86,822 research outputs found

    Representation of finite graphs as difference graphs of S-units, I

    Get PDF
    In part I of the present paper the following problem was investigated. Let G be a finite simple graph, and S be a finite set of primes. We say that G is representable with S if it is possible to attach rational numbers to the vertices of G such that the vertices v_1,v_2 are connected by an edge if and only if the difference of the attached values is an S-unit. In part I we gave several results concerning the representability of graphs in the above sense.In the present paper we extend the results from paper I to the algebraic number field case and make some of them effective. Besides we prove some new theorems: we prove that G is infinitely representable with S if and only if it has a degenerate representation with S, and we also deal with the representability with S of the union of two graphs of which at least one is finitely representable with S.p, li { white-space: pre-wrap; }</style

    On conjectures and problems of Ruzsa concerning difference graphs of S-units

    Full text link
    Given a finite nonempty set of primes S, we build a graph G\mathcal{G} with vertex set Q\mathbb{Q} by connecting x and y if the prime divisors of both the numerator and denominator of x-y are from S. In this paper we resolve two conjectures posed by Ruzsa concerning the possible sizes of induced nondegenerate cycles of G\mathcal{G}, and also a problem of Ruzsa concerning the existence of subgraphs of G\mathcal{G} which are not induced subgraphs.Comment: 15 page

    Finite Dimension: A Mathematical Tool to Analise Glycans

    Get PDF
    There is a need to develop widely applicable tools to understand glycan organization, diversity and structure. We present a graph-theoretical study of a large sample of glycans in terms of finite dimension, a new metric which is an adaptation to finite sets of the classical Hausdorff "fractal" dimension. Every glycan in the sample is encoded, via finite dimension, as a point of Glycan Space, a new notion introduced in this paper. Two major outcomes were found: (a) the existence of universal bounds that restrict the universe of possible glycans and show, for instance, that the graphs of glycans are a very special type of chemical graph, and (b) how Glycan Space is related to biological domains associated to the analysed glycans. In addition, we discuss briefly how this encoding may help to improve search in glycan databases.Fil: Alonso, Juan Manuel. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Arroyuelo, Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Garay, Pablo Germán. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Martín, Osvaldo Antonio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; ArgentinaFil: Vila, Jorge Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Luis. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi". Universidad Nacional de San Luis. Facultad de Ciencias Físico, Matemáticas y Naturales. Instituto de Matemática Aplicada de San Luis "Prof. Ezio Marchi"; Argentin

    The Noncommutative Geometry of k-graph C*-Algebras

    Get PDF
    This paper is comprised of two related parts. First we discuss which k-graph algebras have faithful gauge invariant traces, where the gauge action of \T^k is the canonical one. We give a sufficient condition for the existence of such a trace, identify the C*-algebras of k-graphs satisfying this condition up to Morita equivalence, and compute their K-theory. For k-graphs with faithful gauge invariant trace, we construct a smooth (k,∞)(k,\infty)-summable semifinite spectral triple. We use the semifinite local index theorem to compute the pairing with K-theory. This numerical pairing can be obtained by applying the trace to a KK-pairing with values in the K-theory of the fixed point algebra of the \T^k action. As with graph algebras, the index pairing is an invariant for a finer structure than the isomorphism class of the algebra.Comment: 38 pages, some pictures drawn in picTeX Some minor technical revisions. Material has been reorganised with detailed discussion of k-graphs admitting graph traces shortened and moved to an appendix. This version to appear in K-theor

    Realizations of AF-algebras as graph algebras, Exel-Laca algebras, and ultragraph algebras

    Get PDF
    We give various necessary and sufficient conditions for an AF-algebra to be isomorphic to a graph C*-algebra, an Exel-Laca algebra, and an ultragraph C*-algebra. We also explore consequences of these results. In particular, we show that all stable AF-algebras are both graph C*-algebras and Exel-Laca algebras, and that all simple AF-algebras are either graph C*-algebras or Exel-Laca algebras. In addition, we obtain a characterization of AF-algebras that are isomorphic to the C*-algebra of a row-finite graph with no sinks.Comment: 34 pages, Version 2 comments: Some minor typos corrected; Version 3 comments: Some typos corrected. This is the version to appea

    The QCD deconfinement transition for heavy quarks and all baryon chemical potentials

    Full text link
    Using combined strong coupling and hopping parameter expansions, we derive an effective three-dimensional theory from thermal lattice QCD with heavy Wilson quarks. The theory depends on traced Polyakov loops only and correctly reflects the centre symmetry of the pure gauge sector as well as its breaking by finite mass quarks. It is valid up to certain orders in the lattice gauge coupling and hopping parameter, which can be systematically improved. To its current order it is controlled for lattices up to N_\tau\sim 6 at finite temperature. For nonzero quark chemical potentials, the effective theory has a fermionic sign problem which is mild enough to carry out simulations up to large chemical potentials. Moreover, by going to a flux representation of the partition function, the sign problem can be solved. As an application, we determine the deconfinement transition and its critical end point as a function of quark mass and all chemical potentials.Comment: 24 pages, 17 figure
    • …
    corecore