22,159 research outputs found

    Optimal configuration of active and backup servers for augmented reality cooperative games

    Get PDF
    Interactive applications as online games and mobile devices have become more and more popular in recent years. From their combination, new and interesting cooperative services could be generated. For instance, gamers endowed with Augmented Reality (AR) visors connected as wireless nodes in an ad-hoc network, can interact with each other while immersed in the game. To enable this vision, we discuss here a hybrid architecture enabling game play in ad-hoc mode instead of the traditional client-server setting. In our architecture, one of the player nodes also acts as the server of the game, whereas other backup server nodes are ready to become active servers in case of disconnection of the network i.e. due to low energy level of the currently active server. This allows to have a longer gaming session before incurring in disconnections or energy exhaustion. In this context, the server election strategy with the aim of maximizing network lifetime is not so straightforward. To this end, we have hence analyzed this issue through a Mixed Integer Linear Programming (MILP) model and both numerical and simulation-based analysis shows that the backup servers solution fulfills its design objective

    Mapping the beach beneath the street:digital cartography for the playable city

    Get PDF
    Maps are an important component within many of the playful and gameful experiences designed to turn cities into a playable infrastructures. They take advantage of the fact that the technology used for obtaining accurate spatial information, such as GPS receivers and magnetometers (digital compasses), are now so wide-spread that they are considered as ‘standard’ sensors on mobile phones, which are themselves ubiquitous. Interactive digital maps, therefore, are are widely used by the general public for a variety of purposes. However, despite the rich design history of cartography digital maps typically exhibit a dominant aesthetic that has been de-signed to serve the usability and utility requirements of turn-by-turn urban navigation, which is itself driven by the proliferation of in-car and personal navigation services. The navigation aesthetic is now widespread across almost all spatial applications, even where a be-spoke cartographic product would be better suited. In this chapter we seek to challenge this by exploring novel neo-cartographic ap-proaches to making maps for use within playful and gameful experi-ences designed for the cities. We will examine the potential of de-sign approaches that can producte not only more aesthetically pleasing maps, but also offer the potential for influencing user be-haviour, which can be used to promote emotional engagement and exploration in playable city experiences

    Sensing and visualizing spatial relations of mobile devices

    Get PDF
    Location information can be used to enhance interaction with mobile devices. While many location systems require instrumentation of the environment, we present a system that allows devices to measure their spatial relations in a true peer-to-peer fashion. The system is based on custom sensor hardware implemented as USB dongle, and computes spatial relations in real-time. In extension of this system we propose a set of spatialized widgets for incorporation of spatial relations in the user interface. The use of these widgets is illustrated in a number of applications, showing how spatial relations can be employed to support and streamline interaction with mobile devices

    Web-Based Visualization of Very Large Scientific Astronomy Imagery

    Full text link
    Visualizing and navigating through large astronomy images from a remote location with current astronomy display tools can be a frustrating experience in terms of speed and ergonomics, especially on mobile devices. In this paper, we present a high performance, versatile and robust client-server system for remote visualization and analysis of extremely large scientific images. Applications of this work include survey image quality control, interactive data query and exploration, citizen science, as well as public outreach. The proposed software is entirely open source and is designed to be generic and applicable to a variety of datasets. It provides access to floating point data at terabyte scales, with the ability to precisely adjust image settings in real-time. The proposed clients are light-weight, platform-independent web applications built on standard HTML5 web technologies and compatible with both touch and mouse-based devices. We put the system to the test and assess the performance of the system and show that a single server can comfortably handle more than a hundred simultaneous users accessing full precision 32 bit astronomy data.Comment: Published in Astronomy & Computing. IIPImage server available from http://iipimage.sourceforge.net . Visiomatic code and demos available from http://www.visiomatic.org

    A Design Space for Exploring Rich and Complex Information Environments

    Get PDF
    International audienceIn this paper we discuss the visualization and interaction paradigms based on overview+detail and focus+context models, proposing a design methodology suitable for rich information environments, made of multivariate data and multi-device deployment. We propose to identify a set of meaningful categories of information visualization and interaction corresponding to different user goals and exploration spaces, starting from a global universe of discourse and going down into the ultimate data items, through discrete intermediate steps corresponding to structured context and overview levels. Each category de nes an association with a speci c knowledge goal, the deployment on a suitable class of devices and the access through adequate interaction techniques. Such design methodology is applied to two case studies, one in the domain of energy consumption management, the other in cultural heritage fruition
    • 

    corecore