52 research outputs found

    Operating Room (Re)Scheduling with Bed Management via ASP

    Get PDF
    The Operating Room Scheduling (ORS) problem is the task of assigning patients to operating rooms (ORs), taking into account different specialties, lengths, and priority scores of each planned surgery, OR session durations, and the availability of beds for the entire length of stay (LOS) both in the Intensive Care Unit (ICU) and in the wards. A proper solution to the ORS problem is of primary importance for the healthcare service quality and the satisfaction of patients in hospital environments. In this paper we first present a solution to the problem based on Answer Set Programming (ASP). The solution is tested on benchmarks with realistic sizes and parameters, on three scenarios for the target length on 5-day scheduling, common in small-medium-sized hospitals, and results show that ASP is a suitable solving methodology for the ORS problem in such setting. Then, we also performed a scalability analysis on the schedule length up to 15 days, which still shows the suitability of our solution also on longer plan horizons. Moreover, we also present an ASP solution for the rescheduling problem, that is, when the offline schedule cannot be completed for some reason. Finally, we introduce a web framework for managing ORS problems via ASP that allows a user to insert the main parameters of the problem, solve a specific instance, and show results graphically in real time

    An Application of Declarative Languages in Distributed Architectures: ASP and DALI Microservices

    Get PDF
    In this paper we introduce an approach to the possible adoption of Answer Set Programming (ASP) for the definition of microservices, which are a successful abstraction for designing distributed applications as suites of independently deployable interacting components. Such ASP-based components might be employed in distributed architectures related to Cloud Computing or to the Internet of Things (IoT), where the ASP microservices might be usefully coordinated with intelligent logic-based agents. We develop a case study where we consider ASP microservices in synergy with agents defined in DALI, a well-known logic-based agent-oriented programming language developed by our research group

    RDF graph validation using rule-based reasoning

    Get PDF
    The correct functioning of Semantic Web applications requires that given RDF graphs adhere to an expected shape. This shape depends on the RDF graph and the application's supported entailments of that graph. During validation, RDF graphs are assessed against sets of constraints, and found violations help refining the RDF graphs. However, existing validation approaches cannot always explain the root causes of violations (inhibiting refinement), and cannot fully match the entailments supported during validation with those supported by the application. These approaches cannot accurately validate RDF graphs, or combine multiple systems, deteriorating the validator's performance. In this paper, we present an alternative validation approach using rule-based reasoning, capable of fully customizing the used inferencing steps. We compare to existing approaches, and present a formal ground and practical implementation "Validatrr", based on N3Logic and the EYE reasoner. Our approach - supporting an equivalent number of constraint types compared to the state of the art - better explains the root cause of the violations due to the reasoner's generated logical proof, and returns an accurate number of violations due to the customizable inferencing rule set. Performance evaluation shows that Validatrr is performant for smaller datasets, and scales linearly w.r.t. the RDF graph size. The detailed root cause explanations can guide future validation report description specifications, and the fine-grained level of configuration can be employed to support different constraint languages. This foundation allows further research into handling recursion, validating RDF graphs based on their generation description, and providing automatic refinement suggestions

    An Automated Framework for the Extraction of Semantic Legal Metadata from Legal Texts

    Get PDF
    Semantic legal metadata provides information that helps with understanding and interpreting legal provisions. Such metadata is therefore important for the systematic analysis of legal requirements. However, manually enhancing a large legal corpus with semantic metadata is prohibitively expensive. Our work is motivated by two observations: (1) the existing requirements engineering (RE) literature does not provide a harmonized view on the semantic metadata types that are useful for legal requirements analysis; (2) automated support for the extraction of semantic legal metadata is scarce, and it does not exploit the full potential of artificial intelligence technologies, notably natural language processing (NLP) and machine learning (ML). Our objective is to take steps toward overcoming these limitations. To do so, we review and reconcile the semantic legal metadata types proposed in the RE literature. Subsequently, we devise an automated extraction approach for the identified metadata types using NLP and ML. We evaluate our approach through two case studies over the Luxembourgish legislation. Our results indicate a high accuracy in the generation of metadata annotations. In particular, in the two case studies, we were able to obtain precision scores of 97.2% and 82.4% and recall scores of 94.9% and 92.4%

    OWL Reasoners still useable in 2023

    Full text link
    In a systematic literature and software review over 100 OWL reasoners/systems were analyzed to see if they would still be usable in 2023. This has never been done in this capacity. OWL reasoners still play an important role in knowledge organisation and management, but the last comprehensive surveys/studies are more than 8 years old. The result of this work is a comprehensive list of 95 standalone OWL reasoners and systems using an OWL reasoner. For each item, information on project pages, source code repositories and related documentation was gathered. The raw research data is provided in a Github repository for anyone to use

    Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

    Get PDF

    Trust, Accountability, and Autonomy in Knowledge Graph-based AI for Self-determination

    Full text link
    Knowledge Graphs (KGs) have emerged as fundamental platforms for powering intelligent decision-making and a wide range of Artificial Intelligence (AI) services across major corporations such as Google, Walmart, and AirBnb. KGs complement Machine Learning (ML) algorithms by providing data context and semantics, thereby enabling further inference and question-answering capabilities. The integration of KGs with neuronal learning (e.g., Large Language Models (LLMs)) is currently a topic of active research, commonly named neuro-symbolic AI. Despite the numerous benefits that can be accomplished with KG-based AI, its growing ubiquity within online services may result in the loss of self-determination for citizens as a fundamental societal issue. The more we rely on these technologies, which are often centralised, the less citizens will be able to determine their own destinies. To counter this threat, AI regulation, such as the European Union (EU) AI Act, is being proposed in certain regions. The regulation sets what technologists need to do, leading to questions concerning: How can the output of AI systems be trusted? What is needed to ensure that the data fuelling and the inner workings of these artefacts are transparent? How can AI be made accountable for its decision-making? This paper conceptualises the foundational topics and research pillars to support KG-based AI for self-determination. Drawing upon this conceptual framework, challenges and opportunities for citizen self-determination are illustrated and analysed in a real-world scenario. As a result, we propose a research agenda aimed at accomplishing the recommended objectives

    Application of Artificial Intelligence declarative methods for Solving Operating Room Scheduling problems in Hospital Environments

    Get PDF
    Digital health is a relatively new but already important field in which digitalization meets the need to automatically and efficiently solve problems in healthcare to improve the quality of life for patients. The need to efficiently solve some of these problems has become even more pressing due to the Covid-19 pandemic that significantly increased stress and demand on hospitals. Hospitals have long waiting lists, surgery cancellations, and even worse, resource overload—issues that negatively impact the level of patient satisfaction and the quality of care provided. Within every hospital, operating rooms (ORs) are an important unit. The Operating Room Scheduling (ORS) problem is the task of assigning patients to operating rooms, taking into account different specialties, lengths and priority scores of each planned surgery, operating room session durations, and the availability of beds for the entire length of stay both in the Intensive Care Unit and in the wards. A proper solution to the ORS problem is of primary importance for the quality of healthcare service and the satisfaction of patients in hospital environments. In this thesis, we provide several contributions to the ORS problem. We first present a solution to the problem based on Knowledge Representation and Reasoning via modeling and solving approaches using Answer Set Programming (ASP). This first basic solution builds on a previous solution but takes into account explicitly beds and ICU units because in the pandemic we understood how important and limiting they were. Moreover, we also present an ASP solution for the rescheduling problem, i.e., when the off-line schedule cannot be completed for some reasons, and a further extension where surgical teams are also considered. Another technical contribution is a second solution for the basic ORS problem with beds and an ICU unit, whose modeling departs from the guidelines previously used and shows efficiency improvements. Finally, we introduce a web framework for managing ORS problems via ASP that allows a user to insert the main parameters of the problem, solve a specific instance, and show results graphically in real time
    • …
    corecore