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Abstract

We give various necessary and sufficient conditions for an AF-algebra to be isomorphic to a graph
C*-algebra, an Exel-Laca algebra, and an ultragraph C*-algebra. We also explore consequences of these
results. In particular, we show that all stable AF-algebras are both graph C*-algebras and Exel-Laca alge-
bras, and that all simple AF-algebras are either graph C*-algebras or Exel-Laca algebras. In addition, we
obtain a characterization of AF-algebras that are isomorphic to the C*-algebra of a row-finite graph with
no sinks.
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1. Introduction

In 1980 Cuntz and Krieger introduced a class of C*-algebras constructed from finite matrices
with entries in {0, 1} [4]. These C*-algebras, now called Cuntz—Krieger algebras, are intimately
related to the dynamics of topological Markov chains, and appear frequently in many diverse
areas of C*-algebra theory. Cuntz—Krieger algebras have been generalized in a number of ways,
and two very natural generalizations are the graph C*-algebras and the Exel-Laca algebras.

For graph C*-algebras one views a {0, 1}-matrix as an edge adjacency matrix of a graph, and
considers the Cuntz—Krieger algebras as C*-algebras of certain finite directed graphs. For a (not
necessarily finite) directed graph E, one then defines the graph C*-algebra C*(E) as the C*-
algebra generated by projections p, associated to the vertices v of E and partial isometries s,
associated to the edges e of E that satisfy relations determined by the graph. Graph C*-algebras
were first studied using groupoid methods [17,18]. Due to technical constraints, the original
theory was restricted to graphs that are row-finite and have no sinks; that is, the set of edges
emitted by each vertex is finite and nonempty. In fact much of the early theory restricted to this
case [2,17,18], and it was not until later [1,8,12] that the theory was extended to infinite graphs
that are not row-finite. Interestingly, the non-row-finite setting is significantly more complicated
than the row-finite case, with both new isomorphism classes of C*-algebras and new kinds of
C*-algebraic phenomena exhibited.

Another approach to generalizing the Cuntz—Krieger algebras was taken by Exel and Laca,
who defined what are now called the Exel-Laca algebras [10]. In this definition one allows a
possibly infinite matrix with entries in {0, 1} and considers the C*-algebra generated by a set of
partial isometries indexed by the rows of the matrix and satisfying certain relations determined by
the matrix. The construction of the Exel-Laca algebras contains the Cuntz—Krieger construction
as a special case. Furthermore, for row-finite matrices (i.e., matrices in which each row contains a
finite number of nonzero entries) with nonzero rows, the construction produces exactly the class
of C*-algebras of row-finite graphs with no sinks.

Despite the fact that the classes of graph C*-algebras and Exel-Laca algebras agree in the
row-finite case, they are quite different in the non-row-finite setting. In particular, there are C*-
algebras of non-row-finite graphs that are not isomorphic to any Exel-Laca algebra, and there
are Exel-Laca algebras of non-row-finite matrices that are not isomorphic to the C*-algebra of
any graph [23]. In order to bring graph C*-algebras and Exel-Laca algebras together under one
theory, Tomforde introduced the notion of an ultragraph and described how to associate a C*-
algebra to such an object [22,23]. These ultragraph C*-algebras contain all graph C*-algebras
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Fig. 1. The relationship among graph C*-algebras, Exel-Laca algebras, and ultragraph C*-algebras.

and all Exel-Laca algebras, as well as examples of C*-algebras that are in neither of these two
classes. The relationship among these classes is summarized in Fig. 1.

Given the relationship among these classes of C*-algebras, it is natural to ask the following
question.

Question. “How different are the C*-algebras in the three classes of graph C*-algebras, Exel—
Laca algebras, and ultragraph C*-algebras?”

There are various ways to approach this question, and one such approach was taken in [16],
where it was shown that the classes of graph C*-algebras, Exel-Laca algebras, and ultragraph
C*-algebras agree up to Morita equivalence. More specifically, given a C*-algebra A in any of
these three classes, one can always find a row-finite graph E with no sinks such that C*(E) is
Morita equivalent to A.

Thus the three classes cannot be distinguished by Morita equivalence classes of C*-algebras.
The natural next question is to what extent they can be distinguished by isomorphism classes of
C*-algebras. A starting point for these investigations is to ask about AF-algebras.

While no Cuntz—Krieger algebra is an AF-algebra, the classes of graph C*-algebras and Exel—
Laca algebras each include many AF-algebras. In fact, one of the early results in the theory of
graph C*-algebras shows that if A is any AF-algebra, then there is a row-finite graph E with
no sinks such that C*(E) is Morita equivalent to A [7]. From this fact and the result in [16]
mentioned above, our three classes (graph C*-algebras, Exel-Laca algebras, and ultragraph C*-
algebras) each contain all AF-algebras up to Morita equivalence.

The purpose of this paper is to examine the three classes of graph C*-algebras, Exel-Laca
algebras, and ultragraph C*-algebras and determine which AF-algebras are contained, up to iso-
morphism, in each class. This turns out to be a difficult task, and we are unable to give a complete
solution to the problem. Nonetheless, we are able to give a number of sufficient conditions and
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a number of necessary conditions for a given AF-algebra to belong to each of these three classes
(see Sections 4.2 and 4.3). As special cases of our sufficient conditions, we obtain the following.

e If A is a stable AF-algebra, then A is isomorphic to the C*-algebra of a row-finite graph with
no sinks.

e If A is a simple AF-algebra, then A is isomorphic to either an Exel-Laca algebra or a graph
C*-algebra. In particular, if A is finite dimensional, then A is isomorphic to a graph C*-
algebra; and if A infinite dimensional, then A is isomorphic to an Exel-Laca algebra.

e If A is an AF-algebra with no nonzero finite-dimensional quotients, then A is isomorphic to
an Exel-Laca algebra.

From our necessary conditions, we obtain the following.

e If an ultragraph C*-algebra is a commutative AF-algebra then it is isomorphic to co(X) for
an at most countable discrete set X.

e No finite-dimensional C*-algebra is isomorphic to an Exel-Laca algebra.

e No infinite-dimensional UHF algebra is isomorphic to a graph C*-algebra.

Moreover, we are able to give a characterization of AF-algebras that are isomorphic to C*-
algebras of row-finite graphs with no sinks in Theorem 4.7.

Theorem. Let A be an AF-algebra. Then the following are equivalent:

(1) A has no unital quotients.
(2) A is isomorphic to the C*-algebra of a row-finite graph with no sinks.

Our results allow us to make a fairly detailed analysis of the AF-algebras in each of our three
classes, and in Fig. 2 at the end of this paper we draw a Venn diagram relating various classes
of AF-algebras among the graph C*-algebras, Exel-Laca algebras, and ultragraph C*-algebras.
Our results are powerful enough that we are able to give examples in each region of the Venn
diagram, and also state definitively whether or not there are unital and nonunital examples in
each region.

Finally, we remark that a particularly useful aspect of our sufficiency results is their con-
structive nature. When one first approaches the problem of identifying which AF-algebra are in
our three classes, one may be tempted to use the K-theory classification of AF-algebras. There
are, however, two problems with this approach: (1) Since any AF-algebra is Morita equivalent
to the C*-algebra of a row-finite graph with no sinks, we know that all ordered K-groups are
attained by the AF-algebras in each of our three classes. Thus we need to identify which scaled
ordered Ko-groups are attained by the AF-algebras in each class. Unfortunately, however, lit-
tle is currently known about the scale for the Ko-groups of C*-algebras in these three classes.
(2) More importantly, even if we could decide exactly which scaled ordered Ko-groups are at-
tained by, for example, graph AF-algebras, we would obtain at best an abstract characterization
of which AF-algebras are graph C*-algebras. Unless our understanding of the scaled ordered
Ko-groups achieved by AF graph C*-algebras extended to an algorithm for producing a graph
whose C*-algebra achieved a given scaled ordered Ko-group, we would be unable to take a given
AF-algebra A and view it as a graph C*-algebra. Most notably, we could not expect to “see” the
canonical generators of C*(E) in A.
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With an awareness of the limitations of an abstract characterization, we instead present con-
structive methods for realizing AF-algebras as C*-algebras in our three classes. Given a certain
type of AF-algebra A we show how to build an ultragraph G from a certain type of Bratteli
diagram for A so that C*(G) is isomorphic to A (see Section 4.1). This ultragraph C*-algebra
is always an Exel-Laca algebra, and in special situations (see Section 4.2) it is also a graph
C*-algebra. Furthermore, one can extract from G a {0, 1}-matrix for the Exel-Laca algebra or a
directed graph for the graph C*-algebra as appropriate.

This paper is organized as follows. In Section 2 we establish definitions and notation for graph
C*-algebras, Exel-Laca algebras, ultragraph C*-algebras, and AF-algebras. In Section 3 we es-
tablish some technical lemmas regarding Bratteli diagrams and inclusions of finite-dimensional
C*-algebras. In Section 4 we state the main results of this paper. Specifically, in Section 4.1 we
describe how to take a Bratteli diagram for an AF-algebra A with no nonzero finite-dimensional
quotients and build an ultragraph G. In Section 4.2 we prove that the associated ultragraph
C*-algebra C*(G) is isomorphic to A. We also show that C*(G) is always isomorphic to an
Exel-Laca algebra, and describe conditions which imply C*(G) is also a graph C*-algebra.
These results give us a number of sufficient conditions for AF-algebras to be contained in our
three classes of graph C*-algebras, Exel-Laca algebras, and ultragraph C*-algebras. We also
present examples showing that none of our sufficient conditions are necessary. In Section 4.3
we give several necessary conditions for AF-algebras to be in each of our three classes. These
conditions allow us to identify a number of obstructions to realizations of various AF-algebras
in each class. We conclude in Section 5 by summarizing our containments. First, we characterize
precisely which simple AF-algebras fall into each of our classes. Second, we summarize many of
the relationships we have derived, including containments for the finite-dimensional and stable
AF-algebras, and draw a Venn diagram to represent these containments. We are able to use our
results from Section 4 to exhibit examples in each region of the Venn diagram, thereby showing
these regions are nonempty. We are also able to describe precisely when unital and nonunital
examples occur in these regions.

2. Preliminaries

In the following four subsections we establish definitions and notation for graph C*-algebras,
Exel-Laca algebras, ultragraph C*-algebras, and AF-algebras. Since the literature for each of
these classes of C*-algebras is large and well developed, we present only the definitions and
notation required in this paper. However, for each class we provide introductory references where
more detailed information may be found.

2.1. Graph C*-algebras

Introductory references include [2,20,25].
Definition 2.1. A graph E = (E 0 EL r s) consists of a countable set E 0 of vertices, a countable
set E!' of edges, and maps r: E! — E%and s: E! — E° identifying the range and source of each
edge.

A pathin a graph E = (E% E'r,s)isa sequence of edges o := ey ...e, with s(ej+1) =r(e;)

for 1 <i <n— 1. We say that o has length n. We regard vertices as paths of length 0 and edges
as paths of length 1, and we then extend our notation for the vertex set and the edge set by writing
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E" for the set of paths of length n for all n > 0. We write E* for the set | |72, E" of paths of
finite length, and extend the maps r and s to E* by setting r(v) = s(v) = v for v € EY and
r(ay...a,) =r(a,) and s(oy...a,) =s(aq).

If « and B are elements of E* such that r(«) = s(8), then g is the path of length || + |B|
obtained by concatenating the two. Given «, 8 € E*, and a subset X of E*, we let

aXB:={y e E*: y =ay’p for some y’ € X}.
So when v and w are vertices, we have

vX:{yeX: s(y):v},
Xw={yeX: r(y)=w}, and
va:{yeX: s(y):vandr(y):w}.

In particular, vE'w denotes the set of edges from v to w and |vE'w| denotes the number of
edges from v to w.

We say a vertex v is a sink if vE' = ¢ and an infinite emitter if vE' is infinite. A graph is
called row-finite if it has no infinite emitters.

Definition 2.2 (Graph C*-algebras). If E = (E°, E', r, s) is a graph, then the graph C*-algebra
C*(E) is the universal C*-algebra generated by mutually orthogonal projections {p,: v € E°}
and partial isometries {s.: ¢ € E'} with mutually orthogonal ranges satisfying

(1) s)se = pr(e) foralle € EL:
2) py= ZeEvEl sesy forallv e EO such that 0 < |vE1| < 00;
(3) Ses¥ < ps(e) foralle € EL.

We write v > w to mean that there is a path @ € E™* such that s(o) = v and r (@) = w. A cycle
in a graph E is a path @ € E* of nonzero length with r(«) = s(«). [17, Theorem 2.4] says that
C*(E) is an AF-algebra if and only if E has no cycles.

2.2. Exel-Laca algebras

Introductory references include [10-12,21].

Definition 2.3 (Exel-Laca algebras). Let I be a finite or countably infinite set, and let A =
{A(, j)}i,jer be a {0, 1}-matrix over I with no identically zero rows. The Exel-Laca algebra
Qg4 is the universal C*-algebra generated by partial isometries {s;: i € I} with commuting initial
projections and mutually orthogonal range projections satisfying s*s;s js;‘ = A(, j)s js;.k and

[[stse [T(1=sksy) =D AKX.Y. j)s;ss 2.1)
xeX yey jel

whenever X and Y are finite subsets of / such that X # ¢ and the function

jelm AXY j)=[]ACH]](-A0. D)

xeX yey

is finitely supported. (We interpret the unit in (2.1) as the unit in the multiplier algebra of O4.)
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We will see in Remark 2.10 that for a {0, 1}-matrix A with no identically zero rows, the
canonical ultragraph G4 of A satisfies C*(G4) = Oy4. With this notation, [23, Theorem 4.1]
implies that the Exel-Laca algebra O 4 is an AF-algebra if and only if G4 has no cycle. The latter
condition can be restated as: there does not exist a finite set {i1, ..., i,} C I with A(ig, ix+1) =1
forall 1 <k<n—1and A(i,,i1) =1.

It is well known that the class of graph C*-algebras of row-finite graphs with no sinks and the
class of Exel-Laca algebras of row-finite matrices coincide. However, we have been unable to
find a reference, so we give a proof here.

Lemma 2.4. The class of graph C*-algebras of row-finite graphs with no sinks and the class of
Exel-Laca algebras of row-finite matrices coincide. In particular,

(1) IfE = (E°, E', 1, 5) is a row-finite graph with no sinks, and if we define a {0, 1}-matrix Ag
over E' by

1 ifr(e)=s(f),
A =
el f) { 0 otherwise,
then Ag is a row-finite matrix with no identically zero rows and C*(E) = Oy,,.
(2) If A is a row-finite {0, 1}-matrix over I with no identically zero rows, and if we define a graph
E 4 by setting E% := I and drawing an edge from v € I to w € I if and only if A(v, w) =1,
then E 4 is a row-finite graph with no sinks and O 4 = C*(E4).

Proof. For (1) let E = (E°, E', r, s) be a row-finite graph with no sinks, and define the matrix
Ap as above. Since E is row-finite, A is also row-finite. Let {S,: e € E'} be a generating Exel-
Laca A g-family in Oy4,,. For v € E° we define P, := > s(e)=v SeS; in Oa . (Note that this sum
is always finite since A is row-finite.) We now show that {S,, P,: e € E!, v € E®} is a Cuntz—
Krieger E-family in O4 . The S,’s have mutually orthogonal range projections by the Exel-Laca
relations, and hence the P,’s are also mutually orthogonal projections. In addition, conditions (2)
and (3) in the definition of graph C*-algebras obviously hold from our definition of P,. It remains
to show condition (1) holds. If e € E!, let X := {e} and Y := ). Then for j € E', we have
Ag(X,Y,j):=1if and only if s(j) = r(e). Since E is row-finite, the function j — Ag(X,Y, j)
is finitely supported, and (2.1) gives S;Se =} ;cp1 A(X, Y, NSjST = 2 s()=re) Si 87 = Pr(o)s
so condition (1) holds. Thus {S,, Py: e € El, ve EO} is a Cuntz—Krieger E-family, and by the
universal property of C*(E) we obtain a x-homomorphism ¢ : C*(E) — Oy4, with ¢(s.) = S,
and ¢ (py) = P, where {s,, p,} is a generating Cuntz—Krieger E-family for C*(E). By checking
on generators, one can see that ¢ is equivariant with respect to the gauge actions on C*(E)
and O4,, and thus the Gauge-Invariant Uniqueness Theorem [2, Theorem 2.1] implies that ¢ is
injective. Since the image of ¢ contains the generators {S,: e € E'} of Oy > @ 1s also surjective.
Thus C*(E) = Oy,

For (2) let A be a row-finite {0, 1}-matrix with no identically zero rows. Let G4 be the canoni-
cal ultragraph of A (see Remark 2.10). Then the source map of G4 is bijective and C*(G4) = O4.
Since A is a row-finite matrix, the range of each edge in G4 is a finite set. Thus C*(Gy4) is iso-
morphic to the C*-algebra of the graph formed by replacing each edge in G4 with a set of edges
from s(e) to w for all w € r(e) [16, Remark 2.5]. But this is precisely the graph E 4 described in
the statement above. O
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2.3. Ultragraph C*-algebras

Introductory references include [15,16,22,23]. For a set X, let P(X) denote the collection of
all subsets of X.

Definition 2.5. (See [22, Definition 2.1].) An ultragraph G = (G°, G, r, s) consists of a count-
able set of vertices G°, a countable set of ultraedges G 1 and functions s:G! — G° and

r:Gl — PG\ {#).

Note that in the literature, ultraedges are typically just referred to as edges. However, since we
will frequently be passing back and forth between graphs and ultragraphs in this paper, we feel
that using the term ultraedge will serve as a helpful reminder that edges in ultragraphs behave
differently than in graphs.

Definition 2.6. For a set X, a subset C of P(X) is called an algebra if

i) vecC,
(ii) ANBeCand AUBeCforall A, Be(C,and
(iii) A\ BeCforall A,B eC.

Definition 2.7. For an ultragraph G = (GO, Gl r,s), we let GY denote the smallest algebra in
P(G°) containing the singleton sets and the sets {r(e): e € G'}.

Definition 2.8. A representation of an algebra C is a collection of projections {ps}aec in a
C*-algebra satistying py =0, papp = pans, and paup = pa + pp — panp forall A, B €C.

Observe that a representation of an algebra automatically satisfies pa\p = pa — paps.

Definition 2.9. For an ultragraph G = (GO, Gl,r ), the ultragraph C*-algebra C*(G) is the
universal C*-algebra generated by a representation {pa}cgo of G and a collection of partial
isometries {se},cg with mutually orthogonal ranges that satisfy

(1) 5's¢ = pre) forall e € G,
(2) Ses) < pse) forall e € Ggl,
3) pv= Zeevgl Sesy whenever 0 < vG!| < oo,

where we write p, in place of p(y) for v € GY.

As with graphs, we call a vertex v € G° a sink if vG! = @ and an infinite emitter if vG' is
infinite. A path in an ultragraph G is a sequence of ultraedges @ = eje3 ... e, with s(ej+1) € r(e;)
for 1 <i<n—1.Acycleisapatha =e...e, with s(e) € r(e,). [23, Theorem 4.1] implies
that C*(G) is an AF-algebra if and only if G has no cycles.

Remark 2.10. A graph may be regarded as an ultragraph in which the range of each ultraedge
is a singleton set. The constructions of the two C*-algebras then coincide: the graph C*-algebra
of a graph is the same as the ultragraph C*-algebra of that graph when regarded as an ultragraph
(see [22, §3] for more details).
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For a {0, 1}-matrix A over I with nonzero rows, the canonical associated ultragraph G4 =
(GY,G,rs)isdefined by G4 =G =1, r()={j el: AGi,j)=1}and s(i) =i fori € G
(see [22, Definition 2.5]). It follows from [22, Theorem 4.5] that C*(G4) = O4. The ultragraph
G4 has the property that s is bijective. Conversely an ultragraph G = (G°, G', r, s) with bijective
s is isomorphic to G4 where A is the edge matrix of G. Thus one can say that an Exel-Laca
algebra is a C*-algebra of a ultragraph with bijective source map.

From these observations, one can see that the class of ultragraph C*-algebras contains both
the class of graph C*-algebras and the class of Exel-Laca algebras.

2.4. AF-algebras

Introductory references include [3,9,13] as well as [5, Chapter 6] and [19, §6.1, §6.2, and
§7.2].

Definition 2.11. An AF-algebra is a C*-algebra that is the direct limit of a sequence of finite-
dimensional C*-algebras. Equivalently, a C*-algebra A is an AF-algebra if and only if A =

~ 1 A, for a sequence of finite-dimensiona -subalgebras A1 C A, C--- C A.
ZolAf q f fi d 1 C*-subalgebras A A A

To discuss AF-algebras, we need first to briefly discuss inclusions of finite-dimensional C*-
algebras. Fix finite-dimensional C*-algebras A = @, M,,(C) and B = @?:1 My, (C). Let
M = (m; ;)i j be an m x n nonnegative integer matrix with no zero rows such that

m
> “mijaj<bj forallj. (2.2)
i=1

There exists an inclusion ¢y : A < B with the following property. For an element x =
(xi);"zl € A, the image ¢y (x) of x has the form (yj)’}:1 € B where for each j < n, the matrix
y; is block-diagonal with m; ; copies of each x; along the diagonal and 0’s elsewhere. (Eq. (2.2)
ensures that this is possible.) The map ¢y, is not uniquely determined by this property, but its
unitary equivalence class is.

Every inclusion ¢ of A into B is unitarily equivalent to ¢, for some matrix M. Specifically,
M = (m; ;);; is the matrix such that m; ; is equal to the rank of lquS(p,-) where 13/. is the unit
for the jth summand of B, and where p; is any rank-1 projection in the ith summand of A. We
refer to M as the multiplicity matrix of the inclusion ¢.

Definition 2.12. A Bratteli diagram (E,d) consists of a directed graph E = (E°, EL 1, 5) to-
gether with a collection d = {d,: v € E%} of positive integers satisfying the following conditions.

(1) E has no sinks;

2) E 0is partitioned as a disjoint union E 0— L]g’;l V,, where each V,, is a finite set;
(3) foreach e € E! there exists n € N such that s(e) € V,, and r(¢) € V,,41; and

(4) for each vertex v € E° we have d, > Y ecplydse forallve E°.

If (E,d) is a Bratteli diagram, then E is a row-finite graph with no sinks. We regard d as
a labeling of the vertices by positive integers, so to draw a Bratteli diagram we sometimes just
draw the directed graph, replacing each vertex v by its label d,,.
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Remark 2.13. Those experienced with Bratteli diagrams will notice that our definition of a Brat-
teli diagram is slightly nonstandard. Specifically, a Bratteli diagram is traditionally specified as
undirected graph in which each edge connects vertices in consecutive levels. Of course, an ori-
entation of the edges is then implicitly chosen by the decomposition E® =| | V,,, so it makes no
difference if we instead draw a directed edge pointing from the vertex in level n to the vertex in
level n + 1.

Example 2.14. The following is an example of a Bratteli diagram.

,Ab,/ﬂ/—\b/—\b/_\

16 32 64

e
e

Given a Bratteli diagram (E, d), we construct an AF-algebra A as follows. For each v € EY,
let A, be an isomorphic copy of My, (C), and for each n € N, let A, := EBUE‘,H A,. For each
nlet ¢, : A, — A1 be the homomorphism whose multiplicity matrix is (JvE WveV, weV,y -
We then define A to be the direct limit lim(A,, ¢,). Since the ¢, are determined up to unitary
equivalence by (E, d), the isomorphism class of A is also uniquely determined by (E, d).

Example 2.15. In Example 2.14, we see that

x 0 0 O
0 00O

A =C p=|g o o o]®*®0
0 0 0O
x 0 y 0

Ay =M4C)pCopC Pr(x,y,2) = 0 &) 0 2 @z
x 0 y 0

A3 =Mg(C)d Mr,(C) C P3(x,y,2) = 0 x (&) 0 Dz

Ay =Mn(Cyo M, 1(C)C d’”(x’y’Z):()(c) O>@<g g)@z

The following telescoping operation on a Bratteli diagram preserves the associated AF-
algebra. Given (E,d), we choose an increasing subsequence {n,}, _; of N. The set of the
vertices of the new Bratteli diagram is |, Vy,,, the set of the edges of the new Bratteli dia-
gramis (J5,_; (Vy,, E*Vy,,,, ), and the new function d is the restriction of the old d to Uy, Vi, -
For example, if we have the portion of a Bratteli diagram shown below on the left and remove
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the middle column of vertices, we obtain the portion of the Bratteli diagram shown below on the

right.
1 l— 4
\3< — \
11— 4\%10 l————10

We say that two Bratteli diagrams (E, d) and (E’,d’) are equivalent if there is a finite se-
quence (Ey,dy),...,(E,,dy) such that (E;,dy) = (E,d), (E,,dy,) = (E’,d") and for each
1<i<n-—1,oneof (E;,d;) and (E;11,d;+1) is a telescope of the other. Bratteli proved in [3]
that two Bratteli diagrams give rise to isomorphic AF-algebras if and only if the diagrams are
equivalent (see [3, §1.8 and Theorem 2.7] for details).

The class of AF-algebras is closed under forming ideals and quotients. On the other hand,
the three classes of graph C*-algebras, Exel-Laca algebras, and ultragraph C*-algebras are not
closed under forming ideals nor quotients. However we can show the following.

Lemma 2.16. The class of graph AF-algebras is closed under forming ideals and quotients.

Proof. If E is a graph and the graph C*-algebra C*(E) is an AF-algebra, then E has no cycles
by [17, Theorem 2.4]. Thus E vacuously satisfies Condition (K), and it follows that every ideal of
C*(E) is gauge-invariant by [1, Corollary 3.8]. Thus every ideal of C*(E) as well as its quotient
is a graph C*-algebra by [6, Lemma 1.6] and [1, Theorem 3.6]. O

Remark 2.17. A quotient of an Exel-Laca AF-algebra need not be an Exel-Laca algebra. For
example, if T is the minimal unitization of the compact operators K on a separable infinite-
dimensional Hilbert space, then M> (K ™) is an Exel-Laca AF-algebra that has a quotient, M5 (C),
that is not an Exel-Laca algebra — for details see Example 4.11 and Corollary 4.19. Whether
ideals of Exel-Laca AF-algebras are necessarily Exel-Laca algebras is an open question. We also
do not know whether ideals and quotients of ultragraph AF-algebras are necessarily ultragraph
C*-algebras. As we shall see later, this uncertainty causes problems in the analyses of Exel-Laca
AF-algebras and ultragraph AF-algebras.

Lemma 2.18. The three classes of graph AF-algebras, Exel-Laca AF-algebras, and ultragraph
AF-algebras are closed under taking direct sums.

Proof. Each of the four classes of AF-algebras, graph C*-algebras, Exel-Laca algebras, and
ultragraph C*-algebras is closed under forming direct sums. The result follows. O

3. Some technical lemmas
In this section we establish some technical results for Bratteli diagrams and inclusions of

finite-dimensional C*-algebras. We will use these technical results to prove many of our realiza-
tion results in Section 4.
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Lemma 3.1. Suppose A is an AF-algebra that has no quotients isomorphic to C, and suppose
that (E, d) is a Bratteli diagram for A. Let H = {v € E°: d, = 1}, and let F be the subgraph of
E such that F° := E° \ H and Fl:={ecE" s(e) ¢ HYwithr,s: Fl - FO inherited from E.
Let d: FO© — N be the restriction of d : E° — N. Then (F, d) is a Bratteli diagram for A.

Proof. First note that if e € E! with r(e) € H, then dr@y =1 and hence dg(,) =1 and s(e) € H.
Hence F is in fact a subgraph of E.

We claim that for any n € N and v € V,,, there exists m € N such that whenever w € V, 1,
and v > w, we have d,, > 2. We fix n € N and v € V};, suppose that there is no such m, and seek
a contradiction. Let vg := v. Inductively choose ¢; € E ! such that s(e;) = v;—; and such that
for each m € N there exists w € V,, 4+, with r(e;) > w and d,, = 1, setting v; := r(e;). Then
the infinite path eje; ... satisfies dy(,) = 1 for all n. Hence {x € E%: x # s(ey) for any n} is a
saturated hereditary subset and the quotient of A by the corresponding ideal is an AF-algebra
with Bratteli diagram

l—1—1—=1—>1—--

Hence this quotient is isomorphic to C, which contradicts our hypothesis on A. This establishes
the claim.

Let B be the AF-algebra associated to the Bratteli diagram F, and let ¢, : B, — A, denote
obvious inclusion of the nth approximating subalgebra of B determined by F into the nth ap-
proximating subalgebra of A determined by E. Let qb,f m - An — Ay, be the connecting maps in
the directed system associated to E, and let ¢,‘E oo - An — A be the inclusion of A,, into the direct
limit algebra A. Likewise, let qb,ﬁ m - Bn — By, be the connecting maps in the directed system
associated to F', and let d),f) oo . By — B be the inclusion of B, into the direct limit algebra B.

We see that £, . o1, =tnq106), | forall n,and thus by the universal property of the direct
limit B = h_r)n(Bn, ¢,f), there is a x-homomorphism t(, : B — A with ¢£Oo Ol =l O ¢,foo.
Since each ¢, is injective, it follows that (s, is injective. We shall also show that ¢, is also
surjective and hence an isomorphism. It suffices to show that for any v € V,, and for any a in
the direct summand A, of A, corresponding to v, we have ¢£ (@) € iImt. By the previous
paragraph we may choose m so that whenever w € V;, 4, and v > w, then d,, > 2. It follows that

¢r115,n+m (a) € @ de ((C) C tutm (Bntm),

WEVinim
dy>2

so that £ . (a) = 1,4 (b) for some b € By, 1. Thus

n,n+m
E E E E F :
(bn,oo(a) = ¢n+m,oo o (,bn,n.g.m (a) = ¢n+m,oo Olpgm(b) =tog 0 ¢n+m,oo(b) € Ml
and ( is surjective. Hence (, is an isomorphism as required. O

Lemma 3.2. Suppose A is an AF-algebra with no nonzero finite-dimensional quotients. Then any
Bratteli diagram for A can be telescoped to obtain a second Bratteli diagram (E, d) for A such
that for all n € N and for each v € V41 either d, > ZeeElv ds(e) or there exists w € V,, with
lwEv| > 2.
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Proof. Let (F,d) be a Bratteli diagram for A with F 0 partitioned into levels as F 0— Uflozl W,.
It suffices to show that for every m there exists n > m such that for every v € W, satisfying
dy = ZaeWmF*v dg (), there exists w € W, with |wF*v| > 2. We suppose not, and seek a con-
tradiction. That is, we suppose that there exists m such that for every n > m the set

anz{er,,: dy = Z ds(a)and|wF*x|<lforallweWm}

aeW,, F*x

is nonempty. By telescoping (F, d) to | |, W, we may assume m = 1. We claim that if n < p,
x € Xp,and v e W, with v > x, then v € X,,. Indeed,

dy = Z ds(a)

aeW| F*x

- > (X o) G.1)

BeW, F*x NyeW, F*s(B)

< Y dp (3.2)

BeEW, F*x
<d;.

Thus we have equality throughout, and the equality of (3.1) and (3.2) implies dyp) =
Zyer F*s(B) dsy for each B € W,F*x. In particular, since v > x, we have that d, =
yew, F+y ds(y)- Moreover for each w € W1,

1> |wF*x| > lwF*v||[vF*x|,

so v > x implies that |w F*v| < 1, and v € X, as required.

We shall now construct an infinite path A = A1, ... in F such that s(A,) € X,, for all n. If
x € X, then since d, is nonzero and d,, = ZaeW'F*X dy(«), there exists w € Wy such that w > x.
Since W1 is finite, there exists wi € W such that for infinitely many 7 there exists x € X, with
w; > x. Since w; F1 is finite, there exists A; € wi F! such that for infinitely many n, we have
r(,1) = x for some x € X,,. We set wy :=r(X1) which is in X, by the claim above. Proceeding
in this way, we produce an infinite path A = A1, ... in F such that s(},) € X,, for all n.

For each w € Wy such that w > s(),) for some n, we define n,, := min{n: w > s(i,)}.
Let N := max{n,: w € W; and w > s(A,) for some n}. We claim that F'r(r,) = {A,} for all
n>N.Fixn>N,and e e Flr(x,). Since r(A,) = S(An+1) € Xn+1, we have s(e) € X,,. Hence
W) F*s(e) is nonempty, so we may fix 8 € Wi F*s(e). Now Be is the unique path in s(8) F*r (A,,)
by definition of X,,11. Let o be the unique path from s(8) to s()»n:(ﬂ)). Since nggy < N <n, we
have akns(ﬁ)km(ﬂ)ﬂ ... Ay in s(B)F*r(A,), and the uniqueness of this path then forces fe =
aknx(ﬁ))»nx(ﬂﬁl ...\, and in particular e = A,. Thus Flron) = {A,} as required.

Since F'r(i,) = {A}, we have Wi F*r(A,) = Wi F*A, = {BAn: B € Wi F*s(A,)}. Hence
that r(1,) € X, 41 and that s(%,,) € X,, imply that

doy= Y. dw= Y, dup=dsg,
A€W F*r () BeW, F*s(Ay)
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foralln > N. This implies d,,) = ds,) foralln > N. Moreover, {y € FO: y } s(Ap) for all n}
is a saturated hereditary subset, and the quotient of A by the ideal corresponding to this set is an
AF-algebra with a Bratteli diagram of the form

dsiaw) —ds(ay) —ds(an) ds(aw) ds(aw)

Hence this quotient is isomorphic to My, o) (C), which contradicts the hypothesis that A has no
finite-dimensional quotients. O

Lemma 3.3. Let A be an AF-algebra. Then A has no nonzero finite-dimensional quotients if and
only if there exists a Bratteli diagram (E, d) for A satisfying the following two properties:

(1) dy =2 forallv e E° and
(2) for all n € N and for each v € V41 either d, > ZeeElv ds(e) or there exists w € V,, with
lwEw| > 2.

Proof. If A has no nonzero finite-dimensional quotients, then by Lemma 3.1 there exists a Brat-
teli diagram for A satisfying (1). Lemma 3.2 shows that this Bratteli diagram may be telescoped
to obtain a Bratteli diagram for A satisfying (2). The vertices of the telescoped diagram are a
subset of those of the original diagram, and the values of d, are the same for those vertices
v common to both. In particular, telescoping preserves property (1), so the telescoped Bratteli
diagram will then satisfy both (1) and (2).

Conversely, suppose that there exists a Bratteli diagram (E, d) for A satisfying (1) and (2). If
I is a proper ideal of A, then [ corresponds to a saturated hereditary subset H, and the comple-
ment (E \ H,d) of H in (E, d) is a Bratteli diagram for A//. Fix a vertex v in this complement.
Since H is saturated hereditary, there exists an edge e; € E! with s(e;) = v and r(e;) in the com-
plement also. Inductively, we may produce an infinite path eje; . .. in the complement. It follows
from property (2) that dy ;) < d(e,, ) for all i, which implies that the functiond : (E \ H ¥ N
is unbounded. Hence A/ is infinite dimensional. O

Lemma 3.4. Suppose A is an AF-algebra with no unital quotients. Then any Bratteli diagram
for A can be telescoped to obtain a second Bratteli diagram (E, d) for A such that for all v € E°
we have dy > )", g1, ds(e)-

Proof. Let (F, d) be a Bratteli diagram for A with F' 0 partitioned into levels as F 0— |_|2°=1 W,.
It suffices to show that for every m there exists n > m such that for every v € W,, we have

dy > Y 4w, Frv ds@)- Suppose not, and seek a contradiction. That is, we suppose that there
exists m such that for every n > m the set

Y, = {x e Wy: dy = Z ds(a)}

aeW,, F*x
is nonempty. By telescoping (F,d) to | |2, W, we may assume m = 1. If we let

T := {w € FY: for infinitely many n there exists x € Y, with w > x},



T. Katsura et al. / Journal of Functional Analysis 257 (2009) 1589-1620 1603

then the complement of T is a saturated hereditary subset, and the quotient of A by the ideal
corresponding to this complement has a Bratteli diagram obtained by restricting to the vertices
in T. Along similar lines to Lemma 3.2, one can show thatif n < p, x € Y}, and v € W), with
v > x, then v € Y¥,,. Hence each v € T N W, is in ¥,,. This implies that each v € T has the property
that d, = ) ecFly ds(e)» and hence all the inclusions in the corresponding directed system are
unital. Thus the quotient of A considered above is unital. This contradicts the hypothesis that A
has no unital quotients. O

Lemma 3.5. Let A be an AF-algebra. Then A has no unital quotients if and only if A has a
Bratteli diagram (E, d) such that for all v € E° we have both d, >?2 and d,, > Y ecEly ds(e)-

Proof. If A has no unital quotients, then the existence of such a Bratteli diagram follows from
Lemmas 3.3 and 3.4. Conversely, suppose that A has such a Bratteli diagram (E, d), and fix a
nonzero quotient A/I of A. There is a subdiagram (F, d) of (E, d) which is a Bratteli diagram
for A/I.Inparticulardy, > Y, p1,ds(e) forallve F 0.1t follows that the inclusions in the direct
limit decomposition of A corresponding to (F, d) are all nonunital. Hence A/ is nonunital. O

Lemma 3.6. Let A be a C*-algebra which is generated by finite-dimensional subalgebras B
and C. Suppose that B = @, .y B* where each B' = My, (C) and that C = @,y C* where
each C* = M., (C). For each v € V suppose that q° is a minimal projection in BY such that
q’ € Cand (1g» — q")C = {0}. For each v, w, let m,, 4, denote the rank of g*1cw in C¥, and let

Ay = Cy + Z(bv - l)mv,w~

veV

Then A =D, cyy A" where each A” = M,,, (C). Moreover, the inclusion C* — A" has multi-
plicity 1 for w € W, and the inclusion B — A has multiplicity matrix (my )vev,wew. Finally,
the unit 14 of A is equalto (1p — ) v q") + lc.

Proof. The assumptions on the ¢” imply that (1p — > .y ¢") + 1c is the unit of A. To obtain
the desired decomposition of A, we construct a family of matrix units for A. We begin by fixing
convenient systems of matrix units for the BV and the C%.

Forv eV, let {/3;’,3: 0<r,s < by — 1} be a family of matrix units for BY such that ,36’,0 =gq".
Similarly, for w € W let {Vku,)l: 0 <k, < ¢y — 1} be a family of matrix units for C" such that for
each v € V there exists a subset k,,, C {0, 1, ..., ¢,y — 1} satisfying g"1cw = Zkexv,w Yiy- Note
that the subsets {«y w}vev 0of {0, 1, ..., ¢,y — 1} are mutually disjoint and satisfy |y, | = my -

We are now ready to define the desired matrix units for A; these matrix units will be indexed
by the set

Ly:=({0.1,....co = 1} x {O) U | |(koow x {1.2..... b, = 1})

veV
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for w € W. We have |I,| = ¢y + ZveV |ky,w|(by — 1) = ay,. Define elements {o
w e W’ (ka r)’ (I,S) E IU)} by

w .
(k,r),(,s)"

Vil ifr=s5=0,
. Vklflﬁ(l)),s ifr=0,l€kyyands >1,
o = .
(k,r),(4,5) ﬁ;’/oykwl ifk €ky y,r > 1ands =0,
ﬂf’,oyk'f’lﬂg’s ifkeky y,r=21,l€ky,yands > 1.

We first claim that for each w, w’ € W, each (k,r), (I, s) € I, and each (K', "), (I',s") € Iy,

ifw=w"and (,s) = k', r"),

otherwise.

Xy, (0'.s")

Ol%‘,){’r)’(l’s)a&,!r,)’(l/y) = {0 (33)

To verify (3.3), we consider four cases.

Case 1. s =r' =0. Since ykwl are matrix units and since the C¥ are orthogonal, we have

vy ifw= w' and [ =K/,

w . ,w
'}/ )/ r = { .
k1P D 0 otherwise.

This implies (3.3) in the case s =r" = 0.

’ / —_
Case2.s > 1and r' = 0. Then g .y, = By 5 sV = 0because B < Zb” Tgv —1p —

s=1 5,8

q" which is orthogonal to C by assumption. This shows ocz‘,’( M. s)océ‘;(/, s = 0.
Case 3. s =0 and ' > 1. This case follows from Case 2 by taking adjoints.

Cased4.s >1andr’ > 1. Then

w v .w . o —
VBB oV = { ViaPooviey ifv=viands=r,
R 0 otherwise.

Since v By o = v We have

ifw=w'andl =k,

wov o w ww Yir
VB oY =i, Z{ ol i
k,1P0,0Vk 1 k17K 0 otherwise.

These show (3.3) in Case 4, completing the proof of the claim.

For each w € W, let AY := span{azll’(’r)’(lys): (k,r),,s) e I,} C A. From (3.3), we see that
A" is isomorphic to M, (C) for each w € W, and that {A"},,cw are orthogonal to each other.
We next show that A =3 A™. To see this, it suffices to show that all the matrix units B
and y) for B and C belong to 3,y A”. If | € iy, then

Vku,jzﬂg,o = (Vk'fjllcw)qv = Vkl‘,?( Z Vﬁjl’) = Yes-

I/EKU,U}
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Similarly, we get ﬂg/oykwl =y if k € iy . We may deduce from these two equalities that

ozé‘,; M) = ﬂ;{oyk””lﬁas forall k € Ky o, allr >0, alll €k, 4 and all s > 0. Foreach v € V, we
have

Blo=4"= d"len=2 Y 7%

weW weW keky,w

It follows that

= BB = D D BB = Y Dl € DAY

weW keky weW keky,w weWw

forallveVandall 0<r,s <by, — 1. Wealso have y;*; = 0‘52,0),(1,0) forwe Wand 0<k,[ <
cwy— 1. Thusweget A=)" v A",

It is clear that the inclusion C¥ < A" has multiplicity 1 for w € W. To see that the inclusion
B < A has multiplicity matrix (my w)vev,wew, it suffices to see that foreachv € V and w € W,
the product of the minimal projection gV € BY and the unit 1 4» of A" has rank m, , in AW =
M, (C). Since g* € C, we have

q'lpw =q"lew = Z Vku,}k = Z O[E‘I)c,()),(k,())'

keky,w keky,w
This shows that the rank of g"1 4w € AV is |ky | =My w. O
4. Realizations of AF-algebras
4.1. A construction of an ultragraph from a certain type of Bratteli diagram

In this section we show how to construct ultragraphs from certain Bratteli diagrams and use
these ultragraphs to realize particular classes of AF-algebras as ultragraph C*-algebras, Exel-
Laca algebras, and graph C*-algebras.

Definition 4.1. Let A be an AF-algebra with no nonzero finite-dimensional quotients. By
Lemma 3.3 there exists a Bratteli diagram (E, d) for A satisfying the following two properties:

(1) dy >2forallv e EO: and
(2) for all n € N and for each v € V, 4 either d,, > ZeeElv dy(e) or there exists w € V, with
lwEw| > 2.

We define

Ayi=dy— Y (dyey—1).

ecEly

The symbol A has been chosen to connote “difference.” Note that from the property (1), A, =d,
if and only if v is a source. In addition, it follows from the properties of our Bratteli diagram that
A, >2forallve EY.
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We claim that for each v € EO? there exists an injection ky : Elv > {0,1,..., Ay — 1} such
that there exists e € E'v with k, (e) = 0 if and only if dy, = ZeeEl » ds(e)> and in this case e is not
the only element of s(e) E'v. To justify this claim, first observe that

Ay=dy— Y (diey—1)=dy— Y dyp+ Y 1= (dv - > dx(e)> +|EM).
ecEly ecEl ecEly ecEly
Hence if d,, > ZeEEIU ds(e) we may always choose an injection k, : Elv > {0,1,..., Ay, — 1}
so that its image does not contain 0. On the other hand if d, = )", 1, ds(), then by hypothe-
sis on the Bratteli diagram there exists w € E® with [wE'v| > 2 so we may choose a bijection
ky:Elv — {0,1,..., Ay, — 1} such that e € Elv with k,(e) = 0 satisfies s(e) = w. This estab-

lishes the claim.
We now define an ultragraph G = (GO, Gl rg, sg) by

G':= {vitve Eland 1 <i< A, — 1} and Ggl.= {ev: vi e GO}
with
sg(ey;) :=v; forallv; € GO, rg(ey;) ={vi-1} for2<i<A,—1
and
rg(ey,) = {wk: there exists a path A = A{A2 ... A, such that s(A) = v, r(A) = w,
krop(Ai)=0fori=1,2,...,n—1,and kyy(A,) =k > 1}.
To check that G is an ultragraph, we only need to see that rg(e,,) # 9.

Lemma 4.2. For all n and v € V,,, the set rg(ey,) is nonempty and satisfies

rg(ev) = {Wiy(e): W € Vig1, e € vE'w, ky(e) > 1} U U rg(ew,).

weV,i1, ecvElw, ky(e)=0

Proof. The latter equality follows from the definition of rg(ey,). For each v € V,, there ex-
ists w € V,,11 such that vE'w # (. By the assumption on k,,, there exists e € vE'w such that
ky(e) = 1. Thus wy, () € rg(ey,). This shows that rg(e,,) is nonempty. O

Remark 4.3. By definition, rg(ey,) C o, 11 V& for v € V;,. One can show that this property
together with the equality in Lemma 4.2 uniquely determines {rg(ey,)},cko-

Example 4.4 (An example of the ultragraph construction). Consider a Bratteli diagram (E, d)
satisfying conditions (1) and (2) of Lemma 3.3 and whose first three levels are as illustrated
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below. In the diagram, each vertex is labeled with its name, and above the label a appears the
integer d,.

VN
®
<
\Q
&

N

S,

/ 7
3 f/> w n 16
U f” \k/‘ z

The values of A for the vertices visible in the diagram are

Ag=2  Ay=5 A =2
Ar=2  A,=3 A,=3
Ay =3 A, =3

So the corresponding section of the resulting ultragraph G will have vertices
0
G™ ={s1, 01, u1,u2,v1, V2, V3, V4, Wi, W2, X1, Y1, Y2, 21522, - - -}

and each of these vertices a; will emit exactly one ultraedge e,,. For i # 1, we have rg(ey;) =
{ai—1}. To determine the ranges of the e;,, we must choose injections k, : Ela — {0,1,...,
A, —1}forae E 0 with the properties described above; in particular, this necessitates that O is
in the image of k, only when a = w or a =y, and also that k,, (") # 0 and k, (h) # 0.

One possible set of choices of injections k, is

’

, = ky(g) =
ky(f)=0, ky(f)=2, ko(f")=1, ky(hy=1, ky(h')=0, ky(h")=2,
k.(k)y=2, k.(k)=1.

‘We can calculate
rg(es;) = {vi}, rg(e) = {v3, v4, wa, ¥2, 21} Urg(ey,), rg(ey;) = {wi},
V(ev|) ={x1,y1,22}, and r(ew]) ={z1, y2} Urg(eyl)-

We may now draw the fragment of the ultragraph G corresponding to the given fragment of the
Bratteli diagram (E, d).
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V4 x1
S1 U3
U2 Y2

/ l
t1 U1 > Y1

U9 w2 22
! ! J
Uq w1 21

Note that by definition of the ultragraph G, each vertex emits exactly one ultraedge, so in the
picture any multiple arrows leaving the same vertex actually have the same label and constitute
a single ultraedge of G.

4.2. Sufficient conditions for realizations

Theorem 4.5. Let A be an AF-algebra with a Bratteli diagram satisfying the conditions of
Lemma 3.3. If G is an ultragraph constructed from this Bratteli diagram as in Definition 4.1,
then A = C*(G). In addition, C*(G) is an Exel-Laca algebra.

Proof. Let (E, d) be a Bratteli diagram for A with the vertices partitioned into levels as E? =
LI° | Vi, and satisfying the conditions of Lemma 3.3, and let G be an ultragraph constructed from
(E, d) as in Definition 4.1. Our strategy is to find a direct limit decomposition of C*(G) so that
at each level we may apply Lemma 3.6 to see that the inclusion of finite-dimensional algebras
is the same as the corresponding inclusion in the direct limit decomposition of A determined
by (E, d).

For each v € E? let

CY:= C*({Sev,.: 1<i<A, 1)),

We have Se,, s, = py for 1 <i <A, —1and sjv.sevi = py;_, for 2 <i <A, — 1. We define
a projection q”l ‘= Prgen) = s;"vl Se,, € C”, which is orthogonal to p,, for 1 <i <A, — 1.
These computations show that there exist matrix units {yk”, ;- 0<k, I <Ay —1}in CV such that
Yoo=9" v =pv andy}; | = Se,, for 1 <i <Ay — 1. Explicitly, Vg € CV is given by

v . Uk * .. oX
yk,l '_Sevksevk,l sevlq Sevl ey, Se,,l

for 0 < k,l < A, — 1. This shows that C" is isomorphic to M, (C) with minimal projection g
and the unit Ziszl_l Dy +q".Foreachn e N

C, = C*({Sev,.! veVy,and 1<i <A, —1})
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is equal to @vevn CV. Moreover, for n € N, define

n n
:C*(UC]') ZC*({S%,-: veE UVj andlgigAv_l})
Jj=1 j=1

Claim. For each n € N, the unit 1p, of By is given by ZUEU'}=1 v, Yo by + > vev, 4
and there exists a decomposition B, = @vev,, B such that each B’ = My, (C) with min-
imal projection q"; and for each n € N, the inclusion B, — Byy1 has multiplicity matrix
(|UE1w|)veV,,,weVn+1-

We proceed by induction on n. When n = 1, let BY := C" for v € V. Then B = Cj has the
decomposition B| = @vevl BY. For each v € V|, we have A, = d, because v is a source. Hence

BY = CV is isomorphic to My, (C) with minimal projection ¢* and the unit Ziszl_ ! Dv; +4°.
This shows the claim in the case n = 1. For the inductive step, assume that B, has the desired
decomposition. To apply Lemma 3.6 to the C*-algebra B, which is generated by B, and
Cy+1, we check that for each v € V,, the minimal projection ¢” € BY is in C,41 and satisfies
(1pv — q")Cp+1 = {0}. We see that

Ay—1

Do(lp—g")=1g,-> "= Y > py

veV, veV, UGU?:1 V; i=1

which is orthogonal to C,,. This proves (1gv — g¥)Cp4+1 = {0} for all v € V,,. Foreach v € V,,,
Lemma 4.2 implies

quprg(eul): Z < Z Py T Z prG(€w1)>

WEVny1 \ ecvElw ecvElw
ky(e)>1 ky (€)=0

Z Z Ve (@) ku(e)* 4.1)

WEVnt1 ecvElw

Hence ¢" € Cy4+1. Thus we can apply Lemma 3.6 to obtain the decomposition B,y =
@weVH , B". Since the inclusion C* < B" has multiplicity 1 for w € W, the projection ¢"

minimal in B¥. From (4.1), ¢¥1¢w has rank [vE'w]| in C¥ for w € V,41. The definition of A,
implies that

dy=A7y+ Y (d—D[vE'w|.

WEVpy1

Hence BY is isomorphic to My, (C) for w € V,41. The conclusion of Lemma 3.6 also shows
that the inclusion B, <> B, has multiplicity matrix (J[vE' w|)vev,,weV,,,» and that the unit of

B+ isequal to ) velrtl v, 2o ”_1

We see that Un | B" contains {s.: e € g! }. Since each vertex v in G emits exactly one ultra-
edge e, py = ses) is contained in | ;- ; B". Thus [ 72 ;| B" contains all the generators of C*(G).

Pui + 2w eV,,, 4" This proves the claim.
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Hence C*(G) = |J,2, B" is an AF-algebra, and the preceding paragraphs show that (E,d) is
a Bratteli diagram for C*(G), giving A = C*(G). Since every vertex of G emits exactly one
ultraedge, C*(G) is an Exel-Laca algebra (see Remark 2.10). 0O

Corollary 4.6. If A is an AF-algebra with no nonzero finite-dimensional quotients, then A is
isomorphic to an Exel-Laca algebra.

Proof. Since A has no nonzero finite-dimensional quotients, Lemma 3.3 implies that A has a
Bratteli diagram satisfying the conditions stated. It follows from Theorem 4.5 that A is isomor-
phic to an Exel-Laca algebra. O

The following result is important in that it is one of the few instances where we can give a
complete characterization of AF-algebras in a certain graph C*-algebra class. In particular, we
give necessary and sufficient conditions for an AF-algebra to be the C*-algebra of a row-finite
graph with no sinks.

Theorem 4.7. Let A be an AF-algebra. Then the following are equivalent:

(1) A has no (nonzero) unital quotients.
(2) A is isomorphic to the C*-algebra of a row-finite graph with no sinks.

Proof. We shall first prove that (1) implies (2). Suppose that A has no unital quotients. By
Corollary 3.5 there is a Bratteli diagram (E, d) for A such thatforallv € E 0 we have both d,>2
and dy > ) ,cp1,dse)- Let G be an ultragraph constructed from (E,d) as in Definition 4.1.
Theorem 4.5 implies that A = C*(G). Furthermore, since d,, > ecEly ds(e), we have ky(e) > 1
forall v e E¥ and e € E'v. For v € E°, Lemma 4.2 implies rg(ey,) = {wk,e): W€ Vg1, €€
vE'w, ky(e) > 1}. Thus, rg(e) is finite for every e € G'. Hence C*(G) is isomorphic to a graph
C*-algebra of a row-finite graph with no sinks (see [16, Remark 5.25]).

We next prove that (2) implies (1). Suppose that A = C*(E), where E is a row-finite graph
with no sinks. Since C*(E) is an AF-algebra, it follows from [17, Theorem 2.4] that E has no
cycles. Thus E satisfies Condition (K), and [2, Theorem 4.4] implies that every ideal of C*(E) is
gauge invariant. Suppose I is a proper ideal of C*(E). Then I = Iy for some saturated hereditary
proper subset H C E°, and C*(E)/Iy = C*(Ey), where Eg is the nonempty subgraph of E
with E% = E%\ H and E}L] :={ec E': r(e) ¢ H)} (see [2, Theorem 4.1]). Since H is saturated
hereditary, that E has no sinks implies that £z has no sinks. Since E has no cycles, Eg also has
no cycles. Because Epy is a nonempty graph with no cycles and no sinks, EQI is infinite. Thus
C*(Epg) is nonunital [17, Proposition 1.4]. O

Corollary 4.8. Let A be a stable AF-algebra. Then there is a row-finite graph E with no sinks
such that A = C*(E). In particular, A is isomorphic to a graph C*-algebra, to an Exel-Laca
algebra, and to an ultragraph C*-algebra.

Proof. Since any nonzero quotient of a stable C*-algebra is stable, every quotient of A is stable,
and in particular nonunital. The result then follows from Theorem 4.7. O
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Lemma 4.2. Let G = (GO, gl,r,;?) be an ultragraph. Let 5: (60, 51, 7, S) be the ultragraph
defined by G° := G L {vp} and G' := G" Ui {eq} with

Slgr =, 5(e0) = vo, Flgg=r, and 7(eo) = G°.
Then C*(G) = M»(C*(G) "), where C*(G) ™ is the minimal unitization of C*(G).

Proof. We first notice that the algebra Gl is generated by the algebra G% € P(G°) and the two
elements Go, {vo} € P(GO) The universal property of C *(Q ) implies that there is a *-homomor-
phism ¢ : C* (g) — M>(C*(G)™) satisfying

¢(pA)=(%A 8) forall Ae G and ¢>(se)—<0 8) forall e € G!

and

¢(pco)=((1) 8) ¢<puo>=<8 ‘f) and ¢<seo>—<° 8)

The Gauge-Invariant Uniqueness Theorem [22, Theorem 6.8] shows that ¢ is injective. Standard
calculations show that the image under ¢ of the generating Cuntz—Krieger G- -family in Cc*G)
generates M, (C* (G)T). Hence ¢ is an isomorphism. O

Corollary 4.10. Let A be a C*-algebra, and let A* denote the minimal unitization of A. If A is
isomorphic to an Exel-Laca algebra, then M>(A™) is isomorphic to an Exel-Laca algebra.

Proof. If A is isomorphic to an Exel-Laca algebra, then by Remark 2.10 A = C*(G) where G
is an ultragraph with bijective source map. By Lemma 4.9 C *(g) M;(A™), and since G is an
ultragraph with bijective source map, C* (Q’) is an Exel-Laca algebra. O

The following example shows that the converse of Corollary 4.6 does not hold.

Example 4.11. Let A be a nonunital, simple AF-algebra (such as ). By Corollary 4.22 A is
isomorphic to an Exel-Laca algebra, and by Corollary 4.10 M(A™) is an Exel-Laca algebra.
However, M>(A™) has a quotient isomorphic to the finite-dimensional C*-algebra M (C). Thus
the converse of Corollary 4.6 does not hold. (It is also worth mentioning that M, (C) is a quotient
of an Exel-Laca algebra, but M, (C) is not itself an Exel-Laca algebra; cf. Corollary 4.19.)

The following elementary example shows that the C*-algebra of a row-finite graph with sinks
may admit unital quotients (cf. Theorem 4.7).

Example 4.12. The AF-algebra M;(C) & M>(C) is isomorphic to the C*-algebra of the graph
e <—— e —> o by [17, Corollary 2.3]. However, this C*-algebra has M, (C) as a unital quotient.
Thus graphs with sinks can have associated C*-algebras that are AF-algebras with proper unital
quotients.

The next example is more intriguing. Before considering this example, one is tempted to be-
lieve that if E is a row-finite graph, then C*(E) is isomorphic to a direct sum of a countable
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collection of algebras of compact operators on (finite or countably infinite dimensional) Hilbert
spaces and the C*-algebra of a row-finite graph with no sinks (see Proposition 4.14). This would
give a characterization of AF-algebras associated to row-finite graphs along similar lines to The-
orem 4.7. However, the example shows that this is not the case in general.

Example 4.13. Let E be the graph

U1 Vg U3 Uy
w1 Wy ws Wy

Then for each n € N the set H, := {v,, V41, ...} U {wy,, wy41,...} is a saturated hereditary
subset of E, and C*(E)/Ip, is a finite-dimensional C*-algebra. Thus C*(E) is an AF-algebra
with infinitely many finite-dimensional quotients. This shows that, unlike what occurs for row-
finite graphs with no sinks (cf. Theorem 4.7), the situation with sinks is much more complicated.
It also shows that C*(E) does not have a Bratteli diagram of the types described in Lemma 3.4 or
Lemma 3.5. Hence our construction of the ultragraph described in Section 4.1 cannot be applied.

By eliminating the bad behavior arising in the preceding example, we obtain a limited exten-
sion of Theorem 4.7 to graphs containing sinks.

Proposition 4.14. Let A be an AF algebra. Then the following are equivalent:

(1) A is isomorphic to the C*-algebra of a row-finite graph in which each vertex connects to at
most finitely many sinks; and

(2) A has the form (B, cx Mn,(C)) @ A" where X is an at most countably-infinite index set,
each ny is a positive integer, and A’ is an AF algebra with no unital quotients.

Proof. To see that (1) implies (2), we let E be a row-finite graph in which each vertex connects to
at most finitely many sinks and such that A = C*(E). Since A is an AF-algebra, E has no cycles.
Let sinks(E) denote the collection {v € E?: vE! = @} of sinks in E. Let H be the smallest
saturated hereditary subset of E® containing sinks(E). Since each vertex connects to at most
finitely many sinks, H is equal to the set of v € E° such that vE" = @ for some n. Let F be the
graph with vertices FO:= E%\ H, edges F! ={e € E': r(e) ¢ H} and range and source maps
inherited from E. Note that the description of H above implies that F has no sinks; moreover F
is row-finite because E is. We claim that

C*(E)E( oy K(ﬁ%E*:;)))@C*(F).

vesinks(E)

To prove this, we first define a Cuntz—Krieger E-family {g,: v € E°}, {t.: e € E!} in
(@vesinks(E) K(€2(E*v))) @ C*(F). We will denote the universal Cuntz—Krieger F-family by
{pF: v e F%, {sF: e e F'}, and we will denote the matrix units in each K(£2(E*v)) by
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{(H)(;’ g o B € E*v}. As a notational convenience, for v € EO \ FO, we write pf =0, and simi-
larly for e € E'\ F!, we write s/ = 0. For v € E, let

w=( @ ¥ o)

wesinks(E) aevE*w

and for e € E!, let

te;=< o ¥ @;a,a)@sf.

wesinks(E) aer(e) E¥w

Routine calculations show that {g,: v € E%, {t.: ec E'}isa Cuntz—Krieger E-family. This
family clearly generates (@vesinks( E) K(£2(E*v))) ® C*(F), and each ¢y is nonzero because if
pf = 0 then v must connect to a sink w in which case g, dominates some ©;’,. An application of
the Gauge-Invariant Uniqueness Theorem [2, Theorem 2.1] implies that there is an isomorphism

g0 C*(E) — ( D IC(EZ(E*U))> ® C*(F)

vesinks(E)

such that 7y ;(py) = gy and 7 ; (se) = te.

To complete the proof of (1) implies (2), let X C sinks(E) denote the subset {v € sinks(E):
|E*v| < oo}, and for each v € X let n, := |E*v|. We have K(£2(E*v)) = M, (C) for each
v € X. Recall that F is row-finite and has no sinks, so Theorem 4.7 implies that C*(F) has no
unital quotient. For each v € sinks(E) \ X, the C*-algebra KC(£2(E*v)) is simple and nonunital.
Thus

A= P IC(ZZ(E*U))> ® C*(F')
vesinks(E)\ X
has no finite-dimensional quotients. We get

AZCHE) = ( QB IC(ZZ(E*U))) B CHF)= (@an(@)> @A

vesinks(E) veX

as required.

To see that (2) implies (1), let A = (P,cx M», (C)) @ A’ as in (2). By Theorem 4.7, there is
a row-finite graph E’ with no sinks such that C*(E’) = A’. For each x € X, let E be a copy of
the graph

U1 Vg e Up,

x

A standard argument shows that C*(Ey) = M, (C). Moreover E := (|_] E,) U E’ satisfies

xeX
C*(E)= (EB C*(Ex)) ®CHE)N=A
xeX

as required. O
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For completeness, we conclude the section with the following well-known result.

Lemma 4.15. A C*-algebra A is finite dimensional if and only if it is isomorphic to the C*-
algebra of a finite directed graph with no cycles.

Proof. If E is a finite directed graph with no cycles, then E* is finite, and hence C*(E) =
span{s,s;: w,v € E*}is finite dimensional.

On the other hand, if A is finite-dimensional, then there exist an integer n > 1 and nonnegative
integers di, ..., d, such that A = @}_, Mg (C), and [17, Corollary 2.3] then implies that A is
isomorphic to the C*-algebra of a finite directed graph with no cycles. (Moreover, we remark
that the last part of the proof of Proposition 4.14 actually shows that every finite-dimensional
C*-algebra is the C*-algebra of a finite graph with no cycles.) O

4.3. Obstructions to realizations

Here we present a number of necessary conditions for an AF algebra to be an ultragraph
C*-algebra, an Exel-Laca algebra, or a graph C*-algebra. Recall that an ultragraph C*-algebra
C*(G) is an AF-algebra if and only if G has no cycles by [23, Theorem 4.1].

Proposition 4.16. Let G be an ultragraph and suppose that C*(G) is an AF-algebra. If C*(G) is
commutative, then the ultragraph G has no ultraedges, and C*(G) = co(GY).

Proof. It suffices to show that G has no ultraedges. Suppose that e is an ultraedge in G, and let
v =s(e). Since C*(G) is commutative, we have p,) = s, 5c = S¢S} < ps(e), and hence r(e) =
{s(e)}. Thus e is a cycle. This contradicts the hypothesis that C*(G) is an AF-algebra. O

Proposition 4.17. Let A be an AF-algebra that is also an Exel-Laca algebra. Then A does not
have a quotient isomorphic to C, and for each n € N there is a C*-subalgebra of A isomorphic
to M,,(C).

Proof. There exists an ultragraph G = (G°, G!, r, s) with bijective s such that C*(G) = A (see
Remark 2.10). The ultragraph G has no cycles. Let {py},cco and {s.},cg1 be the generator of
C*(@G) as in Definition 2.9.

Suppose, for the sake of contradiction, that there exists a nonzero x-homomorphism
x:C*(G) — C. Since x is nonzero, there exists v € G° with x(p,) # 0. Let ¢ € G! be the
unique ultraedge with s(e) = v. Since G has no cycles, we have v ¢ r(e). Hence p, is orthogonal
to ss.. Thus

X6 X (Po) = X G X () x (o) = X (5550 py) =0,

and since x (py) # 0, it follows that |x (s.)|?> = 0 and x (s.) = 0. But then x (p,) = X (Ses)) =
X (s¢)x (s)) =0, which is a contradiction. Hence C*(G) has no quotients isomorphic to C.

Let n € N. We will construct a C*-subalgebra of C*(G) isomorphic to M, (C). Choose v €
GO and let e; € G! be the unique ultraedge with s(e1) = v;. Then choose a vertex vy € r(eq).
Since G has no cycles, we have v # v;. Continuing in this manner, we can find distinct vertices
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v1,V2,...,0, € GO such that Vi1 €r(eg) fork=1,2,...,n — 1, where ¢, € G! is the unique
ultraedge with s(ex) = vg. For 1 < i, j < n, we define

o * * *
O, j 1= Se;Seiyy -+ -Sen 1 PvaSe, | Se, o - - e

One can check that {®; ;: 1 <i, j <n} is a family of matrix units, and thus the C*-subalgebra
of C*(G) generated by {©; ;: 1 <i, j <n} is isomorphic to M, (C). O

Corollary 4.18. If A is an AF-algebra that is also an Exel-Laca algebra, then A has a Bratteli
diagram (E, d) such that d, > 2 forall v € EY.

Proof. Since A has no quotient isomorphic to C, the result follows from Lemma 3.1. O
Corollary 4.19. No finite-dimensional C*-algebra is isomorphic to an Exel-Laca algebra.

Definition 4.20. We recall that a C*-algebra A is said to be Type 1 if whenever 7 : A — B(H) is a
nonzero irreducible representation, then KC(H) € w (A). In the literature, the terms postliminary,
GCR, and smooth are all synonymous with Type L.

Proposition 4.21. Let C*(E) be a graph C*-algebra that is also an AF-algebra. Then every
unital quotient of C*(E) is Type 1 and has finitely many ideals.

Proof. By Lemma 2.16, it suffices to show that if a graph C*-algebra C*(E) is a unital AF-
algebra then C*(FE) is Type I and has finitely many ideals. Note that C*(E) is a unital AF-algebra
if and only if E has a finite number of vertices and no cycles.

We first show that C*(FE) has finitely many ideals. Since E has no cycles, it satisfies Condi-
tion (K). Hence any ideal of C*(E) is of the form /(g s for a saturated hereditary subset H of
EO® and a subset S € EO of the set of breaking vertices for H [8, Theorem 3.5]. Since the set EO
of vertices of E is finite, there are only a finite number of such pairs (H, S). Thus C*(E) has
finitely many ideals.

To prove that C*(E) is of Type I, first observe that any graph with finitely many vertices
and no cycles contains a sink v, and the ideal I,, generated by p, is then a nontrivial gauge-
invariant ideal which is Morita equivalent to C and hence of Type I (see [14, Proposition 2] and
the subsequent remark in [14]).

We shall show by induction on the number of nonzero ideals of C*(E) that C*(E) is Type L.
Our basis case is when has just one nontrivial ideal I. That is, C*(E) is simple, and then the
Type I ideal I, of the preceding paragraph is C*(E) itself, proving the result. Now suppose as an
inductive hypothesis that the result holds whenever C*(E) has at most n distinct nonzero ideals,
and suppose that C*(E) has n + 1 such. Let v be a sink in E and let I, be the corresponding
nonzero Type I ideal as in the preceding paragraph. If C*(E)/I, is trivial, then C*(E) = I, is of
Type I, so we may assume that C*(E) /I, is nonzero. Then Lemma 2.16 implies that C*(E)/I,
is a unital AF-algebra that is a graph C*-algebra. Moreover, C*(E) /I, has strictly fewer ideals
than C*(E), so the inductive hypothesis implies that C*(E)/1, is of Type 1. Since an extension
of a Type I C*-algebra by a Type I C*-algebra is Type I (see [19, Theorem 5.6.2]), it follows that
C*(E)isof Typel. O
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Theorem 4.22. For a simple AF-algebra A we have the following.

(1) If A is finite dimensional then A is isomorphic to a graph C*-algebra but not isomorphic to
an Exel-Laca algebra.

(2) If A is infinite dimensional and unital then A is isomorphic to an Exel-Laca algebra but not
isomorphic to a graph C*-algebra.

(3) If A is infinite dimensional and nonunital then A is isomorphic to a C*-algebra of a row-
finite graph with no sinks (which is also isomorphic to the Exel-Laca algebra of a row-finite
matrix by Lemma 2.4).

In particular, each simple AF-algebra A is isomorphic to either an Exel-Laca algebra or a graph
C*-algebra.

Proof. The statement in (1) follows from Lemma 4.15 and Corollary 4.19.

For (2) we observe that if A is simple, infinite dimensional, and unital, then it follows from
Corollary 4.6 that A is isomorphic to an Exel-Laca algebra. Since A is in particular unital, to see
that A is not a graph C*-algebra, it suffices by Proposition 4.21 to show that it is not of Type 1.
If we suppose for contradiction that A is of Type I, then as it is simple, we must have A = IC(H)
for some Hilbert space H. Since A is unital, { and hence K(H) must be finite-dimensional,
contradicting that A is infinite dimensional.

The statement in (3) follows from Theorem 4.7. The final assertion follows from (1), (2),
and (3). O

Corollary 4.23. If A is an infinite-dimensional UHF algebra, then A is not isomorphic to a graph
C*-algebra.

5. A summary of known containments

In this section we use our results to describe how various classes of AF-algebras are contained
in the classes of graph C*-algebras, Exel-Laca algebras, and ultragraph algebras. We first exam-
ine the simple AF-algebras, where we have a complete description. Moreover, we see that the
simple AF-algebras allow us to distinguish among the four classes of C*-algebras of row-finite
graphs with no sinks, graph C*-algebras, Exel-Laca algebras, and ultragraph algebras. Second,
we consider general AF-algebras, and while our description in this case is not complete, we are
able to describe how the finite-dimensional and stable AF-algebras are contained in the classes of
graph C*-algebras, Exel-Laca algebras, and ultragraph algebras. Furthermore, we use our results
to show that there are numerous other AF-algebras in the various intersections of these classes.

5.1. Simple AF-algebras

Consider the following partition of the simple AF-algebras.

AFS™P' . finite-dimensional simple AF-algebras,

finite
AF ¢ | := infinite-dimensional simple AF-algebras that are unital,
AFP* .= infinite-dimensional simple AF-algebras that are nonunital.
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AF-ALGEBRAS ©)

ULTRAGRAPH AF-ALGEBRAS

EXEL-LACA
AF-ALGEBRAS

GRAPH
AF-ALGEBRAS

AF-algs
of row-finite
graphs with
no sinks

finite
dimensional
C*-algs

stable
AF-algs

Fig. 2. A Venn diagram summarizing AF-algebra containments.

Theorems 4.22 and 4.7 imply that

AFZLn}r?g)iunital = simple AF-algebras that are C*-algebras of
row-finite graphs with no sinks,
AF:EE: v AF:;njféiumta] = simple AF-algebras that are graph C*-algebras,
AFSoio“jsleita] U AF:;njféiunital = simple AF-algebras that are Exel-Laca algebras
and
AF;i;?ge U AFiion’lgrlEtal U AFgﬂiumml = simple AF-algebras that are ultragraph algebras.

Hence these three classes of simple AF-algebras allow us to distinguish among the four classes
of C*-algebras of row-finite graphs with no sinks, graph C*-algebras, Exel-Laca algebras, and
ultragraph algebras. However, they do not allow us to distinguish between the classes of C*-
algebras of row-finite graphs with no sinks and the intersection of graph C*-algebras and Exel—
Laca algebras. Nor do they allow us to distinguish between the classes of ultragraph C*-algebras
and the union of graph C*-algebras and Exel-Laca algebras. To distinguish these classes we will
need nonsimple examples.

5.2. More general AF-algebras

For nonsimple AF-algebras, we cannot give such an explicit description. Nevertheless, in
Fig. 2 we present a Venn diagram summarizing the relationships we have established for finite-
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Table 1

Examples of C*-algebras lying in each region of Fig. 2.

Region Unital C*-algebra Nonunital C*-algebra
(a) e co ® cc

(b) Kt o

©) My & C My dCaB K

@ My (K™) MyKH @K

(e — C*(F)

) Myoo Mro @K

dimensional and stable AF-algebras, and also give various examples in the intersections of our
classes of graph C*-algebras, Exel-Laca algebras, and ultragraph C*-algebras.

Table 1 presents, for each region of the Venn diagram of Fig. 2, both a unital and a nonuni-
tal example belonging to that region, with three exceptions: we give no examples of finite-
dimensional or stable AF algebras, nor any example of a unital AF algebra which is the C*-
algebra of a row-finite graph with no sinks. Our reasons for these omissions are as follows:
examples of finite-dimensional and stable AF algebras are obvious, and necessarily unital and
nonunital respectively; and no unital example exists in region (e) by Theorem 4.7.

In Table 1, we use the following notation:

M) denotes the UHF algebra of type 2°°.

K denotes the compact operators on a separable infinite-dimensional Hilbert space.
KT denotes the minimal unitization of the C*-algebra K.

co denotes the space {f:N — C | lim,—, » f(n) =0}.

¢, denotes the space { f :N — C | lim,— f(n) € C}.

F, denotes the graph

V1 PV PVUIT _FU4---

We now justify that the examples listed have the desired properties.

(a) o

(b) o

(c) o

The unital AF-algebra c, is not an ultragraph C*-algebra since it is commutative and its
spectrum is not discrete (see Proposition 4.16).

The nonunital AF-algebra co @ c. is not an ultragraph algebra for precisely the same
reason that ¢, is not.

The minimal unitization X of the compact operators is isomorphic to the C*-algebra of
the graph

with two vertices v, w and infinitely many edges from v to w. Since, KT has a quotient
isomorphic to C, it is not an Exel-Laca algebra by Proposition 4.17.

The nonunital AF-algebra ¢ is the C*-algebra of the graph with infinitely many vertices
and no edges. It is not an Exel-Laca algebra by Proposition 4.17.

Since M» is an infinite-dimensional simple AF-algebra, Theorem 4.22 implies that Mo
is an Exel-Laca algebra and hence also an ultragraph algebra. In addition, C is a graph
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C*-algebra so also an ultragraph C*-algebra. Since the class of ultragraph C*-algebras is
closed under direct sums, M~ @ C is a unital ultragraph C*-algebra. It is not an Exel-
Laca algebra because it has a quotient isomorphic to C (see Proposition 4.17), and it
is not a graph C*-algebra because it has a unital quotient My that is not Type I (see
Proposition 4.21).

Since I and My~ @ C are both ultragraph C*-algebras, the direct sum My~ @ C & K
is a nonunital ultragraph C*-algebra. It is neither a graph C*-algebra nor an Exel-Laca
algebra as above.

The unital AF-algebra M, (K ™) is isomorphic to the C*-algebra of the following graph

and it is also isomorphic to the Exel-Laca algebra of the matrix

O OO0
SO O =
SO ==
S = O =
—_0 O ~

It is not isomorphic to the C*-algebra of a row-finite graph with no sinks by Theorem 4.7.
The nonunital AF-algebra M, (K1) @ K is isomorphic to both a graph C*-algebra and an
Exel-Laca algebra because its two direct summands have this property. It is not the C*-
algebra of a row-finite graph with no sinks by Theorem 4.7 because it admits the unital
quotient M, (K™T).

There is no unital example in this region by Theorem 4.7.

Let F, denote the graph

V1PV PV FVUq---

Then C*(F>) is a graph C*-algebra, and since F; is cofinal with no cycles and no sinks,
C*(F,) is simple by [17, Corollary 3.10]. In addition, C*(F,) is nonunital because F»
has infinitely many vertices. Since C*(F3) is the C*-algebra of a row-finite graph with
no sinks, it is both a graph C*-algebra and an Exel-Laca algebra (see Lemma 2.4). The
function g: on — R defined by g(v;) =27/ is a graph trace with norm 1 (see [24,
Definition 2.2]), and the existence of such a function implies that C*(F3,) is not stable by
(a) = (c) of [24, Theorem 3.2].

As in example (c), the unital AF-algebra M~ is an Exel-Laca algebra but not a graph
C*-algebra.

As in example (c), the nonunital AF-algebra M~ @ K is an Exel-Laca algebra but not a
graph C*-algebra.
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