
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2010

Representation and validation of domain and range restrictions in Representation and validation of domain and range restrictions in

a relational database driven ontology maintenance system a relational database driven ontology maintenance system

Patrick Garrett. Edgett

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Computer Sciences Commons

Department: Department:

Recommended Citation Recommended Citation
Edgett, Patrick Garrett., "Representation and validation of domain and range restrictions in a relational
database driven ontology maintenance system" (2010). Masters Theses. 6730.
https://scholarsmine.mst.edu/masters_theses/6730

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Missouri University of Science and Technology (Missouri S&T): Scholars' Mine

https://core.ac.uk/display/229283733?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6730&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6730&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/6730?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F6730&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

REPRESENTATION AND VALIDATION OF DOMAIN AND RANGE

RESTRICTIONS IN A RELATIONAL DATABASE DRIVEN ONTOLOGY

MAINTENANCE SYSTEM

by

PATRICK GARRETT EDGETT

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN COMPUTER SCIENCE

2010

Approved by

Dr. Jennifer L. Leopold, Advisor

Dr. Dan Lin

Dr. Ronald L. Frank

iii

ABSTRACT

 An ontology can be used to represent and organize the objects, properties, events,

processes, and relations that embody an area of reality [1]. These knowledge bases may

be created manually (by individuals or groups), and/or automatically using software

tools, such as those developed for information retrieval and data mining. Recently, the

National Science Foundation funded a large collaborative development project for the

semi-automated construction of an ontology of amphibian anatomy (AmphibAnat [2]).

To satisfy the extensive community curation requirements of that project, a generic, Web-

based, multi-user, relational database ontology management system (RDBOM [3]) was

constructed, based upon a novel theoretical ontology model called an Ontology Abstract

Machine (OAM [4]). The need to support concurrent data entry by multiple users with

different levels of access privileges (as determined and assigned by the administrators),

made it critical to ensure that the entered data were semantically correct. In particular,

the ability to define and enforce restrictions on property characteristics such as the

domain and range of a relation provide several advantages. It helps to identify

inconsistencies in the ontology, maintain a higher level of overall integrity, and avoid

erroneous conclusions that could be made by automated reasoners. In this thesis a

modified OAM model is presented that includes definitions for property characteristics

and the associated validation algorithms. As proof of concept, it is shown how this

modified abstract model has been implemented for domain and range restrictions in

RDBOM.

iv

ACKNOWLEDGMENTS

 I would like to thank Dr. Jennifer Leopold for getting me involved in research as

an undergraduate, and encouraging me to obtain a Master of Science Degree along the

same line of work. Additionally I want to thank Dr. Dan Lin and Dr. Ronald Frank for

serving as members of my committee. This work was supported by the National Science

Foundation under award DBI-0640053, and I am also extremely grateful for the

Chancellor's Fellowship provided by Missouri S&T. I also want to thank my cat Horace

and my sister's dog Floyd for serving as excellent examples and particularly Floyd for not

eating Horace. Lastly I want to thank Leong Lee and Alton Coalter for their support

throughout my work on RDBOM and designing the domain and range restrictions.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ALGORITHMS ... vii

LIST OF EXAMPLES ... viii

LIST OF ILLUSTRATIONS ... ix

LIST OF SCHEMAS .. x

NOMENCLATURE .. xi

SECTION

1. INTRODUCTION .. 1

2. BACKGROUND AND MOTIVATION .. 3

2.1. PROPERTY CHARACTERISTICS... 3

2.2. DOMAIN AND RANGE ... 4

2.3. ONTOLOGY ABSTRACT MACHINE ... 7

2.4. RESTRICTION CAPABILITIES OF ONTOLOGIES REPRESENTED AS

 RELATIONAL DATABASES .. 10

2.5. SUMMARY .. 11

3. MODIFIED ONTOLOGY ABSTRACT MACHINE .. 12

3.1. MODIFIED OAM MODEL ... 12

3.2. MODIFIED OAM MODEL EXAMPLES ... 13

3.3. ALGORITHMS TO VALIDATE RELATIONSHIP EDGES 15

3.4. SUMMARY .. 22

4. RDBOM'S STRUCTURE .. 23

4.1. REPRESENTATION OF THE ONTOLOGY ... 23

4.2. ONTOLOGY MODIFICATION .. 25

4.3. USER AUTHORIZATION .. 26

4.4. SUMMARY .. 27

5. PROPOSED SOLUTION ... 28

5.1. PROPERTY CHARACTERISTICS... 28

5.2. VALIDATING RESTRICTED PROPERTY CHARACTERISTIC USE 29

vi

5.3. VIOLATING RESTRICTED PROPERTY CHARACTERISTICS 32

5.4. SUMMARY .. 35

6. IMPLEMENTATION .. 37

6.1. PROPERTY CHARACTERISTICS... 37

6.2. VALIDATING RESTRICTED PROPERTY CHARACTERISTICS 38

6.2.1. Linking a Node to Another Node ... 38

6.2.2. Moving Nodes/Branches .. 38

6.2.3. Linking to Additional Parents .. 40

6.3. RESTRICTED PROPERTY CHARACTERISTIC VIOLATIONS 41

6.3.1. Node to Node Link Operations .. 42

6.3.2. Move/Cut and Link to Additional Parents ... 43

6.4. ENTIRE ONTOLOGY VALIDATION ... 44

6.5. INFORMATIONAL PAGES ... 46

6.6. SUMMARY .. 49

7. FUTURE WORK ... 50

8. SUMMARY ... 51

BIBLIOGRAPHY ... 52

VITA .. 54

vii

LIST OF ALGORITHMS

Item Page

Algorithm 3.1. Create a New Domain .. 16

Algorithm 3.2. Create a New Range... 17

Algorithm 3.3. Perform a Validation Check Before Creating a New Edge 19

viii

LIST OF EXAMPLES

Item Page

Example 2.1. OAM Representation of the Ontology Presented In Figure 2.1 8

Example 3.1. Example of the Modified OAM Representation of an Ontology 14

Example 3.2. Create a New Range (is defined by, literature)... 18

Example 3.3. Perform a Validation Check (In Terms of Violation Detection) Before

 Creating a New Edge .. 20

Example 3.4. Perform a Validation Check (In Terms of Acceptance) Before

 Creating a New Edge .. 21

ix

LIST OF ILLUSTRATIONS

Item Page

Figure 2.1. Example of a Domain and Range Restriction in OWL 6

Figure 2.2. OAM Diagram of the Ontology in Example 2.1... 9

Figure 3.1. OAM Diagram of the Ontology in Example 3.1....................................... 15

Figure 3.2. OAM Diagram of the Ontology in Example 3.4....................................... 22

Figure 4.1. RDBOM Update Page for Horace .. 25

Figure 5.1. Move/Cut Node Operation in RDBOM .. 31

Figure 5.2. Link to Additional Parent Operation in RDBOM 31

Figure 6.1. RDBOM Detection of Invalid Edge from Figure 2.1 39

Figure 6.2. RDBOM Attempting a Link Node to Additional Parent Operation 41

Figure 6.3. RDBOM Fixing a Violation via the Move Operation 45

Figure 6.4. AmphibAnat Restricted Properties ... 46

Figure 6.5. RDBOM Term Information Page for Floyd ... 47

Figure 6.6. RDBOM Violations Overview Page ... 48

Figure 6.7. RDBOM Violations Overview Page for AmphibAnat 49

x

LIST OF SCHEMAS

Item Page

Schema 5.1. Restriction Violations Table Schema.. 34

xi

NOMENCLATURE

Symbol Description

M Ontology Abstract Machine (OAM), (Q, ∑, δ, Q0, F)

Q Set of nodes, Qc ∪ Qi ∪ Qv

Qc Set of class terms in an ontology

Qi Set of instance terms in an ontology

Qv Set of values in an ontology

∑ Set of relationship types, ∑B ∪ ∑E

∑B Set of base relationship types

∑E Set of extended relationship types

δ Set of triples representing relationships (edges) among nodes

Q0 Set of source nodes (no incoming ∑B edge, leaves)

F Set of root nodes

U Set of individual user IDs

δdomain Set of domain restriction tuples

δrange Set of range restrictions tuples

1. INTRODUCTION

Philosopher Barry Smith has defined an ontology as “…the science of what is, of

the kinds and structures of objects, properties, events, processes, and relations in every

area of reality. For an information system, an ontology is a representation of some pre-

existing domain of reality which: 1) reflects the properties of the objects within its

domain in such a way that there obtains a systematic correlation between reality and the

representation itself; 2) is intelligible to a domain expert; and 3) is formalized in a way

that allows it to support automatic information processing” [1].

A perusal of ontology-related literature in computer science clearly reflects that

the research focus and problems relating to ontologies in information systems have

changed over the years; the focal point has shifted from the more theoretical ontology

issues to problems associated with the actual development and use of ontologies in real-

world, large-scale, collaborative applications. As an example of a large ontology project

that required the use of modularity and collaborative editing, in 2007 the National

Science Foundation funded a project to build a comprehensive ontology of amphibian

anatomy (AmphibAnat [2]). After determining that existing ontology editors/servers did

not meet all of their needs, the research team designed and constructed a Web-based,

multi-user, relational database ontology management system (RDBOM [3]) based on a

novel theoretical ontology model called an Ontology Abstract Machine (OAM) [4].

However, the need for multi-user, collaborative ontology development tools is

only part of the problem. The extent of user participation in developing an ontology (of

any size) also is an important consideration. Typically, ontology curation is performed

manually by a small number of users using a single-user-based ontology editor such as

OBO-Edit [5], Protégé [6], SWOOP [7], or COBrA [8], and the ontology files are

maintained with a version control system. When a very limited number of people are

modifying an ontology, it may be feasible for the entire process to be overseen by those

who are “in charge”; they can exercise some degree of control over the data entry, and

make sure that the data adhere to an agreed upon design.

Much larger community-curated ontology projects require automated control over

the data entry process, particularly in terms of data validation. As an example of such a

2

project, the AmphibAnat ontology of amphibian ontology contains over 22,000 terms and

approximately 44 relationship types, and is curated by a community of 21 active users

from various specific areas of anatomical expertise. Initially, the administrators created a

skeleton for the ontology hierarchy, and defined the relationships to be used to link terms.

Access to branches of the ontology was assigned to various members of the community

to allow for content to be added and updated. It made sense to utilize a database

management system to address several multi-user issues, including concurrency control

and the restriction of data access privileges.

The success of an extensive project like AmphibAnat was dependent upon the

participation of a fairly large number of users. Although the administrators were

responsible for major design decisions, they needed to have the ability to enforce such

decisions in the open development environment. One such requirement was the ability to

restrict the use of term relationships based on characteristics defined with respect to the

relationship, in particular domain and range. That would help prevent erroneous inputs,

both accidental and malicious, and thereby improve the overall integrity of the ontology.

Additionally, it would help clarify the relationship definitions.

Herein is presented a modified abstract ontology model that includes property

restrictions and the associated validation algorithms. As proof of concept, it is described

how this model has been implemented for domain and range restrictions in the RDBOM

relational database driven ontology maintenance system. The modified ontology abstract

machine model and its related algorithms are discussed in Section 3. An understanding

of the internal structure of RDBOM is covered in Section 4. In Section 5, discussion is

focused on introducing restricted property characteristics to RDBOM as well as the need

in some situations for the restrictions to be ignored and thus violated. Finally, Section 6

pertains to the actual implementation of restricted properties in RDBOM.

3

2. BACKGROUND AND MOTIVATION

 There are several important concepts regarding ontologies that need to be

discussed before presenting the OAM and RDBOM modifications to support property

restrictions. The first such subject is what exactly property characteristics are, and how

they can be used to check if a property is being used correctly (and consistently)

throughout an ontology, as well as how additional information about terms can be

inferred through property characteristics. The second subject is how the concepts of data

constraints such as domain and range apply to an ontology; specifically, the validation

capabilities of ontology languages such as the Web Ontology Language (OWL) and the

Open Biological and Biomedical Ontology language (OBO) are compared to the desired

functionality of RDBOM's domain and range validation. Lastly, a formal definition and

several examples of the original Ontology Abstract Machine are given.

2.1. PROPERTY CHARACTERISTICS

 There must be a clear understanding of how the concepts of domain and range

apply to ontologies. In an ontology, properties are used to describe the relationships

among terms. The relationship itself is regarded as a property of a term. A property

characteristic describes additional information about a specific property. OWL facilitates

the designation of several property characteristics including transitive and inverse

relations [10]. For example, the transitive property characteristic can be used to indicate

that if a transitive property relates term A to term B, and relates term B to term C, then

term A is related to term C.

 A property characteristic such as transitivity can be used to infer additional

information about terms in the ontology. Often this is referred to as reasoning over

information from an ontology. Other types of property characteristics can be used to

restrict the values for a particular property. For example, restricting the minimum or

maximum numerical values of a property has_legs would ensure that every use of the

has_legs property lies within a certain range. In doing this, consistency checking of the

property's use ensures that the target value meets the restriction set in place on the

4

property. In the discussion that follows in this section, it is shown how property

characteristics such as domain and range can be used to perform both consistency

checking of an ontology as well as how they can be used for reasoning by OWL.

 It should be noted that the objective of this work is to implement the restricted

form of property characteristics, a much more focused type of a property characteristic.

It requires additional functionality to account for the validation of property use that has a

restricted property characteristic applied to it. As will be discussed in subsequent

sections, this work also accommodates possible violations of the restricted property

characteristic in order to track and eliminate issues in existing ontologies. Implementing

non-restricted property characteristics in a relational database driven ontology

maintenance system such as RDBOM is not nearly as difficult, and does not satisfy the

functionality desired by the end users of RDBOM for the AmphibAnat project; hence,

this is the reason for focusing on restricted property characteristics. Additionally, the

mechanisms required for restricting a property characteristic can potentially be used to

infer additional information on non-restricted property characteristics, as will be

discussed in Section 7.

2.2. DOMAIN AND RANGE

Domain and range are both features of popular ontology languages such as OWL

(via RDFS) [9] and OBO [5]. Both of those languages use virtually the same definition

for domain and range. From [10], domain is defined as “if a property P has domain D,

then any term T that has a relationship of type P to another term is a subclass of D.” This

states that “any term that has a relationship of type P to another term is by definition a

subclass of D.” Also from [10], range is defined as “if a property P has range R, then any

term T that is the target of a relationship of type P is a subclass of R.” Equivalently, “any

term that is the target of a relationship of type P is by definition a subclass of R.” Other

relationships within the set of properties (such as disjointness) provide additional

restrictions that a reasoner could use to determine violations of the integrity of the data.

An example of using domain and range within OWL to restrict the values of a

property can be seen in Figure 2.1. The ontology consists of classes for Animals and

5

Food. Dog and Cat are both subclasses of Animals. An object property eats is defined

with the domain of Animals and the range of Food. An instance of Cat is created with

the name of Horace, and an instance of Dog is created with the name of Floyd. Floyd is

then assigned the relationship eats Horace. Since the Animals and Food classes are

disjoint, a reasoner could detect an error about the use of Horace as the range of the eats

relationship for Floyd. This implies the use of eats is inconsistent with its definition.

If the two terms, Animals and Food are not disjoint then the behavior is different.

For terms used as the domain of property eats, one could infer additional information

about the term, stating that it is a subclass of Animals which is the specified domain of

eats. Likewise, terms used as the range term of eats would be inferred to be subclasses of

Food. Applying this to the Floyd eats Horace relationship in Example 1 without the

disjointWith statements, Floyd is being used as the domain and is already a subclass of

Animals, so no additional information is inferred. However, Horace is only a subclass of

Animals. By using Horace as the range of a use of the eats property an entry could

automatically be inferred, stating that Horace is also a subclass of Food, the range term

for eats.

<owl:ObjectProperty rdf:about="#eats">

 <rdfs:domain rdf:resource="#Animals"/>

 <rdfs:range rdf:resource="#Food"/>

</owl:ObjectProperty>

<owl:Class rdf:about="#Animals">

 <rdfs:subClassOf rdf:resource="&owl;Thing"/>

 <owl:disjointWith rdf:resource="#Food"/>

</owl:Class>

<owl:Class rdf:about="#Cat">

 <rdfs:subClassOf rdf:resource="#Animals"/>

</owl:Class>

<owl:Class rdf:about="#Dog">

 <rdfs:subClassOf rdf:resource="#Animals"/>

</owl:Class>

<owl:Class rdf:about="#Food"/>

6

<owl:Class rdf:about="&owl;Thing"/>

<owl:Thing rdf:about="#Horace">

 <rdf:type rdf:resource="#Cat"/>

</owl:Thing>

<owl:Thing rdf:about="#Floyd">

 <rdf:type rdf:resource="#Dog"/>

 <eats rdf:resource="#Horace"/>

</owl:Thing>

Figure 2.1. Example of a Domain and Range Restriction in OWL

In a multi-user environment, it can be a challenging task to enforce constraints

such as the domain and range restrictions on the values of relationships. In this case, the

domain and range concepts provide the restrictions to be placed on the data, unlike their

specification in OWL or OBO, where they instead are used to define the data. Using

similar data to that from Figure 2.1, if someone tries to assert that “Floyd eats Horace”,

instead of defining Horace to be a subclass of Food (as would be the case for OWL or

OBO), the system must detect a violation of the range of eats (since Horace is not

already a subclass of Food). Note the distinct differences between OBO/OWL and this

philosophy. For OBO/OWL, the object or relation is added to the existing set of data

(e.g., Horace becomes a subclass of Food) and is considered inference of additional

information for Horace. In a multi-user curation environment the data must already exist

(e.g., Horace must be defined as a subclass of Food) so that the specification of the

domain or range causes a validation to occur, and does not cause a new relation to be

added.

The functionality desired from the OAM and RDBOM modifications is to

accommodate checking for consistent property use throughout the ontology. The ability

to detect the invalid property use of eats as with OWL in Figure 2.1 should be able to be

performed without the explicit disjointWith statements existing in the class definitions in

RDBOM.

7

2.3. ONTOLOGY ABSTRACT MACHINE

As previously mentioned, specification and (automated) enforcement of domain

and range restrictions are necessary to ensure the data integrity of large community-

curated ontologies. One such ontology, the AmphibAnat project, is based on the OAM

model; hence restrictions such as domain and range need to be defined formally as part of

that model. The motivations for developing the OAM model, the model definition, and

the various algorithms associated with the model are discussed in detail in [4]. Here is

provided a brief overview of the basic OAM model before the incorporation of property

restrictions is addressed. The formal definition of the OAM is given as follows:

An Ontology Abstract Machine (OAM) is a 5-tuple representation of an ontology,

M = (Q, ∑, δ, Q0, F), where:

Q: set of nodes; Q = Qc ∪ Qi ∪ Qv

Qc = set of classes

Qi = set of instances

Qv = set of values

∑: set of relationship types

∑ = ∑B ∪ ∑E

∑B = set of base relationship types, e.g. {is_a, part_of}

∑E = set of extended relationship types, e.g. {is_from_literature, image_ contains,

is_from_image, …}

δ: set of relationships in the form of edges (node, relationship type, node), Q x ∑ → Q;

hence each element is a child node, a relationship type, or a parent node.

Q0: set of source nodes: These are nodes with no incoming ∑B edge. This set can be

identified from δ. Q0 is a subset of (Qc ∪ Qi). Source nodes can only be elements of

the set of classes or elements of the set of instances.

F: set of root nodes, i.e. nodes with no outgoing ∑B edge. e.g. F = {Concepts}, F is a

subset of Qc.

Another set U = {u1, u2, … ui … un} is used to represent individual user ids in

8

order to implement security features. Any elements of U can be associated with any node

in Q.

∑B is a set of base relationship types. Members of this set can be used as links

(among classes and instances) to generate the main graph view of an ontology; two of the

most common base relationship types used for this purpose are is_a and part_of. Here it

is assumed that the main graph view is acyclic.

∑E is a set of extended relationship types. The member elements can be used as

links between values and classes, or as links between values and instances. In other

words, they are used to link attributes to classes and instances. Another required function

is the ability to link classes and instances (without affecting the main structure of the

ontology).

To better understand the OAM model, an OAM will be developed based off the

ontology presented in Figure 2.1. The OAM is described in Example 2.1 and depicted in

Figure 2.2.

OAM instance M = (Q, ∑, δ, Q0, F):

Q = Qc ∪ Qi ∪ Qv = {Thing, Food, Animals, Dog, Cat, Floyd, Horace};

Qc = {Thing, Food, Animals, Dog, Cat}; Qi = {Floyd, Horace};

Qv = {}

∑ = ∑B ∪ ∑E = {is_a, eats}

∑B = {is_a}; ∑E = {eats}

δ = {(Food, is_a, Thing), (Animals, is_a, Thing), (Dog, is_a, Animals),

 (Floyd, is_a, Dog), (Cat, is_a, Animals), (Horace, is_a, Cat)}

Q0 = {Food, Floyd, Horace}

F = {Thing}

Example 2.1. OAM Representation of the Ontology Presented In Figure 2.1

9

Figure 2.2. OAM Diagram of the Ontology in Example 2.1

As discussed in [4], the OAM model is a generic theoretical model developed to

provide a framework for constructing a collaborative, Web-based ontology management

system that supports modularity and distinct relationship classifications. For

collaboration purposes, it is useful to assign user access rights to a subset of the ontology;

for example (M, Animals) denotes a subset of M [4] (or informally a branch below the

Animals node). The RDBOM relational database driven ontology management system

uses the OAM model to implement the multi-user access control capability [3] [4]. For

example, administers can attach a user ui to the node Animals, thereby granting user ui

both access and update rights to the subset (M, Animals), but not to other parts of the

ontology M.

The original OAM model did not include the capability to identify the domain and

range of a relationship, and thereby restrict the classes that can be used with a

relationship. For example, referring to Example 2.1, the administrators should be able to

control the domain of “∑E = {eats}” and the range of “∑E = {eats}”; specifically, the

domain of eats should be nodes from (M, Animals), and the range of eats should be nodes

Thing

Animals

Dog

Cat

is_a is_a

is_a

Food is_a

Floyd

Horace

10

from (M, Food). If a user tries to create an edge (Floyd eats Horace), the OAM model,

and hence the RDBOM system, should give a domain/range violation warning.

2.4. RESTRICTION CAPABILITIES OF ONTOLOGIES REPRESENTED AS

 RELATIONAL DATABASES

In [11], the importance of formally stating rules regarding relations is

emphasized. In an open, multi-user setting, rules (or restrictions) are needed to ensure

that the community follows the standards and designs that have been decided upon for the

particular ontology. The widely used Protégé application [6] user interface supports

consistency checking through FaCT [12], which can be used on the entire ontology or

only on a selected part of the ontology. There are also plugins for other reasoners such as

Pellet [13].

Ontology development project teams have started to recognize how valuable it is

to be able to check the consistency of an ontology. Members of the Gene Ontology

project [14] stated that as the size of their ontology increased, the curation of it became

much more challenging. As a result, they turned to the use of Protégé, in part for its

consistency checking features, to ensure that the knowledge model was being used

correctly by its classes and instances.

For some applications, it is useful to convert an ontology into a relational

database, as demonstrated in [15]. There exist systems such as Minerva [16] that support

persistent storage and inference of OWL ontologies in a relational database. Likewise,

DBOWL [17] consists of an OWL relational database storage system, and an OWL

reasoning system. Thus, it is possible to store an ontology as a relational database, and to

specify OWL-compatible domain and range restrictions, such as those illustrated in

Figure 2.1. However, these systems are designed for persistent storage of ontologies,

and not dynamic management of the data contained therein; if changes are made to the

data, the database must be reloaded and the consistency checker must be re-executed.

11

2.5. SUMMARY

 This section has provided some background information about the differences

between property characteristics, restricted property characteristics, and different ways

they can be used within an ontology to perform consistency checking of properties used

in relationships as well as inference of additional term data. The OAM model and the

RDBOM implementation aim to incorporate restricted property characteristics such as

domain and range. This provides a means for checking the consistency of properties and

how they are used throughout the ontology, which has shown to be valuable in RDBOM's

multi-user curation environment. The original OAM model was introduced and applied

to Figure 2.1, as can be found in Example 2.1 and Figure 2.2, in order to provide a basic

understanding of how it represents an ontology. In the next section the OAM model will

be extended to support restrictions, using domain and range as a proof of concept.

12

3. MODIFIED ONTOLOGY ABSTRACT MACHINE

 The original definition of the OAM model presented in the previous section must

be modified to take into consideration restrictions such as domain and range. Those

modifications, together with the supporting algorithms for maintenance of that

information, are provided in this section. Additionally, several examples are given using

a very small section of the Amphibanat ontology to enforce these concepts. Lastly, an

algorithm for validating a new edge (relationship) introduced to the OAM is provided

along with an example.

3.1. MODIFIED OAM MODEL

 Introduced to the model are two new sets, δdomain and δrange. Both of these sets

contain tuples of a relationship type, and a node which represents the property to restrict

as well as the node to which to restrict the values. That is, all domain and range property

restrictions are specified in δdomain and δrange, respectively.

The (modified) Ontology Abstract Machine is a 7-tuple representation of an

ontology, M = (Q, ∑, δ, Q0, F, δdomain, δrange), where:

Q: set of nodes; Q = Qc ∪ Qi ∪ Qv

Qc = set of classes

Qi = set of instances

Qv = set of values

∑: set of relationship types

∑ = ∑B ∪ ∑E

∑B = set of base relationship types, e.g. {is_a, part_of}

∑E = set of extended relationship types, e.g. {is_from_literature, image_ contains,

is_from_image, …}

δ: set of relationships in the form of edges (node, relationship type, node),

13

Q x ∑ → Q; hence each element is a child node, a relationship type, or a parent node.

Q0: set of source nodes: These are nodes with no incoming ∑B edge. This set can

be identified from δ. Q0 is a subset of (Qc ∪ Qi). Source nodes can only be elements of

the set of classes or elements of the set of instances.

F: set of root nodes, i.e. nodes with no outgoing ∑B edge. F is a subset of Qc.

δdomain: set of meta data in the form of (relationship type, node), ∑ x Q. This is

used to define the domain of a relationship type; it means that the domain of this

relationship type can only be nodes from subset (M, node). Normally the relationship

type is an element of ∑E, but it also can be an element of ∑B.

δrange: set of meta data in the form of (relationship type, node), ∑ x Q. This is

used to describe the range of a relationship type; it means that the range of this

relationship type can only be nodes from subset (M, node). Normally the relationship

type is an element of ∑E, but it also can be an element of ∑B.

The descriptions of U = {u1, u2, … ui … un}, ∑B, and ∑E are the same as their

descriptions described in Section 2.3, the original OAM definition.

3.2. MODIFIED OAM MODEL EXAMPLES

Several examples will be given to demonstrate the modifications made to the

original OAM model. Example 3.1 illustrates how the (modified) OAM can be used to

represent domain and range restrictions.

Q = Qc ∪ Qi ∪ Qv

Qc = {Concepts, image, Gaupp_1896_Fig_11, synonym, sternum inferius,

literature, Maglia et al. 2007, amphibian anatomical entity, sternum};

Qi = {}; Qv = {}

∑ = ∑B ∪ ∑E = {is_a, is defined by, has related synonym, image contains}

∑B = {is_a}; ∑E = {has related synonym, image contains}

δ = {(image, is_a, Concepts), (Gaupp_1896_Fig_11, is_a, image),

14

(synonym, is_a, Concepts), (sternum inferius, is_a, synonym),

(literature, is_a, Concepts), (Maglia et al. 2007, is_a, literature),

(amphibian anatomical entity, is_a, Concepts),

(sternum, is_a, amphibian anatomical entity),

(Gaupp_1896_Fig_11, image contains, sternum),

(sternum, has related synonym, sternum inferius)}

Q0 = {Gaupp_1896_Fig_11, sternum inferius, Maglia et al. 2007, sternum}

F = {Concepts}

δdomain = {(image contains, image)}

δrange = {(has related synonym, synonym)}

Example 3.1. Example of the Modified OAM Representation of an Ontology

 In Example 3.1, the domain specification of the relationship has_related_synonym

and range specification for the relationship image_contains were not included for brevity.

It is assumed that the image_contains relationship can be used with any term in the

ontology being a valid range term. Likewise, the has_related_synonym relationship can

correctly be used with any term in the ontology as its range.

Shown in Figure 3.1 is the graphical OAM representation of the ontology in

Example 3.1. Note that this is a very simple example with only a few nodes. In the

AmphibAnat project the OAM is used to represent ontology modules which each contain

thousands of nodes. For the RDBOM implementation, the OAM data are stored in a

relational database. However, the OAM model is implementation independent, and could

be stored as a flat file or simply stored in system memory.

In Example 3.1 it can be seen that δdomain = {(image contains, image)}, which

means the domain of relationship type image contains can only be nodes from subset (M,

image). The edge (Gaupp_1896_Fig_11, image contains, sternum) satisfies this

requirement because the node Gaupp_1896_Fig_11 is under (M, image).

Similarly, δrange = {(has related synonym, synonym)}, means the range of

relationship type has related synonym can only be nodes from subset (M, synonym.) The

15

edge (sternum, has related synonym, sternum inferius) satisfies this requirement because

sternum inferius is under (M, synonym).

Figure 3.1. OAM Diagram of the Ontology in Example 3.1

3.3. ALGORITHMS TO VALIDATE RELATIONSHIP EDGES

Because the OAM model has been modified to store domain and range property

restrictions, an algorithm needs to be provided to enable the addition and enforcement of

the restrictions when adding new edges (relationships) to the OAM. To provide the

functionality required to specify domain and range restrictions, and perform validation

checks, Algorithm 3.1, Algorithm 3.2 and Algorithm 3.3 were developed. An application

of Algorithm 3.2 is given in Example 3.2 where a new range restriction "is defined by has

range literature" is created.

Concepts

image

Gaupp_

1896_Fig_

11 is_a is_a

synonym

sternum

inferius is_a

amphibian

anatomical

entity

sternum is_a

literature

Maglia et

al. 2007 is_a

is_a

is_a

is_a image contains

has related

synonym

16

Input: An OAM instance, and a new domain definition in the form of (r, n),

where r is a relationship type and n is a class node.

Output: An updated OAM instance.

Algorithm:

if n is not an element of Qc then

 exit and output the error message “class node n does not exist”

end if

if r is not an element of ∑ then

 if r should be of base relation type then

 add r to set ∑B

 elseif r should be of extended relationship type then

 add r to set ∑E

 end if/elseif

else

 δdomain = δdomain ∪ {(r, n)}

end if/else

Algorithm 3.1. Create a New Domain

Input: An OAM instance, and a new range definition in the form of (r, n),

where r is a relationship type and n is a class node.

Output: An updated OAM instance.

Algorithm:

if n is not an element of Qc then

 exit and output the error message “class node n does not exist”

end if

if r is not an element of ∑ then

 if r should be of base relation type then

 add r to set ∑B

 elseif r should be of extended relationship type then

 add r to set ∑E

17

 end if/elseif

end if

δrange = δrange ∪ {(r, n)}

Algorithm 3.2. Create a New Range

Input: The OAM instance in Example 3.1, and a new range definition in the

form of (is defined by, literature), where is defined by is an extended

relationship type, and literature is a class node.

Steps:

Since literature ∈ Qc; continue

is defined by ∉ ∑; so add is defined by to ∑E (is defined by is an extended

relationship type)

now ∑E = {has related synonym, image contains, is defined by}

δrange = δrange ∪ {(is defined by, literature)}

now δrange = {(has related synonym, synonym), (is defined by, literature)}

Output: An updated OAM instance as shown below.

OAM instance M = (Q, ∑, δ, Q0, F, δdomain, δrange):

Q = Qc ∪ Qi ∪ Qv

Qc = {Concepts, image, Gaupp_1896_Fig_11, synonym,

sternum inferius, literature, Maglia et al. 2007, amphibian anatomical

 entity, sternum};

Qi = {}; Qv = {}

∑ = ∑B ∪ ∑E = {is_a, is defined by, has related synonym, image contains}

∑B = {is_a};

∑E = {has related synonym, image contains, is defined by}

δ = {(image, is_a, Concepts), (Gaupp_1896_Fig_11, is_a, image),

(synonym, is_a, Concepts), (sternum inferius, is_a, synonym),

(literature, is_a, Concepts), (Maglia et al. 2007, is_a, literature),

(amphibian anatomical entity, is_a, Concepts), (sternum, is_a,

amphibian anatomical entity), (Gaupp_1896_Fig_11, image contains,

18

sternum), (sternum, has related synonym, sternum inferius)}

Q0 = {Gaupp_1896_Fig_11, sternum inferius, Maglia et al. 2007, sternum}

F = {Concepts}

δdomain = {(image contains, image)}

δrange = {(has related synonym, synonym), (is defined by, literature)}

Example 3.2. Create a New Range (is defined by, literature)

Note that the only differences between the OAM instances in Example 3.1 and

Example 3.2 are the sets ∑E and δrange. It does not affect the OAM diagram, although the

meta-data concerning the range of relationships are changed. As a result, Example 3.2

has the same OAM diagram as Example 3.1, shown in Figure 3.1.

Algorithm 3.3 can be used to validate the domain and range definitions. Here it is

assumed that such validation checks normally would be performed before an edge is

added to the ontology. Example 3.3 illustrates that the algorithm performs the validation

check and detects that this is a domain/range violation; consequently, the edge creation

request is rejected. Example 3.4 demonstrates that the algorithm allows the edge creation

request, as the request satisfies all domain/range definitions.

Input: An OAM instance, and a new edge in the form of (nd, r, nr), where r is a

relationship type, and nd and nr are nodes.

Output: An updated OAM instance.

Algorithm:

if (nd ∉ Q) or (nr ∉ Q) or (r ∉ ∑) then

 exit and output error message “class node or relationship type does not exist”

end if

for each element (r’, n) in set δdomain do

 if (r’ = r) then

 if (check_up (nd, n) = “not_found”) then //check_up is declared below

 exit and output the error message “domain (r’, n) violation”

19

 end if

 end if

end for

for each element (r’, n) in set δrange do

 if (r’ = r) then

 if (check_up (nr, n) = “not_found”) then

 exit and output the error message “range (r’, n) violation”

 end if

 end if

end for

δ = δ ∪ {(nd, r, nr)} //add edge to OAM

check_up(test_node, node)

begin

 for each ancestor path p of test_node:

 if node not in p then

 return "not_found"

 end if

 end for loop

 return "found"

end check_up

Algorithm 3.3. Perform a Validation Check Before Creating a New Edge

 The check_up routine included in Algorithm 3.3 is used to validate any domain or

range restrictions that apply to a new edge. In OAM it is possible for nodes to have

multiple parents. When checking to see if a node can be used in a property with domain

or range restrictions, the node must be a descendent of the node to which the property is

restricted. Depending on the location of the node being validated, the restricted node

could be an ancestor in one path but not another. The restriction violations are used to

20

perform consistency checking of the relationships using properties, so it is important to

ensure that their use is correct in every path of the node.

Input: The OAM instance in Example 3.2, and a new edge (sternum, image contains,

Maglia et al. 2007) to be added, where image contains is a relationship type, and

sternum and Maglia et al. 2007 are nodes.

Steps:

(sternum ∈ Q), (Maglia et al. 2007 ∈ Q), and (image contains ∈ ∑)

for element (image contains, image) in set δdomain

 since (r’ = image contains = r)

 since (check_up (sternum, image) = “not found”)

 exit and output error message “domain (image contains, image) violation”

Output: Since there is a violation, the OAM instance remains unchanged.

Example 3.3. Perform a Validation Check (In Terms of Violation Detection) Before

Creating a New Edge

Input: The OAM instance in Example 3.2, and a new edge (sternum, is defined by,

Maglia et al. 2007) to be added, where is defined by is a relationship type, and

sternum and Maglia et al. 2007 are nodes.

Steps:

(sternum ∈ Q) and (Maglia et al. 2007 ∈ Q) and (is defined by ∈ ∑)

no element (r’, n) in set δdomain satisfies (r’ = is defined by), so it passes the domain check

for element (is defined by, literature) in set δrange

 since (r’ = is defined by = r)

 (check_up (Maglia et al. 2007, literature) = “found”), so it passes range check

δ = δ ∪ {(sternum, is defined by, Maglia et al. 2007)} //add edge to the OAM instance

δ = {(image, is_a, Concepts), (Gaupp_1896_Fig_11, is_a, image), (synonym, is_a,

Concepts), (sternum inferius, is_a, synonym), (literature, is_a, Concepts), (Maglia et

al. 2007, is_a, literature), (amphibian anatomical entity, is_a, Concepts), (sternum,

21

is_a, amphibian anatomical entity), (Gaupp_1896_Fig_11, image contains, sternum),

(sternum, has related synonym, sternum inferius), {(sternum, is defined by, Maglia et

al. 2007)}

Output: An updated OAM instance shown below. Please refer to Figure 3.2 for the

graphical OAM representation of this ontology instance.

OAM instance M = (Q, ∑, δ, Q0, F, δdomain, δrange):

Q = Qc ∪ Qi ∪ Qv

Qc = {Concepts, image, Gaupp_1896_Fig_11, synonym, sternum inferius, literature,

Maglia et al. 2007, amphibian anatomical entity, sternum}; Qi = {}; Qv = {}

∑ = ∑B ∪ ∑E = {is_a, is defined by, has related synonym, image contains}

∑B = {is_a}; ∑E = { has related synonym, image contains, is defined by}

δ = {(image, is_a, Concepts), (Gaupp_1896_Fig_11, is_a, image), (synonym, is_a,

Concepts), (sternum inferius, is_a, synonym), (literature, is_a, Concepts), (Maglia et

al. 2007, is_a, literature), (amphibian anatomical entity, is_a, Concepts), (sternum,

is_a, amphibian anatomical entity), (Gaupp_1896_Fig_11, image contains, sternum),

(sternum, has related synonym, sternum inferius), {(sternum, is defined by, Maglia et

al. 2007)}

Q0 = {Gaupp_1896_Fig_11, sternum inferius, Maglia et al. 2007, sternum}

F = {Concepts}

δdomain = {(image contains, image)}

δrange = {(has related synonym, synonym), (is defined by, literature)}

Example 3.4. Perform a Validation Check (In Terms of Acceptance) Before Creating a

New Edge

22

Figure 3.2. OAM Diagram of the Ontology in Example 3.4

3.4. SUMMARY

 This section has introduced the necessary modifications to the OAM model to

accommodate property restrictions. Domain and range restrictions were used as a proof

of concept. However, it is intended that the modified OAM model definition, and

restriction maintenance and validation algorithms could be applied to other types of

restrictions as well.

 In the next section, RDBOM, an implementation of the (original) OAM is

presented. Section 5 explains how the OAM modifications for property restrictions were

incorporated into RDBOM.

Concepts

image

Gaupp_

1896_Fig_

11 is_a is_a

synonym

sternum

inferius is_a

amphibian

anatomical

entity

sternum is_a

literature

Maglia et

al. 2007 is_a

is_a

is_a

is_a image contains

has related

synonym

is defined by

23

4. RDBOM'S STRUCTURE

 RDBOM is a relational database driven ontology maintenance system based on

the OAM. In order to efficiently implement the OAM modifications to support property

restrictions that were discussed in the previous section, the existing RDBOM relation

schemas had to be considered carefully. In this section, a brief overview of the RDBOM

system is provided with a focus on: (1) the storage features that needed to be expanded

upon to accommodate restricted property characteristics, and (2) the role of user

authorization, which plays a part in the enforcement of restrictions. Also briefly covered

are the various operations that can be performed to modify the ontology data in RDBOM,

and how property restrictions are involved in those functions.

4.1. REPRESENTATION OF THE ONTOLOGY

 At the center of RDBOM's data storage is the terms table. The terms table assigns

a unique integer identifier to a piece of text. Every piece of information in an ontology is

stored as a term in RDBOM. It does not matter what the type of information is, whether

it is the name of a class, the name of a property, a definition of a term, the path to an

image representing a term, etc. Additionally, the terms table entry also provides the

identifier of the ontology with which it is associated.

 The term types table gives definitions and identifiers for every type of term that is

used in RDBOM. The 'class' term type is used as in OWL, and can be seen in Figure 2.1

to represent the Food and Animal classes in the ontology. 'Value' term types identify

terms being used as class definitions or unique identifiers for classes within the ontology

so they can be referenced easily. Instances of classes are denoted with the 'instance' term

type (e.g., Horace and Floyd from Figure 2.1). Any properties (e.g., eats from Figure 2.1)

are specified with the 'property' term type.

 In order to express how a term should be used in the ontology, one or more entries

are created for it in the term usages table. The term usages table uses foreign keys to

reference a terms table entry and a term types entry. Additionally, for terms defined to be

of type 'property' via the term usages table, a corresponding entry in the properties table

24

is made. The properties table was originally intended to store property characteristics for

every property. The table includes an indicator for whether or not the property is

considered a 'tree' property, (i.e., is a and part of), which subsequently determines if that

term gets displayed as a node in the hierarchical display of the ontology in the user

interface browsing mode. There are other attributes to denote if it a property is transitive,

reflexive, symmetric, antisymmetric, or cyclic, as well as an attribute to provide the

identifier for an inverse property term (if one exists).

 In the original RDBOM schema, the property characteristics (attributes) are

nothing more than flags to indicate the characteristic. However, this does support the

more generic approach to maintaining property characteristics (namely, those that require

some other term to be the property characteristic's value). For example, if the domain

and range restricted property characteristics were to be implemented in the same manner,

then two more columns would have to be added to the properties table to indicate the

terms to which they are restricted. Herein, domain and range are being used as proof of

concept for a generic implementation of property characteristics. This means for any

other property characteristics that would be added to RDBOM in the future, the schema

for the properties table would need to be modified in the same manner (i.e., adding

additional attributes to the RDBOM tables). Additionally, it would not allow for the

same property characteristic to be applied to multiple terms for a single property. The

user could not restrict a property to multiple classes in the ontology since the properties

table maintains a 1-to-1 relation between property terms and the property characteristic

information.

 Another consideration in the incorporation of property restrictions into RDBOM

is the existing term2terms table which allows properties to be used to link two terms

together in the form of "term1 relation_term term2." In Figure 2.1, the relationship of

Floyd eats Horace would be represented as term1 referring to Floyd, relation_term being

eats and term2 referencing Horace. The use of this table and additional term types

entries provides the ability to generically store both restricted and unrestricted property

characteristics in the RDBOM schema.

25

4.2. ONTOLOGY MODIFICATION

 The ontology data stored in the RDBOM database is modified through a series of

Web pages. All of the commands are initiated by first selecting a class term to modify.

From there the user is presented with the list of commands that can be applied to the

selected term. The commands are split into two categories, with the first category

encompassing operations for modifying the ontology's structure. Figure 4.1 shows the

ontology from Figure 2.1 represented in RDBOM with the update page for the term

Horace selected.

Figure 4.1. RDBOM Update Page for Horace

26

 Structure modifications allow for the creation and deletion of child terms, moving

(cutting and pasting) a term to a different parent, linking the term to an additional parent,

and also detaching the term from a parent. The move operation can be applied to both

leaf and non-leaf terms. When used on a non-leaf term, it serves the function of moving

a branch of the ontology. Linking a term to an additional parent causes multiple ancestry

paths for a term. This is important to note since domain and range restrictions of any

property applying to the term must be valid in each path.

 The second category of modifications deals with the content of the term.

Definitions can be created for the term, and changes can be made to the term's name.

Relationships can be created to link two terms together by a property. Every creation of a

relationship begins with the domain term. From this term, the property is selected

followed by the range term. It also allows users to delete relationships. RDBOM

contains an administrative module that allows administrators to create and delete

properties in the ontology, grant specific users access to the update pages, and import

existing ontologies into RDBOM's database. These descriptions of the various structural

and content operations will be used to identify locations requiring changes to

accommodate the validation of domain and range restrictions in the next section.

4.3. USER AUTHORIZATION

 User authorization is important to understand since ultimately some users will be

granted permission to violate restrictions. There are already existing mechanisms

allowing users to authenticate with RDBOM by logging in with a user name and

password. The only authorization performed prior to this work was used for controlling

access to ontology modifications. As previously discussed, ontology data in RDBOM are

maintained through a series of update operations.

 User accounts and their information are stored in the users table. The

authorization levels table provides the various tasks for which the system must authorize

users. The 'update' authorization allows users to gain access to the data update operations

of an ontology. However, the user might not have access to the entire ontology.

Administrators use RDBOM's administrative module to grant the update permission to

27

users on a case by case basis, giving a user access to update only the parts (or “branches”)

of the ontology for which the user is regarded as an expert. This is done by granting

access to the some class term in the ontology, and allowing update operations to be

performed on any class that has the specified term as an ancestor (i.e., so that the user has

permission to modify a branch of the ontology).

 The permissions granted are stored in the authorizations table which uses foreign

key references to identify a user from the users table, a particular permission from the

authorization levels table, and a term from the terms table. An entry in the authorizations

table can be used to specify a user, the permission the user has, and a branch of the

ontology to which the authorization levels entry applies. Multiple authorizations entries

are used to identify distinct branches in an ontology that a user has permission to update.

4.4. SUMMARY

 The interactions between the main tables used for capturing the information in an

ontology in RDBOM have been identified in this section, as well as the mechanisms

involved with granting users permission to update various branches of the ontology.

Additionally, the operations used to modify the ontology data were identified. These

concepts are necessary to understand the design of the modifications to RDBOM that

were required in order to support domain and range validation, the topic of the next

section.

28

5. PROPOSED SOLUTION

 This section discusses the design of the proposed solution and highlights the parts

of RDBOM that need to be modified in order to support restricted property

characteristics, specifically for domain and range as proof of concept of the more general

case. Details that are specific to each change in RDBOM are explained, including

database schema and update operation changes. First the changes required to generically

represent any restricted property characteristic are identified. Next discussed are the

steps required to validate property use in the ontology when there is a restricted property

characteristic specified. Finally, consideration is given for when restricted property

characteristics can knowingly be violated by users, and how to deal with recording such

violations. The actual implementation of these modifications in RDBOM will then be

covered in the following section.

5.1. PROPERTY CHARACTERISTICS

 To accommodate restrictions such as domain and range, changes needed to be

made to the way property characteristics are stored in RDBOM. As identified in Section

4.1, property characteristics are tightly coupled with the properties table. It restricts the

number of property characteristics that can be applied to any given property to a single

term or value, and also requires the schema to be altered for any addition of property

characteristics. To allow for any arbitrary property characteristics to be represented in

RDBOM, two new term types of 'property characteristic' and 'restricted property

characteristic' were introduced to the term types table. Property characteristics could then

be applied to a property via the term2terms table.

 The RDBOM user interface already has full support for defining new

relationships, and using them to link classes and instances in an ontology. This

functionality was exploited to define the domain and range properties of relationship

types. For simplicity, a class, instance, or relationship type in RDBOM will be referred

to as a term. Recall that in RDBOM, the relationships between terms (δ in the OAM) are

inserted into the term2terms table in the form of (term1, relationship type, term2), which

29

represents the relationship 'term1 has relationship type term2.' Referring to Example 3.1,

the domain description (image contains, image) is represented in RDBOM by the

term2terms entry (image contains, has domain, image). Similarly, the range description

(has related synonym, synonym) can be expressed with the term2terms entry (has related

synonym, has range, synonym). By doing this, the required information is available to

RDBOM to allow Algorithm 3.3 to be applied for validating a relationship. It also should

be noted that this can be used to represent other relationship characteristics, both

restrictive and non-restrictive, such as cardinalities, inverse of, and symmetric.

 The addition of property characteristics necessitates a few modifications to the

RDBOM user interface. The update pages requiring validation will be discussed shortly.

But now the user must be informed of any property characteristics involved in the domain

and range restrictions. Also, the administrative module needs to now also include

management of the ontologies restricted property characteristics, domain, and range.

This requires providing an interface for administrators to enter any domain or range

restrictions that should be placed upon existing properties.

5.2. VALIDATING RESTRICTED PROPERTY CHARACTERISTIC USE

 Once there was a way to store restricted property characteristics in the database, it

needed to determine which existing parts of RDBOM should be changed to accommodate

enforcing the domain and range restrictions. Several of the update pages mentioned in

the previous section would require validation. Validation must also occur in the

administrative module when a restricted property characteristic is created or an ontology

is imported into RDBOM. The method in which validation should occur needed to be

determined as well, with consideration of any mechanisms already provided by

RDBOM's relational database management system that could assist in the process.

 One approach that was considered for doing this was the use of SQL triggers.

Triggers can be specified for relational database tables to control the actions taken

whenever an update, insert, or delete action occurs [18]. For a generic relational database

ontology implementation, triggers could be predefined to check transactions that occur

upon insertion of relationships between classes, thus performing validation of the

30

relationship usage. Additionally, they could be used upon updating the domain or range

of existing relationship types to make sure that the modified relationship types remain

valid. However, this could be a complicated and difficult task to perform on a non-

generic database implementation of an ontology.

 Another problem in using triggers in this manner arises from the potential need to

be able to violate restrictions under certain circumstances. The trigger would become

much more complex to specify since it could not simply refuse the transaction, but

instead would need to manage the violations, with differing actions under differing

conditions.

 Further, if the domain and range of relationship types are the only restrictions

being used in the ontology, not every insert or update transaction on the term

relationships may need to be checked. For example, actions such as creating child classes

for terms and updating term definitions do not involve domain and range restrictions, but

still might activate triggers on the associated tables.

 An alternative to database triggers is to perform these tasks in the ontology

management system's application logic. In so doing, the actions for a particular

validation could more easily be controlled. Validation could still be checked as the

classes are accessed or updated, as well as upon demand for the entire ontology. This

would eliminate much of the automated management required by triggers (since there is

no longer a single point responsible for handling all validation cases). Furthermore,

being able to check the entire ontology also would allow for the validation of the domain

and range of relationships in imported ontologies.

 The main disadvantage to implementing validation in the application logic is that

every location where data in an ontology can be modified in some way must be assessed

to determine if any validation needs to be performed. Several update operations

accessible through the user interface were identified as requiring modification. The first

was the Link Node to Node page which allows users to tie two classes together with a

property. The second was the Move/Cut Node page that can be used to change the

location of a single node or branch in the ontology. Figure 5.1 shows Figure 2.1 loaded

into RDBOM before a move operation, the dialog prompted to the user for moving

Horace to be located under the node Food, and then a view of the ontology after the

31

operation. The red boxes highlight changes in the ontology's structure where Cat no

longer contains Horace as a subclass and Food does.

Figure 5.1. Move/Cut Node Operation in RDBOM

 The last operation requiring validation was the Link to Additional Parent. When a

term is linked to an additional parent a new ancestry path is created for the term since it is

present in a new location of the ontology. If the term is involved in any relationships

using properties with restricted domains or ranges, it may no longer be considered valid

in this new location. The new set of ancestors created by the path to the new parent

might not include the terms to which the properties are restricted. In this case, the new

path is invalid and should not be allowed. An example of a Link to Additional Parent

operation performed in RDBOM without the property restrictions in place can be seen in

Figure 5.2 where Horace is linked to an additional parent of Food. The red box

highlights the change to the ontology's structure in which Horace is now located under

the Food term as well as Cats.

Figure 5.2. Link to Additional Parent Operation in RDBOM

32

5.3. VIOLATING RESTRICTED PROPERTY CHARACTERISTICS

 One issue with restricting the domain and range of a relation lies in giving the

users the ability to breach such restrictions. Any action that would violate what is

defined as the domain or range for a given relationship type should be considered

carefully to determine whether the current ontology design is adequate, especially if the

action was not inadvertent. If it is a violation that is intended to be persistent, this

suggests that there might be another solution for representing the information; either the

ontology design needs to be changed, or the violated relationship needs to be modified to

include other domain and/or range classes. Consider Figure 2.1 and 2.2, in which the

range of the relationship type eats is defined as Food. Introducing the relationship (Floyd

eats Horace) causes a violation of the specified domain for eats. Review of this violation

suggests that perhaps dogs can in fact eat cats, and that this was not a careless mistake

made by the user. By addressing this issue, and perhaps specifying an additional range

class of Cat to the relation eats, or changing the relationship type eats to be eats

nonliving, the clarity of the intended semantics of the ontology would be improved.

 Some administrative tasks require the ability to identify all of the violations of the

restricted property characteristics. A motivating factor is the application of restriction

violations to existing properties that are actively being used for curation in the ontology.

There are ontologies already being developed in the RDBOM system, and other existing

ontologies easily can be imported into a RDBOM ontology from the OBO ontology file

format. Without a way to identify existing violations when a new domain or range

restriction is created, there is no easy way for administrators to create the restrictions. If

the restrictions were added, then the existing invalid property uses would not be captured,

or else the task of correcting all the errors would be entirely the responsibility of the

administrators. RDBOM was developed to facilitate community curation of ontologies.

Therefore, there needed to be a way for the violations to be presented to the users. This,

in turn, would help the administrators in adopting the use of restrictions such as the

domain and range since they could rely on the community to see invalid relationships and

resolve them; the task would not be solely the responsibility of the administrators.

 There also are scenarios in which a restriction temporarily must be broken, such

as moving entire branches within an ontology; intermediate states may be in violation of

33

the rules, even though the final state would not contain those violations. An example of

such a situation would be restructuring items that are subclasses of Food in Examples 2.1

and 2.2. Suppose that a user wants to add new classes under Food such as Meat, Fruit,

and Vegetable. The relocation of the current classes and instances that have a parent of

Food to a more specific parent would result in their restriction to Food to be broken

temporarily.

 In some cases, the user community must be able to perform these operations. And

perhaps there may be a situation in which an administrator should have the option of

intentionally breaking a relationship restricted by domain or range. By making

administrators the only users able to violate these restrictions, it allows them to screen the

actions of other users; that is, other users would be required to contact an administrator to

make any changes that violate a domain or range restriction. Administrators could then

either make the change if desired, or alternatively could make decisions on how better to

represent the information involved in the violation.

 It is possible that some members of the community will be trusted enough by the

administrators to make these types of changes. In the current OAM model, users must be

assigned rights to a branch of the ontology before they are able to modify it. One

reasonable solution for giving a user the ability to violate a domain or range restriction is

to add another permission setting (in addition to the branch permission) that would

specify whether the user would be allowed to violate a restriction. Administrators then

could control not only the branches that a user is able to update, but also the ability of the

user to violate restrictions that have been set in place (perhaps based on the user's

experience and expertise).

 To avoid constantly re-running the validation routines on terms in the ontology

each time they are accessed, a new table was introduced to persist the violated restriction

information. This reduced the number of times that the validation algorithm has to be

executed and improves the performance of the RDBOM system. Violated relationships

are initially determined based on Algorithm 3.3, and are then recorded in a dedicated

table. After an initial check to verify the data, this provides quicker access to invalid

relationship use. That is, upon visiting a term simply for display purposes, any domain or

range violations already will have been determined, and recorded in a table.

34

The schema for the table used to maintain violations is as follows:

TABLE restriction_violations (

 id int IDENTITY(1,1),

 violated_term2terms_id int,

 violated_term_usage_id int,

 restricted_term2terms_id int,

)

Schema 5.1. Restriction Violations Table Schema

 Here id is a unique identifier for the given violation, and term2terms_id refers to

the unique identifier of the term2terms entry that violates the specified domain or range

of a relationship type (where a 'term2terms' entry is in the form of (term1, relationship

type, term2)). The violated_term_usage_id refers to the unique identifier for a term that

is stored in the 'term2terms' record. The term_usage_id is the identifier used to reference

a particular term, in this case term1 or term2 from a term2terms entry, in the ontology.

Thus, the violated_term_usage_id value of the restriction violations entry can be used to

determine whether it was the domain of the relationship type that is violated (in which

case it would be found in the term1 location of the term2terms entry), or the range of the

relationship type (in which case it would be found in the term2 location).

 Also included in the table is a foreign key reference to the term2term entry that

contains the definition of the restricted property characteristic being violated,

restricted_term2terms_id. Relying solely upon violated_term2terms_id and

violated_term_usage_id provides enough information to determine if the violation

occurred due to a domain or range violation and allows for the retrieval of the violating

property usage; however, it does not provide enough information to say why the use is

invalid without re-running the validation algorithms. It would also make it difficult to

uniquely identify multiple domain or range violations that resulted from a single property

35

use. Including a way to immediately look up the violated restriction gives a quick way to

inform the user why the relationship is used incorrectly.

 The foreign key constraints of RDBOM's relational database management system

are leveraged to take care of many of the situations where an invalid property use

becomes correct. The schema can be set so that any deletions of the referenced

violated_term2terms_id or violated_term_usage_id cascades to the restriction violations

table. As a result, all violated entries referencing the id of either a deleted term usage id

(which happens when a term is deleted) or the id of a term2term entry that is deleted are

automatically removed from the restriction violations table. Because of this, the only

situations in which entries must be manually deleted are when the violations are corrected

by restricting properties to additional terms (which could make them valid) and when a

user moves the class within the ontology.

 The cascading deletion cannot apply to the restricted_term2terms_id column

because it references the term2terms table, as is the case with the violated_term2terms_id

column. The database engine being used for RDBOM, MS SQL Server, will not allow

cascade actions to be performed by two individual references to the same table since it

can potentially introduce cycles or multiple cascade paths. Because of this particular

implementation limitation, when an administrator deletes domain and range restrictions,

the corresponding restriction violations entries also will need to be removed.

5.4. SUMMARY

 In this section a design was proposed for representing, checking, and allowing the

violation one type of property restriction (namely, domain and range) in RDBOM. In

summary, the new term types entry 'restricted property characteristic' was introduced to

record the restricted property characteristics domain and range. This would allow for two

terms entries, has domain and has range, to be created and identified as restricted

property characteristics. To specify the domain or range of a property p to be some term

t, a term2terms entry of (p, has domain/range, t) was created. The locations requiring

validation to be performed in RDBOM's update pages were identified, and it was decided

that the best way to implement the validation was through RDBOM's application logic.

36

A new table, restriction violations, was also proposed to record any violations that occur,

allowing quick access to the details of the violation.

In the next section, the actual implementation of this design in RDBOM is

discussed.

37

6. IMPLEMENTATION

 The actual implementation of the domain and range restricted property

characteristics in RDBOM is discussed in this section. Discussion is focused on some of

the more interesting details involved in the implementation, as well as the algorithms

developed to handle the modification of various parts of RDBOM functionality based on

the discussion in the preceding section. First discussed is how the administrative module

was modified so domain and range could be applied to restrict existing properties. Then

changes to the various update pages are addressed to account for validation of property

use. Finally, the intricacies of allowing restrictions to be violated are covered, as well as

methods for validating the entire ontology and locations in the RDBOM user interface

where the violation information is displayed to the user. Figure 2.1 presented in Section

2 will be used to demonstrate the various implementations in RDBOM.

6.1. PROPERTY CHARACTERISTICS

 Implementation of the property characteristics mainly dealt with modifying some

administrative pages and creating the two new term types, 'restricted property

characteristic' and 'property characteristic'. The existing property administration page

was updated to allow administrators to create and delete restricted property

characteristics, and apply them to existing properties and remove property characteristics.

When creating the required SQL queries, several inconsistencies in the RDBOM data

were identified. Seven terms being used as properties were lacking term usage entries to

identify the term's type as a property. This had not been noticed yet during the RDBOM

development because queries relating to properties performed joins between the terms

table and properties table (which is sufficient since each property is required to have a

properties table entry). For the sake of consistency with the RDBOM data and to help

avoid future development problems that could arise due to looking for properties by a

term's usage, corresponding term usage entries were created for the seven missing terms.

38

6.2. VALIDATING RESTRICTED PROPERTY CHARACTERISTICS

 The core validation routines occur in the link node to node operations since only a

single relationship is being validated. This routine was developed incrementally by

others, starting with a way to validate a relationship, then validation of a term based on its

relationships that use restricted properties, and finally the application to branches which

validate all of the constituent terms. The following subsections describe how the

validation was performed for various RDBOM operations.

6.2.1. Linking a Node to Another Node. Using a property to relate two terms

takes part in several steps. First, the user selects the domain term and is presented with a

list of properties. The next step involves selecting a property. Upon selecting a property,

the user should now be presented with a list of the range restrictions in place on that

property as well as any error messages due to the selection of the domain term. After

selecting the range term, a confirmation page is displayed summarizing the relationship

to be created. On this page it is first determined if the range of the property is valid in the

context of any domain or range restrictions in place on the property, and, if not, display a

meaningful error message to the user. Otherwise, the user can authorize the creation of

the relationship. Implementing a routine validate_relationship was very straightforward

and followed Algorithm 3.3 with no difficulties. Recall that in Figure 2.1 the edge Floyd

eats Horace was attempted to be created. Figure 6.1 demonstrates how RDBOM utilizes

Algorithm 3.3 to detect that was an invalid edge and prevents the user from creating it.

6.2.2. Moving Nodes/Branches. The move operation allows the user to relocate

an individual term or the root term of entire branch in the ontology. If the selected term

is a leaf node, then the validation process needs to evaluate the new ancestry path that

would be created upon moving the term. Every relationship the term is involved with

that contains restricted properties must be validated. For terms selected to be moved that

are actually a root of a branch, this validation must be done for every term in the branch.

In order to allow a user to relocate nodes in the ontology, the validity of the properties

with domain and range restrictions must be upheld in the new location.

39

Figure 6.1. RDBOM Detection of Invalid Edge from Figure 2.1

 Two methods were considered for performing the validation. The first involved

carrying out the move by changing the data in the database. Immediately after this, a

validation routine would be executed on every term involved with the move which would

validate the domain and range of every property applied to every involved term. If any

invalid property use occurred in the new location then the root term could just be moved

back to its old location. However, this produces an intermediate state in RDBOM's data

where it is not known if the relationships are being used correctly or not. RDBOM's

main purpose is to facilitate community-based curation, so it is possible that other users

could be working with the data during this event. The advantage is that this method

would not require any changes to the way check_up is performed to validate restrictions

from Algorithm 3.3 since the data will already be present in the location requiring

validation.

 The other option, which was ultimately chosen, involves leaving the selected term

in place, not moving it, but instead using a modified version of Algorithm 3.3 to validate

domain and range terms of relationship edges that already exist. In the modified

algorithm, the check_up routine is changed to take information about the current root

40

term and the new root term. The current root term corresponds to the term selected to be

moved in the ontology, and the new root term refers to the new parent the selected term

will have. When performing the check_up on each term in the branch, check_up will

search through each ancestor path of the term that is being tested until it reaches the

current root term. Upon testing the current root term, if the relationship is still invalid it

will switch to checking the ancestry of the new root term. It can be thought of as creating

a temporary ancestry list corresponding to the term's new location that consists of the

term's parents up through the root term of the branch being moved and then appended to

the parents of the new root term. This allows any invalid domain and range restrictions

to be identified without temporarily moving data in the RDBOM database.

 To demonstrate this, imagine moving the branch Animals in Figure 2.1 to be a

child of the term Food. Each term inside the branch (Cat, Dog, Horace, Floyd) must be

checked in the new location to make sure that properties making use of these terms are

still valid. When performing any check_up routines for Horace, it begins searching

through the ancestry path checking Horace, Cat, and then Animals. The routine stops

searching this ancestry path upon reaching Animals since this is the root of the branch

being moved. However, it continues searching by starting at the end of Food's ancestry

path since this is the location to which the branch will be moved.

6.2.3. Linking to Additional Parents. Validation for linking a node to an

additional parent can be done using the same technique as moving a branch. Since only

valid paths are allowed, there is no need to validate them again, only the new path

introduced by the new parent. The algorithm for checking a branch before it is moved is

used with the current root term corresponding to the term being linked to another parent

and the new root term being the parent to which to link the term. This will, in turn,

validate any necessary relationships of the selected term in the context of the new parent's

ancestry path.

 Recall in Figure 2.1 how a new edge, Floyd eats Horace, was attempted to be

introduced to the ontology. It failed because Horace is not a subclass of Food. Suppose

it is determined by the administrators that the ontology really needs to support this

relationship. Since RDBOM supports linking nodes to multiple parents, a quick potential

solution to address this issue could be to have Horace link to an additional parent, Food.

41

Figure 6.2 shows the results. The property eats has a domain restriction of Animals and

the relationship Horace eats Chicken of the Sea exists in the ontology. Therefore, the

new path to Horace that would be introduced (Concepts->Food->Horace) contains a

domain violation on the eats property and is not allowed. This is a good demonstration

of how the consistency checking shows that the current class structure of the ontology

does not provide the ability to express particular relationships that the administrators feel

it should include. It should suggest to the administrators that a new structure be designed

to accommodate this type of relationship.

Figure 6.2. RDBOM Attempting a Link Node to Additional Parent Operation

6.3. RESTRICTED PROPERTY CHARACTERISTIC VIOLATIONS

 As identified in the previous section, there is a need in some situations for users to

violate the restricted domain and range property characteristics that have been created on

properties. Aside from the creation of the restriction violations table discussed in Section

5.3, the only other database work involved creating an authorization permission to

42

identify users capable of violating restrictions. By referring to the layout of RDBOM's

authorization section (in Section 4.3), it is easy to see how this is accomplished by

creating an authorization levels entry 'violate restrictions'. The subsections presented

regarding various update pages only apply to users that have this authorization level.

 The most considerable change to the existing validation routines involved the

confirmation a user must provide before RDBOM commits the user's action to the

database. For example, when linking two terms together, the term2terms entry is not

created until the user's actions are reviewed, which takes place after the validation has

been performed. Any violations of the domain and range restrictions that occur due to

some action by a user cannot be stored immediately in the restriction violations table

because the invalid data has not been created yet. This disrupted the flow of many pages

in the Web-based RDBOM user interface that had followed a rigid, step by step process

for carrying out actions, and resulted in the need to incorporate bookkeeping throughout

every validation process. For every violation, the terms used as both the domain and

range needs to be recorded as well as the restricted property and the violated restriction's

term2terms entry. This provides enough information to uniquely identify a relationship

stored in RDBOM's term2terms table as well as generate a detailed error message for the

user.

 The validation routine for the link node to node operation only needed to identify

new domain and range violations that occurred due to a newly defined relationship. On

the other hand, the Move/Cut update page is capable of not only introducing domain and

range violations, but also fixing existing ones. Because of this, some validation routines

have to not only check for new violations, but also check all the relationships that are

validated to see if they are the cause of existing entries in the restriction violations table.

6.3.1. Node to Node Link Operations. All of the domain and range violations

that occurred due to a new relationship need to be recorded. The implemented version of

Algorithm 3.3 required some modification to keep lists of the specific properties that

were violated and which specific property restriction caused the violation to occur. It

also required information about the user to determine if they were able to violate

restrictions or not, and thus, if their recording was necessary. After checking the

relationship, any resulting errors get presented to the user. If the user chooses to go

43

ahead and make the relationship regardless of the errors, the term2term entry is created

and there is now enough information to record each violation in the restriction violations

table. The RDBOM interface would look identical to that shown in Figure 6.1, except

there would be an additional button allowing the user to create the relationship regardless

of the violations.

 Nothing else needed to be implemented for the RDBOM operations affecting

single relationships which involved deleting leaf nodes and deleting node to node links.

Any violations caused by a leaf node were removed automatically from the restriction

violations table due to the foreign key constraints specified on the violated_term2term_id

column. Deleting a leaf deletes its relationships and thus, cascades to the violation

entries. Similarly, a node to node link that gets deleted which also causes a violation

which cascades through the restricted_term2terms_id of the restriction violations table.

6.3.2. Move/Cut and Link to Additional Parents. As mentioned earlier, the

move term operation is capable of introducing new violations as well as fixing existing

violations. The validation of a branch relies on validating each term of the branch with a

new ancestry path. Individual relationship validation is capable of recording domain and

range violations, so the term validation process can leverage this by retrieving a list of

restricted properties a specific term is involved with and running each of these

relationships through the already existing validation routine.

 Moving a term to a new location in the tree could cause new violations to occur

by either that term itself or its children. However, this action also is capable of fixing

existing violations. The validate relationship routine only records the violated domain

and range restrictions. In order to identify new violations that would result from a move

and violations that are corrected, the branch validation routine is executed twice. The

first time it is used to generate all of the current violations that exist in the branch. The

second time it generates the violations that would occur by placing the branch under a

new root, as described in Section 6.2.1. Comparing the two sets of violations produces

the new violations which are not present in the first violation set, and the fixed violations

which are those found in the first, but not second, violation set.

 This process of determining the validity of a branch of the ontology before and

after an operation is used in two other places besides the move/cut operation. Linking a

44

term to an additional parent can introduce new violations which can be detected in this

manner, with the first violation set representing the violations of the term with its current

ancestry paths and the second violation set representing only the new ancestry path of the

term after the operation. Similarly, detaching a node from one of its parents can compare

the first set of its current violations with the second set (which is generated after the node

is detached from its parent). The second set contains the validations for all of the paths

except for the deleted one so the comparison is used to identify any violations that are

now valid (since the extra path has been deleted).

 To demonstrate this, consider the modified Figure 2.1 that was presented at the

beginning of this section. Assume those data had been imported into RDBOM, including

the specification of the term Chicken of the Sea as a subclass of Animal instead of Food.

This would be identified as a range violation of the property eats in the relationship

Horace eats Chicken of the Sea. Figure 6.3 demonstrates how the move operation can be

used to correct this violation.

6.4. ENTIRE ONTOLOGY VALIDATION

 Performing validation of the entire ontology is necessary for reasons covered in

Section 5, including checking the consistency of property use in imported ontologies, and

defining new domain and range restrictions on properties. Thus, it could be the case that

validation of an entire ontology is being performed which fully populates the restriction

violations table, or that new property restriction is being added to an existing ontology.

The implementation is similar to that for detaching a node from a parent (previously

discussed in Section 6.3.3). First, a list of all the restriction violations entries are

retrieved for the ontology. Next, the ontology is traversed, starting with the root term of

the ontology and making a list of terms that have been visited. As each term is visited, it

is validated in the same manner as terms are validated when checking branches. For each

violation identified, the corresponding restriction violations entry is also identified and

mark is as having been processed. If no entry is found, an appropriate entry in the table is

created for it. After every term has been visited, the restriction violations entries that

were not found are deleted and the user is informed that the violations no longer exist.

45

Figure 6.3. RDBOM Fixing a Violation via the Move Operation

 Having the ability to validate an entire ontology allowed for the consistency

checking of the AmphibAnat ontology. The AmphibAnat [2] ontology is being developed

in RDBOM with 9,790 class terms and 44 properties. Excluding the basic relationships

types (is a, part of) as well as properties used to describe unique RDBOM identifiers

there are 15,145 relationships. The structure of the ontology is larger than the numbers

portray due to many class terms having multiple parents which results in their entire

branch being included in several places throughout the ontology. Several domain and

range restrictions were put in place on the ontology's properties, as show in Figure 6.4.

These restrictions mostly consist of properties involving terms located under the

"Administrator's Node" which contains dbxrefs, images and synonyms. Other

relationships involve citing pieces of literature. From these 12 property restrictions, 28

domain violations were discovered along with 58 range violations.

 Reviewing the violations shows some improper use of several properties. For

example, the is discussed by property is meant to relate a term to a piece of literature that

contains a discussion of the term. The piece of literature should be the range of any is

46

Figure 6.4. AmphibAnat Restricted Properties

discussed by relationships. However, when a user was annotating one journal article

term, Dunlap 1960, the journal article was improperly used as the domain of is discussed

by relationships stating the journal article is discussed by several mussels. The intended

property to use in the relationships was discussed. It identifies an inconsistent use of the

is discussed by property. Figure 6.7 shows the report of violations detected.

6.5. INFORMATIONAL PAGES

 A considerable amount of work went into managing violations of domain and

range restrictions throughout the RDBOM system. But another aspect of this project

concerned the display of relevant restriction violation information to the user. This

affected two locations in the RDBOM user interface. Every class term has an

information page that is displayed to the user which contains: relationships the term has

with others, a term definition, and paths to the term in the ontology. Checking a

relationship of a term to see if it is invalid when rendering this page to the user can be

done easily since the violations are stored in a separate table. The invalid term in the

47

relationship (i.e., domain or range) is displayed in red and the restriction causing the

entry is placed next to it. This provides an easy way for users to tell if a property has

been applied correctly when browsing a term's information. As an example, Figure 6.5

shows RDBOM's information page for Floyd with the invalid relationship Floyd eats

Horace. In the listing for eats relationships, Horace can be seen in red with the statement

"range restricted to Food" following it.

Figure 6.5. RDBOM Term Information Page for Floyd

Particularly in a large ontology such as AmphibAnat, it is not very practical for a

user to check every single term in the ontology for invalid property use. Because of this,

a page containing all of the relationships violating property restrictions was created. The

page first shows every property restriction that exists in the ontology. It presents the user

with a list of domain violations and a list of range violations. Links are provided to allow

the user to view the terms' information pages. Additionally, if the user has the ability to

48

update the term to which the relationship applies, then a link is provided that allows

him/her to delete node to node relationships for the term. An example of this

functionality is shown in Figure 6.6, which is the violations overview page for Figure 2.1

(that has been used throughout this section). A listing of some of the violations found

from the ontology validation performed on AmphibAnat in 6.4.1 can be seen in Figure

6.7.

Figure 6.6. RDBOM Violations Overview Page

49

Figure 6.7. RDBOM Violations Overview Page for AmphibAnat

6.6. SUMMARY

 This section addressed various implementation details associated with the domain

and range restricted property characteristics in RDBOM. This discussion included

functionality that allows administrators to define domain and range restrictions of

properties, the detection and enforcement of the restrictions throughout the operations of

RDBOM that allow modification of the ontology data, and the routines for performing

the validation of the restrictions. Also discussed were the mechanisms that would allow

users to violate restrictions under certain conditions, and a display of information about

violated restrictions.

50

7. FUTURE WORK

 The incorporation of property restrictions into the OAM, and the subsequent

design and implementation of domain and range restrictions in RDBOM, suggested some

interesting ideas for further work in this area.

As an example, Section 2 discussed how this implementation was focused on the

need to check the consistency of property use throughout ontologies. But, property

characteristics could also be used to reason over the information associated with terms.

One extension to this work would be to turn the restriction violations table introduced in

Section 5 into a table filled with facts inferred from reasoning. To demonstrate how this

would work, recall the discussion in Section 2 regarding the difference in how RDBOM

was to handle domain and range by restricting the properties to only those values, versus

the OWL implementation which used domain and range to infer information about

classes. OWL uses domain and range to infer that Horace is a subclass of Food based on

the relationship of Floyd eats Horace and eats has range Food.

Now consider the violations stored in RDBOM's restriction violations as stored

facts. Expressing this example in RDBOM, an entry would be created stating that Floyd

eats Horace is invalid because of the range restriction on eats to the term Food. This

means there is an entry in the restriction violations table stating Floyd eats Horace is

invalid because of the restriction "eats has range Food." If range was considered to be a

non-restricted property characteristic in RDBOM, this record could be used instead to

state the relationship Floyd eats Horace is not invalid because of the restriction; rather it

can be inferred that, since Horace is not explicitly stated to be a subclass of Food in the

ontology, the relationship Horace is_a Food exists because of the use of Horace as the

range term of the eats property.

 In summary, future work on this project could focus more on using property

characteristics to reason over the data, rather than check the consistency of the data. The

ability to perform consistency checking is an excellent precursor to reasoning as it

ensures valid facts would be inferred. In general, this is an area of research that currently

is lacking for all ontologies, not just those based on the OAM, those implemented as a

relational database, or those designed for multi-user curation.

51

8. SUMMARY

 The research focus and problems relating to ontologies in information systems

have changed over the years; namely, the focal point has shifted from the more

theoretical ontology issues to problems associated with the actual development and use of

ontologies in real-world, large-scale, collaborative applications. One step in this

direction is the ability to specify and automatically enforce restrictions such as domain

and range on relations and terms in the ontology. This would aid in the identification of

inconsistencies in the ontology and ultimately help to maintain a higher level of data

integrity.

OAM is a generic, abstract model that provides a framework for constructing a

collaborative, Web-based ontology management system. In this paper, a modified

Ontology Abstract Machine (OAM) model and its related algorithms for various domain

and range maintenance tasks were presented. A modified OAM was proposed and

implemented for the domain and range property restrictions. Detailed discussion of the

RDBOM implementation was given for the validation of individual relationships, terms,

and branches, as well as the techniques for managing information about relationships that

violated the restrictions. It should be noted that domain and range were selected as a

proof of concept; the proposed solution could be applied to other property restrictions as

well.

It is hoped that future work on this project will explore the use of property

characteristic restrictions to reason over the data, rather than just simply check the

consistency of the data. In general, this is an area of research that currently is lacking for

all ontologies, not just those based on the OAM, those implemented as a relational

database, or those designed for multi-user curation. Realization of this goal ultimately

will contribute significantly to the value of the Semantic Web.

52

BIBLIOGRAPHY

[1] http://ontology.buffalo.edu/. Buffalo Ontology Site, October 2010.

[2] http://www.amphibanat.org/. AmphibAnat, October 2010.

[3] J. Leopold, A. Coalter, and L. Lee, "A Generic, Functionally Comprehensive

Approach to Maintaining an Ontology as a Relational Database," ICOSE 2009:

International Conference on Ontological and Semantic Engineering, Rome, Italy,

2009.

[4] L. Lee, J. Leopold, J. Albath, and A. Coalter, "An Ontology Abstract Machine,"

ICOSE 2009: International Conference on Ontological and Semantic

Engineering, Rome, Italy, 2009.

[5] http://www.oboedit.org/. OBO Edit, October 2010.

[6] http://protege.stanford.edu/. Protégé, October 2010.

[7] http://code.google.com/p/swoop/. SWOOP, October 2010.

[8] http://www.xspan.org/applications/cobra/. COBrA, October 2010.

[9] http://www.w3.org/TR/2004/REC-owl-guide-20040210/. OWL Web Ontology

Language Guide, October 2010.

[10] http://www.geneontology.org/GO.format.obo-1_2.shtml. The OBO Flat File

Format Specification, October 2010.

[11] H. Knublauch, R. W. Fergerson, N. F. Noy, and M. A. Musen, "The Protégé

OWL Plugin: An Open Development Environment for Semantic Web

Applications," The Semantic Web - ISWC 2004, pp. 229-243, 2004.

[12] http://www.cs.man.ac.uk/~horrocks/FaCT/. FaCT, October 2010.

[13] http://clarkparsia.com/pellet. Pellet, October 2010.

[14] I. Yeh, P. D. Karp, N. F. Noy, and R. B. Altman, "Knowledge acquisition,

consistency checking and concurrency control for Gene Ontology (GO),"

Bioinformatics, Jan 22;19(2):241-8, 2003.

[15] I. Astrova, N. Korda, and A. Kalja, "Storing OWL Ontologies in SQL Relational

Databases," Proceedings of World Academy of Science, Engineering and

Technology, Vol 29, pp. 167-172, 2007.

https://minermail.mst.edu/exchweb/bin/redir.asp?URL=http://www.cs.man.ac.uk/~horrocks/FaCT/

53

[16] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, and Y. Pan, "Minerva A Scalable OWL

Ontology Storage and Inference System," Asian Semantic Web Conference

(ASWC), pp. 429-443, 2006.

[17] M. del Roldan-Garcia and J. F. Aldana-Montes, "DBOWL: Towards a Scalable

and Persistent OWL Reasoner," Internet and Web Applications and Services

(ICIW '08), 2008.

[18] J. Lee, R. Goodwin, "Ontology Management for Large-Scale Enterprise

Systems," Electronic Commerce Research and Applications, vol. 5, Iss. 1, Spring

2006, pp. 2–15.

54

VITA

 Patrick Garrett Edgett was born and raised in Clinton, Missouri. After graduating

from Clinton High School in May 2005 he started college the following August at

Missouri University of Science and Technology in Rolla, Missouri. In May of 2009 he

received the degree of Bachelor of Science in Computer Science. He continued his

education at Missouri S&T and in December of 2010, completed the requirements for his

Master of Science Degree in Computer Science.

	Representation and validation of domain and range restrictions in a relational database driven ontology maintenance system
	Recommended Citation

	II

