7,150 research outputs found

    Representation and validation of domain and range restrictions in a relational database driven ontology maintenance system

    Get PDF
    An ontology can be used to represent and organize the objects, properties, events, processes, and relations that embody an area of reality [1]. These knowledge bases may be created manually (by individuals or groups), and/or automatically using software tools, such as those developed for information retrieval and data mining. Recently, the National Science Foundation funded a large collaborative development project for the semi-automated construction of an ontology of amphibian anatomy (AmphibAnat [2]). To satisfy the extensive community curation requirements of that project, a generic, Web-based, multi-user, relational database ontology management system (RDBOM [3]) was constructed, based upon a novel theoretical ontology model called an Ontology Abstract Machine (OAM [4]). The need to support concurrent data entry by multiple users with different levels of access privileges (as determined and assigned by the administrators), made it critical to ensure that the entered data were semantically correct. In particular, the ability to define and enforce restrictions on property characteristics such as the domain and range of a relation provide several advantages. It helps to identify inconsistencies in the ontology, maintain a higher level of overall integrity, and avoid erroneous conclusions that could be made by automated reasoners. In this thesis a modified OAM model is presented that includes definitions for property characteristics and the associated validation algorithms. As proof of concept, it is shown how this modified abstract model has been implemented for domain and range restrictions in RDBOM --Abstract, page iii

    Quality-aware model-driven service engineering

    Get PDF
    Service engineering and service-oriented architecture as an integration and platform technology is a recent approach to software systems integration. Quality aspects ranging from interoperability to maintainability to performance are of central importance for the integration of heterogeneous, distributed service-based systems. Architecture models can substantially influence quality attributes of the implemented software systems. Besides the benefits of explicit architectures on maintainability and reuse, architectural constraints such as styles, reference architectures and architectural patterns can influence observable software properties such as performance. Empirical performance evaluation is a process of measuring and evaluating the performance of implemented software. We present an approach for addressing the quality of services and service-based systems at the model-level in the context of model-driven service engineering. The focus on architecture-level models is a consequence of the black-box character of services

    Semantically defined Analytics for Industrial Equipment Diagnostics

    Get PDF
    In this age of digitalization, industries everywhere accumulate massive amount of data such that it has become the lifeblood of the global economy. This data may come from various heterogeneous systems, equipment, components, sensors, systems and applications in many varieties (diversity of sources), velocities (high rate of changes) and volumes (sheer data size). Despite significant advances in the ability to collect, store, manage and filter data, the real value lies in the analytics. Raw data is meaningless, unless it is properly processed to actionable (business) insights. Those that know how to harness data effectively, have a decisive competitive advantage, through raising performance by making faster and smart decisions, improving short and long-term strategic planning, offering more user-centric products and services and fostering innovation. Two distinct paradigms in practice can be discerned within the field of analytics: semantic-driven (deductive) and data-driven (inductive). The first emphasizes logic as a way of representing the domain knowledge encoded in rules or ontologies and are often carefully curated and maintained. However, these models are often highly complex, and require intensive knowledge processing capabilities. Data-driven analytics employ machine learning (ML) to directly learn a model from the data with minimal human intervention. However, these models are tuned to trained data and context, making it difficult to adapt. Industries today that want to create value from data must master these paradigms in combination. However, there is great need in data analytics to seamlessly combine semantic-driven and data-driven processing techniques in an efficient and scalable architecture that allows extracting actionable insights from an extreme variety of data. In this thesis, we address these needs by providing: • A unified representation of domain-specific and analytical semantics, in form of ontology models called TechOnto Ontology Stack. It is highly expressive, platform-independent formalism to capture conceptual semantics of industrial systems such as technical system hierarchies, component partonomies etc and its analytical functional semantics. • A new ontology language Semantically defined Analytical Language (SAL) on top of the ontology model that extends existing DatalogMTL (a Horn fragment of Metric Temporal Logic) with analytical functions as first class citizens. • A method to generate semantic workflows using our SAL language. It helps in authoring, reusing and maintaining complex analytical tasks and workflows in an abstract fashion. • A multi-layer architecture that fuses knowledge- and data-driven analytics into a federated and distributed solution. To our knowledge, the work in this thesis is one of the first works to introduce and investigate the use of the semantically defined analytics in an ontology-based data access setting for industrial analytical applications. The reason behind focusing our work and evaluation on industrial data is due to (i) the adoption of semantic technology by the industries in general, and (ii) the common need in literature and in practice to allow domain expertise to drive the data analytics on semantically interoperable sources, while still harnessing the power of analytics to enable real-time data insights. Given the evaluation results of three use-case studies, our approach surpass state-of-the-art approaches for most application scenarios.Im Zeitalter der Digitalisierung sammeln die Industrien überall massive Daten-mengen, die zum Lebenselixier der Weltwirtschaft geworden sind. Diese Daten können aus verschiedenen heterogenen Systemen, Geräten, Komponenten, Sensoren, Systemen und Anwendungen in vielen Varianten (Vielfalt der Quellen), Geschwindigkeiten (hohe Änderungsrate) und Volumina (reine Datengröße) stammen. Trotz erheblicher Fortschritte in der Fähigkeit, Daten zu sammeln, zu speichern, zu verwalten und zu filtern, liegt der eigentliche Wert in der Analytik. Rohdaten sind bedeutungslos, es sei denn, sie werden ordnungsgemäß zu verwertbaren (Geschäfts-)Erkenntnissen verarbeitet. Wer weiß, wie man Daten effektiv nutzt, hat einen entscheidenden Wettbewerbsvorteil, indem er die Leistung steigert, indem er schnellere und intelligentere Entscheidungen trifft, die kurz- und langfristige strategische Planung verbessert, mehr benutzerorientierte Produkte und Dienstleistungen anbietet und Innovationen fördert. In der Praxis lassen sich im Bereich der Analytik zwei unterschiedliche Paradigmen unterscheiden: semantisch (deduktiv) und Daten getrieben (induktiv). Die erste betont die Logik als eine Möglichkeit, das in Regeln oder Ontologien kodierte Domänen-wissen darzustellen, und wird oft sorgfältig kuratiert und gepflegt. Diese Modelle sind jedoch oft sehr komplex und erfordern eine intensive Wissensverarbeitung. Datengesteuerte Analysen verwenden maschinelles Lernen (ML), um mit minimalem menschlichen Eingriff direkt ein Modell aus den Daten zu lernen. Diese Modelle sind jedoch auf trainierte Daten und Kontext abgestimmt, was die Anpassung erschwert. Branchen, die heute Wert aus Daten schaffen wollen, müssen diese Paradigmen in Kombination meistern. Es besteht jedoch ein großer Bedarf in der Daten-analytik, semantisch und datengesteuerte Verarbeitungstechniken nahtlos in einer effizienten und skalierbaren Architektur zu kombinieren, die es ermöglicht, aus einer extremen Datenvielfalt verwertbare Erkenntnisse zu gewinnen. In dieser Arbeit, die wir auf diese Bedürfnisse durch die Bereitstellung: • Eine einheitliche Darstellung der Domänen-spezifischen und analytischen Semantik in Form von Ontologie Modellen, genannt TechOnto Ontology Stack. Es ist ein hoch-expressiver, plattformunabhängiger Formalismus, die konzeptionelle Semantik industrieller Systeme wie technischer Systemhierarchien, Komponenten-partonomien usw. und deren analytische funktionale Semantik zu erfassen. • Eine neue Ontologie-Sprache Semantically defined Analytical Language (SAL) auf Basis des Ontologie-Modells das bestehende DatalogMTL (ein Horn fragment der metrischen temporären Logik) um analytische Funktionen als erstklassige Bürger erweitert. • Eine Methode zur Erzeugung semantischer workflows mit unserer SAL-Sprache. Es hilft bei der Erstellung, Wiederverwendung und Wartung komplexer analytischer Aufgaben und workflows auf abstrakte Weise. • Eine mehrschichtige Architektur, die Wissens- und datengesteuerte Analysen zu einer föderierten und verteilten Lösung verschmilzt. Nach unserem Wissen, die Arbeit in dieser Arbeit ist eines der ersten Werke zur Einführung und Untersuchung der Verwendung der semantisch definierten Analytik in einer Ontologie-basierten Datenzugriff Einstellung für industrielle analytische Anwendungen. Der Grund für die Fokussierung unserer Arbeit und Evaluierung auf industrielle Daten ist auf (i) die Übernahme semantischer Technologien durch die Industrie im Allgemeinen und (ii) den gemeinsamen Bedarf in der Literatur und in der Praxis zurückzuführen, der es der Fachkompetenz ermöglicht, die Datenanalyse auf semantisch inter-operablen Quellen voranzutreiben, und nutzen gleichzeitig die Leistungsfähigkeit der Analytik, um Echtzeit-Daten-einblicke zu ermöglichen. Aufgrund der Evaluierungsergebnisse von drei Anwendungsfällen Übertritt unser Ansatz für die meisten Anwendungsszenarien Modernste Ansätze

    Modeling views in the layered view model for XML using UML

    Get PDF
    In data engineering, view formalisms are used to provide flexibility to users and user applications by allowing them to extract and elaborate data from the stored data sources. Conversely, since the introduction of Extensible Markup Language (XML), it is fast emerging as the dominant standard for storing, describing, and interchanging data among various web and heterogeneous data sources. In combination with XML Schema, XML provides rich facilities for defining and constraining user-defined data semantics and properties, a feature that is unique to XML. In this context, it is interesting to investigate traditional database features, such as view models and view design techniques for XML. However, traditional view formalisms are strongly coupled to the data language and its syntax, thus it proves to be a difficult task to support views in the case of semi-structured data models. Therefore, in this paper we propose a Layered View Model (LVM) for XML with conceptual and schemata extensions. Here our work is three-fold; first we propose an approach to separate the implementation and conceptual aspects of the views that provides a clear separation of concerns, thus, allowing analysis and design of views to be separated from their implementation. Secondly, we define representations to express and construct these views at the conceptual level. Thirdly, we define a view transformation methodology for XML views in the LVM, which carries out automated transformation to a view schema and a view query expression in an appropriate query language. Also, to validate and apply the LVM concepts, methods and transformations developed, we propose a view-driven application development framework with the flexibility to develop web and database applications for XML, at varying levels of abstraction

    Using ontologies to synchronize change in relational database systems

    Get PDF
    Ontology is a building block of the semantic Web. Ontology building requires a detailed domain analysis, which in turn requires financial resources, intensive domain knowledge and time. Domain models in industry are frequently stored as relational database schemas in relational databases. An ontology base underlying such schemas can represent concepts and relationships that are present in the domain of discourse. However, with ever increasing demand for wider access and domain coverage, public databases are not static and their schemas evolve over time. Ontologies generated according to these databases have to change to reflect the new situation. Once a database schema is changed, these changes in the schema should also be incorporated in any ontology generated from the database. It is not possible to generate a fresh version of the ontology using the new database schema because the ontology itself may have undergone changes that need to be preserved. To tackle this problem, this paper presents a generic framework that will help to generate and synchronize ontologies with existing data sources. In particular we address the translation between ontologies and database schemas, but our proposal is also sufficiently generic to be used to generate and maintain ontologies based on XML and object oriented databases

    A semantic and agent-based approach to support information retrieval, interoperability and multi-lateral viewpoints for heterogeneous environmental databases

    Get PDF
    PhDData stored in individual autonomous databases often needs to be combined and interrelated. For example, in the Inland Water (IW) environment monitoring domain, the spatial and temporal variation of measurements of different water quality indicators stored in different databases are of interest. Data from multiple data sources is more complex to combine when there is a lack of metadata in a computation forin and when the syntax and semantics of the stored data models are heterogeneous. The main types of information retrieval (IR) requirements are query transparency and data harmonisation for data interoperability and support for multiple user views. A combined Semantic Web based and Agent based distributed system framework has been developed to support the above IR requirements. It has been implemented using the Jena ontology and JADE agent toolkits. The semantic part supports the interoperability of autonomous data sources by merging their intensional data, using a Global-As-View or GAV approach, into a global semantic model, represented in DAML+OIL and in OWL. This is used to mediate between different local database views. The agent part provides the semantic services to import, align and parse semantic metadata instances, to support data mediation and to reason about data mappings during alignment. The framework has applied to support information retrieval, interoperability and multi-lateral viewpoints for four European environmental agency databases. An extended GAV approach has been developed and applied to handle queries that can be reformulated over multiple user views of the stored data. This allows users to retrieve data in a conceptualisation that is better suited to them rather than to have to understand the entire detailed global view conceptualisation. User viewpoints are derived from the global ontology or existing viewpoints of it. This has the advantage that it reduces the number of potential conceptualisations and their associated mappings to be more computationally manageable. Whereas an ad hoc framework based upon conventional distributed programming language and a rule framework could be used to support user views and adaptation to user views, a more formal framework has the benefit in that it can support reasoning about the consistency, equivalence, containment and conflict resolution when traversing data models. A preliminary formulation of the formal model has been undertaken and is based upon extending a Datalog type algebra with hierarchical, attribute and instance value operators. These operators can be applied to support compositional mapping and consistency checking of data views. The multiple viewpoint system was implemented as a Java-based application consisting of two sub-systems, one for viewpoint adaptation and management, the other for query processing and query result adjustment

    Implementing OBDA for an end-user query answering service on an educational ontology

    Get PDF
    In the age where productivity of society is no longer defined by the amount of information generated, but from the quality and assertiveness that a set of data may potentially hold, the right questions to do depends on the semantic awareness capability that an information system could evolve into. To address this challenge, in the last decade, exhaustive research has been done in the Ontology Based Data Access (OBDA) paradigm. A conspectus of the most promising technologies with data integration capabilities and the foundations where they rely are documented in this memory as a point of reference for choosing tools that supports the incorporation of a conceptual model under a OBDA method. The present study provides a practical approach for implementing an ontology based data access service, to educational context users of a Learning Analytics initiative, by means of allowing them to formulate intuitive enquiries with a familiar domain terminology on top of a Learning Management System. The ontology used was completely transformed to semantic linked data standards and some data mappings for testing were included. Semantic Linked Data technologies exposed in this document may exert modernization to environments in which object oriented and relational paradigms may propagate heterogeneous and contradictory requirements. Finally, to validate the implementation, a set of queries were constructed emulating the most relevant dynamics of the model regarding the dataset nature

    Engineering Agile Big-Data Systems

    Get PDF
    To be effective, data-intensive systems require extensive ongoing customisation to reflect changing user requirements, organisational policies, and the structure and interpretation of the data they hold. Manual customisation is expensive, time-consuming, and error-prone. In large complex systems, the value of the data can be such that exhaustive testing is necessary before any new feature can be added to the existing design. In most cases, the precise details of requirements, policies and data will change during the lifetime of the system, forcing a choice between expensive modification and continued operation with an inefficient design.Engineering Agile Big-Data Systems outlines an approach to dealing with these problems in software and data engineering, describing a methodology for aligning these processes throughout product lifecycles. It discusses tools which can be used to achieve these goals, and, in a number of case studies, shows how the tools and methodology have been used to improve a variety of academic and business systems

    Model-based Approach for Product Requirement Representation and Generation in Product Lifecycle Management

    Get PDF
    The requirement specification is an official documentation activity, which is a collection of certain information to specify the product and its life-cycle activities in terms of functions, features, performance, constraints, production, maintenance, disposal process, etc. It contains mainly two phases; product requirement generation and representation. Appropriate criteria for the product design and further life-cycle activities are determined based on the requirement specification as well as the interrelations of product requirements with other life-cycle information such as; materials, manufacturing, working environments, finance, and regulations. The determination of these criteria is normally error-prone. It is difficult to identify and maintain the completeness and consistency of the requirement information across the product life-cycle. Product requirements are normally expressed in abstract and conceptual terms with document base representation which yields unstructured and heterogeneous information base and it is unsuitable for intelligent machine interpretations. Most of the time determination of the requirements and development of the requirement specification documents are performed by the designers/engineers based on their own experiences that might lead to incompleteness and inconsistency. This research work proposes a unique model-based product requirement representation and generation architecture to aid designers/engineers to specify product requirements across the product life-cycle. A requirement knowledge management architecture is developed to enhance the capabilities of the current Product Life-cycle Management (PLM) platforms in terms of product requirement representation and generation. After a systematic study on the categorization of product requirements, an ontological framework is developed for the specification of the requirements and related product life-cycle domain information. The ontological framework is embedded in an existing PLM system. A computational platform is developed and integrated into the PLM system for the intelligent machine processing of the product requirements and related information. This architecture supports product requirement representation in terms of the ontological framework and further information retrieval, inference, and requirement text generation activities
    corecore