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ABSTRACT

The requirement specification is an official documentation activity, which is a collection of
certain information to specify the product and its life-cycle activities in terms of functions, features,
performance, constraints, production, maintenance, disposal process, etc. It contains mainly two
phases; product requirement generation and representation. Appropriate criteria for the product
design and further life-cycle activities are determined based on the requirement specification as
well as the interrelations of product requirements with other life-cycle information such as; ma-
terials, manufacturing, working environments, finance, and regulations. The determination of
these criteria is normally error-prone. It is difficult to identify and maintain the completeness
and consistency of the requirement information across the product life-cycle. Product require-
ments are normally expressed in abstract and conceptual terms with document base representation
which yields unstructured and heterogeneous information base and it is unsuitable for intelligent
machine interpretations. Most of the time determination of the requirements and development of
the requirement specification documents are performed by the designers/engineers based on their
own experiences that might lead to incompleteness and inconsistency. This research work pro-
poses a unique model-based product requirement representation and generation architecture to aid
designers/engineers to specify product requirements across the product life-cycle. A requirement
knowledge management architecture is developed to enhance the capabilities of the current Prod-
uct Life-cycle Management (PLM) platforms in terms of product requirement representation and
generation. After a systematic study on the categorization of product requirements, an ontological
framework is developed for the specification of the requirements and related product life-cycle
domain information. The ontological framework is embedded in an existing PLM system. A com-
putational platform is developed and integrated into the PLM system for the intelligent machine
processing of the product requirements and related information. This architecture supports product
requirement representation in terms of the ontological framework and further information retrieval,

inference, and requirement text generation activities.
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CHAPTER 1

INTRODUCTION

In this chapter, an overview of the research performed in this dissertation is presented. This chapter
starts with the technical context and background of the research. The problem statement, thesis
scope, and research methodology are then introduced. Finally, this chapter is wrapped up by

outlining the structure of the overall dissertation.

1.1 Research Background

The technological advantages in today’s marketplace require product stakeholders to be more
collaborative by sharing and exchanging product-design information in order to compete with
rivals. The information exchange and sharing make product design more knowledge-intensive
requiring companies to develop/use integrated product modeling architectures in order to build
high quality products with the lowest cost and minimum lead time while reducing risk. Such
integrated modeling architecture not only supports product design but also provides necessary
information for any future decision making activities in the product life-cycle such as material
selection, manufacturing, usage, maintenance, disposal, and recycling, etc. The product design
criteria and this necessary information are specified in the product requirements. Therefore, formal
representation and generation of the product requirements, which are stated within the product
Requirement Specification are very crucial to this integrated modeling architecture.

A requirement is a single statement of something the product or system must do or quality it



must have. The requirement specification document captures the set of all product requirements
that guide a product design. It includes all the supporting documentation and related information
necessary to justify and explain those requirements for the design, verification, and maintenance
of the product. Development of the requirement specification is an activity that is considered
as the first step of the product design in the product life-cycle. The product design has many
stages that start with the design requirements and finishes in product development. As shown in
figure 1.1, three main design stages: conceptual, embodiment, and detail design that are completed
sequentially between starting and endpoints. At each stage of the product design, information
mainly about materials and processes is needed while considering product requirements. Material
and process selection activities are performed based on the product requirements along with the
product design stages.

A requirement specification document of a product explains what the product is going to do,
determines how the product is going to operate, and offers guidance to the design, production,
maintenance, service, disposal, etc. teams in designing, manufacture, maintain, repair, dispose
of, etc. the product. It reflects the design information of the system and states how the design
will meet the product requirements, even though the design might not be a one-to-one response to
the requirements. It can be defined as a documented requirement list that describes the physical,
structural, financial, and other needs for a given product or part.

A requirement specification document may include hundreds of product requirements. One
important point is that the requirement specification is written or contributed by different stake-
holders, including customers, users, repair and maintenance teams, engineers, the design team,

and others, each with different knowledge and viewpoints.



Market Needs and Engineering Requirements

Conceptual Design
Embodiment Design

Design Tools Material Selection / Process Selection
Function Modelling
All Materials / All Processes
Viability Studies

Approximate Analysis

Geometric Modelling
Subset of Materials / Subset of Processes
Simulation
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Figure 1.1: Flow Chart for Product Design [1]

The requirement specification document of a product contains crucial information for its whole
product life-cycle activities and dominates these activities. For example, at the outset of the product
design, immediately after the function-to-form mapping activity [2], designers are compelled to
choose materials whose properties match with the design requirements of the overall product
design. In another case, during product disposal stages, different regulatory requirements play
important roles in deciding product recovery strategies. Matching the design requirements of a
product with an appropriate material, form, and process while considering other product life-cycle
activities and dependencies between them is not a trivial task; it needs specialized domain knowl-
edge. Whatever decisions are taken they must satisfy the product requirements.

It is obvious that the importance of the product requirements is understood and addressed to
certain extents [3]; however, essential gaps and challenges remain to be dealt with. First of all,

the information about product requirements is broad and complex. It is difficult to identify and



capture the complete requirement information [4]. At the beginning of a design project, what a
designer receives from the customer is just the high-level requirements of a product. However,
for a complete design, additional and detailed requirements across the product life cycle like
requirements for form, material, process, maintenance, and disposal are implicit, and it is hard
to capture them all by engineers/designers.

Another aspect of this challenge is that the complexity of the product requirements may in-
crease if any interactions among themselves occur. As an example, considering the financial
requirements, the designer may want to reduce the weight of a certain part by modifying the geom-
etry, which may lead to a compromise in the structural requirements, or by choosing lightweight
material, which may lead to a compromise in the material related requirements that both affect
process requirements.

In addition, variables used to describe design requirements are usually poorly understood in
the beginning and are expressed in abstract and conceptual terms. Therefore, a well-structured
and extensible semantic “requirement” model is necessary for intelligent machine interpretations.
The traditional approach for product design requirement storage is based on text documents,
which normally yield an unstructured and heterogeneous information base, and is unsuitable for
automatic machine processing.

Manually written and recorded product requirements may lead to inconsistencies and incom-
pleteness, and this unstructured natural language component is hard to analyze by the computa-
tional systems [5]. As shown in figure 1.2, informal, inconsistent, and incomplete requirement
specification may lead to unnecessary design feature conceptualization, production or structure
failure, different kinds of hazards, etc. Even though some structured formats (like XML) can
be used for design requirement storage, the level of machine intelligence is still limited, it can

4
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Figure 1.2: Product Life-Cycle and Requirement Activities

only “read” the data rather than “understand” the meaning of the data (data interpretation). For
example, a good design requirement specification model should enable computers to understand
the term ”“Good machinability”. The term “Good machinability” refers to the part machining
process characteristics which are defined by a variety of factors like acceptable surface finishes,
tool life, tool forces, and power consumption, etc.

Moreover, when developing a new product, most of the time, attention is paid to ensure that the
end products can achieve specified product performances. However, the effects of product form,
material, and manufacturing process on product performances might not be determined due to poor
information management; representation, mapping, exchange, and sharing of design parameters as
well as linking them to the design requirements which are shown in Figure 1.3 [6].

Another challenge for the requirement specification is that information flow becomes vague or
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Figure 1.3: Design Requirements and integrated Domains

unrecognized during Middle-Of-Life (MOL) and End-Of-Life (EOL) stages of the product life-
cycle [7]. Beginning-Of-Life (BOL) stage is supported by many information systems such as
Product Data Management (PDM), CAD/CAM, Knowledge Management (KM), and requirements
analysis tools such as Quality Function Deployment (QFD). These tools and information systems
make the flow of the product requirement and requirement-related information quite complete in
BOL. However, MOL and EOL phases have limited visibility for the requirement and product-
related information flow. This issue leads to difficulty in feeding information forward through
the product life-cycle stages. Controlling the flow of the requirement and product information

across the product life-cycle phases is very important to develop quality product design, execute an



adequate manufacturing process, change/upgrade product requirements, etc. Figure 1.4 shows the
product-related information at the different phases of the life-cycle and information flow through
the product life-cycle stages. All this information is made visible over the whole product life-
cycle by advanced technologies like the internet, wires communication, and Product Embedded

Information Device (PEID) [8].

Product Requirement and Related Information (Backward)

Beginning of Life (Bol) Middle of Life (Mol) End of Life (EoL)
\i |
Product Design Product Production Use | | Maintenance | | Service Disassembly | [Reuse
Specification Manufacturing [
Assembly
Development - - Recycling Disposal
Material Packaging
Production
Product Requirements Requirement Information Product Production Model ; .
S e Requirement Information quil D
"';j‘::l‘w &eslgr; forx , gAr; product/Machine Usag’e Data g,i;;::;;“.,‘,?_mmmo"
Flow Ma”“( m“”";ﬁs Efamle‘f“ CTM Maintenance Data/History Recycling/Reuse rate
Material { D:S‘;:;:gje:g:“ n o [ Failure Inf. == Environmental Effect Inf.
Shape
Process
Environment

Product Requirement and Related Information (Forward)

Figure 1.4: Product Life-cycle and Information Flow

The current solution for the management of product data and knowledge within the product
design process is enabled by the Product Life-Cycle Management (PLM) system. The PLM
system manages the product information across the entire life-cycle of a product from the be-
ginning, through engineering design and manufacturing, to service and disposal of products. The
PLM is a powerful tool that can work with advanced technologies to gather, store, and manage
product-related information. However, it has document-based management that might yield in-
teroperability and communication issues between designers, analysts, operators, and tools that are

involved in product life-cycle activities [9]. It is not strongly linked to the structured and integrated



representation and generation of the product requirements.

The final challenge is to define how and which product information is used to generate product
requirements through the life-cycle. Model-Based Systems Engineering (MBSE) has the ability
to increase the completeness of the requirements by providing a better way to capture, analyze,
share, and manage product information [10]. However, most of the MBSE tools and languages
require requirement construction manually that is open to human error and time-consuming [11].
Requirement generation requires a deep understanding of semantics and structure of product life-
cycle information over the whole life-cycle phases.

Therefore, an elaborate study must be done to aid designers/engineers for the formal represen-
tation and generation of the product requirements across the design and further life-cycle stages of
a product in the PLM.

In order to address the challenges above, this research explores the product requirements exten-
sively and proposes an integrated architecture for the product requirement knowledge management.
It supports a new level of product requirement information extraction, retrieval, storage, generation,
representation, and integration among product life-cycle stages by addressing different facets of
requirement specifications. The following activities are studied and done to build the requirement
knowledge management architecture. A Product Design Requirement Ontology Model (PDROM)
[12] that provides rich requirement semantics is developed by using Semantic Web (SW) tech-
nologies and ontologies. The PDROM is extended with the Structure-Behavior-Function-Failure
(SBFF) model to support the retirement generation with the representation of the requirement
rationale. Moreover, data structures of these models are implemented in the PLM to take advan-
tage of PLM’s information management. Finally, a computational method is created to retrieve

requirement information and knowledge from stored data in the PLM and streaming data that is



continuously generated from different product life-cycle phases.

1.2 Problem Statement

The requirement specification is carried out by the engineer/designer, and it heavily depends on
his/her own experience. There is no complete automated system to take full advantage of Computer
Aided Engineering (CAE) and digital thread solutions for the requirement specification. Current
product requirement management tools such as PLM tolls, ReQtest [13], etc. deploy requirements
as a document. This makes analysis and validation of the product requirements and execution of
the design activities based on the requirements difficult. Therefore, an integrated and automated
system that represents, generates, and validates the product requirements through the product life-
cycle is needed.

Based on a comprehensive study and initial review of the product requirements, requirement
specification development, MBSE, PLLM, and IM, as the core studies of the dissertation, the fol-
lowing research questions are answered in this dissertation:

* How to formally represent and automatically generate the product requirements and requirement-
related information across the design and further life-cycle stages of a product

* How to identify and capture the information and relationships regarding the product require-
ments across the product life-cycle phases

* How to extract and retrieve requirement semantics and information from informal, and textual
product requirements

These questions can be broken down into four partial research questions, which guide the scope
of the thesis:

* What technologies should be used to identify, represent, generate, and retrieve requirement
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information

* How to develop, implement, and validate an integrated product requirement knowledge man-
agement architecture

* How to develop, implement, and validate a product requirement information model

* How to develop a computational application that retrieves and infers product requirement
information

The following sections explain our scope and approach that offers solutions to these questions.

1.3 Scope and Overview of Thesis Approach

The requirement specification plays an important role at every stage of product development in the
PLM contrary to the common misconception that requirements specification is just a single stage
of the PLM [14]. Product requirement generation and specification of the requirements are mostly
carried out and completed at the outset of product development but their allocation process occurs
within the context of a larger system development life-cycle as well within whole PLM stages.
The requirement specification is a management and development process to define, document,
and maintain product requirements. This process is integrated with the system models under the
content of Model-Based Systems Engineering. In order to formalize requirement specification and
represent relations between the product requirements and the system models that consist of require-
ment metadata, this thesis proposes the PDROM. The “vee model” or “V-model” (figure 1.5) of
the product development life cycle illustrates that the system development begins in the upper left
with customer requirements and continues with deriving system and subsystem requirements while
showing relationships with system models and validation. While our main scope of this thesis
takes shapes on the left side of the V, formalization of product requirements, developing system
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Figure 1.5: V-model of the system development life cycle and Requirement Management [14]

models, and identifying relationships can help to automate the requirement validation process.
To address the thesis scope and manage (generate and formally represent) product requirements
and requirement-related information across the product life-cycle phases, this thesis proposes a

REquirement Knowledge Management Architecture (REKMA).

1.4 Proposed Methodology and Research Objectives

The thesis discusses mainly two broad topics; product requirement knowledge management and
information model development. This research addresses the product requirement representation
and generation in the engineering design field by focusing on the flow of the product requirements

information across the product life-cycle. It explores the product requirements extensively and
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proposes ontology-based information models that provide rich domain semantics for product re-
quirements and other product life-cycle domains mainly form, material, and process. These models
identify the key engineering parameters during the conceptual design and support a new level
of product domain information, extraction, retrieval, storage, and analysis by addressing product
requirements and requirement-related parameters. In this study, proposed models are integrated
and implemented in a single platform to formally represent and generate product requirements.
This research aims to improve design quality and provide a better insight into the design issues
while reducing the design process’ cost and time and eliminating human errors by proposing a
unique requirement specification methodology.

The general objective of this research is to develop a model-based architecture for product
requirement knowledge management. It is capable to extract and retrieve product requirement
knowledge, generate and represent multiple types of product requirements in a single computa-
tional environment that supports by both PLM and SW technologies. It supports the development,
representation, and analysis of the requirement specification in the product design and further
product life-cycle phases.

In order to validate the proposed methodology, this thesis discusses the use-case analysis.
Requirement specifications of an automobile brake rotor, a coffee maker, and an unmanned aerial
vehicle (UAV) are studied as proof-of-concept in this thesis.

The overall research methodology of this work is organized in five logical steps which include:

1. A review of the current works, technologies, and literature (Chapter 1 & 2),

ii. The development of new concepts and methodologies (Chapter 3 & 4),

iii. The implementation and testing of the developed concepts and methods (Chapter 5, 6 & 7),

iv. The overall evaluation of the results (Chapter 5 & 7), and
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v. The conclusion and possible future extensions of this work (Chapter 8).

The detailed information about each step is described in the dissertation outline:

1.5 Dissertation Outline

This dissertation is organized in eight chapters as depicted in figure 1.6, and description of each
chapter is narrated as follows:

Chapter 1 provides an introduction to the thesis by elaborating on the background and moti-
vation of this research, stating problem statement and research questions, discussing the research
objectives, and providing an overview of the thesis structure.

Chapter 2 reviews literature related to the research problems that address the first research
question(see figure 1.6) by establishing the background of requirement specification, IM, and
closed-loop PLM. This chapter first discusses the literature about the existing requirement spec-
ification and requirement management definition methodologies along with model-based design
methodologies. Next, it reviews the definition and description of IM and existing IM developments
in the domain of requirement specification. It also discusses strategies, methods, and tools of the
IM.

Chapter 3 addresses the first research question and discusses the proposed methodology for
the model-based requirement representation and generation. It introduces and discusses REKMA
and related technologies. This chapter also presents the roles of the ontology-based information
model, PLM system, and computational platform in the REKMA.

Chapter 4 comprehensively presents the development of PDROM that addresses the second
research question. The chapter starts with the product requirement-related information analysis in
the domain of requirement specification, which results in a high level of domain conceptualization.
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Afterward, the PDROM model is introduced to turn the product domain knowledge into standard-
ized product requirement models to support the specification of the requirements. Submodels of
the PDROM; material, form, product, and process are developed and discussed.

Chapter S presents the formal implementation of the PDROM in the Protégé and the instanti-
ation of the proposed model. It is discussed how the PDROM can store product requirements and
detect incompleteness or inconsistency in the requirement specification. Also, several semantic
inference and query rules are defined and discussed in this chapter.

Chapter 6 mainly discusses the role of the PLM system and computational platform in the
proposed requirement knowledge management architecture. It first presents the implementation of
the PDROM data structure in an existing PLM tool. Then, it introduces the development and use of
the computational platform which is integrated into the PLM system. Finally, this chapter presents
a communication mechanism among a product, the PLM system, and computational platform
to transport data and file and to convert relational data from the PLM system into the Resource
Description Framework (RDF).

Chapter 7 argues the third research question which is about how to extract and retrieve product
requirement semantics, information, and knowledge from structured, unstructured, informal, tex-
tual product requirements, and requirement-related data. After a comprehensive study of require-
ment semantics and Natural Language Processing (NLP) techniques, a method for the requirement
information and knowledge retrieval is developed with the use of machine learning. In addition,
chapter 7 discusses the linguistic analysis of the product requirements. Predefined product re-
quirement syntaxes to write requirements in natural language and automatical generation of the
textual requirements are discussed and implemented in this chapter. This chapter also presents

the analytical applications that are developed to analyze product requirements and retrieve product
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requirement knowledge and information from product life cycle data. To validate the proposed
method, case studies are presented. The concepts of the digital thread and closed-loop PLM for
the product requirement information flow are discussed.

Chapter 8 concludes this dissertation and proposes directions for future works and research.
The dissertation is summarized, and key findings and main thesis contributions are highlighted. It
starts with a summary of the whole dissertation. Then, the research contributions are described.

Finally, the limitations of the research work in the dissertation are discussed.

Research Motivation:
Informal, inconsistent and incomplete requirement specification increases production cost and
time, and they lead to human errors, unexpected and unnecessary features; Overdesign and
Underdesign, and causes severe profit loss

Research Objective:
Development of an integrated requirement knowledge management architecture that
enables users to extract and retrieve product requirement information, generate and formally
represent multiple types of product requirements in both PLM and SW environments

Problem Statement: Hypothesis and Research Questions:
A comprehensive requirement model and management architecture includes PLM and SW
technologies are needed for the formal and efficient product requirement specification

| Research Research Research Research Research
Question 1: Question 2: Question 3: Question 4: Question 5:
| How to extract and
. How to develop . )
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N represent and and capture the the integrated . .
understanding N information from
automatically product product .
Introduction of the ) ; informal, and textual
. generate the requirement requirement
requirement . . product
. product information and knowledge .
specification, h . . requirements to
requirements and relationships management .
IM and closed- " . convert them into
N requirement-related || across the product architecture and
loop PLM in ) ) ) N the proposed
X information? life-cycle phases? what technologies .
literature? representation
should be used.
formats?

) 2
Chapter 2 (o Cha’pte r3) (g Cha"F_ma r485)(0 Ch!pter 6 )(c Chapter7 )

Development of the| Deyelopmept Development of < Chapter 8
Deve!opment of ontology-based and integration the computational
Literature the integrated product of the PLM applications for the
Review product * requirement * system, * requirement B
requirement computational information

information model,

knowledge and platform and extraction and
mar:_:gement implementation EETLE IO retrieval (Syntax
GICHTSCLIS and instantiation of mechanism to and semantic )

g (I/ 5 the model in OWL (35 build the REKMA @ analysis) )

Figure 1.6: The Overall Structure of the Dissertation
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CHAPTER 2

LITERATURE REVIEW AND BACKGROUND

This chapter highlights the gaps and weaknesses of the current requirement specification method-
ology, requirement management tools, and techniques. Ontology and PLM which serve as main
foundations in our proposed methodology are also examined. Besides that, normally as a precursor
of the Ontology model, an Information Model, which is a prevalent study area to identify and
support product-related information, is presented as well. In the following paragraphs, some
significant research works are discussed concerning two topics: (i) Information Model & Ontology

and (i1) Requirement Management & Related Technologies

2.1 Information Modeling and Ontology

Information modeling [15], which identifies the concepts and relationships between these concepts
in a domain of interest, originally comes from software engineering for building system architec-
tures. It is applied in several domains including manufacturing and product design. The advantage
of using an information model in this research is that it can provide a shareable and structured
information specification for the product requirements, and it is good at representing complex and
interrelated product domain artifacts. An information model has great abilities to provide different
generalized or abstract concepts with regard to a specific domain, different relationships between
concepts, constraints, rules, and operations to specify the information of the domain context [16].

In this dissertation, we sometimes use the term Ontology, Ontology Model, or Ontology-based
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Information Model instead of the Information Model (IM).

A tremendous effort is devoted to Information Modeling by the National Institute of Standards
and Technology (NIST). Several examples include the NIST Core Product Model (CPM) [17],
which intends to capture the full range of engineering information that is commonly shared in
product development. NIST has also developed an Open Assembly Model (OAM) [18] which
extends CPM by enriching the information representation with more information about the func-
tion, form, and behavior of an assembly. Another recent attempt by NIST is on the model-
ing of the disassembly process by highlighting the information content used for disassembly
sequence identification, feature modeling, equipment modeling, and inspection process modeling
[19]. Information modeling is also used in product design standards. One example of this is ISO
10303 which is an open standard for representation and exchange of the product manufacturing
information[20]. It is informally known as STEP, the STandard for the Exchange of Product Model
data. The STEP defines a neutral representation for product data over its entire life cycle.

Ontology is a formal description of objects and their properties, relationships, constraints,
and behaviors [21]. As a natural extension of Information Modeling, ontology can model richer
semantics in a domain of interest with formalized Semantic Web (SW) languages like Ontology
Web Language (OWL) [22] which is based on RDF (Resource Description Framework) [23]. They
define a conceptual and rigorous organization of concepts about the selected domain. Concepts
such as classes, attributes, functions, rules constitute a semantic network. Ontologies mainly
consist of classes and their relationship but they are not limited to taxonomic hierarchies of classes.
Any axioms that constrain the possible interpretations for the defined terms can be added if needed.
Ontology is a very powerful tool in the application of knowledge representation and suitable to
solve problems such as diagnosis, causal analysis, discovery and design, and knowledge sharing
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and reuse in engineering and manufacturing. In such a context, a significant amount of research
works are already done on developing semi-automated or automated ontology applications in the

field of product design and manufacturing.

2.1.1 Ontology in Product Design and Manufacturing

In the manufacturing area, some IMs or ontologies are developed at different levels for different
purposes over the years. Kim et al. [24] propose an ontology applied to the domain of the
manufacturing for assembly design. They represent an OWL-based assembly design ontology,
with explicit semantic rules which are written in Semantic Web Rule Language (SWRL) [25],
to differentiate ambiguous assembly and joining relations. Lemaignan et al. [26] develop MA-
SON (Manufacturing Semantics Ontology) that presents a draft ontology for the manufacturing
domain to formally capture the concepts related to the manufacturing industry. They work on
the semantic sufficiency check of OWL in representing manufacturing knowledge and create their
ontology model based on three fundamental concepts: Entity, Operation, and Resource. Also,
they propose two implementations of their ontologies in the domains of automatic cost estimation
and a multi-agent system for manufacturing. Usman et al. [27] summarize the major formal
and semi-formal ontologies in manufacturing domains that are published between 1996 and 2010.
They propose a Manufacturing Reference Ontology (MRO) which aims at defining a core set
of manufacturing concepts critical for developing interoperable manufacturing systems. Ameri
and Dutta [28] develop an ontology for Manufacturing Service Description and introduce the
Manufacturing Service Description Language (MSDL). It provides the primitive building blocks
required for the description of a wide spectrum of manufacturing services to demonstrate an

ontological approach for the representation of manufacturing services. A rule-based extension of
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MSDL based on the SWRL is introduced by Ameri and Mcarthur [29] to enhance the expressivity
of MSDL. It supports the automated inference and reasoning capabilities of the search engine.
MSDL covers technological aspects of manufacturing capabilities and needs mainly focus on
mechanical machining services such as machine tools, surface finish, etc. Ameri et al. [30] propose
the metal casting process extension to the MSDL to represent the manufacturing capability of the
MSDL. It shows that developed ontologies can be extended to the sub-domains of the interest. In
[31], Giovannini et al. present an ontology-based system to support manufacturing sustainability.
The system acts as a sustainable manufacturing expert that can automatically identify a sustainable
production scenario.

Graves [32] draws attention to the reasoning capability of ontology engineering for product
design. In [33], Wang et al. propose an ontological approach to support design decisions effectively
and efficiently. They analyze what kind of manufacturing knowledge is needed for the product
design decision. Besides, ontology models are developed to eliminate human interaction in the
engineering product analysis which is performed right after creating geometry modeling of the
product and assigning materials [34, 35, 36]. These analyses include Design for X (DFX), sustain-
ability, Finite Element Method (FEM), etc. Creating an automated product analysis framework by
defining design semantics and mapping it into product analysis provides benefits for engineering
product design by enabling autonomous product requirement validation and execution. It also
assists users to solve a complex engineering problem without having a high level of expertise to
understand a requirement specification.

A different study for ontology in the manufacturing domain is published by Benjamin P., Patki
M., and Mayer R. to show the advantages of the ontology management methods and tools for

modeling and simulation [37]. They outline the technical challenges in distributed simulation
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modeling and show how to deal with these challenges by applying ontology-based methods. They
highlight the critical roles of ontology in simulation modeling.

In product design, material selection is another area of study for ontology engineering. It
contributes to the development of IM for product design. Usually, the main goals of material
selection are to minimize weight, cost, and environmental impact, etc. while meeting the require-
ments of a product. One of the notable methods for material selection is developed by Michael
Ashby [1]. Besides this, there are other material selection studies using ontology. Ashiso and
Fujita [38] propose a web ontology method for design-oriented material selection which formalizes
the process of mapping material properties into material substances. They prove their method
with an example of the mapping creep property into the design data. Another study which is an
ontology-based knowledge framework for automatic material selection in the engineering domain
is presented by Zhang et al. [39]. They propose an ontology which uses Semantic Query-enhanced
Web Rule Language (SQWRL) and supports knowledge retrieval and reason approach for material

selection.

2.1.2 Ontology Based Approach for Product Lifecycle and Knowledge Management

The current solution for the management of product data and knowledge within the product life is
enabled by the product life-cycle management (PLM) system that is the process of managing the
entire lifecycle of a product from the beginning, through engineering design and manufacturing,
to service and disposal of products. However, PLM itself does not strongly support product data
semantics because the PLM has document-based manipulation. It might create interoperability
and communication issues between designers, analysts, operators, and tools which are involved in

product life-cycle activities [40]. To support the sharing and re-use of modeled knowledge within
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the PLM systems, it is useful to define a common vocabulary that can be structured based on an
ontology for shared knowledge.

Advanced technologies like the internet, wireless communication, and product embedded in-
formation device (PEID) such as RFID, sensors, on-board computers, etc. make product life-cycle
data and information visible and controllable across the whole product life-cycle. The PLM with
these technologies becomes a much more powerful system that can access, gather, store, manage,
and control the product-related information. Especially, the PLM can manage the information
during MOL and EOL [41]. It allows all the actors who play a role during the life-cycle of a product
such as managers, designers, service and maintenance operators, recyclers, etc. to track, manage
and control product information at any phase of its lifecycle [42]. This system, called Closed-
loop Lifecycle Management (CL2M) [43] allows users to control information flow across product
life-cycle activities and analyzes gathered product-related data to create knowledge and make
some decisions. The outcomes go back to the users, designers, manufacturers, suppliers, service
operators, etc. so that the information flow can stay in the loop and be closed through the whole
product life-cycle [44]. However, there is a need to standardize the knowledge representation and
integration for the PLM product development solutions. Ontological knowledge-based approaches
are proposed to fill this need. Recent works dealing with ontologies show that ontologies have an
important role in the field of the PLM for the information exchange process. They propose a PLM
solution strategy for semantic technology. In [45], Zhan presents an ontology-based knowledge
architecture to integrate different CAD/CAE programs for the PLM applications.

Jun et al. [46] develop an ontology model to design the structure of metadata that describes the
contents of product life-cycle data in the Closed-Loop PLM. Matsokis and Kiritsis [47, 48] propose

their works for ontology in the PLM to deal with the lack of reasoning capabilities as well as lack
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of interoperability and integration of elements of today’s PLM systems and models. These studies
encourage us to consider the requirement specification under the context of the Closed-Loop PLM

because the requirement information flows back and forth through the product life-cycle phases.

2.2 Relationships in the Product Design Domains

In order to understand the relationship between design requirements and product related domains
such as form, material, and process, some studies are reviewed in this section. Some manufacturing
process activities are emphasized here because the manufacturing process is influenced by both ma-
terial and form and vice versa. Many factors influence each activity of the manufacturing process.
These factors must be well known and controlled during the process to create a product with desired
properties. They must be indicated in the requirement specification as product requirements and
considered during a product’s conceptual design stage. These factors are reviewed because they
are used to develop an expert system as a part of the REKMA in this research.

In a powder metallurgy process; compaction pressure, sintering temperature, compaction and
sintering time, etc. are some of the factors that have effects on final product material properties [49,
50]. At the same time, powder type and characteristics are the factors that must be considered to
define compaction type, sintering temperature, sintering atmosphere, etc. [S1]. Injection molding
is another manufacturing process that also shows some dependencies among material, form, and
process. Many experimental studies investigate the effect of injection molding process parameters
on material properties especially the tensile strength of the final product. Results show that process
parameters such as bulk material properties, melting temperature, injection pressure, cooling time,
and holding time have effects on properties of injected molded product [52, 53]. Holding pressure,
injection speed, and melting temperature significantly affect the tensile strength of material [54,
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55]. Process parameters not only affect the material properties but also affect the shape characteris-
tics of the molded product. The mold temperature, melting temperature, packing pressure, packing
time, and injection time are the process parameters that have effects on the surface quality of the
molded product [56, 57, 58]. One of the critical problems related to the shape of the injection
molding product is shrinkage. Studies show that shrinkage can be minimized by setting optimal
process parameters which are basically melting temperature, injection pressure, refilling pressure
and cooling time [59, 60]. Another study shows that injection speed is the main factor for the weld
lines [61]. These factors are embedded in the REKMA as rules providing requirement information

for users to determine additional product requirements.

2.3 Product Requirement Management

Requirements representation is a very difficult job that needs detailed study on related domains
because of its complexity. In order to develop an ontology-based design requirement model, first,
entities and relationships between those entities for the product requirements are needed to define.
The below works help us understand the model-based studies on the requirement specification
and develop a requirement model. Current techniques that are used for product requirement
management are also reviewed below to define requirement model classes and relationships.

Requirement management consists of a set of technologies that ensure the validity of require-
ment documents, and satisfy the needs and expectations of customers and other stakeholders in
different phases of the product life cycle. It has mainly three activities; requirement elicitation
(requirement extraction and storage), analysis (classification and prioritization of requirements),
and specification (modeling and specification of requirements). Several notable research works on
this topic are published over the years.
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The most popular technique for requirement specifications in organizing customer and techni-
cal requirements is Quality Function Deployment (QFD) [62] which is developed in the late 1960s
to early 1970s, in Japan, by Yoji Akao. This management tool is used for a visual representation
of mapping customer needs into appropriate engineering requirements. Later, the traditional QFD
approach is extended to the Fuzzy Quality Function Deployment (FQFD) [63]. It incorporates
the uncertainty issues of the requirements. Besides QFD and FQFD, Stauffer and Morris [64]
discuss a taxonomy-based approach (MOOSE) for eliciting customer requirements. Similarly,
Rounds and Cooper [65] study product requirements using taxonomies of environmental issues.
Another approach to translating customer requirements into the design technical attributes is the
Customer Optimization Route and Evaluation (CORE) model [66] which is developed by Mousavi
and his colleagues. This model considers the interaction between design and market needs during
the process of translating requirements. One of the notable studies for requirement specification
is carried out by McAdams et al. [67]. They propose a matrix-based approach to identify the
relationships between product functions and customer needs. These research works encourage the
use of taxonomy for product requirements and model-based requirement specification; however,
their works identify only a specific part of the product requirements, and the overall structure of the
requirement specification is lacking in their models. There are many standalone tools developed
to help users in requirement generation and representation. The product requirements can be
represented with different forms using textual and non-textual notations. However, the needs of the
stakeholder are usually expressed through the requirement statements written in natural language
that is formed by human written language. While this way of textual requirement representation is
easily generated and read, it creates instability and risk and it is considered informal representation.
In order to increase precision and minimize problems associated with natural language within a

24



requirement sentence such as ambiguity, quality, etc., use of non-textual notations are promoted
with proposed representation and analysis tools such as graphical notations like UML and SysML,
requirement management tools like IBM Telelogic Doors and formal notations such as Z notation
[68]. However, the representation in non-textual notations requires information translation from
the diagrams to natural written language (textual notations) to compose requirement statements
because non-textual notations might be difficult to understand by most people without having a
background knowledge in systems or software. The most preferred techniques to create quality,
unambiguous, consistent and complete textual requirements is the use of formalized requirement
syntaxes and break up the statements into their various entities [69] which are the alternatives to the
plainly written text. ARIES [70] for representation and presentation of requirements knowledge
is one of the earliest projects. IBM Requirements Management tool, DOORS [71] is one of
the popular requirements management and visualization software in today’s marketplace which
can transform unstructured texts of requirements into structured texts. It also enables users to
capture, trace, analyze, and manage changes to information while it is interoperable with other
tools, including life-cycle management, team collaboration, and systems/software engineering.
Another requirement management tool, ReQtest [13] is a fully cloud-based tool that is used to
manage requirements such as functional, non-functional, or any other requirements. Besides these,
TESSI [72] is another notable requirement management tool. Different than the above tools, the
TESSI composes of ontology-based components to transform the requirements specifications into
a UML model. Kroha et al. [73] indicates that it is one of the earliest attempts for consistency
checking of requirements and validation of the requirements specifications by using Semantic
Web technology, and autonomous requirement texts generation by using Natural Language Process

(NLP) advantages.
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2.3.1 Ontology in Product Requirement Management

Ontological approaches are becoming popular to represent and interrelate many types of knowl-
edge in the Requirement Engineering (RE) area. Many existing ontology-based studies are con-
ducted for requirement modeling in RE [74]. Lee and Gandhi [75] develop an ontology-based
active requirement engineering framework, Onto-ActRE that integrates various RE modeling tech-
niques to analyze, represent, and model software-intensive systems and also to deal with their
complexity. Another work in the domain of product requirements is done by Farfeleder et al. [76].
Their work proposes a guidance system for requirements elicitation based on domain ontology.
In [77], Sommerville proposes an ontology-based framework for supporting semantic-based RE.
Kiicherer [78] utilizes ontologies to improve the quality of software requirements specification that
contains many individual requirements and show how RE can be improved with domain ontologies.
In another recent study Guizzardi et al. [79] use ontology for requirement elicitation and provide
an ontological interpretation of the non-functional requirements while distinguishing between
non-functional and functional requirements. It is grounded on the Unified Foundational Ontology
(UFO) [80]. Kaiya and Saeki [81] emphasize the importance of domain knowledge and domain
ontology on eliciting requirements and discuss the quality of requirements such as completeness
and consistency with their proposed Ontology-based Requirements Elicitation (ORE) method.
Avdeenko and Pustovalova [82] implement their proposed ontology that is designed for the ver-
ification of requirement specification and the completeness and consistency of the requirements
in Protégé ontology editor. OntoReq [83] allows users to generate requirements while formal-
izing related knowledge. It provides automated validation and measurement for the requirement

knowledge.

26



One of the earliest studies in the ontology-based requirement knowledge representation is
discussed in [84]. They propose a requirement ontology for engineering design that captures design
knowledge and represents design requirements to supports a generic requirements management
process. In the NISTIR report, Weissman et al. [85] discuss a formal model to represent product
requirements. This model relates product requirements to the design solution which is represented
by CPM and OAM. They used many domain model taxonomies such as product, material, and
function. Some of these taxonomies also are used in this dissertation to build the REKMA. While
this model is unique for requirement representation, it still needs autonomy to build requirement
specifications and capture requirement-related information. In order to provide requirement knowl-
edge inference in the Requirements Engineering process, Riechert et al. [86] present a semantic
structure for capturing requirements relevant information and developed requirements engineering
ontology (SWORE) that use and interlinking with domain ontologies. Kaiya & Saeki [87] proposed
a domain ontology technique for software requirements analysis that contains domain-specific
concepts, relationships, and inference rules. Inference rules are used to process a requirements
document semantically. Their approach detects requirement problems such as incompleteness and
inconsistencies by automating semantic analyses with lightweight NLPs.

These reviews show that RE activities such as requirement elicitation, verification of require-
ments, completeness and consistency check, and requirement specification are implemented using
ontologies and other related technologies in many studies. These studies point that the model-based
representation of requirements using ontologies instead of the requirement document written in a
natural language offers a more effective requirement specification, analysis, and validation. How-
ever, there is still a need to support model-based requirement specification with the requirement

information extraction from a requirement document to represent them in the proposed models.
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2.3.2 Linguistic Methods and Information Extraction in Requirement Management

In this dissertation, a computational application that is part of the proposed requirement knowl-
edge management architecture is developed to extract requirement information from the textual
requirement description. The processing of unstructured or semi-structured product requirement
and related domain documents are studied to extract and structure product requirement information
through natural language processing (NLP), information retrieval (IR), and information extraction
(IE). Some of the studies that propose information extraction and retrieval models in the engineer-
ing domain using the above technologies and ontology are reviewed in this section. NLP tools and
machine learning (ML) techniques are used to extract certain structured types of information from
unstructured and/or semi-structured natural language text. Structures of the extracted information
are defined with ontological models. Information retrieval (IR) that is integrated by an ontology
model attempts to analyze text and extract their semantic contents [88, 89]. In many studies,
authors suggest that ontology should be part of the information extraction and retrieval [90, 91].
Ontology-based information extraction and retrieval have three main activities; syntax and seman-
tic analysis of domain knowledge, domain ontology development, and semantic rules generation.
In [92], Oro and Ruffolo discuss the development of a system that processes PDF documents and
presents the output in the form of an ontology. Similarly, many other studies indicate ontology
has a great potential for automatic processing of the information in the natural language text and
creating semantic contents.

In the manufacturing domain, ontology-based information extraction and retrieval are studied
by [61]. This study describes a framework for design information extraction and retrieval and

aims to automatically construct a structured and semantics-based representation from unstructured
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design documents based on predefined design information. In another study, these authors propose
an ontology-based query processing to improve the performance of design information retrieval
[93]. In this dissertation, a similar process is followed to build the ontology-based information
extraction and retrieval model for the product requirement knowledge retrieval. Verma and Kass
[94] develop Requirements Analysis Tool (RAT) that automatically performs a wide range of
syntactic and semantic analyses on requirements documents using domain ontologies. This tool
enables users to write requirement documents in natural language based on standardized syntax.
Similar to this study, requirement syntaxes will be discussed and used for autonomous requirement
text generation in chapter 5.

Another powerful technique which is the core of our ontology-based information extraction
application is Named-Entity Recognition (NER). NER is a subtask of information extraction and
it seeks to locate and classify elements in text into pre-defined categories that are identified in
domain ontologies. Ontology-based named entity recognition, and information extraction are
used successfully in different domains such as the business intelligence domain [95]. Saggion
et al. propose an ontology-based extraction and merging in the context of a practical e-business
application. Yasavur et al. [96] develop a behavioral health ontology and design a named-entity
(NE) recognizer to identify the lifestyle change information. Their named entity recognizer can
automatically tag words and phrases in sentences about the lifestyle with the pre-defined names
contracted in the ontology model. Similarly in this thesis, domain-specific tags of the product
requirements such as product, function, flow, material, shape, etc. are identified in the proposed
requirement ontology and a requirement named entity recognizer is created to automatically tags

the requirement words.
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2.4 Summary and Limitation of Current Studies

All studies, requirement management tools, and techniques reviewed above show that the use
of ontology, NLP, and Al are growing fast in information extraction and knowledge management.
They encourage the model-based representation and generation of the product requirements instead
of the document-based specification. Information representation and integration are very difficult
jobs in product design domains. They should be studied in detail because of their complexity.
While in the beginning, designers/engineers start the requirement specification using customer re-
quirements, but they must deal with very complex, detailed, and interrelated product requirements
such as performance, environmental, finance, manufacturing, and recycling, etc. at the further
design and product life-cycle stages. They must also consider the relevant laws and regulations
when they are generating product requirements.

Our research shows many tools and techniques are developed for product requirement man-
agement. Some of their advantages and limitations are discussed in table 2.1. This review shows
that a structured requirement data model for the automatic requirement knowledge management
and requirement specification is still lagging. It should help the designers/engineers to identify and
analyze the product requirements, represent requirements in a structured form, inference require-
ment information by using the relationships between product domains, and support requirement
generation by showing design rationale. One key component towards the development of such
a model-based approach needs the incorporation of the Information Modeling, the PLM, and the
NLP into the product requirement specification.

In the current product requirement management, the development of the requirement specifi-

cation has the following limitations;
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Table 2.1: Overview of Requirement Analysis Tools & Techniques

Tool&Technique

Scope

Limitation

SysML [97, 98]

Formal description supported
by graphical models and tex-
tual description

* requires training

* does not support autonomous text genera-
tion which requirement text must be manually
generated through capturing information from
other diagrams

* requirements are mainly expressed using nat-
ural language

Semi-formal description sup-

* only works within controlled natural language
requirements

QuARS [99] ported by structured textual | * does not support requirement generation and
description graphical representation
* only supports phrasal analysis
Semi-formal description . .
supported by  structured * requires training
RAT [100] . * time consuming
textual * - description and | | does not support requirement generation
graphical models pp 4 £
* does not provide any taxonomy
KAOS [101] Formal dF:SCI'lp'[lOIl supported | © tlme.consummg . ‘ '
by graphical models * requires users to write requirements in formal
description
Formal description supported | * graphical model generation is limited
TESSI [102] . . .
by graphical models * does not support requirement generation
Semi-formal description sup- : ?;gﬂgezlii;?ﬁ;zable
DOORS [71] ported by structured textual d £

description

* neither build any models nor generate require-
ments

* Limited autonomy and formalization in the requirement generation and representation in the

product design and further life-cycle phases that require:

— Formal representation of the product requirements

% Both textual and ontological representations

% Representation of the product requirements with requirement rationale
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— Autonomous requirement generation

« Inference of the requirement information

* Requirement text generation using formalized syntaxes

* Limited visibility of the product requirement information in the MOL and EOL phases that

requires:

— Requirement information extraction using product MOL and EOL data

— Support for the requirement specification process by analyzing the product MOL and

EOL data

* Performing the requirement specification within the closed-loop PLM concept.

To help designers/engineers and support product life-cycle activities in terms of the requirement
generation and representation, an ontology-based integrated requirement management architecture
within the closed-loop PLM concept is developed in this work. It incorporates semantic knowledge
of the product requirements in the product life-cycle activities, syntax, and semantic analysis using

NLP tools, and computational applications supported by Al techniques.
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CHAPTER 3
MODEL-BASED PRODUCT REQUIREMENT REPRESENTATION AND

GENERATION METHODOLOGY

In this section, the REquirement Knowledge Management Architecture (REKMA) that supports
the formal representation and generation of the product requirements is proposed and discussed.
This chapter addresses the first research question (How to formally represent and automatically
generate the product requirements and requirement-related information?) and describes the method-
ology of the model-based requirement representation and generation. This chapter first discusses
the overview of the proposed REKMA. Then it presents the roles of the ontology-based information
model, PLM system, and computational platform for the REKMA. Finally, it explains the proposed

product requirement representation and generation procedures.

3.1 Requirement Knowledge Management Architecture

Every routine product design generally starts with the specification of a set of requirements. If
these requirements are already formalized into a set of mathematical equations and constraints,
it will be easy to represent them; however, requirements often remain implicit and are difficult
to formalize. Most of the requirements represented in a specification document come from three
sources: (1) from the product user who describes the requirement quite broadly, mostly in an
informal way; (2) from the “real” world constraints; the requirements come from the domain

knowledge of the product design, manufacture, product usage and maintenance, and disposal; and
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Figure 3.1: The Requirement Knowledge Management Architecture

(3) from the product synthesis and analysis phases. The requirements generated during product
synthesis and analysis phases must satisfy other necessary product requirements that come from
source (1) and (2) to control the design procedure. It is hard to capture all requirements while
maintaining consistency between them. Therefore, any formulation of requirement specification
remains difficult and becomes very knowledge-intensive. A knowledge-based approach is used to
support the product requirement representation and generation. It translates an informal, vague
requirement statement to a set of formal criteria.

In this dissertation, a REquirement Knowledge Management Architecture (REKMA) as shown

34



in Figure 3.1 is proposed. It captures product requirements and related information within the
data structures of the proposed information model(s), manages them within the PLM system and
computational platform, and stores them as both graph data model and relational format. In
this architecture, ontology-based information models are developed to define product requirement
classes and relationships between classes. They provide a huge set of predefined requirements
metadata for the requirement specification. The PLM system is used as a data source and a user
interface for the requirement knowledge management. It enables users to access and manage
product requirement data and documents. The computational platform is created to convert any
product requirement inputs into the proposed requirement representation format. It generates
requirement information from the requirement and related data stored in the PLM. It also generates
requirement texts by using the generated requirement information to support the development of
the requirement specification document. It then helps designers/engineers to analyze and validate
product requirements by checking the completeness and consistency of the requirements. Finally,
this architecture has two phases to complete the requirement information flow; data and file trans-
portation between the PLM system and computational platform and data transformation to make
requirement data available in the Resource Description Framework (RDF) format.

I-Semantec platform [103] which studied the necessity of PLM and SW integration is inspired
to develop the REKMA. Some reasons are discussed here to explain why this architecture is
needed for requirement management. First of all, the relationships between product require-
ments and product life-cycle data might be complex. An ontological model, which is one of
the major parts of SW technology is a good candidate to represent these kinds of relationships.
Secondly, product requirement management across the product life-cycle phases needs access to

many product-related data. PLM is the current solution for the management of product data and
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knowledge within the product life-cycle. So, the PLM is a good candidate for the management
of the product requirements and related data. Thirdly, the challenges, such as interoperability,
knowledge exchange, and re-use of the product information are major problems in the PLM.
Semantic Web technologies support knowledge sharing, data transfer, and information re-use.
Ontologies, part of the semantic web, can be used to bridge the data interoperability gap between
various software systems and support communication through product life-cycle. Lastly, the
semantic web provides better cooperation between humans and machines with the interpretable
semantic contents of the product requirements [104]. In order to address these issues and to manage
(identify, capture, validate, store, distribute, and maintain) product requirement information in the
product design and during the product life-cycle phases, REKMA is created by bringing PLM and
Semantic Web technologies together for the formal representation and generation of the product
requirements.

The descriptions of the ontology-based information model, PLM system, and computational

platform are narrated in the following sections.

3.1.1 The Role of the Ontology-Based Information Model in REKMA

As discussed in chapter 2, the information model identifies the concepts and relationships between
these concepts in a domain of interest. A comprehensive requirement information model is devel-
oped in this dissertation and discussed in chapter 4. Three types of product domain knowledge are
needed to develop a requirement information model:

1. Domain meanings of the product requirement concepts and relationships

ii. Physical and behavioral information for product-related domains that provide insights

regarding product requirements
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iii. Descriptions and rules about how domain models interact with one another
To incorporate all these types of knowledge into the product life-cycle and to enable the
interoperability and traceability of them, information models should be explicitly and formally

captured and linked to the computational platform and PLM system.

PLM System
e — _ _______ RDB Schema,
Domain Data XML Schema, ...
— Model(s)
1
Ontology, L Ontology-Based Computational
UML Class Di - ; ||
ass blagram \\\ Information Model(s) Platform _
\
n \
1-Product Design \| Information Computational
Requirement Model Model(s) Applications
2-Material Model '

C, Python, Java, :
3-Process Model : CLIPS, Jess !
4-Shape Model Rationales/ ——3 [ AT-based. Simulation-based.

SWRL L _-” Rules Knowledge-based
T ru,leS, ) ‘ L Computational Apps. ....

Figure 3.2: Information Models in the Requirement Knowledge Management Architecture

In this dissertation, product requirement related information, knowledge, and relationships are
captured into the information model(s) and rationales as shown in Figure 3.2. The rationales are
used to describe the rationality of product design and other life-cycle information with the product
requirements. They are used to support information models for obtaining the semantic meaning of
the domain concepts. The rationals are implemented in the computational applications to reveal
the behavioral knowledge of a product in the requirement representation and generation processes.
Rationales of the product requirements and related information are formally represented as rules to

make them machine-processable and understandable. The SWRL (Semantic Web Rule Language)
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[25] language is used to build rules in OWL. The rules can be implemented in CLIPS and Jess rule
engines.

Here, the ontology-based information model(s) provides a common terminology for the appli-
cation domains that are the representation of product requirements and requirement generation.
The ontology-based information model(s) also represents the graph data structure for the RDF
knowledge base. RDF is a suitable language for the modeling of the product requirement and
requirement-related data because it can describe the requirement entities and the relationships with
a simple modeling approach. RDF knowledge base stores the product requirement data for the
SW applications. The detailed descriptions of the proposed information models for the product
requirements and related domains are presented in chapter 4 and their formal implementations are

discussed in chapter 5.

3.1.2 The Role of the PLM System in REKMA

The current solution for the management of product data and knowledge within the product life-
cycle is enabled by the PLM systems. The PLM is the process of managing the entire life-cycle of
a product from beginning to end through product design, manufacturing, service, and disposal
phases. It is a powerful tool that can work with many product development technologies to
gather, store, and manage product-related information. However, the PLM itself is not strongly
linked to the model-based representation of the product data because PLM has document-based
manipulation. This issue of the PLM might yield interoperability and communication problems
between designers, analysts, operators, and tools that are involved in product life-cycle activities
[40].

In PLM, all product life-cycle data and information are made visible and controllable over the
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whole product life-cycle using advanced technologies like the internet, wireless communication,
and product embedded information devices (PEID) such as RFID, sensors, on-board computers,
etc. The PLM under these technologies became a much more powerful system that can access,
gather, store, manage and control product-related information, both before and after a product
delivered to the customer and up to its final destination [41]. It allows all the product stakeholders,
such as managers, designers, engineers, service and maintenance operators, recyclers, etc. to track,
manage, and control product information at any phase of its life-cycle [42]. This PLM system is
called the Closed-loop Life-cycle Management (CL2M) [43] that allows stakeholders to control
requirement information flows across product life-cycle operations and analyze product-related
data in order to create knowledge and make decisions. Every downstream decision/outcome is
then feedbacked to the product’s earlier life-cycle phases so that stakeholders can access those
decisions/outcomes. All information is now available in a closed-loop and product information
flows back and forth through the whole product life-cycle [44]. Every requirement specification
document as a whole and each individual requirement in the document have their life-cycles
across the product life-cycle. Unlike traditional PLM systems [105], CL2M in requirement knowlI-
edge management focuses on data management and information flow, and supports the generation
and reuse of the product requirement knowledge. It enables all stakeholders to access product
requirement-related information on-demand throughout the product life-cycle phases.

In this architecture, the PLM system is used as a data repository, a knowledge source, a files
storage, a user interface that the user can enter and access to product requirement related data and
documents. It is also used as a management tool to control requirement information flow across
the product life-cycle phases. In this dissertation, a PLM tool (Aras Innovator) is further enhanced

using the data structure of the proposed requirement information model and integrated with a
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computational platform for the requirement information extraction and retrieval. The detailed

descriptions of the PLM system are presented in chapter 6.

3.1.3 The Role of the Computational Platform in REKMA

Another main part of the REKMA is the computational platform. It has three essential phases:
extraction, recognition, and information exchange. The computational platform extracts and re-
trieves the product requirement semantics from the product data stored in the PLM system. The
types of data stored in the PLM system and processed in the computational platform are product
requirements and requirement-related data such as requirement text, bill of materials (BOM),
manufacturing, assembly, or part details, etc. The goal of the extraction and recognition phases
is to reorganize and formalize the product requirements and related knowledge to enable a formal
requirement representation and autonomous requirement generation. The computational platform
supports the two-way data exchange between the computational platform and the PLM system. It
also translates the product requirement data and metadata from the PLM into the RDF knowledge-
base. To support the data exchange among the computational platform, the PLM system, and the
RDF knowledge-base, a communication mechanism is developed.

In this system architecture, analytical applications are created and used in the computational
platform to support the requirement representation and generation. These applications are able to
generate requirement information and knowledge from the product requirements and related data,
and represent them in the proposed format. Requirement information and knowledge generation
increases the reliability of product requirement specification and provides a better insight into
the product requirements to all the stakeholders. The main analytical application developed for

the computational platform is the product requirement information extraction and retrieval. It
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is developed by using natural language processing (NLP) technology. The development of this
application combines two main studies; semantic analysis of product requirements through the
ontology models and syntax analysis of the product requirements. A Named Entity Recognition
(NER) model is also created to support this application by capturing product requirement concepts
automatically in a requirement sentence. Controlled requirement syntaxes are discussed next to
automatically generate textual requirements.

The detailed descriptions of the computational platform and communication mechanism are
presented in chapter 6 and the development of the requirement information extraction and retrieval

application is discussed in chapter 7.

3.2 Formal Representation and Generation of the Product Requirements

In current requirement specification practice, product requirements and related data are represented
most commonly with textual descriptions, textual documents, string, and numerical data types, and
sometimes with tables. They include a series of requirement sentences and paragraphs written in
natural language and arrangements of requirement data in rows and columns. For the development
of the requirement specification documents, either with or without table representation, design-
ers/engineers mostly prefer to use pre-defined requirement sentence templates and formalized
technical vocabularies. They also prefer to follow a systematic method to organize the list of
requirement sentences and document structure. However, as discussed in the previous chapters,
traditional requirement specification documents remain not suitable for automated machine pro-
cessing to analyze and manage the product requirements listed in the documents.

If the requirement data are represented in a table format with string and numerical types, not as
a textual format, they can be processed by computational applications without applying any natural
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language pre-processing. As shown in table 3.1, requirements for a brake rotor are represented in
a table format. This table contains partial examples of a brake rotor requirement specification.
It includes category names such as requirement characteristics, value, unit, etc. that are called

requirement entity types and category values such as cooling time, weight, high, minute, etc. that

are called requirement entity names in this dissertation. Even though this type of representation is

much more suitable than textual sentence representation for automated machine processing, it must
be supported with formalized vocabularies (taxonomies) and relationships between requirement

entity names.

Table 3.1: Table Representation of the Requirement Specification for an Automobile Brake Rotor

Requirement Aspect Characteristics Value Unit
Performance Cooling Time <30 Minute
Performance Corrosion Resistance High
Performance Operating Temperature -30 - 200 °Celsius

Design Nominal Thickness 0.40 Inch
Design Discard Thickness 15 Inch
Design Weight 20-25 b
Manufacturing Method Casting and Machining
Maintenance Service Life 3 Year
Maintenance Replacement Time <20 Minute

If the requirement data is represented as a textual description in a requirement specification
document which is the most common preference as shown in table 3.2, pre-processing applications
such as natural language process and text mining techniques become crucial for automated machine
processing. Requirement entity names must be extracted from the written requirement text and
classified as requirement entity types.

This dissertation concentrates on autonomously converting the requirement sentences into the

proposed formal requirement representation formats and generating requirement information and
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Table 3.2: Textual Description of the Requirement Specification for an Automobile Brake Rotor

Performance

* Cooling time shall be less than 30 minutes after the vehicle is parked.

* Rotor shall have high corrosion resistance.

* Operation temperature shall be between -30°Celsius and 200 °Celsius.
Design

» Nominal thickness shall be .4 inches .

* Discard thickness shall be .15 inches.

* Weight hall be between 20 Lbs and 25 Lbs.
Manufacturing

* Casting and machining operations shall be used for rotor production.
Maintenance

* Service life shall be at least 3 years.

* Replacement time shall be less 20 minutes.

text. An NLP application is developed in this dissertation to extract terms from the requirement
text and classify these terms based on the proposed ontology-based requirement information clas-
sification. When users define a product requirement in the PLM system as a requirement sentence,
it is processed by the NLP application in the computational platform. Then, it is represented in the
PLM system with requirement entity types and names as shown in table 3.3 in a similar way that

NIST is studied in [106].

Table 3.3: The Proposed Format to Represent a Product Requirement Sentence

Triple:: Predicate (Subject, Object)
Subject Entities;
Entity Type:’Entity Name’
Entity Type::Sub-Entity Type
Object Entities;
Entity Type:’Entity Name’
Entity Type::Sub-Entity Type
Predicate Entities;
Entity Type:’Entity Name’
Entity Type::Sub-Entity Type
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In this representation, a requirement sentence is demonstrated first in a triple format: Subject,
Object, and Predicate.

Subject defines the topic of discussion in a requirement sentence and tells what the sentence
is about. It might be about a product, material, shape, process, property, user, environment, etc.
’Automobile brake system’ as a product, ‘rotor surface’ as a shape, ’CO2 emission’ as property,
"water pollution’ as a hazard can be defined as examples of the requirement subject entities.

Object corresponds to the value of subject. It is acted by the predicate. In a sentence, an
object undergoes a change stated by the predicate. It might be a property of a product, material,
and process, a failure, a user, a measurement, a constraint, etc. ’Density’ as a material property,
“envelope size’ as a product property, ‘electricity’ as a substance, 'corrosion’ as a failure can be
defined as examples of the requirement object entities.

Predicate indicates the action or state in a requirement sentence. It defines a directed binary
relation between subject and object. It might be a function or non-function entity. ’Resist’ as
a function and ’be’ as a non-function can be defined as examples of the predicate entities in a
requirement sentence.

After the subject, object and predicate are defined in a requirement sentence, requirement entity
types of components of the sentence (entity names) are labeled with pre-defined entity tags. Then,
entity type hierarchy is identified for each entity names based on ontology models and taxonomies.

Table 3.4 shows how this dissertation proposes a formal representation for a requirement text in
a triple format with entity types and names in the PLM system. An example of the requirement text
‘An automobile brake system shall generate friction’ is represented in the table with the proposed
format. First, this requirement sentence is written in the PLM system by a user. Then, a natural
language processing application running in the computational platform autonomously converts this
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Table 3.4: Presentation of a Product Requirement Sentence

Requirement:: An automobile brake system shall generate friction.
Triple:: shall generate (automobile brake system, friction)
Subject Entities;

Part:’ automobile brake system’

Part:: Automotive Part::Brake System
Object Entities;

Flow:’friction’

Flow::Energy
Predicate Entities;

Function:’generate’

Function::Function Verb::Convert

sentence into the proposed representation format. Finally, this representation is presented in the
PLM system as shown in table 3.4. A requirement NER model is created to automatically tag the
requirement entity types, which are defined as requirement classes in the proposed requirement
information model (PDROM). An expert system that includes semantic and syntactic rules to
infer requirement entity types and names is also developed. Whenever requirement entities are
created from a given requirement text, additional requirement entities are inferred by an expert
system in the computational platform. Rules that only match with the entity types and names of
the given requirement text are executed in the expert system to infer requirement entities. These
requirement entities are called inference entities. Inference entities are represented in a format
as; Entity Type::Sub-Entity Type:’Entity Name’. Table 3.5 shows the inference entities by
an expert system in the computational platform and their representation in the PLM system for the
requirement text ‘An automobile brake system shall generate friction’. The computational platform
is also able to create textual requirement sentences by using inference entities and formalized
syntaxes as shown in table 3.6.

In order to make requirements more understandable, unambiguous, consistent, and complete,
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Table 3.5: Inference Entities and Representation for a Requirement Text

Requirement::Actor::Part: rotor’

Requirement::Actor::Part:’pad’

Requirement::Actor::Part:’caliper’

Requirement::Actor::Material

Requirement::Actor::Shape

Requirement::Stage::MOL: usage’

Requirement::Stage::MOL: material selection’

Failure::Failure Mode:’abrasive wear’

Failure::Failure Mode:’thermal stress’

Failure::Failure Mode:’thermal shock’

Material::Material Property::Mechanical Property:’wear resistance’
Material::Material Property::Mechanical Property:’friction coefficient
Material::Material Property::Mechanical Property:’harness’
Material::Material Property::Physical Property:’thermal diffusivity’
Material::Material Property::Physical Property:’thermal conductivity’
Flow::Energy:’heat’

’

formalized requirement syntaxes and boilerplates that express product requirements are studied
[11, 94, 107]. These syntaxes, which are individual statements of requirements, consist of product
related information entities such as product, material, function, flow, unit, key characteristics, etc.
Many formalized syntaxes for the product requirements and many product requirement sentences
are examined from a lexical viewpoint in this study. While syntaxes define the arrangement of
words and phrases to create well-formed and structured natural language requirement statements,
the lexical viewpoint examines the words and phrases used to compose the requirements [108].
Although several formalized syntaxes for both functional and non-functional product requirements
are proposed, requirement syntaxes which are discussed by Lamar [109] are used when product
requirement text generation is necessary. He first describes generic requirement syntax, then
defines two functional requirement boilerplates for (i) Transitive Functional Requirement and (ii)

Intransitive Functional Requirement, consisting of a transitive verb that has a direct object or an
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intransitive verb that does not have a direct object and one non-functional requirement boilerplate
as shown in table 3.6. It shows the requirement syntaxes that are used in this study. Backus-Naur
Form (BNF) which is a syntactic meta-language is used to express requirement syntaxes. Four
types of BNF symbols that are used to express syntaxes are: (i) brackets (<>) represent the
defined entities within the syntax, (ii) two sets of colons and an equal sign (::=) separate descriptive
syntactic terms from the explained term, (iii) vertical bar (|) denotes a choice can be made and (iv)
curly braces ( {} ) indicates the optional element in the syntax. The requirement syntaxes are
described with five main types of grammatical functions: subjects, verbs, objects, complements,
and adjuncts. As discussed before, the subject is a noun phrase and it indicates what the sentence is
about. The verb part includes a modal verb (shall) and a verb phrase. Direct and indirect objects are
noun phrases that are acted by verbs. Complement provides syntactically necessary information
about the subject or object noun phrase. Adjunct modifies words or phrases and provides additional
information. In the proposed requirement representation, the verb is defined as predicate and
direct object, indirect object, complement, and adjunct are defined as an object in the proposed
representation format. Table 3.6 illustrates some requirement text examples that are generated by
using these syntactic structures. These requirements are derived from entities of the requirement
text: ‘An automobile brake system shall generate friction’. This operation helps users to have a
complete set of requirements represented in the requirement specification document.

The need for the formal requirement representation instead of representing requirements only
with textual description in building requirement specification is addressed above. This formal
specification improves the requirement understanding for the users and machines. It is pointed
out that the automatic construction of structured requirement data from textual requirement de-
scription requires natural language pre-processing. NLP should explicitly and accurately capture
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Table 3.6: Formalized Requirement Syntaxes and Examples for Textual Requirement Generation

Requirement Text Templates
<requirement>::=
<subject><modal><verb phrase>
<intransitive functional requirement>::=
<subject><modal> <intransitive verb>{ <adjunct>}
<transitive functional requirement>::=
<subject><modal><transitive verb><direct object>{<adjunct>}
<non-functional requirement>::=
<subject><modal><linking verb><complement>|{ <adjunct>}
Generated Textual Requirements
* Rotor shall rotate with the rim.
<subject><modal><intransitive verb>{<adjunct>}
* Rotor shall resist abrasive wear.
<subject><modal> <transitive verb><direct object>
* Rotor material shall have high wear resistance.
<subject><modal > <linking verb><complement>

the important requirement entities of requirement text. After entities are defined, entity inference
can be processed by the rule-based system. Rules are defined by using relationships between
entities represented in PDROM and by using expert knowledge. Then, semantic similarity and
keyword-based searching processes are applied to taxonomies and PDROM data structure to find
out the entity and sub-entity types. Lastly, requirement text generation using inference entities and
the pre-defined text templates is processed to represent inference entities as a requirement text.
Figure 3.3 illustrates these activities for the formal representation of a given requirement sentence
and automated requirement entity and text generation processes. The detailed descriptions of these
activities and the development of the applications to execute them autonomously that convert
a requirement sentence into the proposed format, infer requirement information and generate

requirement text are discussed in chapter 8.
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Automatic extraction of requirement semantics from the textual description requires mainly
two types of study: (i) syntax analysis that describes the syntactic structure of requirement text and
identifies entity types of requirement, and (ii) semantic analysis that reveals semantic meanings
of the text based on the PDROM using NLP techniques. Requirement information extraction
steps and NLP techniques that are tokenizing, part of speech tagging lemmatizing, NER, etc.
are illustrated in figure 3.4. It shows that in order to make a machine-readable requirement text
machine-understandable, NLP components are applied to the requirement text to practice the text
mining applications such as information extraction and knowledge generation. These applications
are supported by the semantic analysis of the product requirements through developing ontology
models and semantic rules. Semantic and syntactic analysis and the development of these activities
are discussed in the following chapters.

Requirement sentences which are described in the PLM system are also represented within the
semantic format by breaking down the requirement sentence into the proposed PDROM structure.
An application that converts relational requirement data into the RDF triple formats is discussed in
chapter 6. The basic format of the representation of a requirement sentence in PDROM structure
is proposed as shown in table 3.7. In this representation, a product requirement is defined with the
requirement actor, stage, type, and measurement classes. These classes represent the instances of a
requirement sentence. The requirement is also represented with requirement rationale through the
structure, behavior, function, and failure models if applicable. The structure of this representation

and requirement semantics are discussed in chapter 4.
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Table 3.7: The Representation Format of a Requirement Sentence based on the Information Model
Structure

Requirement(requirement_id) =

Requirement Actor(Sub-Class(instance)) |J

Requirement Stage(Sub-Class(instance))

Requirement Type(Sub-Class(instance)) |J

Requirement Measurement(Sub-Class(instance))

Function Model(Sub-Class(instance)) | Structure Model(Sub-Class(instance)) |J
Behavior Model(Sub-Class(instance)) | J Failure Model(Sub-Class(instance)) |J
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3.3 Summary

In this chapter, the proposed methodology for the model-based product requirement representation
and generation is discussed. An integrated architecture for the requirement knowledge manage-
ment that covers the PLM and SW technologies is introduced. The roles of the ontology-based
information model, PLM system, and computational platform are briefly discussed. Structured
information representation and text generation templates are introduced for the formal represen-
tation and generation of the product requirements. The following chapters of the dissertation
elaborately explain the topics covered in this chapter. Chapter 4 discusses the development of the
ontology-based requirement information model. Chapter 5 focuses on the formal implementation
of the proposed information model based on web ontology language. Chapter 6 shows how the
data structure of the proposed information model is embedded into a PLM tool and how the
PLM system is used for the management of the product requirement and related data. It also
explains the development of the computational platform that provides integration among the PLM
system, computational applications, and RDF knowledge-base. In chapter 7, the development of
the applications for the requirement information extraction and retrieval and syntax analysis of the

functional and non-functional requirements are discussed.
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CHAPTER 4
DEVELOPMENT OF THE ONTOLOGY-BASED INFORMATION MODEL FOR THE

PRODUCT REQUIREMENT SPECIFICATION

In this chapter, the establishment of an integrated Product Design Requirement Ontology Model
(PDROM) including Material, Shape, and Process Information Models is presented in detail.
Chapter starts with the general description of PDROM in the domain of product requirement
specification. Next, it presents PDROM modeling methodology and modeling elements. Lastly, it

introduces and represents the detailed PDROM models by using UML class diagrams.

4.1 General Description of the Requirement Model

The requirement information model provides a common terminology for the product requirement
representation and generation. The requirement information model also captures an explicit repre-
sentation of causal relationships (i.e., causes and effects of all product requirements). It represents
the product design rationale that relates the product requirements to design objects to give an
explanation of product requirement generation. Development of the requirement information
model requires to know context information of the product requirements with regard to design,
material, manufacturing, operation, maintenance, end-of-life of the product, etc. Product require-
ments are constructed from various product domain information which can be endless in terms of
possibilities. These facts prompt us to introduce an integrated rationale-based information model to

support requirement representation and generation for product design, usage, maintenance, safety,
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sustainability, etc. Using this rationale-based model users are able to trace a product requirement
specification to understand the requirements’ dependency that may be required for any design,
manufacturing, use, repair, or recycling purposes. The proposed architecture of the product re-
quirement model, including the product domain taxonomies, design rationale, and product domain

models are shown in figure 4.1.

~Rules and Taxonomies— —Product Requirement Model— ~Design Solution— —Design Rationale———
Function
T 1- Design if. Rationale | ded
axonomy satisfies Artifact > Input Neede
< to Take
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Yy < Material L form ,_4 Rationale encapsulates
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v : Shape Model Arrangements
Tradeoffs
Envi ¢ : E I
.?::g:g::: Geometry Rationale -t options/Alterbatives

Product Structure

Figure 4.1: The Integrated Information Model with Design Rationale and Product Requirement
Models

The reason for developing this integrated information model is to provide the “traceability”
feature of the product requirement information that is needed to support understanding of exist-
ing relations and dependencies between product requirements and product domain information.
Product requirements are intricately related to the design objects along with system models. The
design rationale model formalizes the requirement rationale by providing background information
for every generated requirement. Requirement representation and generation demand a sound un-
derstanding of the structure, function, behavior, and failure of the product assembly, and product’s
material, manufacturing process, shape, and also the underlying requirement rationale that will

explain why requirements exist and what assumptions and constraints they depend on.
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The model helps designers/engineers to generate and represent the product requirements by
integrating system and product domain models and providing formalized technical vocabularies
and expert knowledge with rules. In this chapter development of the product requirement model

and product domain models are discussed in detail.

4.2 Modeling Methodology and Elements for the Requirement Information Model

In order to develop an integrated architecture for product requirements, ontology-based informa-
tion models for requirements and related domains; material, manufacturing process, and shape,
must be studied and developed with product life-cycle consideration. To develop these models in
a systematic way, layered modeling methodology that is discussed in OntoCAPE [110] is studied.
Information models are developed in a three-level framework as shown in figure (Figure 4.2). It
represents product requirement information from a different level of abstraction. In this layered
representation, the usability and reusability of the models are inversely correlated. The usability of
the models increases from top to bottom, while reusability decreases.

In the layered framework, the Meta Layer is the most abstract one, represented as Con-
cept Abstraction and holds the fundamental modeling concepts like Mereology (part-of relation-
ship), Topology (connection relationship), Data_structure (array, list, graph, etc.) and Fundamen-
tal_concept (class, relationship, etc.).

A lower abstraction level, System Abstraction is the Top Layer, which is derived from the
standard system theory and it is comprised of Coordinate System, Technical system and Network
System. They provide a systematic structure to define concepts like system, subsystem, system
boundary, etc.

Both Concept and System Abstraction layers are discussed in [110, 111]. In this dissertation,
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Figure 4.2: The Layered Modeling Methodology for the Development of the PDROM

we mainly discuss and implement Domain and Application layers.

Domain Layer comprises the core of the proposed information models for product require-
ment specification. It is structured into interrelated models: Material, Process, SBFF, etc. The
requirement information model integrates the product domain models and requirement rationale
models. The product domain models represent the product requirement related information such
as shape, material, and process. The rationale models present the requirement rationale through
the structure, behavior, function, and failure models.

Application Layer extends the information model towards a concrete application. The number
of such applications could be numerous. In this study, applications for the representation and
generation of the product requirements are discussed by extending the domain level information
model. These ontology-based domain information models are developed in this research before

discussing the integration of the models to the REKMA, requirement information retrieval, and
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Figure 4.3: The Ontology Development Process

To develop the ontology-based information models for the requirement representation and
generation, six main phases of the ontology development process for REKMA are followed as
shown in figure 4.3. In the first phase, the domain of interest which is product requirement
specification is defined. It includes product requirements and related product domain information.
In the second phase, the domain is further analyzed. The set of concepts relevant to the domain
and relationships of these concepts are identified. In the third phase, concepts and relationships
are organized in a model and the domain taxonomies are developed. UML formalism is used to
graphically represent the model.

Information models can be constructed with different modeling techniques, and be imple-
mented in various kinds of languages. These languages and techniques provide constructs for
classes, instances, relations, and attributes. A class represents a set or a category of things that have
some properties or attributes. An example of a class could be Requirement, Product, Process,
Material, etc. Bold italicized font with the capitalized first letter is used to represent a class in
this dissertation. An attribute represents features, characteristics, or parameters of classes. It is
identified by a name and it can take one or several values, which are usually restricted to a specific
data type such as boolean, string, integer, etc. Underlined font with the lowercased first letter
is used to represent an attribute of a class in this dissertation. For example, requirementID or
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requirementName are attributes of Requirement class and they can take values of datatype string.

Entities that belong to a particular class are said to be instances or members of that class. An
example of an entity could be coffeeMaker or UAV that are instances of the Product class. Italicized
font with the lowercased first letter is used to represent an instance of a class in this dissertation.
A Relation describes the interrelation between classes. it can also be denoted as properties, roles,
slots, or associations in other modeling paradigms. Most modeling languages support the relations
only between two classes in a way that it points from a particular domain class to a designated range
class. As an example, some major concepts in the proposed PDROM are: Requirement, Stage,
Actor and Type. The relationship between Requirement and Stage is composition, which means
that a Requirement (domain class) instance comprises of several Stage (range class) instances.
Bold italicized font with the lowercased first letter is used to represent a relation in this dissertation.
The UML class diagram is an ideal object-oriented tool for representing the PRDOM model since it
provides classes, instances, and attributes to represent domain concepts, and relations to represent
the relationships between these concepts. In a UML class diagram, the rectangular box represents
classes or concepts while the diamond arrow, hollowed triangular arrow, and line identify the
relationships between classes as shown in figure A.1 in the appendix A.1. The composition
relationship is denoted as a filled diamond arrow, inheritance relationship is denoted as a hollowed
triangular arrow, and association relationship is denoted as a straight line.

In the fourth phase, the proposed models are validated. The ontology-based information models
are formally implemented in an ontology editor to instantiate the models by translating UML
models into the Web Ontology Language (OWL). A set of product requirements are stored in
the ontology editor and incompleteness or inconsistencies in the requirement specification are

analyzed. In the fifth phase, the data structures of the ontology-based information models including

58



classes and relationships are implemented in the PLM by customizing a PLM tool through the
models’ structures. The product requirements are then stored in the customized PLM. Requirement
information is extracted from the PLM system to have it in OWL to check whether the PLM
system and the proposed requirement models can store and represent the product requirements
and related information in the same structure. Finally, based on the models’ capability for the
product requirement representation in the ontology editor and the PLM system, they are released

or updated.

4.3 Information Model for Product Requirement Specification

In order to address issues that are discussed in chapters 1 and 3, the product requirement structure
is explored extensively and a Product Design Requirement Ontology Model (PDROM), which
provides rich requirement semantics is proposed in this chapter. The model is for formal represen-
tation and generation of product requirements and it supports a new level of product requirement
storage and analysis by addressing different facets of requirement specifications. The proposed
PDROM is described in detail as follows:

PDROM consists of two main parts; (I) Part I is for requirement representation and description
of a requirement and (ii) Part II is to support requirement generation and to link between product
requirements and design rationale. In the Part I as shown in figure 4.4, class Specification, which
can be considered the root entity for requirement representation, constructs the highest level of
generalization. It reflects a collection of relevant information from the Requirement class for
product design.

Class Requirement is aggregated to the Specification class and it can be further divided into
four categories: CustomerRequirement, CorporateRequirement, RegulatorRequirement and Tech-
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nicalRequirement. Every Requirement instance is comprised of one or more RequirementMea-
surement instance(s) and Stage instance(s). Also, every Requirement instance is associated with
one or more Actor instance. RequirementMeasurement class represents the objective of the
requirement sentences in either a qualitative or quantitative way. Stage class represents the product
life-cycle domain through which a requirement is applied and used. It could be Manufacturing

Stage, MOL Stage (Middle of Life Stage) and EOL Stage (End of Life State). For example, the



dimension between two geometry entities (lid and bottle) could be specified differently (open or
closed) for Use Stage under MOL Stage according to the stage of the parts.

Actor class represents a diverse subject in requirements and it could be a Part, Process, Mate-
rial, etc. The product requirements provide Actor-based constraints and objectives which classify
and define the Actor. Part class describes a single component object which can be a product or
used to construct a product. It must be formed by certain material or materials and has certain
geometrical shape based on requirements. Material class and Shape class are aggregated into Part
class. Specifically, Material class describes what the Part are made by and it gives the description
of the internal composition of the Part. The Shape class describes the shape, geometry and feature
information to form a Part. It usually contains the boundary representation (B-Rep) structure
which is already defined in a formal data format (such as ISO STEP part 21 file) [20]. Process
class is a collection of activities which are sets of sequential or parallel operations that divided into
many categories: MaterialProductionProcess, ManufacturingProcess, AssemblyProcess, Disas-
semblyProcess RecycleProcess, DisposalProcess, InspectinProcess, etc. It is comprised of a set of
ProcesParameter instances. Environment class describes environmental information that effects
product through its lifecycle such as manufacturing process atmosphere, storing temperature, usage
corrosiveness, etc. for the related Actor.

The Part I demonstrates a structured way for requirement modeling and reveals that any re-
quirement description (usually written in a natural sentence), can be broken down into the proposed
PDROM structure. A simple illustrative example for the automobile brake system, R1: “distance
between surface A (brake pad surface) and surface B (rotor surface) shall be bigger than 0.3 cm

during the non-braking time”, can be structured into the PDROM Part I as follows:
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Requirement(R1)=

Actor(Part(Shape(surface A))) U
Actor(Part(Shape(surface B))) U
Actor(Part(Shape(distance))) U
RequirementMeasurement(Quantitative(>0.3 cm)) |J
Stage(MOL(Usage(non-braking time))) |J
Type(Technical Requirement(Functional

Requirement))

In this example, a requirement sentence is divided into its phrases (requirement instances). The
“surface A’, surface B’, ’distance’, *>0.3 cm’ and ’non-braking time’ are the instances of this
requirement sentence. Then, these requirement instances that match with the requirement model
classes are represented with class and sub-class names as discussed in table 3.7. The ’surface A,
“surface B’, and ’distance’ belong to Shape class which is aggregated to the Part and Actor classes
respectively. The 'non-braking time’ is classified under Usage stage which is aggregated to the
MOL and Stage classes. The *bigger than 0.3 cm’ is the instance of the RequirementMeasurement
class and it is classified under the Quantitative class. This demonstration of a product requirement
sentence based on the Part I is about the representation of requirements and classification of
requirement instances.

There is still a need to extend this model (Part I) to show the rationale behind the requirements.
As a part of the PDROM, Part I model is extended with the Part II model as shown in figure 4.5.

Part I1 is proposed to represent the rationale and relationships between the requirements and design
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objects. This model is called Structure Behavior Function Failure (SBFF) model and it consists of
four system models: Structure Model, Behavior Model, Function Model, and Failure Model. It

is developed based on Structure-Behavior-Function (SBF) ontology model [112] with the extension

of the failure model.
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Figure 4.5: Part I Model for the Requirement Rationale
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In this model, Structure Model represents the collection of things for a mechanism that is
created to achieve particular purposes. It consists of StructureElement that defines physical things
for the mechanism and Flows which are input and output for that mechanism. Flow is represented
by Property and a property is represented by Value and Unit. StructuralConnection class describes
how structure elements connect each other to complete the mechanism. StructureElement might
be represented as an Object or its Component for a designed product or might represent physical
things of any particular process for product life-cycle operations such as manufacturing, assembly,
maintenance, disassembly processes, etc.

Function Model defines a particular objective that a mechanism needs to achieve. Every
function is represented by Initial State and Goal State. Also, it has input Flow(s) and output
Flow(s).

Behavior Model describes how a mechanism works and achieves a certain function with struc-
ture attributes. A behavior might be Mechanical, Electrical, Thermal or Aerodynamic type and
it can be described as a Quantitative or Qualitative. Every behavior is represented by State,
State Transition and Transition Reason. The state transition between source state and target
state consists of four types for any behavior: By Function, By Principle, By External_Stimulus,
and By State. External _Stimulus is defined as an input from outside of mechanism that create a
change on it. These terms are explained in detail by Goel et al. in their SBF model.

Failure Model represents possible situations that a mechanism does not meet a specific objec-
tive particularly or completely. It is comprised of Failure Mode that is an attribute and defined with
a broad taxonomy [113]. Each type of failure model is represented by Cause, Effect and Action.

Let’s look at the example discussed above for the automobile brake system, R1: ”The distance

between the pad surface and rotor surface shall be bigger than 0.3 cm during the non-braking time”
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and its rationale is "keep a distance between surfaces to avoid unnecessary friction and wearing’

can be structured into the PDROM as follows:

Requirement(R1)=

Actor(Part(pad)) U

Actor(Part(rotor)) |

Actor(Shape(pad surface)) |J

Actor(Shape(rotor surface)) U
RequirementMeasurement(Quantitative(>0.3 cm)) |J
Stage(MOL(Usage(non-braking time)))|J

Type(Technical Requirement(Functional Requirement)) |
Structure_Model(Structure_Element(Component(pad, rotor)))
Function Model(State(Goal=Initial(keep distance))) U
Flow(Property(distance between pad surface and rotor surface)) |J
Property(Value(>0.3)) U

Property(Value(Unit(cm)))

Behavior Model (TransitionReason(By _Function(function of a product
(caliper))) U

FailureMode(Cause(friction)) |

FailureMode(Effect(thermal fatigue))
FailureMode(Effect(fatigue wear))

In this example, the requirement sentence is represented in the PDROM Part II model to define
the requirement rationale as an addition of the requirement sentence representation based on the
PDROM Part I model. Additionally, the requirement rationale is divided into instances of the
structure, function, behavior, and failure models. The ’keep distance’ is the initial and goal function
for this requirement. This function has a flow instance, ’distance between the pad surface and rotor
surface’ which is classified as a property. This property has a value instance, *>0.3" and unit
instance, ’cm’. This function model is achieved by a behavioral modal which is the function of
a product (caliper). If this mechanism does not meet the objective, it might yield failure which
is explained by the failure model. It represents ’friction’ as an instance of the cause, 'thermal
fatigue’, and ’fatigue wear’ as instances of effect classes. The PDROM Part I and Part I models
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are integrated as shown in figure 4.6. Whenever a requirement is generated, it is represented with

the PDROM model and the requirement instances are classified for the following classes in the

given order.

1- Actor of the requirement

2- Stage of the requirement

3- Type of the requirement

4- Measurement of the requirement

5- Structure, Function, Behavior, and Failure models of the requirement and requirement
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Figure 4.6: PDROM Part I and Part II Integrated

In this integrated model (PDROM), two more classes are added to the Part I and Part II to

create better connection between them. The firs one is User class to represent end user who
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uses a product or who is involved in the life-cycle stages of the product design, development,
production, maintenance, etc. In this model, User class is considered as a requirement Actor.
Some of the requirements in a requirement specification document are specifically generated for
the users that makes users the subject of the requirement sentence. The second class that is added to
the integrated model is the Key Characteristics (KCs). It is also called as properties or performance
characteristics. It describes the core of a product requirement and it can be the information about
product performance, reliability, cost, weight, feature of a system, material, process, part, etc. [114,
115]. KCs class facilitates the efficient interaction between PDROM Part I and PDROM Part 11
through the identification and generation of critical information as a summary of a requirement
specification. Key Characteristics can be further divided into two categories; Constraint and
Objective, and every Key Characteristics instance is comprised of one or more Value instance(s)

and Unit instance(s).

4.4 Product Requirement Actor Models: Material, Process and Shape

There is a dire need for the development of an integrated product requirement information model
to organize and manage material, form, and manufacturing related information, required for any
product requirement realization by extending requirement Acfor classes. Detailed representation
for them is necessary to capture all product requirement related information. The role of materials,
shapes, and the associated manufacturing processes needed to fabricate the materials into a spec-
ified form for product requirement realization is very important in the context of the requirement
specification.

The information models of the product requirement actors capture the product domain infor-
mation and knowledge for the product requirement representation and generation. For example,
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Material class can be extended and developed a Material Information Model (MIM) that describes
the possible requirement-related information for product material. In this dissertation, some scope
or themes are identified for Acfor classes, and constructed to concepts that needed to represent
requirements for product domain classes. Information frameworks for Material, Shape and Man-
ufacturingProcess models are proposed to support both PDROM Part I and Part II. These models
consist of taxonomies and hierarchical organization for those taxonomies. The following sections

describe these domain layer actor-models in detail.

4.4.1 Material Information Model

The material information model is to facilitate product requirements for the product material and
material selection process during the beginning of the product design and also during any decision
making process related to product’s maintenance and replacement, and product’s end-of-life ac-
tivities. Information regarding material characteristics of the product must be integrated with the
product’s form, function, behavioral, failure models. The material package shown in figure 4.4
and figure 4.6 is further detailed and it is illustrated in figure 4.7 below. The Material Information
Model (MIM) that describes the possible requirement-related information for product material.
The Material class is the core in the MIM, and it is comprised of a variety of information
like MaterialProperties, Composition, Cost, Application etc. The Material class defines a raw
material, which is used to form a part or product. Certain manufacturing processes must be em-
ployed to produce the raw materials and transform the raw materials into the final part that we will
discuss this under Process Model. Composition class provides information about the components
of the material, their proportion, and the intrinsic characteristics (i.e. the physicochemical nature)

of a material. HazardsMaterial class indicates the inherent property of a material that can cause
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Figure 4.7: Material Information Model

adverse physical and health effects. Standards like STEP part 45 [116], IPC-1751/1752 [117,
118], etc. discuss some representation issues related to the structure-based material property and
hazardous material composition identification and declaration. The material information could
contain material family, material name, material properties, and so on. A material property (e.g.,
mass, density, etc.) is represented by the class MaterialProperty. This class can be used to
assign a material property either to the whole product or to the part of the product. It can be
further divided into five categories: MechanicalProperty, PhysicalProperty, ChemicalProperty,
ManufacturingProperty and EnvironmentalProperty. These material properties and material
property taxonomy are briefly described in the appendix A.2. Any material property indicated in a
requirement sentence can be represented using this taxonomy and model hierarchy in a structured
way. For example, instead of defining the ’thermal conductivity’ property in a requirement sen-
tence without any definition, it can be represented as Actor(Material(Material Property(Physical

Property(Thermal Property(thermal conductivity))))) using this model.

69



4.4.2 Shape Information Model

In this dissertation, a Shape Information Model (SIM) is proposed to identify the high-level shape
information of a product which is presented in the product requirement sentences. This ontology
model is for the semantic level description of geometric terms and relationships which they are
usually mentioned in product requirements. The geometric product specifications are typically
generated with CAD systems and represented with formal data format STEP AP or vocabularies
from popular CAD software. It usually contains the boundary representation (B-Rep) structure
which is already defined in a formal data format (such as ISO STEP part 21 file [119]).

Figure 4.8 illustrates the proposed Shape Information Model using the UML class diagram.
The SIM is developed to represent the following major information or knowledge in a product
requirement. The description of each class in the SIM is described in detail as follows:

The Shape class describes the form of an object that categorized with various form Type and
it can be represented as a list of Features, various Geometry and Topology entities in the objects’
feature tree or a boundary representation (BRep) information. While shapes can be classified into
open and closed shapes, only closes geometric shapes; two-dimensional and three-dimensional
shapes are placed into shape taxonomy which is used for product requirement representation.
These shapes have defining attributes; Vertex, Edge, Face, Solid that are Topology entities and
ClosedSurface(s), Surface, Curve and Point that are Geometry entities. Shapes also represented
by Feature that is a set of face(s) with distinct topological and geometrical characteristics such as
Hole, Cutting, Bending, Rib, Thread, etc. There are many studies to classify these features under
different categories such as volumetric feature, deformation feature and free-form surface feature

[120].
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Figure 4.8: Shape Information Model

Real-life objects that named solid shapes are classified into three basic forms; 3D, Sheet and
Prismatic, according to shape and process relationship [6]. 3D shape is further divided into two
categories; Solid and Hollow. Sheet class might be Flat or Dished, and Prismatic class might be
Circular and Noncircular.

Geometry mainly studies the object’s position and represented by GeometricDimension. Its
Lengths, Angle, Sizes, Areas, Volumes etc. .. that literally describes the objects in space. On the
other hand, Topology is the study of position in an area of mathematics that deals understand shape

and space without an explicit measure of distance, size, volume, angles, coordinates etc., which is
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unaffected by deformation.

GeometricConstraints are rules that placed limitations on objects to define their Distance, Ra-
dius, location, orientation etc. Constraints such as Parallel, Perpendicular, Coincident, Tangent,
Concentric, etc. develops relationships between components placed within assembly models and
controls geometry during design stage.

Any shape information indicated in a requirement sentence can be represented using shape
taxonomy and model hierarchy using this model. For example, the geometric constraints, ’parallel’
in the requirement sentence, *Pad surface and rotor surface shall be parallel during the usage
stage’ is represented as Actor(Shape(Geometry(Geometric Constraints(Parallel(pad surface, ro-
tor surface))))) in a structured way.

A detailed semantic description of CAD models, which is based on BREP, can be found in the
study of Perzylo et al. [121] and a complete specification of BREP’s geometric and topological
representation can be found in ISO 10303-42 [122].

It should be noted that the material information model (MIM) and shape information model
(SIM) are closely tied up with the product information model and the manufacturing processing
information models. Since the product information models are extensively studied by the authors
and their co-researchers at NIST in their past works [18, 123, 124], this study mainly emphasizes

the development of the manufacturing processing model.

4.4.3 Process Information Model

In this dissertation, a Process Information Model (PIM) to identify and represent the high-level
manufacturing process information which is presented in the process requirement sentences. This

generic model serves as an information core and can be used directly for product requirement
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evaluation with the expansion of a specific process and material. In the previous study [125], PIM

is expanded to the powder metallurgy process model and discussed with the MIM model.
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Figure 4.9: Process-oriented Information Model

Figure 4.9 illustrates the proposed Process Information Model using the UML class diagram.
The PIM is developed to represent the following major information and knowledge for the man-
ufacturing process requirement specification in a product design process. The description of each
class in the PIM is described in detail as follows:

The Product class describes an object which is synthesized by a set of parts or subassemblies
(each subassembly itself is also a product object). These parts are put together following appropri-
ate spatial relationship and contact constraints. A product comprises its instances of behaviors to

describe a certain product’s motion pattern and functions according to the inputs to the product.
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The Part class describes a single component object which can be used to construct a product.
A part is a minimal functional unit of a product; thereby a part must be formed with certain
material and has certain geometrical shape. In the Core Product Model (CPM) scheme, an Artifact
composes its material and shape, where the Artifact conforms to the Part class in the PIM.

The Material class describes the raw material object which is used to form a part. Certain
manufacturing processes must be employed to produce raw materials and transform them into
the final part. The material information could contain material family, material name, material
properties, and so on. The Behavior of a Material instance involves the property changes of the
material under different internal or external environments (stimulus).

The Behavior class defines the behavior pattern of a certain product, part, or material. Behavior
describes the reaction of an entity if certain external stimuli are applied to this entity or the
interaction between the sub-entities which comprise the entity. For example, the behavior of a
product can be understood as the execution of different functions according to various user input.
The behavior of a part can be the shape deformation when a force is applied according to its
geometry information. The behavior of a material can be the changes of material structure and
properties according to the external environmental conditions such as temperature and pressure.

The Shape class describes the feature information to form a part. It usually contains the
boundary representation (B-Rep) [126] structure which is already defined in a formal data format
(such as ISO STEP part 21 file [119]).

The State class describes the status of a Product, Part or Material at a certain time point. For
example, a mechanical or a chemical property of a particular Material might have different values
under different conditions or by using different measuring methods. The State class enables the
PIM to capture the characteristics of any Product, Part or Material at any important time point.
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A ProcessPlan defines the sequence of manufacturing operations to produce a Part or a Ma-
terial. The types of processes, types of equipment, and operation parameters are specified in a
ProcessPlan.

A Process describes any of processes that would be carried out to produce the final product.
As the PIM shown, a Process can be a ManufacturingProcess, MaterialProductionProcess or
an AssemblyProcess. A ManufacturingProcess is a process that transforms a raw material into a
finished or a semi-finished part. It can be a machining process, powder metallurgy process, casting
process, forging process, heat treatment process, etc. All the sequentially organized Manufactur-
ingProcess required to be carried out to produce a Part forms a ProcessPlan. A MaterialProduc-
tionProcess describes the activities and their sub-activities which are required to produce Material.
An AssemblyProcess is a process that assembles all the parts to a Product (which can be a final
product or a subassembly as discussed before). A Process can typically be decomposed into a set
of sequential or parallel operations, each of which is an Activity.

The Environmentallmpact class contains the attributes that indicate the manufacturing foot-
print of a certain activity, such as energy consumption, waste, and emissions. Also, the Envi-
ronmentallmpact class describes the environmental impacts brought by an Activity. This En-
vironment class, which is also discussed in the requirement model, represents environmental
information that affects process and process activities such as process atmosphere, temperature,
etc.

An Activity is a minimal operational unit of a Process. For example, an Activity of a typical
machining process can be setting up the machine, fastening the workpiece, positioning the cutting
tool, injecting the cutting fluid, and cutting, etc. The operation parameters (e.g. feed rate, spindle

speed, and depth of cut for machining) associated with an Activity are captured in this class. To
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carry out an Activity, some resources (e.g. raw material and/or energy) are consumed and some
environmental impacts are introduced.

In order to support the development of the product requirement specification for a certain man-
ufacturing process, the PIM model is further formalized and expanded to Powder Metallurgy (PM)
and Injection Molding (IM). These expanded models are discussed in [125, 39]. The expanded
PIM keeps most entities of the generic PIM but expands the Material class and the Manufac-
turingProcess class to serve for a specific manufacturing process and material. The differences
among the expanded models are mainly on the composition of the material and process activities.
There are a lot of important factors that influence each activity of the expended PIMs. Variables
that affect product quality and process environmental impacts must be identified to support the
development of the product requirement specification. To write a consistent and complete set of
process requirements for activities of a specific process, a deep understanding of not only part
geometry, size, material type, and material properties, but also the effects of these factors on the
process are needed. The factors must be well known and controlled during the manufacturing
process to create a part with desired properties.These factors provide critical information that must
be considered during a product’s conceptual design stage and listed under the product requirement
specification. Some factors for the powder metallurgy process and the expanded PIM for the
powder metallurgy process are represented in the appendix A.3 and discussed in [125] through
each step of the powder metallurgy process from powder to finished part.

Factors that affect manufacturing processes should be defined and considered as product re-
quirements. Failing to precisely control these factors will yield undesirable properties. These
factors are implemented as relationships, constraints, and rules when PDROM is implemented in

Protege based on Web Ontology Language (OWL) in the next chapter.
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4.5 Summary of Model Development

Since there are complex relationships among material, shape, and process, a structured knowledge-
base approach is discussed in this study for integrating product requirement related information.
For a complex assembly system like an automobile, requirements (like ‘safety’, ‘environmental
friendliness’, etc.) are not immediately obvious unless the system is broken down into several
layers, and specific sub-requirements are properly understood. On top of that, identification of the
product requirements is highly complicated and the knowledge base system must evolve accord-
ingly to cope with the changes and practical needs. In order to achieve this goal, we discuss the
creation of appropriate information models for requirements, material, shape, and process. The

following chapter will be about the implementation of these models.
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CHAPTER 5

PDROM IMPLEMENTATION BASED ON WEB ONTOLOGY LANGUAGE

In this chapter, implementation of the proposed requirement information model (PDROM) in
Protégé and instantiation of the PDROM by translating UML models into the Web Ontology
Language (OWL) are presented. This chapter discusses how the product requirements are stored
and represented and how the incompleteness or inconsistencies in the requirement specification
are detected with the PDROM. The Semantic Web Rule Language (SWRL) rules for rule-based
reasoning and inference are represented. Lastly, the instantiation of the PDROM Model with

automobile brake requirements is discussed.

5.1 Implementation of PDROM in Protege

The proposed PDROM is implemented in this chapter. Data structures and relationships for product
requirement domains are built on top of the PDROM. Instances of the product requirements are
stored according to PDROM data structures and relationships. PDROM represents a conceptual
information model which is a high-level graphical description of the important information in
the domain of product requirement specification, and it is implemented into the Web Ontology
Language (OWL) for machine reasoning, interpretation, and web search queries.

The implementation of the PDROM is discussed in four steps as shown in figure 5.1. The
development of the PDROM is discussed in the previous chapter that represents the information

structures of the product requirements using the UML schema. In this chapter, first, instantiation

78



of the PDROM and Web Ontology Language (OWL) implementation are discussed to specify
product requirement information with the proposed information architecture that can be published
and accessed through the web. The PDROM classes, relationships, and rules that are contracted
through expert knowledge about function, flow, material, shape, process, etc. are translated into
the OWL schema and SWRL rules to take advantage of inference and reasoning mechanisms.
Then, reasoning mechanisms such as Pellet, Hermit, etc. and SWRL rules are used to check the
consistency of the requirement ontology and requirement information stored in the ontology.

The completeness check of a requirement is also performed by defining minimum information
for a particular product requirement such as requirement actor, stage, type, measurement, etc. The
completeness of the product requirement specification in terms of the requirement information
is supported by inferring information for a certain class, property, or instance. Lastly, semantic
queries are developed and executed using SQWRL (Semantic Query-Enhanced Web Rule Lan-

guage) [127] to search and extract the requirement information in the classified ontology.

5.1.1 PDROM Model Realized in OWL

The PDROM is proposed to store and represent product requirements in a structured way to help
users generate a more complete and consistent set of requirements, and show the requirement
rationale. However, it is still deficient at the semantic level: the meaning of the concepts is not
rich enough, which results in restricted capability for further requirement management activities
such as detecting incompleteness or inconsistency in a requirement specification. The semantic
processing of the requirements is indispensable to produce high-quality requirement specifications.
The PDROM provides this utility by adding description rules and implementing it in OWL as

discussed in detail in this section.
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Step 1: Ontology Development Step 2: Ontology Instantiation
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Figure 5.1: Steps for Formal implementation of PDROM

The OWL 2 Web Ontology Language is recommended by the World Wide Web Consortium
(W3C) [128] for the Semantic Web to represent the information and knowledge of a domain
concept. It can be used to computationally implement the PRDOM. The advantages of OWL allow
us to publish and access product requirement specifications through the web and develop semantic
queries for necessary information retrieval. The PDROM implementation also supports to store
product requirements data in the digital memory for future analytical and intelligent applications
along the digital thread. The following OWL solutions represent why OWL is used for PDROM
implementation:

* The working environment for product requirement specification that considers the whole
product life-cycle is distributed under the paradigm of the Internet of Things (IoT) (e.g. the
sustainability evaluation of product production, usage, and disposal stages is directly linked to

the product specification and this service might be online and accessible from the Sustainability

80



evaluation systems). The semantic web (OWL) would be preferred to implement the PDROM and
results in improved efficiency, accuracy, and economic benefit.

* Every requirement specification represented by PRDOM in OWL is annotated with a Unified
Resources Identifier (URI). Users for other applications can access the requirement specification
content and requirement information through the web, and they can add or manipulate requirement
information for certain life-cycle phases.

* A complex and huge set of product requirements in PRS can be validated and searched
automatically by using existing lightweight query and reasoning plugins. Protégé 5.5.0 [129], as an
OWL editor that fully supports the latest OWL 2 Web Ontology Language and RDF specifications,
is used in this thesis to develop formal OWL implementation of PDROM. An OWL 2 ontology
consists of individuals, properties, classes, and data values. Below, we give a brief overview of
the components of OWL Ontology with examples and represent PDROM OWL implementation in

Protégé.

5.1.2 Modeling of OWL Components

A large amount of the elements in the PRDOM are meant to be modeled using OWL compo-
nents: classes, relationships, and individuals. Protégé has the same frame correspond to these
components. A class represents a set or a category of individual things that are the objects
in a domain, have some properties or attributes in common, and are differentiated from others
by kind, type, or quality. An example of a class could be Requirement, which would con-
tain all the requirement individuals in our domain of interest. Classes can be represented and
organized as a superclass-subclass hierarchy based on domain taxonomy. All individuals that

belong to a subclass also belong to a superclass. An example of a superclass-subclass could be
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Requirement-FunctionalRequirement. FunctionalRequirement is a subclass of Requirement,
and inversely, Requirement is a superclass of FunctionalRequirement. This means that all
functional requirements are requirements. In OWL DL, an individual of a class can never belong
to a disjoint class. For example, FunctionalRequirement and NonFunctionalRequirement are
disjoint classes, and an individual requirement belonging to one of them can not belong to the
other. These superclass-subclass relationships and disjoint classes can be automatically checked
by reasoning which is one of the key features of OWL-DL.

Properties describe the interrelation between classes or class and class attributes, and it can also
be denoted as relations, roles, slots, or associations in other modeling paradigms like description
logics and UML. If it specifies how the class individuals relate to other individuals, it is called Ob-
ject Properties. Same as most modeling languages, OWL supports the representation of relations
only among two individuals in a way that it points from a particular domain class to a designated
range class.

As an example, our major classes in the proposed PDROM are: Requirement, Stage, Ac-
tor, Type. The object property between Requirement and Stage is hasStage, which means: a
Requirement (its domain) individual comprises of several Stage (its range) individuals. Another
propety type in OWL and framed in Protégé is Data Properties. It represents features, character-
istics, or parameters of class individuals and data property that are identified by name and can
take one or several values, which are usually restricted to a specific datatype, such as boolean,

string, integer, etc. As an example, requirementID, requirementName, or requirementDescription

are attributes of class Requirement, and it can take values of the datatype String.
In OWL, both object properties and data properties can be represented and organized as a
superproperty-subproperty hierarchy based on domain taxonomy. All individuals that are related
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with subproperty are also related with superproperty. An example of a superproperty-subproperty
could be hasMaterial Entity-hasMaterialPropertyEntity. hasMaterialPropertyEntity relates Re-
quirement and MaterialProperty individuals and is a subproperty of hasMaterialEntity. In-
versely, hasMaterialEntity relates Requirement and Material individuals, and it is a superprop-
erty of hasMaterialPropertyEntity. If the hasMaterialPropetyEntity object property links two in-
dividuals of Requirement and MaterialProperty, this indicates that these two individuals are re-
lated by the hasMaterial Entity object property. Same kind of example for superproperty-subproperty
of datatype properties can also be created.

Information that belong to a particular class is said to be individual or members of that class. An
example of an individual could be thermalConductivity or thermalDiffusivity that are individuals
of the ThermalProperties class. In Protégé, individuals are represented with Unique Name As-
sumption (UNA), but they can be specified using ‘Same Individual As’ and ‘Different Individuals’
descriptions.

The requirement classes, properties, object properties, data properties, and individuals are
implemented in Protégé as shown in figure 5.2, and several semantic rules and queries are defined
in the next section. Figure 5.2 shows the PDROM classes and class hierarchy on the left hand-side
of the figure, the data properties of the classes and object properties between classes on the right
hand-side of the figure, and the requirements generated for a product in the middle of the figure as
individuals.

In OWL ontology and Protégé, both object and data properties are used with restrictions to
define relationships for a member of a specified class. OWL restrictions group into three main
categories: quantifier, cardinality, and hasValue restrictions. These restrictions are used in Protégé
as Some (existential) and Only (universal) for quantifier restrictions and Min (min cardinality),
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Figure 5.2: PDROM Implementation in Protégé

Max (max cardinality), and Exactly (exact cardinality) for cardinality restrictions.

Another important issue in implementing the PDROM is to include semantic axioms to repre-

sent the conditions of a certain class, which are a necessary condition called SubClass Of descrip-

tion and a necessary and sufficient condition called Equivalent To description in Protégé. Both

types of axioms are implemented formally in OWL. Figure 5.3 represents a necessary condition

that says if an individual is a member of FunctionalRequirement, it is necessarily a Technical-

Requirement and it has to have minimum one AtomicFunction individual.

Similar to this example, Requirement class relates to Component and Property classes with

necessary conditions, as seen in figure 5.4. But it does not mean that every class related to

Component and Property classes is a Requirement class. In order to determine the member
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of the class for an individual, necessary and sufficient conditions must be defined that make the
class a Defined Class. As a defined class, Requirement class belongsTo exactly one Specifi-
cation, aggregates minimum one Actor, aggregates minimum one RequirementMeasurement,

aggregates minimum one Stage as shown in figure 5.4.
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Figure 5.4: Implementing the Semantic Axioms-Necessary and Sufficient Conditions

5.1.3 Use of the Reasoners

The PDROM is implemented into the Web Ontology Language (OWL) above to carry out knowl-
edge reasoning. As a piece of software, the Reasoner is one of the key features of the OWL-DL on-
tology, inferring logical consequences from a set of asserted axioms to automatically compute the
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classification hierarchy and checking the logical consistency of the ontology. The inferred ontology
class hierarchy shows us whether or not one class is a subclass of another class, and consistency
checking analyzes the possibility of having any instances for a class and semantic contradiction
within the definition of classes. Protégé allows users to add knowledge to an implemented PDROM
in OWL by carrying out automatic validation processes with certain reasoners like Pellet or Hermit.
Two types of the class hierarchy are defined in Protégé: “asserted hierarchy,” which is a manually
created class hierarchy, and “inferred hierarchy,” which is automatically computed by the reasoner
based on superclass-subclass and superproperty-subproperty relationships.

This work addresses two requirement specification criteria: (1) requirement completeness and
(2) requirement inconsistency using the reasoning and inference power of the OWL ontology.
Both of them can be carried out automatically by enriching the PDROM with semantic rules and
semantic reasoners. These activities are illustrated below with an automobile brake case study. The
last thing we will discuss before starting the case study is how semantic rules are modeled using

SWRL and how semantic query rules are modeled using SQWRL in OWL.

5.1.4 Use of the SWRL and SQWRL

This section presents the semantic rules for the inference and query of the product requirement
information for the PDROM implementation. The SWRL language in OWL is used to represent
the rules for consistency validation and inference, and the SQWRL language, which is an OWL
query language, is used to represent the rules for information extraction from an OWL ontology.
The consistency validation rules for revealing the meaning of several types of requirements, the
inference rules for inferring types of requirement actors or stages, and the query rules for searching

for requirements that belong to specific stages are developed and implemented in Protégé, as shown
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in figure 5.5.
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Figure 5.5: PDROM Implementation in Protégé and Semantic Rules in the PDROM

In order to reveal the requirement actor, type, stage, measurement, and rationale for the product
requirements, the relationships which prescribe many restrictions are represented in the SWRL in
terms of expert knowledge. These rules are empirical and subjective, and they can be extended
if needed. They help users generate complete and consistent sets of requirements for a specific
product during the design stage and further product life-cycle phases. Possible relationships
between the material, shape, process, function, flow, failure mode, etc. must be well defined
with semantic rules to generate the necessary requirements and complete the requirement set for
the requirement specification.

Some query rules are also developed in Protégé for the PDROM OWL ontology to extract
requirement information. These query rules search and extract the Requirement information from

the PDROM OWL ontology based on desired information such as requirement I.D., description,
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Actor, Stage, Measurement, Material Property, etc. Such queries are needed because product
requirements related to a specific life-cycle activity such as material selection, manufacturing
process, recycling, etc. or a specific part can be easily extracted from the requirement specification
of a product.

Some of the SWRL and SQWRL rules that are created in Protégé for PDROM OWL implemen-
tation are illustrated and explained in the appendix B.1. As it is indicated before, these rules can
be extended if needed. In the next case study section, the semantic incompleteness, inconsistency,
and query of the populated requirement information process with the rules defined in the proposed

PDROM are discussed.

5.2 Automobile Brake Requirements for the PDROM Implementation

An automotive brake is a system and it is an assembly of the caliper, pads, and rotor components
for the purpose of slowing or stopping the motion of a wheel while the automobile runs at a certain
speed. A rotor is clamped by the calipers and the brake pads when the brakes are applied. It
is fastened to the vehicle’s hub behind the wheel and is usually held on with two set screws, a
large center nut, or simply the wheel itself. The brake example is used to demonstrate: (1) how to
populate the PDROM model and (2) the consistency and completeness check on the requirement

information.

5.2.1 Description of Requirements and Rules Development

The brake rotor is one of the main components of the automobile brake assembly. The main
function of the brake is to reduce speed. It can be written in the functional requirement concept as

an R1: “Automobile brake shall reduce speed safely”. Figure5.6 shows the black box model for
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the functional description with the brake’s main function, input flows, and output flows. For the
brake system, calipers compress pads against the rotor in order to create friction that retards the
rotation to reduce speed. The energy of motion is converted into heat, and material is worn out,
as a consequence of friction. Moreover, the represented function for the usage stage of the brake
system might have input flows whose effects are not controllable, which are called “Noise Inputs.”
These input flows might cause crucial consequences in the long term. For example, *water’ is a

noise input for the brake system, and it causes corrosion in the long term.

z = Noise Input

(Material, Energy and Signal) Water %
+ Compressive Force Heat
x = Controlled Input = ; Wear Material
P > v=(x,2) y = Output > Rotation > Reduce Speed
(Material, Energy —\N . .
and Signal) (M‘;fd”ggigl‘j’gy Friction Corrosion

(a) (b)

Figure 5.6: (a) Black Box Model and (b) Function&Flow Representation for Automobile Brake
System

Some requirements for brake design can be defined as minimizing cost, weight, noise level,
and resistances to vibrations, stresses, corrosion, and thermal shock under various conditions of
load, velocity, temperature, and environment. The most important requirement consideration is the
ability of the brake rotor component to withstand high friction and maintain less abrasive wear.
Also, the rotor and pads must withstand high temperature, which is generated due to friction. This
indicates that the working temperature of the rotor must be below the melting temperature of the
components’ materials.

Another design issue is that the tolerance of the rotor must be compatible with the rest of the
wheel and brake parts. Ample space between the caliper and the rotor should be provided when the

brake is not in action (non-braking time). Besides these requirements, some other considerations,
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Table 5.1: Automobile Brake System Requirements

Requirement ID Requirement Description

R1
R2
R3
R4
RS
R6
R7
R8
R9
R10
R11
R12

R13
R14
R15
R16
R17
R18
R19
R20

Automobile brake shall reduce speed safely

Caliper shall compress pads against rotor

Rotor shall rotate with rim

Rotor shall transmit power from the caliper to the rim
Parts shall resist to vibrations

Parts shall generate friction

Parts shall resist to corrosion

Parts shall resist to thermal stress

Parts shall resist to thermal shock

Parts shall resist temperature up to 600 degree Celsius
Rotor and pads shall resist abrasive wear

Caliper shall keep distance between pad surface and rotor surface bigger than 0.3 cm
during non-braking time to avoid unnecessary friction and wear
Rotor material shall be recyclable

Water pollution in part production shall be low rate

CO2 emission in part production shall be less than 120 g
Rotor shall be suitable for die casting and machining
Minimize weight and cost

Rotor shall resist compression force

Rotor shall dissipate heat

Rotor shall have high surface hardness

which are very critical to the product design, can be; recyclability, pollution rate in production,

assembly variables like time and cost, energy consumption in processing/use/reuse/recycling, and

other design (geometry) constraints like good surface finish. Finally, the rotor design must con-

sider the ease of manufacturing processes like casting and machining. The above requirement
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