
TPLP : Page 1–25. c© The Author(s), 2021. Published by Cambridge University Press.

doi:10.1017/S1471068421000090

1

Operating Room (Re)Scheduling with Bed
Management via ASP ∗

CARMINE DODARO
University of Calabria, Genova, Italy

(e-mail: dodaro@mat.unical.it)

GIUSEPPE GALATÀ†
SurgiQ srl, Genova, Italy

(e-mail: giuseppe.galata@surgiq.com)

MUHAMMAD KAMRAN KHAN and MARCO MARATEA
University of Genoa, Genova, Italy

(e-mails: muhammad.kamrankhan@edu.unige.it, marco.maratea@unige.it)

IVAN PORRO†
SurgiQ srl, Genova, Italy

(e-mail: ivan.porro@surgiq.com)

submitted 21 April 2020; revised 23 May 2021; accepted 24 May 2021

Abstract

The Operating Room Scheduling (ORS) problem is the task of assigning patients to operat-
ing rooms (ORs), taking into account different specialties, lengths, and priority scores of each
planned surgery, OR session durations, and the availability of beds for the entire length of
stay (LOS) both in the Intensive Care Unit (ICU) and in the wards. A proper solution to the
ORS problem is of primary importance for the healthcare service quality and the satisfaction
of patients in hospital environments. In this paper we first present a solution to the problem
based on Answer Set Programming (ASP). The solution is tested on benchmarks with realistic
sizes and parameters, on three scenarios for the target length on 5-day scheduling, common in
small–medium-sized hospitals, and results show that ASP is a suitable solving methodology for
the ORS problem in such setting. Then, we also performed a scalability analysis on the schedule
length up to 15 days, which still shows the suitability of our solution also on longer plan hori-
zons. Moreover, we also present an ASP solution for the rescheduling problem, that is, when the
offline schedule cannot be completed for some reason. Finally, we introduce a web framework
for managing ORS problems via ASP that allows a user to insert the main parameters of the
problem, solve a specific instance, and show results graphically in real time.

KEYWORDS: logic programming methodology and applications, knowledge representation and
nonmonotonic reasoning

∗This paper is an extended and revised version of a conference paper appearing in the proceedings of
the 3rd International Joint Conference on Rules and Reasoning (RuleML+RR 2019) Dodaro et al .
(2019).

†Disclaimer: Two of the authors of this paper, Ivan Porro and Giuseppe Galatà, have business interest
in SurgiQ.

terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core

https://doi.org/10.1017/S1471068421000090
https://orcid.org/0000-0002-5617-5286
mailto:dodaro@mat.unical.it
mailto:giuseppe.galata@surgiq.com
https://orcid.org/0000-0002-9034-2527
mailto:muhammad.kamrankhan@edu.unige.it, marco.maratea@unige.it
mailto:ivan.porro@surgiq.com
https://crossmark.crossref.org/dialog?doi=10.1017/S1471068421000090&domain=pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

2 C. Dodaro et al.

1 Introduction

The Operating Room Scheduling (ORS) (Abedini et al . 2016; Aringhieri et al . 2015;

Landa et al . 2016; Molina-Pariente et al . 2015) problem is the task of assigning patients

to operating rooms (ORs), taking into account different specialties, surgery durations,

and the availability of beds for the entire length of stay (LOS) both in the Intensive Care

Unit (ICU) and in the wards. Given that patients may have priorities, the solution has

to find an accommodation for the patients with highest priorities, and then to the other

with lower priorities, if space is still available, at the same time taking into proper account

bed availability. A proper solution to the ORS problem is crucial for improving the whole

quality of the healthcare and the satisfaction of patients. Indeed, modern hospitals are

often characterized by long surgical waiting lists, which are caused by inefficiencies in

OR planning, leading to an obvious dissatisfaction of patients. Complex combinatorial

problems, possibly involving optimizations, such as the ORS problem, are usually the

target applications of knowledge representation and reasoning formalisms such as Answer

Set Programming (ASP) (Gelfond and Lifschitz 1988; 1991; Niemelä 1999; Baral 2003;

Brewka et al . 2011), which is particularly suited for applications given its simple but rich

syntax (Calimeri et al . 2013), its intuitive semantics, combined with the readability of

specifications (always appreciated by users), and the availability of efficient solvers, for

example, clingo (Gebser et al . 2012) and wasp (Alviano et al . 2019).

In this paper we present a solution to the problem based on ASP. In such solution,

problem specifications are modularly added as ASP rules to compose the ASP encoding,

and then clingo is used to solve the resulting ASP program. The solution is tested on

benchmarks with realistic sizes and parameters, for the target length on 5-day scheduling,

common in small–medium-sized hospitals, on three scenarios: the first scenario is char-

acterized by an abundance of available beds, so that the constraining resource becomes

the OR time, while in the second and third scenarios, corresponding to mild or severe

bed shortage, the number of beds is the constrained resource. Testing our algorithm also

in such extreme situation is important because the combination of the dwindling number

of available beds and the increase in older population is causing increasing strain on the

national health systems of most developed countries. For example, between Q1 2010/11

and Q3 2018/19, the total number of NHS hospital beds decreased by 12%, from 144,455

to 127,5891. The latest official NHS data show2 that in Q2 2019/20 (from July to Septem-

ber 2019) 70 out of 202 Trusts had an average bed occupancy > 90%. Hospitals cannot

operate at or close at 100% occupancy, as spare bed capacity is needed to accommodate

variations in demand and ensure that patients can flow through the system.

Overall, results show that ASP is a suitable solving methodology on all considered

scenarios, given that our solution is able to utilize efficiently whichever resource is more

constrained; moreover, this is obtained in short timings in line with the needs of the

application. Then, we also performed a scalability analysis on the schedule length for all

considered scenarios, up to three times the target planning length: results show that our

solution is still able to utilize efficiently whichever resource is more constrained even on

longer planning horizons, with some degradation only appearing in some cases for the

1 https://www.nuffieldtrust.org.uk/resource/hospital-bed-occupancy
2 See data stored on https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-
occupancy/bed-data-overnight/

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.nuffieldtrust.org.uk/resource/hospital-bed-occupancy
https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-data-overnight/
https://www.england.nhs.uk/statistics/statistical-work-areas/bed-availability-and-occupancy/bed-data-overnight/
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 3

longer planning length. Moreover, we also present an ASP solution for the rescheduling

problem, that is, when the offline schedule cannot be completed for some reason. Finally,

we introduce a web framework for managing ORS problems via ASP that allows a user

to insert the main parameters of the problem, solve a specific instance, and show results

graphically in real time, in such a way being able to use our solution without installing

nothing specific on the user laptop.

To summarize, the main contributions of this paper are the following:

• We provide an ASP encoding for solving the ORS problem (Section 4).

• We run an experimental analysis assessing the good performance of our ASP solu-

tion both for the target 5-day scheduling length (Section 5.2) and for the scalability

analysis w.r.t. scheduling length (Section 5.3).

• We provide an ASP encoding and an experimental analysis for the rescheduling

problem (Section 6).

• We describe a Graphical User Interface (GUI) which uses our ASP solution to

produce a real-time scheduling of ORs (Section 8).

The paper is completed by Section 2, which contains needed preliminaries about ASP,

by an informal description of the ORS problem in Section 3, by the related work analysis

in Section 7, and by conclusions and possible topics for future research in Section 9.

2 Background on ASP

ASP (Brewka et al . 2011) is a programming paradigm developed in the field of non-

monotonic reasoning and logic programming. In this section, we overview the language

of ASP. More detailed descriptions and a more formal account of ASP, including the

features of the language employed in this paper, can be found in Brewka et al . (2011),

Calimeri et al . (2020), Gebser et al . (2015), Alviano et al . (2015). Hereafter, we assume

the reader is familiar with logic programming conventions.

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings start-

ing with uppercase letter and constants are nonnegative integers or strings starting with

lowercase letters. A term is either a variable or a constant. A standard atom is an ex-

pression p(t1, . . . , tn), where p is a predicate of arity n and t1, . . . , tn are terms. An

atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants. A ground set is a set of pairs

of the form 〈consts : conj〉, where consts is a list of constants and conj is a con-

junction of ground standard atoms. A symbolic set is a set specified syntactically as

{Terms1 : Conj1; · · · ;Termst : Conjt}, where t > 0, and for all i ∈ [1, t], each Termsi
is a list of terms such that |Termsi| = k > 0, and each Conji is a conjunction of stan-

dard atoms. A set term is either a symbolic set or a ground set. Intuitively, a set term

{X : a(X, c), p(X);Y : b(Y,m)} stands for the union of two sets: the first one contains

the X-values making the conjunction a(X, c), p(X) true, and the second one contains the

Y -values making the conjunction b(Y,m) true. An aggregate function is of the form f(S),

where S is a set term, and f is an aggregate function symbol. Basically, aggregate func-

tions map multisets of constants to a constant. The most common functions implemented

in ASP systems are the following:

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

4 C. Dodaro et al.

• #count , number of terms;

• #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate function, ≺ ∈
{<,≤, >,≥, 	=,=} is a comparison operator, and T is a term called guard. An aggregate

atom f(S) ≺ T is ground if T is a constant and S is a ground set. An atom is either a

standard atom or an aggregate atom. A rule r has the following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are standard

atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation not a.

The disjunction a1 ∨ . . . ∨ an is the head of r, while the conjunction b1, . . . , bk, not bk+1,

. . . , not bm is its body. Rules with empty body are called facts. Rules with empty head

are called constraints. A variable that appears uniquely in set terms of a rule r is said

to be local in r, otherwise it is a global variable of r. An ASP program is a set of safe

rules, where a rule r is safe if the following conditions hold: (i) for each global variable

X of r there is a positive standard atom � in the body of r such that X appears in �;

and (ii) each local variable of r appearing in a symbolic set {Terms :Conj} also appears

in a positive atom in Conj .

A weak constraint (Buccafurri et al . 2000) ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l],

where w and l are the weight and level of ω, respectively (Intuitively, [w@l] is read “as

weight w at level l”, where weight is the “cost” of violating the condition in the body,

whereas levels can be specified for defining a priority among preference criteria). An ASP

program with weak constraints is Π = 〈P,W 〉, where P is a program and W is a set of

weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground if no

variables appear in it.

Semantics. Let P be an ASP program. The Herbrand universe UP and the Herbrand

base BP of P are defined as usual. The ground instantiation GP of P is the set of all

the ground instances of rules of P that can be obtained by substituting variables with

constants from UP .

An interpretation I for P is a subset I of BP . A ground literal � (resp., not �) is true

w.r.t. I if � ∈ I (resp., � 	∈ I), and false otherwise. An aggregate atom is true w.r.t. I

if the evaluation of its aggregate function (i.e. the result of the application of f on the

multiset S) with respect to I satisfies the guard; otherwise, it is false.

A ground rule r is satisfied by I if at least one atom in the head is true w.r.t. I whenever

all conjuncts of the body of r are true w.r.t. I.

A model is an interpretation that satisfies all rules of a program. Given a ground

program GP and an interpretation I, the reduct of GP w.r.t. I is the subset GI
P of

GP obtained by deleting from GP the rules in which a body literal is false w.r.t. I.

An interpretation I for P is an answer set (or stable model) for P if I is a minimal

model (under subset inclusion) of GI
P (i.e. I is a minimal model for GI

P) (Faber et al .

2011; Ferraris 2011). For a detailed discussion on the semantics of ASP programs with

aggregates, we refer the reader to Alviano et al . (2015).

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 5

Given a program with weak constraints Π = 〈P,W 〉, the semantics of Π extends from

the basic case defined above. Thus, let GΠ = 〈GP , GW 〉 be the instantiation of Π; a

constraint ω ∈ GW is violated by an interpretation I if all the literals in ω are true w.r.t.

I. An optimum answer set for Π is an answer set of GP that minimizes the sum of the

weights of the violated weak constraints in GW in a prioritized way.

Syntactic shortcuts. In the following, we also use choice rules of the form {p}, where p

is an atom. Choice rules can be viewed as a syntactic shortcut for the rule p ∨ p′, where
p′ is a fresh new standard atom not appearing elsewhere in the program.

3 Problem description

In this section we provide an informal description of the ORS problem and its require-

ments. As we already said in the introduction, most modern hospitals are characterized

by a very long surgical waiting list, often worsened, if not altogether caused, by ineffi-

ciencies in OR planning. A very important factor is represented by the availability of

beds in the wards and, if necessary, in the ICU for each patient for the entire duration

of their stay. This means that hospital planners have to balance the need to use the OR

time with the maximum efficiency with an often reduced bed availability.

In this paper, the elements of the waiting list are called registrations. Each registration

links a particular surgical procedure, with a predicted surgery duration and LOS in the

ward and in the ICU, to a patient. The overall goal of the ORS problem is to assign

the maximum number of registrations to the ORs, taking into account the availability

of beds in the associated wards and in the ICU. This approach entails that the resource

optimized is the one, between the OR time and the beds, that represents the bottleneck

in the particular scenario analyzed.

As first requirement of the ORS problem, the assignments must guarantee that the

sum of the predicted duration of surgeries assigned to a particular OR session does

not exceed the length of the session itself: this is referred in the following as surgery

requirement. Moreover, registrations are not all equal: they can be related to different

medical conditions and can be in the waiting list for different periods of time. These

two factors are unified in one concept: priority. Registrations are classified according to

three different priority categories, namely P1, P2, and P3. The first one gathers either

very urgent registrations or the ones that have been in the waiting list for a long period

of time; it is required that these registrations are all assigned to an OR. Then, the

registrations of the other two categories are assigned to the top of the ORs capacity,

prioritizing the P2 over the P3 ones (minimization).

Regarding the bed management part of the problem, we have to ensure that a regis-

tration can be assigned to an OR only if there is a bed available for the patient for the

entire LOS. In particular, we have considered the situation where each specialty is related

to a ward with a variable number of available beds exclusively dedicated to the patients

associated to the specialty. This is referred in the following as ward bed requirement.

The ICU is a particular type of ward that is accessible to patients from any specialty.

However, only a small percentage of patients is expected to need to stay in the ICU. This

requirement will be referred as the ICU bed requirement. Obviously, during their stay in

the ICU, the patient does not occupy a bed in the specialty’s ward.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

6 C. Dodaro et al.

In our model, a patient’s LOS has been divided into the following phases:

• a LOS in the ward before surgery, in case the admission is programmed a day (or

more) before the surgery takes place; and

• the LOS after surgery, which can be further subdivided into the ICU LOS and the

following ward LOS.

The encoding described in Section 4 supports the generation of an optimized schedule

of the surgeries either in the case where the bottleneck is represented by the OR time or

by the bed availability.

4 ASP encoding for the ORS problem

Starting from the specifications in the previous section, here the ASP encoding of the

ORS scheduling problem is described in the ASP language, in particular following the

input language of clingo. It is important to emphasize here that, albeit clingo is

compliant with the ASP-Core2 (Calimeri et al . 2013) input language, it supports a richer

syntax and slightly different semantics, see Gebser et al . (2015) for a formal description

of the language. Next two subsections present the data model and the encoding itself,

respectively.

4.1 Data model

The input data is specified by means of the following atoms:

• Instances of registration(R,P,SU,LOS,SP,ICU,A) represent the registrations, char-

acterized by an id (R), a priority score (P), a surgery duration (SU) in minutes,

the overall LOS both in the ward and the ICU after the surgery (LOS) in days,

the id of the specialty (SP) it belongs to, a LOS in the ICU (ICU) in days, and

finally a parameter representing the number of days in advance (A) the patient is

admitted to the ward before the surgery.

• Instances of mss(O,S,SP,D) link each operating room (O) to a session (S) for each

specialty (SP) and planning day (D) as established by the hospital Master Surgical

Schedule (MSS).

• The OR sessions are represented by the instances of the predicate duration(N,O,S),

where N is the session duration.

• Instances of beds(SP,AV,D) represent the number of available beds (AV) for the

beds associated to the specialty SP in the day D. The ICU is represented by giving

the value 0 to SP .

The output is an assignment represented by atoms of the form x(R,P,O,S,D), where

the intuitive meaning is that the registration R with priority P is assigned to the OR O

during the session S and the day D. It is important to emphasize here that the priority

P is not actually needed in the output, however it is included because it improves the

readability of the encoding presented in the subsequent section.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 7

Fig. 1. ASP encoding of the ORS problem.

4.2 Encoding

The related encoding is shown in Figure 1, and is described in the following. Rule (r1)

guesses an assignment for the registrations to an OR in a given day and session among

the ones permitted by the MSS for the particular specialty the registration belongs to.

The same registration should not be assigned more than once, in different OR ses-

sions. This is assured by constraints (r2) and (r3). Note that in our setting there is no

requirement that every registration must actually be assigned.

Surgery requirement. With rules (r4) and (r5) we impose that the total length of surgery

durations assigned to a session is less than or equal to the session duration.

Rules (r6)-(r10) deal with the presence and management of beds. In particular, rule

(r6) assigns a bed in the ward to each registration assigned to an OR, for the days before

the surgery. Rule (r7) assigns a ward bed for the period after the patient was dismissed

from the ICU and transferred to the ward. Rule (r8) assigns a bed in the ICU.

Ward bed requirement. Rule (r9) ensures that the number of patients occupying a bed

in each ward for each day is never larger than the number of available beds.

ICU bed requirement. Finally, rule (r10) performs a similar check as the one in rule (r9),

but for the ICU.

Minimization. We remind that we want to be sure that every registration having priority

1 is assigned, then we assign as much as possible of the others, giving precedence to

registrations having priority 2 over those having priority 3. This is accomplished through

constraint (r11) for priority 1 and the weak constraints (r12) and (r13) for priority 2 and

3, respectively, where totRegsP1, totRegsP2, and totRegsP3 are constants representing

the total number of registrations having priority 1, 2 and 3, respectively.

Minimizing the number of unassigned registrations could cause an implicit preference

towards the assignments of the registrations with shorter surgery durations. To avoid

this effect, one can consider to minimize the idle time; however, this is in general slower

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

8 C. Dodaro et al.

from a computational point of view and often unnecessary, since the preference towards

shorter surgeries is already mitigated by our three-tiered priority schema.

Remark. We note that, given that the MSS is fixed, our problem and encoding could

be decomposed by considering each specialty separately in case the beds are not a con-

strained resource, as will be the case for one of our scenario. We decided not to use

this property because (i) this is the description of a practical application that is ex-

pected to be extended over time and to correctly work even if the problem becomes

non-decomposable, for example, a (simple but significant) extension in which a room is

shared among specialties leads to a problem which is not anymore decomposable, and

(ii) it is not applicable to all of our scenario. Additionally, even not considering this

property at the level of the encoding, the experimental analysis that we will present is

already satisfactory for our use case even when the decomposition could be applied.

5 Experimental results for scheduling

In this section we report about the results of an empirical analysis of the ORS encoding.

Data have been randomly generated but having parameters and sizes inspired by real

data. Experiments were run on a Intel Core i7-7500U CPU @ 2.70GHz with 7.6 GB of

physical RAM. The ASP system used was clingo (Gebser et al . 2016), version 5.5.2,

with the “−−restart−on−model” option enabled.

5.1 ORS benchmarks

The employed encoding is composed by the ASP rules (r1), . . . , (r13) from Figure 1. The

test cases we have assembled are based on the requirements of a typical small–medium

size Italian hospital, with five surgical specialties to be managed over the widely used

5-day planning period. Three different scenarios were assembled. The first one (scenario

A) is characterized by an abundance of available beds, so that the constraining resource

becomes the OR time. For the second one (scenario B), we reduced the number of beds,

in order to test the encoding in a situation with plenty of OR time but few available

beds. Scenario B is pushed further in scenario C, where the number of beds is further

reduced, to test our encoding also in this extreme situation. Each scenario was tested 10

times with different randomly generated inputs.

The characteristics of the tests are the following:

• Three different benchmarks, comprising a planning period of 5 working days, and

different numbers of available beds, as reported in Tables 1, 2 and 3 for scenarios

A, B, and C, respectively;

• ten ORs, unevenly distributed among the specialties;

• five hours long morning and afternoon sessions for each OR, summing up to a total

of 500 h of ORs available time for each benchmark;

• three-fifty generated registrations, from which the scheduler will draw the assign-

ments. In this way, we simulate the common situation where a hospital manager

takes an ordered, w.r.t. priorities, waiting list and tries to assign as many elements

as possible to each OR.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 9

Table 1. Bed availability for each specialty and in each day in scenario A

Specialty Monday Tuesday Wednesday Thursday Friday

0 (ICU) 40 40 40 40 40
1 80 80 80 80 80
2 58 58 58 58 58
3 65 65 65 65 65
4 57 57 57 57 57
5 40 40 40 40 40

Table 2. Bed availability for each specialty and in each day in scenario B

Specialty Monday Tuesday Wednesday Thursday Friday

0 (ICU) 4 4 5 5 6
1 20 30 40 45 50
2 10 15 23 30 35
3 10 14 21 30 35
4 8 10 14 16 18
5 10 14 20 23 25

Table 3. Bed availability for each specialty and in each day in scenario C

Specialty Monday Tuesday Wednesday Thursday Friday

0 (ICU) 4 4 5 5 6
1 10 15 20 25 30
2 7 10 11 14 18
3 7 10 13 16 20
4 4 6 8 11 13
5 6 9 12 15 18

The surgery durations have been generated assuming a normal distribution, while the

priorities have been generated from a uneven distribution of three possible values (with

weights respectively of 0.20, 0.40, and 0.40 for registrations having priority 1, 2, and 3,

respectively). The lengths of stay (total LOS after surgery and ICU LOS) have been

generated using a truncated normal distribution, in order to avoid values less than 1. In

particular for the ICU, only a small percentage of patients have been generated with a

predicted LOS while the large majority do not need to pass through the ICU and their

value for the ICU LOS is fixed to 0. Finally, since the LOS after surgery includes both

the LOS in the wards and in the ICU, the value generated for the ICU LOS must be less

than or equal to the total LOS after surgery.

The parameters of the test have been summed up in Table 4. In particular, for each

specialty (1 to 5), we reported the number of registrations generated, the number of ORs

assigned to the specialty, the mean duration of surgeries with its standard deviation, the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

10 C. Dodaro et al.

Table 4. Parameters for the random generation of the scheduler input

Surgery duration LOS (d) ICU ICU LOS (d) LOS (d)
Specialty Reg. ORs (min) mean (std) mean (std) (%) mean (std) before surgery

1 80 3 124 (59.52) 7.91 (2) 10 1 (1) 1
2 70 2 99 (17.82) 9.81 (2) 10 1 (1) 1
3 70 2 134 (25.46) 11.06 (3) 10 1 (1) 1
4 60 1 95 (19.95) 6.36 (1) 10 1 (1) 0
5 70 2 105 (30.45) 2.48 (1) 10 1 (1) 0
Total 350 10

Table 5. Scheduling results for the scenario A benchmark

Assigned registrations

Priority 1 Priority 2 Priority 3 Total OR time Eff. Bed occupancy Eff.

62/62 132/150 72/138 266/350 96.6% 52.0%
72/72 128/145 64/133 264/350 95.6% 51.0%
71/71 132/132 69/147 272/350 96.7% 96.7%
66/66 138/142 57/142 261/350 96.2% 50.7%
79/79 119/130 67/141 265/350 96.0% 51.9%
67/67 131/131 66/152 264/350 96.6% 53.8%
66/66 121/132 69/152 256/350 96.0% 49.8%
69/69 130/135 68/146 267/350 96.8% 51.6%
60/60 139/153 59/137 258/350 96.8% 50.8%
68/68 138/142 57/139 263/350 95.2% 51.3%

mean LOS after the surgery with its standard deviation, the percentage of patients that

need to stay in the ICU, the mean LOS in the ICU with its standard deviation and,

finally, the LOS before the surgery (i.e. the number of days, constant for each specialty,

the patient is admitted before the planned surgery is executed).

5.2 Results

Results of the experiments are reported for scenario A in Table 5, for scenario B in

Table 6, and for scenario C in Table 7.

A time limit of 60 s was given and each scenario was run 10 times with different input

registrations. No run manages to reach the optimal solution within the chosen timeout.

However, the quality of the solution improves only marginally even if the timeout is

extended up to 5 min, which is the largest timeout value we have tried in view of a

practical use of the program. For this reason, we decided to keep the timeout value at

60 s, which makes the program adapt to be used also for quick testing of “what-if”

scenarios and simulations. For each satisfiable instance out of the 10 runs executed, the

tables report in the first three columns the number of the assigned registrations out of

the generated ones for each priority, and in the remaining two columns a measure of the

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 11

Table 6. Scheduling results for the scenario B benchmark

Assigned registrations

Priority 1 Priority 2 Priority 3 Total OR time Eff. Bed occupancy Eff.

62/62 106/150 13/138 181/350 66.3% 92.7%
72/72 77/145 43/133 192/350 67.5% 94.2%
71/71 80/132 38/147 189/350 68.2% 96.1%
66/66 81/142 41/142 188/350 71.4% 93.4%
79/79 90/130 20/141 189/350 69.0% 94.1%
67/67 95/131 25/152 187/350 66.5% 93.9%
66/66 92/132 30/152 188/350 71.8% 94.1%
69/69 84/135 36/146 189/350 68.7% 92.7%
60/60 91/153 34/137 185/350 69.7% 94.1%
68/68 82/142 35/139 185/350 69.3% 95.1%

Table 7. Scheduling results for the scenario C benchmark

Assigned registrations

Priority 1 Priority 2 Priority 3 Total OR time Eff. Bed occupancy eff.

62/62 43/150 12/138 117/350 43.1% 85.8%
71/71 41/132 6/147 118/350 42.9% 93.2%
66/66 40/142 11/142 117/350 42.5% 92.0%
79/79 38/130 7/141 124/350 44.0% 93.8%
67/67 42/131 9/152 118/350 41.9% 89.8%
69/69 39/135 13/146 121/350 45.3% 94.4%
60/60 48/153 10/137 118/350 45.3% 91.2%
68/68 38/143 13/139 119/350 44.6% 91.5%

total time occupied by the assigned registrations as a percentage of the total OR time

available (indicated as “OR Time Eff.” in the tables) and the ratio between the beds

occupied after the planning to the available ones before the planning (labeled as “Bed

Occupancy Eff.” in the tables). As a general observation, these results show that our

solution is able to utilize efficiently whichever resource is more constrained: on scenario

A, our solution manages to reach a very high efficiency, over 95%, in the use of OR time,

while in scenario B achieves an efficiency of bed occupancy between 92% and 95%, and

over 85% even in the extreme case represented by Scenario C. The same set of generated

registrations was used in each scenario, so that the differences in the results can be

ascribed only to the different bed configurations. Taking into consideration a practical

use of this solution, the user would be able to individuate and quantify the resources that

are more constraining and take the appropriate actions. This means that the solution

can also be used to test and evaluate “what if” scenarios.

Finally, in Figure 2 we (partially) present the results achieved on one instance (i.e. the

first instance of Tables 5, 6, and 7) with 350 registrations for 5 days. Each bar represents

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

12 C. Dodaro et al.

Fig. 2. Example of bed occupancy of the ward corresponding to specialty 1 for 5-day
scheduling. The plot at the top corresponds to the first instance of scenario A, the one in the
middle to the first instance of scenario B. Finally, the one at the bottom corresponds to the

first instance of scenario C.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 13

Table 8. Total number of randomly generated registrations for each benchmark

Specialty Registrations ORs

15-day 10-day 7-day 5-day 3-day 2-day 1-day

1 240 160 112 80 48 32 16 3
2 210 140 98 70 42 28 14 2
3 210 140 98 70 42 28 14 2
4 180 120 84 60 36 24 12 1
5 210 140 98 70 42 28 14 2

Total 1050 700 490 350 210 140 70 10

the total number of available beds for specialty 1, as reported in Table 1 for the plot at

the top, Table 2 for the middle one, and Table 3 for the bottom one, for each day of the

week, from Monday through Friday. The colored part of the bars indicates the amount

of occupied beds while the gray part the beds left unoccupied by our planning.

5.3 Scalability analysis

We have performed a scalability analysis on the performance of employed ASP solver

and encoding for ORS with bed management w.r.t schedule length.

Evaluation. The characteristics of the tests for each scenario are the following:

• We consider seven different benchmarks with planning period of 1, 2, 3, 5, 7, 10,

and 15 working days;

• For each benchmark the total number of randomly generated registrations were 70

per day, that is, 70, 140, 210, 350, 490, 700, and 1050 for 1, 2, 3, 5, 7, 10, and 15

days, respectively;

• five specialties for each benchmark;

• ten ORs unevenly distributed among the specialties;

• Five hours long morning and afternoon shifts for each OR summing to 100, 200,

300, 500, 700, 1000, and 1500 h of OR available time for the 7 benchmarks;

• an execution time of 60 s was given to each instance.

Table 8 shows the distribution of the total number of randomly generated registrations for

each benchmark. Further, this table also shows the distribution of ORs for each speciality,

that is, to speciality 1 three ORs are assigned, to speciality 2, 3, and 5, two ORs are

assigned, while to speciality 4 only one OR is allocated. Each speciality is considered as

a ward with variable number of available beds.

Moreover, we kept also for this analysis the parameters for the random generation of

scheduler input from Table 4.

Scenario A. The results of scenario A are reported in Table 9, that shows averages

of results for satisfiable instances with abundance of available beds. It should be noted

that each benchmark (15, 10, 7, 5, 3, 2, and 1 day) represents here the average of the

satisfiable runs with different randomly generated inputs.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

14 C. Dodaro et al.

Table 9. Averages of the results for 15, 10, 7, 5, 3, 2, and 1 day benchmarks for

Scenario A

Benchmark Priority 1 Priority 2 Priority 3 Total OR time eff. Bed occupancy eff.

15 days 211/211 261/421 70/418 542/1050 67.6% 62.5%
10 days 142/142 240/277 76/281 458/700 84.4% 61.6%
7 days 105/105 166/189 68/196 339/490 89.8% 53.3%
5 days 68/68 131/139 65/143 264/350 96.2% 51.6%
3 days 44/44 78/82 36/84 158/210 96.5% 36.9%
2 days 28/28 53/57 22/55 108/140 95.9% 27.6%
1 day 13/13 27/29 13/28 53/70 93.4% 15.3%

Table 10. Averages of the results for 15, 10, 7, 5, 3, 2, and 1 day benchmarks for

Scenario B

Benchmark Priority 1 Priority 2 Priority 3 Total OR time eff. Bed occupancy eff.

15 days 208/208 189/423 107/419 504/1050 62.7% 96.9%
10 days 144/144 166/281 56/275 366/700 68.0% 96.5%
7 days 95/95 136/197 30/198 261/490 70.6% 94.0%
5 days 68/68 88/139 31/143 187/350 68.8% 94.0%
3 days 41/41 58/85 19/84 118/210 73.3% 93.3%
2 days 30/30 35/56 6/54 71/140 66.7% 92.6%
1 day 16/16 25/28 6/26 47/70 70.4% 99.4%

As we can see, Table 9 contains seven columns, where the first column shows the name

of the benchmark for which the test is performed, the columns from the second to the

fourth show the average number of the assigned registrations out of the generated ones

for each priority (P1, P2, and P3, respectively), while the last two columns show the

mean for the OR time and the bed occupancy efficiency.

As we can observe from the results, all considered benchmarks achieved an overall OR

time efficiency greater than 80%, but for the case with 15 days, where some degradation

is visible, for which the OR time Efficiency is 67.6%.

Scenario B. The results of the scalability analysis for scenario B are reported in

Table 10 that shows averages of results for all satisfiable instances generated, and is

organized as Table 9.

From Table 10 it can be observed that all the considered benchmarks achieve efficiency

of bed occupancy greater than 90%, in particular between 92% and 96%, being able, as

in the previous scenario, to optimize the constrained resource.

Scenario C. The results for third scenario are reported in Table 11, which is organized

as Tables 9 and 10.

From the results, we can note that although the total number of available beds if

further reduced, for all benchmarks we achieve efficiency of bed occupancy greater than

85%, even for the extreme case of 15 days planning length, and overall between 86%

and 95%.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 15

Table 11. Averages of the results for 15, 10, 7, 5, 3, 2, and 1 day benchmarks for

Scenario C

Benchmark Priority 1 Priority 2 Priority 3 Total OR time eff. Bed occupancy eff.

15 days 206/206 64/407 32/437 302/1050 37.8% 96.4%
10 days 135/135 91/289 13/276 239/700 44.0% 96.3%
7 days 101/101 49/194 13/195 163/490 43.2% 91.6%
5 days 68/68 41/140 10/143 119/350 44.5% 91.9%
3 days 43/43 25/83 4/84 72/210 45.0% 91.4%
2 days 27/27 19/57 3/56 49/140 43.9% 85.9%
1 day 13/13 22/29 3/28 38/70 70.4% 99.4%

6 ASP encoding for the rescheduling problem

The rescheduling procedure is applied to a previously planned schedule, that is, we start

from an already created schedule (old schedule or x-schedule) that could not be executed

fully till the end due to some reasons, for example, some patients could not be operated

in their assigned slots or the patients may delete their registration. In such a situation

all those postponed registrations (or surgeries) must be reallocated to one of the next

slots in the remaining part of the original planning period (new schedule or y-schedule).

The planning period we consider is 5 days.

Once planned, a speciality schedule does not influence other specialties so it makes

sense to reschedule one specialty at a time. Since we already have the initial schedule

for the planning period of 5 days, we assumed that in day 2, a number of registrations

from specialty 1 had to be postponed to the next day. So we have to reschedule these

registrations in the remaining available three days, that is, days 3, 4, and 5.

In order to insert the postponed registrations in the new schedule (y-schedule) we

have to make sure that the start of the schedule leaves enough available OR time by

automatically dropping the necessary registrations from the old schedule; the choice of

the registrations to be removed will begin from the last day, that is, day 5 of the planning

period and from registrations in the priority three category.

The next two subsections will show ASP encoding for the rescheduling problem, to-

gether with the needed changes in the data model, and the results of the experimental

analysis we performed.

6.1 ASP encoding

Input. The input data is specified by means all of the atoms described in Section 4.1 and

by atoms of the form x(R,P,O,S,D). The latter represent a solution to the ORS problem

as computed by the encoding described in Section 4.2. Moreover, in the following we

assume that atoms of the form mss(O,S,SP,D) include only elements from day 3 to day

5, that is, 3 ≤ D ≤ 5.

Output. The output of the new schedule is represented by atoms of the form

y(R,P,O,S,D), representing that the registration R of the patient with priority P is

assigned to an OR O in a shift S of day D.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

16 C. Dodaro et al.

Fig. 3. ASP encoding of the ORS problem without beds-management (Rescheduling).

Encoding. The ASP rescheduling encoding for ORS problem is shown in Figure 3. In

particular, rules (rr1)–(rr10) correspond to rules (r1)–(r10) from the encoding reported in

Figure 1, where atoms over the predicate x are replaced with the ones over the predicate

y. Rule (rr11) states that all registration scheduled for the day 2 (i.e. the ones postponed

according to our scenarios) should be rescheduled. Rules (rr12)–(rr15) ensure that the

maximum number of registrations from the old schedule should be included also in the

new one. In particular, rule (rr12) computes the difference between the total number of

registrations with priority 1 and 2 assigned in the previous schedule and the number of

registrations assigned in the current schedule, whereas rule (rr13) (resp. (rr14)) computes

the difference between the total number of registrations with priority 3 for day 3 and

4 (resp. day 5), and the number of registrations assigned in the current schedule. Such

differences are then minimized by means of the weak constraint (rr15). Finally, rule (rr16)

minimizes the total sum of the difference (in terms of number of days) between the new

schedule and the old one for each registration.

6.2 Experimental results

The results using our ASP rescheduling encoding on four scenarios (I, II, III, and IV)

are summarized in Table 12. An execution time of 60 s was given for each scenario.

For our tests we started from an old schedule (x-schedule) calculated under the con-

ditions delineated in Scenario A of the scheduling problem, in particular we took into

account the results for specialty 1. Since we consider postponed registrations from a single

speciality for our analysis, it should be noted that the total number of old registrations

of specialty 1 with priority 1, 2 and 3 to be rescheduled in the next 3 days were 45. In

the table, the first column mentions the scenario, the second shows the number of regis-

trations that were inserted in each scenario (Postponed Registrations), the third column

reports the total number of registrations from the old schedule (Total Old Registrations),

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 17

Table 12. Results for the four rescheduling scenarios

Scenario Postponed registr. Total old registr. Dropped registr. Total new registr.

I 1 45 0 46
II 2 44 1 46
III 4 42 2 46
IV 6 40 4 46

while the fourth column shows the necessary number of dropped registrations from the

old schedule. Finally, the last column shows the total number of registrations in the new

schedule by also reassigning the postponed registrations (Total New Registrations) in the

next days. Columns from the second to the fifth report the (rounded) mean of the 10 in-

stances. Overall, our encoding dropped 0, 1, 2, and 4 priority 3 old schedule registrations

for scenarios I, II, III, and IV, respectively.

These results confirm that we managed to produce a new schedule in case of disruption

of the previous one even when already in its execution phase. This was accomplished by

allowing the rescheduled registrations to change time but minimizing the number of

changes of surgery date, which would imply a major disruption in the procedure of the

hospital, in particular regarding the ICU and ward bed management. On the one hand,

in a situation of minor disruption like that of Scenario I we managed to produce a new

schedule without having to drop any of the previously scheduled surgeries; on the other

hand, even in case of greater disruption, like in Scenario II, III, and IV, the number of

scheduled surgeries in the new schedule were at least as many as in the previous schedule.

7 Related work

This paper is an extended and revised version of Dodaro et al . (2019) having the fol-

lowing main additions: (i) a scalability analysis of our solution w.r.t. schedule length,

(ii) a rescheduling ASP encoding and its evaluation on some scenarios, and (iii) a web

framework for managing the experiments performed in this paper. Moreover, the analysis

about the scheduling part has been performed on the third scenario where the number

of beds is extremely scarce.

In this section we review related literature, organized into two paragraphs. The first

paragraph is devoted to outlining different techniques for solving the ORS problem, with

focus on the inclusion of bed management, while in the second paragraph we report about

other scheduling problems where ASP has been employed.

Solving ORS problems. Aringhieri et al. 2015 addressed the joint OR planning

(MSS) and scheduling problem, described as the allocation of OR time blocks to special-

ties together with the subsets of patients to be scheduled within each time block over

a one week planning horizon. They developed a 0–1 linear programming formulation of

the problem and used a two-level metaheuristic to solve it. Its effectiveness was demon-

strated through numerical experiments carried out on a set of instances based on real

data and resulted, for benchmarks of 80–100 assigned registrations, in a 95–98% average

OR utilization rate, for a number of ORs ranging from 4 to 8. The execution times were

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

18 C. Dodaro et al.

around 30–40 s. In Landa et al . (2016), the same authors introduced a hybrid two-phase

optimization algorithm which exploits neighborhood search techniques combined with

Monte Carlo simulation, in order to solve the joint advance and allocation scheduling

problem, taking into account the inherent uncertainty of surgery durations. In both the

previous works, the authors solve the bed management part of the problem limited to

weekend beds, while assuming that each specialty has its own post-surgery beds from

Monday to Friday with no availability restriction. In Aringhieri et al . (2015), some of the

previous authors face the bed management problem for all the days of the week, with

the aim to level the post-surgery ward bed occupancies during the days, using a Variable

Neighborhood Search approach.

Other relevant approaches are: Abedini et al. 2016, that developed a bin packing model

with a multistep approach and a priority-type-duration rule; Molina-Pariente et al. 2015,

that tackled the problem of assigning an intervention date and an OR to a set of surgeries

on the waiting list, minimizing the access time for patients with diverse clinical priority

values; and Zhang et al. 2017, that addressed the problem of OR planning with different

demands from both elective patients and nonelective ones, with priorities in accordance

with urgency levels and waiting times. However, bed management is not considered in

these three last mentioned approaches.

ASP in scheduling problems. We already mentioned in the introduction that ASP

has been already successfully used for solving hard combinatorial and application prob-

lems in several research areas. Concerning ORS, the problem has been already addressed

in Dodaro et al . (2018) and 2019, but without taking into account beds, which instead

are a fundamental resource to be considered. Concerning scheduling problems other than

ORS, ASP encodings were proposed for the following problems: Incremental Schedul-

ing Problem (Balduccini 2011; Calimeri et al . 2016; Gebser et al . 2017b;a), where the

goal is to assign jobs to devices such that their executions do not overlap one another;

Team Building Problem (Ricca et al . 2012), where the goal is to allocate the available

personnel of a seaport for serving the incoming ships; Nurse Scheduling Problem (Al-

viano et al . 2017; Dodaro and Maratea 2017; Alviano et al . 2018), where the goal is

to create a scheduling for nurses working in hospital units; Interdependent Scheduling

Games (Amendola 2018), which requires interdependent services among players, that

control only a limited number of services and schedule independently, and the Confer-

ence Paper Assignment Problem (Amendola et al . 2016), which deals with the problem

of assigning reviewers in the Program Committee to submitted conference papers. Other

relevant papers are Gebser et al . (2018), where, in the context of routing driverless

transport vehicles, the setup problem of routes such that a collection of transport tasks

is accomplished in case of multiple vehicles sharing the same operation area is solved

via ASP, in the context of car assembly at Mercedes-Benz Ludwigsfelde GmbH, and the

recent survey paper by Falkner et al. 2018, where industrial applications dealt with ASP

are presented, including those involving scheduling problems.

8 Web framework

Our scheduling solution has been planned and developed also in view of a practical utiliza-

tion by medical operators in hospitals. To this end, we are developing a web application

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 19

Fig. 4. Web application architecture schema.

which wraps the ASP encoding and the clingo solver (see Figure 4). The software is

a full-stack JavaScript application with a GUI and a Node.js back end. The ASP facts

and encoding are dynamically composed at run time reflecting the user choices, and are

then relayed to the ASP solver through a wrapper package. This solution allows the

solver to be embedded inside an easily reachable and usable web application, removing

the hurdle that installing and managing the solver may represent for a nonexpert user.

The application currently includes:

• a registration and authentication process,

• a database for storing and retrieving previous test data, and

• a GUI to easily create and customize new test scenarios or load pre-made ones.

The GUI can be divided in the following sections: an input screen, an overall results screen

and their graphical representation for the ORs and for the bed occupancy. The input

screen (see Figure 5) currently hosts two tables: on the left the parameters for the random

generation of the registrations and on the right the bed availability. It is important to

note that in a more operative stage the generation parameter will be obviously replaced

by the actual registration data. In the left table the user can set the parameters for the

generator. From left to right these are:

• the specialty names;

• the number of registrations we aim to assign for each specialty;

• the parameters (mean and coefficient of variation) of the Gaussian distribution used

to generate the predicted LOS in the ward after the surgery;

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

20 C. Dodaro et al.

Fig. 5. Input screen for the registration generator parameter and the beds availability.

• the parameters (mean and coefficient of variation) of the Gaussian distribution used

to generate the predicted surgery lengths;

• the ratio of patients predicted to need a place in the ICU ward; and

• the parameters (mean and coefficient of variation) of the Gaussian distribution used

to generate the predicted LOS in the ICU ward after the surgery.

In the right table, the user can set the number of available beds for each ward connected

to a specialty. From left to right the parameters are:

• the specialty names;

• the number of available beds for each day of the planning period (in the figure a

five days period is shown);

• the percentage of the maximum number of beds potentially available, reflecting

the practice usually used by hospitals to reserve a bed quota for emergencies and

unexpected events; and

• the total number of beds allocated to the specialty.

The number of beds tends to increase during the planning period to simulate the patients

operated during the previous period that still occupy a bed at the beginning of the

planning period and are gradually discharged.

In the overall results screen (see Figure 6) the user can monitor in real time the

evolution of the process and, finally, read the final results:

• At the top of the screen there are three cards containing the number of assigned

registrations out of the total, arranged according to their priority class, for each

solution found by the solver engine. Each number is continuously updated dur-

ing the execution whenever a new solution is found. The percentage of assigned

registrations is represented by a progress bar at the bottom of each card.

• At the bottom we summarize the final results at the end of the execution. In

particular, the OR time out of the total available is reported, both in absolute

numbers and as a percentage through a progress bar.

• Finally, we have two links that lead to the graphical representation of the OR

scheduling and bed occupancy for each day of the planning period.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 21

Fig. 6. Results screen.

Fig. 7. Graphical representation of the OR schedules for a single day and shift.

The graphical representation of each OR schedule is shown through colored bars, one

for each day and shift of the period (see Figure 7). In the OR graphs each column displays

an OR and each bar inside the column represents a registration. The bed occupancy is

also shown through a carousel of stacked bar graphs (see Figure 8). This time each

graph displays the bed occupancy of a single specialty: each column shows the situation

in a day, in particular the green part of the bar denotes the beds already occupied by

patients operated previously, while the blue part shows the beds occupied by the patients

scheduled in the current period. The solid line shows the total number of beds assigned

to the specialty, while the dashed line gives the maximum number of available beds,

respecting the quota for emergencies.

9 Conclusions

In this paper we have employed ASP for solving the ORS problem with bed management,

given ASP has already proved to be a viable tool for solving scheduling problems due

to the readability of the encoding and availability of efficient solvers. Specifications of

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

22 C. Dodaro et al.

Fig. 8. Graphical representation of the bed occupancy for a single specialty.

the problem are modularly expressed as rules in the ASP encoding, and the ASP solver

clingo has been used. We have then presented the results of experimental and scalability

analysis, on ORS benchmarks with realistic sizes and parameters on three scenarios, that

reveal that our solution is able to utilize efficiently whichever resource is more constrained,

being either the OR time or the beds. Moreover, for the planning length of 5 days usually

used in small–medium Italian hospitals, this is obtained in short timings in line with the

needs of the application. We further developed and evaluated a rescheduling procedure,

to be employed in case the original schedule cannot be fully executed for some reason.

We finally also presented a web framework that supports the online execution of our

scheduling solution. While we do not directly manage emergencies, the flexibility of our

algorithm can be exploited even in those cases. For example, if a part of the hospital

resources (being OR time, ICU or ward beds) must be suddenly redirected to serve other

purposes, as for example happened in the Covid19 emergency, by simply adjusting the

numbers our solution can immediately be utilized to manage the remaining resources at

the best of their capacity. Future work includes the usage of other solving paradigms as,

for example, SMT or CSP, and the extension of our solution for including, for example,

surgical teams and/or the Post-Anesthesia Care Unit. In terms of efficiency, we plan

both to evaluate heuristics and optimization techniques (see, e.g. (Giunchiglia et al .

2002; 2003; Rosa et al . 2008; Alviano et al . 2020)), as well as further clingo options,

and improvement to the current encoding. In this light, we have already performed some

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 23

preliminary analysis on the (costly) rules (r11)–(r13) of our encoding, substituted with

an equivalent formulation that avoids the #count aggregate. Preliminary tests on our

biggest, that is, 15 days, instances show that the alternative formulation may lead to

advantages.

All materials presented in this work, including benchmarks and encodings, can be

found at: http://www.star.dist.unige.it/ marco/RuleMLRR2TPLP/material.zip.

Acknowledgments

The research of three of the authors of the paper, Ivan Porro, Giuseppe Galatà and

Muhammad Kamran Khan, is partially funded by the “POR FESR Liguria 2014-2020”

public grant scheme, and by EIT Health through the Headstart 2020 grant received by

SurgiQ srl (Reference: 2020 Headstart Program, PoC activity #20206, Innostars, 2020-

HS-0339).

References

Abedini, A., Ye, H. and Li, W. 2016. Operating room planning under surgery type and priority
constraints. Procedia Manufacturing 5, 15–25.

Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M. and Ricca, F. 2019.
Evaluation of disjunctive programs in WASP. In Proceedings of the 15th International Con-
ference on Logic Programming and Nonmonotonic Reasoning (LPNMR 2019), M. Balduccini,
Y. Lierler, and S. Woltran, Eds. Lecture Notes in Computer Science, vol. 11481. Springer,
241–255.

Alviano, M., Dodaro, C. and Maratea, M. 2017. An advanced answer set programming
encoding for nurse scheduling. In Advances in Artificial Intelligence - Proceedings of the 16th
International Conference of the Italian Association for Artificial Intelligence (AI*IA 2017),
F. Esposito, R. Basili, S. Ferilli, and F. A. Lisi, Eds. Lecture Notes in Computer Science, vol.
10640. Springer, 468–482.

Alviano, M., Dodaro, C. and Maratea, M. 2018. Nurse (re)scheduling via answer set pro-
gramming. Intelligenza Artificiale 12, 2, 109–124.

Alviano, M., Dodaro, C., Marques-Silva, J. and Ricca, F. 2020. Optimum stable model
search: Algorithms and implementation. Journal of Logic and Computation 30, 4. In press.

Alviano, M., Faber, W. and Gebser, M. 2015. Rewriting recursive aggregates in answer
set programming: Back to monotonicity. Theory and Practice of Logic Programming 15, 4–5,
559–573.

Amendola, G. 2018. Preliminary results on modeling interdependent scheduling games via an-
swer set programming. In RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272. CEUR-
WS.org.

Amendola, G., Dodaro, C., Leone, N. and Ricca, F. 2016. On the application of answer
set programming to the conference paper assignment problem. In Advances in Artificial In-
telligence - Proceedings of the 15th International Conference of the Italian Association for
Artificial Intelligence (AI*IA 2016), G. Adorni, S. Cagnoni, M. Gori, and M. Maratea, Eds.
Lecture Notes in Computer Science, vol. 10037. Springer, 164–178.

Aringhieri, R., Landa, P., Soriano, P., Tànfani, E. and Testi, A. 2015. A two level meta-
heuristic for the operating room scheduling and assignment problem. Computers & Operations
Research 54, 21–34.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

http://www.star.dist.unige.it/~marco/RuleMLRR2TPLP/material.zip
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

24 C. Dodaro et al.

Aringhieri, R., Landa, P. and Tànfani, E. 2015. Assigning surgery cases to operating rooms:
A vns approach for leveling ward beds occupancies. InProceedings of the 3rd International
Conference on Variable Neighborhood Search (VNS 2014). Electronic Notes in Discrete Math-
ematics 47, 173–180.

Balduccini, M. 2011. Industrial-size scheduling with ASP+CP. In Logic Programming
and Nonmonotonic Reasoning - 11th International Conference, LPNMR 2011, Vancouver,
Canada, May 16–19, 2011. Proceedings. Lecture Notes in Computer Science, vol. 6645.
Springer, 284–296.

Baral, C. 2003. Knowledge Representation, Reasoning and Declarative Problem Solving. Cam-
bridge University Press.

Brewka, G., Eiter, T. and Truszczynski, M. 2011. Answer set programming at a glance.
Communications of the ACM 54, 12, 92–103.

Buccafurri, F., Leone, N. and Rullo, P. 2000. Enhancing disjunctive datalog by constraints.
IEEE Transactions on Knowledge and Data Engineering 12, 5, 845–860.

Calimeri, F., Faber, W.,Gebser, M., Ianni, G.,Kaminski, R.,Krennwallner, T., Leone,
N., Maratea, M., Ricca, F. and Schaub, T. 2020. ASP-Core-2 input language format.
Theory and Practice of Logic Programming 20, 2, 294–309.

Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F. and Schaub, T. 2013. ASP-Core-2 Input Language Format.
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf

Calimeri, F., Gebser, M., Maratea, M. and Ricca, F. 2016. Design and results of the Fifth
Answer Set Programming Competition. Artificial Intelligence 231, 151–181.

Dodaro, C.,Galatà, G.,Khan, M. K.,Maratea, M. and Porro, I. 2019. An ASP-based so-
lution for operating room scheduling with beds management. In Proceedings of the Third Inter-
national Joint Conference on Rules and Reasoning (RuleML+RR 2019), P. Fodor, M. Montali,
D. Calvanese, and D. Roman, Eds. Lecture Notes in Computer Science, vol. 11784. Springer,
67–81.

Dodaro, C., Galatà, G., Maratea, M. and Porro, I. 2018. Operating room scheduling
via answer set programming. In Advances in Artificial Intelligence - Proceedings of the 17th
International Conference of the Italian Association for Artificial Intelligence (AI*IA 2018),
C. Ghidini, B. Magnini, A. Passerini, and P. Traverso, Eds. Lecture Notes in Computer Sci-
ence, vol. 11298. Springer, 445–459.

Dodaro, C., Galatà, G., Maratea, M. and Porro, I. 2019. An ASP-based framework for
operating room scheduling. Intelligenza Artificiale 13, 1, 63–77.

Dodaro, C. and Maratea, M. 2017. Nurse scheduling via answer set programming. In Pro-
ceedings of the 14th International Conference on Logic Programming and Nonmonotonic Rea-
soning (LPNMR 2017), M. Balduccini and T. Janhunen, Eds. Lecture Notes in Computer
Science, vol. 10377. Springer, 301–307.

Faber, W., Pfeifer, G. and Leone, N. 2011. Semantics and complexity of recursive aggregates
in answer set programming. Artificial Intelligence 175, 1, 278–298.

Falkner, A. A., Friedrich, G., Schekotihin, K., Taupe, R. and Teppan, E. C. 2018.
Industrial applications of answer set programming. Knstliche Intelligenz 32, 2–3, 165–176.

Ferraris, P. 2011. Logic programs with propositional connectives and aggregates. ACM Trans-
actions on Computational Logic 12, 4, 25.

Gebser, M., Harrison, A., Kaminski, R., Lifschitz, V. and Schaub, T. 2015. Abstract
gringo. Theory Practice of Logic Programming 15, 4–5, 449–463.

Gebser, M., Kaminski, R., Kaufmann, B., Ostrowski, M., Schaub, T. and Wanko, P.

2016. Theory solving made easy with clingo 5. In Proceedings of ICLP (Technical Commu-
nications), M. Carro, A. King, N. Saeedloei, and M. D. Vos, Eds. OASICS, vol. 52. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2:1–2:15.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.03c.pdf
https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

Operating Room (Re)Scheduling with Bed Management via ASP 25

Gebser, M., Kaufmann, B. and Schaub, T. 2012. Conflict-driven answer set solving: From
theory to practice. Artificial Intelligence 187, 52–89.

Gebser, M., Maratea, M. and Ricca, F. 2017a. The design of the seventh answer set pro-
gramming competition. In LPNMR, M. Balduccini and T. Janhunen, Eds. Lecture Notes in
Computer Science, vol. 10377. Springer, 3–9.

Gebser, M., Maratea, M. and Ricca, F. 2017b. The sixth answer set programming compe-
tition. Journal of Artificial Intelligence Research 60, 41–95.

Gebser, M., Obermeier, P., Schaub, T., Ratsch-Heitmann, M. and Runge, M. 2018.
Routing driverless transport vehicles in car assembly with answer set programming. Theory
Practice of Logic Programming 18, 3–4, 520–534.

Gelfond, M. and Lifschitz, V. 1988. The stable model semantics for logic programming.
In Proceedings of the Fifth International Conference and Symposium (ICLP/SLP 1988) (2
Volumes). MIT Press, 1070–1080.

Gelfond, M. and Lifschitz, V. 1991. Classical negation in logic programs and disjunctive
databases. New Generation Computing 9, 3/4, 365–386.

Giunchiglia, E., Maratea, M. and Tacchella, A. 2002. Dependent and independent vari-
ables in propositional satisfiability. In Proceedings of the European Conference on Logics in
Artificial Intelligence (JELIA 2002), S. Flesca, S. Greco, N. Leone, and G. Ianni, Eds. Lecture
Notes in Computer Science, vol. 2424. Springer, 296–307.

Giunchiglia, E., Maratea, M. and Tacchella, A. 2003. (In)Effectiveness of look-ahead
techniques in a modern SAT solver. In Proceedings of the 9th International Conference on
Principles and Practice of Constraint Programming (CP 2003), F. Rossi, Ed. Lecture Notes
in Computer Science, vol. 2833. Springer, 842–846.

Landa, P., Aringhieri, R., Soriano, P., Tànfani, E. and Testi, A. 2016. A hybrid opti-
mization algorithm for surgeries scheduling. Operations Research for Health Care 8, 103–114.

Molina-Pariente, J. M., Hans, E. W., Framinan, J. M. and Gomez-Cia, T. 2015. New
heuristics for planning operating rooms. Computers & Industrial Engineering 90, 429–443.

Niemelä, I. 1999. Logic Programs with stable model semantics as a constraint programming
paradigm. Annals of Mathematics and Artificial Intelligence 25, 3-4, 241–273.

Ricca, F., Grasso, G., Alviano, M., Manna, M., Lio, V., Iiritano, S. and Leone, N.

2012. Team-building with answer set programming in the Gioia-Tauro seaport. Theory and
Practice of Logic Programming 12, 3, 361–381.

Rosa, E. D., Giunchiglia, E. and Maratea, M. 2008. A new approach for solving sat-
isfiability problems with qualitative preferences. In ECAI, M. Ghallab, C. D. Spyropoulos,
N. Fakotakis, and N. M. Avouris, Eds. Frontiers in Artificial Intelligence and Applications,
vol. 178. IOS Press, 510–514.

Zhang, J., Dridi, M. and Moudni, A. E. 2017. A stochastic shortest-path MDP model with
dead ends for operating rooms planning. In Proceedings of the 23rd International Conference
on Automation and Computing (ICAC 2017). IEEE, 1–6.

available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/S1471068421000090
Downloaded from https://www.cambridge.org/core. CSB DI GIURISPRUDENZA P.E. BENSA, on 15 Jan 2022 at 13:45:44, subject to the Cambridge Core terms of use,

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S1471068421000090
https://www.cambridge.org/core

	Introduction
	Background on ASP
	Problem description
	ASP encoding for the ORS problem
	Data model
	Encoding

	Experimental results for scheduling
	ORS benchmarks
	Results
	Scalability analysis

	ASP encoding for the rescheduling problem
	ASP encoding
	Experimental results

	Related work
	Web framework
	Conclusions
	References

