shownin Figure3.4.

Figure 3.4:Updating PCR in vTPM of Domain-1 on tamper detection.

Our intention is to have the hardware (MMU) do this update. Considering that, in our

prototype, the hypervisor together with Domain-0 are playing the role of the hardware, we
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need to have either of them perform this updation. However, as there are no device drivers

present in the hypervisor layer, the hypervisor is unable tointerface with the virtual TPM

of Domain-1, and so this task is redirected to the privilegedDomain-0.

The hypervisor will indicate tampering to Domain-0 by sending a specific virtual inter-

rupt (VIRQ TAMPER) to it. A Linux Kernel Module in Domain-0 will receive this inter-

rupt, and will proceed to extend the concerned PCR in the virtual TPM of Domain-1 with

a random value.

We have to make use of the virtual TPM Manager (vtpm managerd) to talk to the

virtual TPM of Domain-1. In its current implementation, thevirtual TPM manager only

delivers TPM commands from unprivileged Domains to the software TPM. Domain-0 is

not allowed4 to directly interface with the software TPM. However, for our prototype, we

need Domain-0 to have this ability, and so we have to mislead the virtual TPM Manager into

thinking that the TPM commands from Domain-0 are actually originating from Domain-1.

In Domain-0, we construct the required TPM I/O buffers and command sequences re-

quired for aTPM Extend to a PCR of Domain-1. As described in Section2.4, there

is a unique instance number associated with each vTPM. To enable Domain-0 to access

the vTPM instance of Domain-1, we prepend the above TPM command packets with the

instance number associated with Domain-1. This effectively help us forge packets from

Domain-1.

4Domain-0 is only allowed to access the actual hardware TPM orthe software TPM, but not the vTPM
instances of other unprivileged domains.
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Chapter 4

Experiments and Evaluation

Our prototype on x86, runs on a Xen 3.0.3 virtual machine-based system. Xen’s privileged

and unprivileged domains run Linux Kernel 2.6.16.29. Our evaluation hardware consists of

a 2 GHz Pentium processor with 1.5 GB of RAM. Virtual machineswere allocated 128 MB

of RAM in this environment. Our machine has an Atmel TPM 1.2 security chip.

4.1 Security Evaluation

In this section, we describe some software-based attacks oncurrent TCG/TPM architecture,

and show how our prototype successfully detects all of theseattacks. We present three

attack scenarios that we implemented, which can be used to subvert measured memory by

exploiting the previously mentioned TOCTOU vulnerability.

These attacks, seek to change the.text1 section of a loaded binary. The.text

section is mapped read-only into memory, and so, is conventionally considered safe from

tampering. However, with sufficient (root) privileges, an attacker can employ methods to

modify the code stored in it by remapping or overwriting it.

The attacking process for all three attacks could be owned bythe attacker, or could be

1The.text section holds the complied code of a program
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an arbitrary process. In our scenarios, the attacker takes the form of a kernel module that is

inserted into the kernel.

For these attacks the victim process we attacked isnot the CA. To make things plausible

we decided to attack smaller test programs. Nonetheless, the results we obtained would

theoretically be the same if the victim process was the CA.

4.1.1 Attack and Defense 1

This attack scenario involves an attacker overwriting the trusted code of a victim process

by creating writable page mappings to the victim process’s trusted frames from another

process, as shown in Figure4.1.

We carried out this attack by modifying2 a PTE in our malicious process to map to a

physical frame in RAM that the victim process’s trusted codewas currently mapped to.

We modified the PTE to hold the frame address of the victim process page that we wanted

to overwrite. The PTE that we chose to update already had its writable bit set, so we did

not need to update the permission bits. Using this illegitimate mapping we were able to

overwrite a part of the trusted frame with arbitrary data.

It is interesting to note that this attack was possible without having to tamper with any

of the victim process’s data structures.

The above update to the malicious process’s PTs goes throughthe hypervisor and in

effect through our monitoring code. The monitoring code detects that a writable mapping

is being created to a subset of the physical frames that it is monitoring. It evaluates this as

being a tampering attempt, and raises an alarm.

In the case of the CA, the attacker could overwrite its trusted memory to gain unautho-

rized use of its private key, such as to sign bogus certificates.

2The attack could also be carried out by creating a new PTE thatmaps to the victim process’s frames
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Figure 4.1:Attacker manipulates PTE(s) of his process to map to trustedframes of victim process.
Overwrites memory in RAM.
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4.1.2 Attack and Defense 2

This attack scenario requires an attacker to modify the trusted code of a victim process by

updating the mappings of its.text section to point to rogue frames in RAM, as shown

in Figure4.2.

We carried out this attack by using our malicious process to update the address portion

of a PTE in the victim process that was mapping its code section. The updated address in

the PTE mapped to rogue physical frames in RAM that were part of our malicious process.

Due to these updated mappings, the victim process’s trustedcode was now substituted with

the content of our rogue frame.

The above update to the victim process’s PTs goes through thehypervisor and in effect

through our monitoring code. The monitoring code detects that a subset of its monitored

PTEs are being updated to point to different portions of RAM.It evaluates this as being a

tampering attempt, and raises an alarm.

In the case of the CA, the attacker could modify its trusted memory to point to rogue

frames, which allowed for unauthorized use of its private key, such as to sign bogus certifi-

cates.
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Figure 4.2:Attacker manipulates PTE (address portion) of victim process to map to rogue frames
in RAM.
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4.1.3 Attack and Defense 3

This attack scenario entails an attacker overwriting the trusted code of a victim process

by updating the permission bits of its.text section to make them writable, as shown

in Figure4.3.

We carried out this attack by using our malicious process to update the permission

bits of a PTE in the victim process that was mapping its code section. We updated the

permission bits to set the writable bit making the corresponding mapped frame writable. We

used this writable mapping to modify the trusted code in the victim process with arbitrary

data.

The above update to the victim process’s PTs goes through thehypervisor and in effect

through our monitoring code. The monitoring code detects that a subset of its monitored

PTEs are being updated to make them writable It evaluates this as being a tampering at-

tempt, and raises an alarm.

In the case of the CA, the attacker could overwrite its trusted memory to gain unautho-

rized use of its private key, such as to sign bogus certificates.
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Figure 4.3:Attacker manipulates PTE (permission bits) of victim process to make frames writable.
Overwrites memory in RAM.
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Current Prototype
TPM Implementation TPM Implementation

Attack 1 undetected allows for unauthorized detected, reported & no unauthorized use
use of CA’s private key TPM state updated of CA’s private key

Attack 2 undetected allows for unauthorized detected, reported & no unauthorized use
use of CA’s private key TPM state updated of CA’s private key

Attack 3 undetected allows for unauthorized detected, reported & no unauthorized use
use of CA’s private key TPM state updated of CA’s private key

Table 4.1:Comparison of TPM implementations

4.2 Protecting Data and Secrets

As described in Section2.1.2, the TPM can be used to generate RSA key-pairs, where

the usage of the private key is bound to a particular platformconfiguration. The platform

configuration is defined by the set (or subset) of values contained in the PCRs.

We can use this feature of the TPM to verify the integrity of data, such as a configuration

file, associated with an application. Using the CA as an example we want to ensure that

the CA will use its private key only when it is running the legitimate CA binary, as well

as is correctly configured to be the CA. The initial settings of the CA are setup using a

configuration file. Therefore, at CA start-up, it is essential to ensure that we are reading the

correct untampered CA configuration file.

To achieve this, in an initial test run, we do both – hash the CAbinary, as well as the

CA configuration file, and extend both to specific distinct PCRs. We then generate the CA’s

signing key pair, as a wrapped key pair that is bound to the twoaforementioned PCRs.

In production run, when we start-up the CA, we do the same, i.e., have its binary and

configuration file extended to the same specific PCRs as before.

Note:If the production run is performed after a system reboot of the test run, the PCRs

would have automatically beenzeroized, and we don’t need to do anything special. If,

however, the production run is being performed without a system reboot of the test run,

35



we have to ensure that the CA specific PCRs3 are zeroized using theTPM PCR Reset

command.

When the CA’s encrypted private key is requested to be used for signing, it will only be

able to be decrypted and used within the TPM if the following conditions hold:

• The PCR containing the hash of the binary is unchanged.

• The PCR containing the hash of the configuration file is as expected.

These checks guarantee two things. First, the CA process image in memory has not

been tampered with since start-up. If it had, our prototype would have detected the tam-

pering and updated the PCR. Second, the CA was started-up with the correct configuration

file, and so, is set-up and running as expected.

To prove our hypothesis, we tested out the above ideas using small test programs and

found them to be safe and effective.

In a similar vein, we can use the TPM sealing functionality toallow an application to

encrypt data, and ensure that the data will only be decryptedwhen the application is set-up

and running as expected.

4.3 Binding Secrets and Data to Processes

In their current specification and implementation, the sealing/wrapping and signing facil-

ities do not bind secrets and data to their ‘owner’ process. By ‘owner’ we refer to the

application that either encrypted/signed a piece of data orgenerated a key.

This lack of binding could have security implications. Any running application on the

system could potentially unseal the data or unwrap the key, and use it for unauthorized

purposes. The TCG specification does have a provision to guard against this – specifying

3In this case, the CA specific PCRs chosen will have to be a subset of the resettable PCRs.
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a password4 that will be checked against at the time of unsealing or unwrapping, in con-

junction with checking the value in the PCRs. However, if no password is specified, or if it

is easily guessable, it leaves open the possibility for unauthorized use.

One way of resolving this problem would be to have a dedicatedresettable PCR on

the TPM that would be extended with the hash of the binary of the currently executing

process on the system. This PCR would be included in the set ofPCRs that are used for

sealing/wrapping against. As a consequence, the ‘owner‘ process would be required to be

currently active on the processor for unsealing/unwrapping to be successful. Every time

there is a context-switch (indicated by a change of value in theCR3 register), the above-

mentioned PCR would first be reset, and then be extended with the relevant hash value.

This mechanism would prevent a process that is not the ‘owner’ of a particular sensitive

artifact from accessing it.

On systems where the context switching rate is high, having the reset and extend TPM

commands carried out on every context switch, might be infeasible and inefficient. We

suggest and implement a more feasible resolution to this problem. Note, however, that this

will work only for a ‘session’, i.e., if the application is not re-started. This steps are as

follows:

• We implemented newCreate Key andSeal commands as part of the TSS that

include the currentCR3 register value as part of the binding information, along with

the specified PCRs. This would cause the sealed/wrapped datato be associated with

the currently active process, and help establish an ‘owner’.

• Similarly, we implemented newUnseal andSign commands that compare the

previously storedCR3 register value against the current value, as well as checks

against the PCR values. If they match, it implies that it is the ‘owner’ of the data that

4The password is stored in a wrappedKey data structure associated with the corresponding asymmetric
key.
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is trying to access it. Hence, the unsealing/signing would be allowed, else it would

be disallowed.

4.4 Performance Evaluation

In this section, we evaluate the performance of our prototype system. We measure the

additional overhead incurred by our system vs. a native XEN/vTPM system. The results

show that our prototype offers enhanced security features with a minimal performance

overhead.

Table4.2shows the overhead incurred in the Linux Kernel for reporting trusted PTEs/frames

to the hypervisor. As can be seen for the first run the overheadis much greater than for sub-

sequent runs. The reason being that for the first run none of the pages of the code section

have been mapped into memory as yet. For subsequent runs, if the pages have not been

swapped out reporting is much faster. On the average, for thefirst run it takes between

8-14 microseconds for the reporting of a PTE-frame pair fromthe Guest OS to the hyper-

visor.

Binary Size of Number of PTEs/FramesOverhead on Average overhead on
Name Binary (Kb) to monitor first run (µs) subsequent runs (µs)

openssl 392 93 774 23
perl 1036 248 3558 687

aptitude 2248 559 7963 1977
gdb 2312 609 8501 2219

Table 4.2:Reporting Overhead

Table4.3shows the overhead incurred in the hypervisor for monitoring trusted PTEs/frames

passed to it from the Guest OS. We performed two sets of calculations. The first shows

the overhead incurred on loading a binary when the hypervisor’s monitored list is empty.

The other shows the overhead incurred on loading a binary when there are a thousand

PTEs/frames being monitored.
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Binary Size of Overhead when monitoredOverhead when 1000 PTEs/Frames
Name Binary (Kb) list is empty (µs) are being monitored (µs)

openssl 392 289 2799
perl 1036 680 3164

aptitude 2248 1462 3952
gdb 2312 1588 4072

Table 4.3:Monitoring Overhead

These results show that the overhead of our prototype systemis almost negligible, mak-

ing it a very usable and deployable.
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Chapter 5

Discussion and Future Work

In this chapter, several issues that deserve more careful discussion and consideration are

listed. We also point out potential avenues for further research. Implementation of these

ideas will help make this prototype more complete and robust.

Protection: We only protect against physical memory accesses that are resolved by travers-

ing the page tables maintained by the MMU.Direct Memory Access(DMA) allows certain

hardware subsystems to access system memory independentlyof the CPU will not be pro-

tected against.

Paging to Disk: Pages can be swapped in and out of physical memory and onto thedisk.

If a page gets swapped out, its present bit will be cleared. Onbeing read back from disk,

this page may be allocated into a different frame than it was previously stored in. If a page

mapped by a subset of the physical addresses that we are monitoring, gets swapped out,

we need to remove those addresses from our monitored list, and update it with a new set of

addresses when the page gets swapped in again. Also, when a page gets swapped out, its

PTE is updated to record the disk location (swap space) at which the content of the page

can be found. We will need to make note of this address, to check that the page that gets
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swapped back in is the same that was swapped out.

In our initial prototype, we have not implemented any functionality related to swapping,

and leave this as future work.

Context Switches: Since we are monitoring physical addresses, which remain unique

across context switches between applications (or virtual machines), no special processing

is required for this case.

Memory to Monitor: Ideally, besides critical code, it would be beneficial to monitor

static read-only data and memory at which important kernel and application data structures,

such as interrupt descriptor tables, system call tables andfunction pointer tables (Global

Offset Table(GOT) andProcedure Linkage Table(PLT) ) are stored.

Dynamic TPM: Implementing the dynamic TPM, as described in Section3.3.1, would

be a radical step forward in the way TPMs currently operate. It would enable the TPM to

hold the run-time memory configuration of a process, and hence allow for more accurate

trust judgments.
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Chapter 6

Related Work

6.1 IMA

IBM designed and implemented a TPM-basedIntegrity Measurement Architecture(IMA)

to measure the integrity of a Linux system. Their implementation [15] was able to extend

the TCG trust measurement architecture from the BIOS all theway up into the application

layer.

Integrity measurements are taken as soon as executable content is loaded into the sys-

tem, but before it is executed. An ordered list of measurements is maintained within the

kernel, and the TPM is used to protect the integrity of this list. Remote parties can verify

what software stack is loaded by viewing the list, and using the TPM state to ensure that

the list has not been tampered with.

6.2 Bear/Enforcer

The Bear/Enforcer [11, 10] project from Dartmouth College developed aLinux Security

Module(LSM) to help improve integrity of a Linux system.

The Enforcer is a Linux Security Module that calculates the hash of each protected file
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as it is opened, and compares it to a previously stored value.If a file is found to be modified,

Enforcer does some combination of the following: denies access to the file, writes an entry

in the system log, panics the system or locks the TCG hardware.

6.3 Copilot

Copilot [9] is a run-time kernel integrity monitor, that uses a separate bus-mastering PCI

add-in card to make checks on system memory.

The Copilot monitor, routinely recomputes hashes of the kernel’s text, modules, and

other critical data structures, and compares them against known good values to detect for

any corruption.

6.4 Pioneer

Pioneer [16] provides software-based run-time code attestation.

A trusted entity known as theverifier can verify the software stack running on an un-

trusted platform, by sending a challenge to a self-checkingverification function on that

platform. The check-sum, returned as the response to the verifier, is checked for correct-

ness as well as if it is returned within the expected time or not. If an adversary tries to ma-

nipulate the check-sum computation, the computation time will noticeably increase. This

helps the verifier determine if a dynamic root of trust existson the untrusted platform. The

dynamic root of trust is then used to measure further executables that run in an untampered

execution environment.
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6.5 Bind

BIND [17] is a service that performs fine-grained attestation for establishing a trusted en-

vironment for distributed systems.

Rather than attesting to the entire contents of memory, BINDattests only to a critical

piece of code, that is about to execute. It narrows the gap between time-of-attestation

and time-of-use, by measuring code immediately before it isexecuted, and protects the

execution of the attested code by using a sand-boxing mechanism. It also binds the code

attestation with the data that it produces. It requires programmer annotations, and runs

within a Secure Kernel that is available in the newLaGrande Technology(LT) -style CPUs.

6.6 Terra

Terra [7] is a virtual machine-based platform for trusted computing.

The Terra Trusted VMM (TVMM), partitions a single platform into multiple isolated

virtual machines. Using a TVMM, existing OSes and applications can run in an “open-box

VM” or a “closed-box VM.” The privacy and integrity of the contents of a closed-box VM

are protected by the TVMM. The TVMM also allows applicationsto attest their software

stack to remote parties. Attestation is done by decomposingattestable entities into fixed-

sized blocks, and computing a separate hash over each block.
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Chapter 7

Summary and Conclusion

7.1 Summary

In this research, we described the design and implementation of a prototype system, that

will serve as a defense toward the TOCTOU limitation of the TCG/TPM architecture. Once

deployed, the integrity measurements of a TPM-protected system, will more reliably be

able to be trusted. The TPM will be capable of indicating the tampering of memory con-

taining trusted data.

7.2 Conclusion

The goal of this thesis was, to demonstrate flaws and limitations in the current TCG/TPM

architecture. In the course of this research, we made the following contributions:

• We pointed out that current assumptions made about measuredmemory at run-time is

flawed. Specifically, that previously measured memory can bemodified at run-time,

in a way that is undetectable by the TPM.

• We demonstrated a few software-based TOCTOU attacks on measured memory, and
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exhibited ways to detect such attacks – by monitoring the relevant PTEs and physical

frames of RAM.

• We applied our prototype to verify the integrity of data associated with an application.

We also suggested and implemented ways to associate data with the process that owns

it, so as to prevent unauthorized use of it.

• Our recommendation is to have a closer binding between the MMU and the TPM, so

that the above detection that is currently done by Xen, can bedone by the MMU.
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Appendix A

Technical Details

This appendix contains various technical details relatingto our prototype.

A.1 Virtual machine configuration file

Shown below is the configuration file for virtual machine Domain-1. The Domain is named

”vm01”, and is used as the test machine for our prototype.

name="vm01"
kernel="/boot/vmlinuz-2.6.16.29-xen"
root="/dev/sda1"
memory=128
disk=[’file:/vserver/images/vm01.img,sda1,w’,

’file:/vserver/images/vm01-swap.img,sda2,w’]
vtpm = [’instance=1, backend=0’]
# network
vif=[ ’mac=00:16:41:AE:50:E4’ ]
dhcp="dhcp"
extra="3"
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A.2 Attack Overview

Listed here are the steps carried out for each of the attacks and defenses described in Sec-

tion 4.1:

• Ensure that the virtual TPM backend driver is available in Domain-0. If not statically

compiled into the Kernel, the module can be loaded using the command:

modprobe tpmbk

This will make available a character device:

/dev/vtpm

which is where the vTPM listens for requests.

• Start the virtual TPM manager daemon in Domain-0. The command to do that is:

vtpm_managerd

• Launch the virtual machine that will function as the test machine. The command for

that is:

xm create -c /etc/xen/vm01-config.sxp

This virtual machine should be TPM-enabled, i.e., the TPM frontend driver must be

compiled for its Kernel, and in its configuration file it should specify that it would

like to be associated with a vTPM instance using the command line:

vtpm = [’instance=<instance number>, backend=<domain id>’]

as shown in the configuration file above.

• Once the guest machine is started, we need the TPM frontend driver to be activated.

If the driver is not compiled into the kernel, it must be loaded using the following

command:
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modprobe tpm_xenu

This will make available a character device:

/dev/tpm0

• In Domain-0, we load a process that waits for an interrupt (VIRQ TAMPER) from the

hypervisor. The interrupt indicates tampering of trusted memory.

• We start the victim process in Domain-1. On being loaded intomemory, the PTEs/frames

mapping its code section are reported to the hypervisor

• We attack the above process by inserting a Kernel module intoDomain-1, that ma-

nipulates PTEs/frames of the process. This tampering is detected by the hypervisor.

• The hypervisor upcalls into Domain-0 to indicate this tampering. On receiving this

upcall, i.e., the interrupt, our ‘invalidating process’ updates a specific PCR in the

virtual TPM of Domain-1 with a random value.

• In Domain-1, the updated PCR values can be seen using the following command:

cat /sys/devices/xen/vtpm-0/pcrs

A.3 Important files modified

For hooking into the page-table update code

xen-3.0.3_0-src/xen/arch/x86/mm.c

For adding new hypercalls

Xen side:
xen-3.0.3_0-src/xen/arch/x86/x86_32/entry.S
xen-3.0.3_0-src/xen/include/asm-x86/hypercall.h
xen-3.0.3_0-src/xen/arch/x86/mm.c

Linux side:
xen-3.0.3_0-src/linux-2.6.16.29-xen/include/asm-i386/mach-xen/asm/hypercall.h
xen-3.0.3_0-src/linux-2.6.16.29-xen/include/xen/interface/xen.h
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A.4 Binding secrets and data to processes

Current Implementation

1. CreateKey [options] <keyname> <parent keyhandle>

↓

Encrypted key blob
(containing private key)

2. Loadkey <parent keyhandle> <encrypted key blob file>

↓

keyhandle to loaded key

3. Signfile [options] <keyhandle> <input file> <output file>

↓

signed file
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New Implementation

1. CreateKey [options] <keyname> <parent keyhandle> <CR3 value>

↓

Encrypted key blob
(containing private key)

+
CR3

↓

Sealfile [options] <keyhandle> <input file> <outputfile> <CR3 value>

↓

New encrypted blob(key blob + CR3)

2. LoadSignKey <parent keyhandle> <new encrypted blob> <input file>
<output file> <CR3 value>

↓

Unsealfile <keyhandle> <new encrypted blob> <outputfile> <CR3 value>

↓

<outputfile>( encrypted blob + stored CR3 ) == <CR3> passed in

↓ ↓

If No -- Abort If Yes -- Load

↓

Sign

↓

EvictKey
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A.5 Sample source code

Below is the listing ofvirt to phys(), which is a function to walk the page-tables in

software.

static unsigned long virt_to_phys(struct mm_struct *mm, unsigned long start_addr,
unsigned long end_addr, unsigned long protected_frames[])

{
pgd_t *pgd;
pmd_t *pmd;
pte_t *ptep, pte;

unsigned pgd_index, pte_index;
unsigned long ret = 0UL;
unsigned long addr = start_addr;

int i = 0;
int garbage;

/*iterate through pages*/
for(addr = start_addr; addr <= end_addr; addr += 4096)
{

pgd = pgd_offset(mm, addr);
pmd = pmd_offset(pgd, addr);
ptep = pte_offset_map(pmd, addr);

//access an address on each page
garbage = *((int*)addr);

if(pte_present(*ptep)) {
pte = *ptep;
ret = pte.pte_low & ((ulong) 0xFFFFF000);

protected_frames[i++] = ret;
}

}
/* print this to prevent the compiler from optimizing it out*/
printk("%c\n",garbage);
return protected_frames;

}
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