
Deciding FO-Rewritability of Ontology-Mediated
Queries in Linear Temporal Logic
Vladislav Ryzhikov #

Department of Computer Science, Birkbeck, University of London, UK

Yury Savateev #

Department of Computer Science, Birkbeck, University of London, UK
HSE University, Moscow, Russia

Michael Zakharyaschev #

Department of Computer Science, Birkbeck, University of London, UK
HSE University, Moscow, Russia

Abstract
Our concern is the problem of determining the data complexity of answering an ontology-mediated
query (OMQ) given in linear temporal logic LTL over (Z, <) and deciding whether it is rewritable to an
FO(<)-query, possibly with extra predicates. First, we observe that, in line with the circuit complexity
and FO-definability of regular languages, OMQ answering in AC0, ACC0 and NC1 coincides
with FO(<, ≡)-rewritability using unary predicates x ≡ 0 (mod n), FO(<, MOD)-rewritability, and
FO(RPR)-rewritability using relational primitive recursion, respectively. We then show that deciding
FO(<)-, FO(<, ≡)- and FO(<, MOD)-rewritability of LTL OMQs is ExpSpace-complete, and that
these problems become PSpace-complete for OMQs with a linear Horn ontology and an atomic
query, and also a positive query in the cases of FO(<)- and FO(<, ≡)-rewritability. Further, we
consider FO(<)-rewritability of OMQs with a binary-clause ontology and identify OMQ classes, for
which deciding it is PSpace-, Πp

2- and coNP-complete.

2012 ACM Subject Classification Theory of computation → Modal and temporal logics

Keywords and phrases Linear temporal logic, ontology-mediated query, first-order rewritability

Digital Object Identifier 10.4230/LIPIcs.TIME.2021.10

Funding This work was supported by the UK EPSRC grant EP/S032282.

Acknowledgements The open access publication of this article was supported by the Alpen-Adria-
Universität Klagenfurt, Austria.

1 Introduction

Motivation. The problem we consider in this paper originates in the area of ontology-based
data access (OBDA) to temporal data. The aim of the OBDA paradigm [38,51] and systems
such as Mastro or Ontop1 is to facilitate management and integration of possibly incomplete
and heterogeneous data by providing the user with a view of the data through the lens of a
description logic (DL) ontology. Thus, the user can think of the data as a “virtual knowledge
graph” [52], A, whose labels – unary and binary predicates supplied by an ontology, O – are
the only thing to know when formulating queries, κ. Ontology-mediated queries (OMQs)
q = (O,κ) are supposed to be answered over A under the open world semantics (taking
account of all models of O and A), which can be prohibitively complex. So the key to
practical OBDA is ensuring first-order rewritability of q (aka boundedness in the datalog
literature [1]), which reduces open-world reasoning to evaluating an FO-formula over A. The

1 https://www.obdasystems.com, https://ontopic.biz

© Vladislav Ryzhikov, Yury Savateev, and Michael Zakharyaschev;
licensed under Creative Commons License CC-BY 4.0

28th International Symposium on Temporal Representation and Reasoning (TIME 2021).
Editors: Carlo Combi, Johann Eder, and Mark Reynolds; Article No. 10; pp. 10:1–10:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:vlad@dcs.bbk.ac.uk
mailto:yury@dcs.bbk.ac.uk
mailto:michael@dcs.bbk.ac.uk
https://doi.org/10.4230/LIPIcs.TIME.2021.10
https://www.obdasystems.com
https://ontopic.biz
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

10:2 Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

W3C standard ontology language OWL 2 QL for OBDA is based on the DL-Lite family of
DL [3,17], which uniformly guarantees FO-rewritability of all OMQs with a conjunctive query.
Other ontology languages with this feature include various dialects of tgds; see, e.g., [7,16,19].
However, by design such languages are rather inexpressive.

Theory and practice of OBDA have revived the interest to the problem of deciding
whether an OMQ given in some expressive language is FO-rewritable, which was thoroughly
investigated in the 1980–90s for datalog queries; see, e.g., [2,21,37,44,46]. The data complexity
and rewritability of OMQs in various DLs and disjunctive datalog have become an active
research area in the past decade [14,24,28,29,36], lying at the crossroads of logic, database
theory, knowledge representation, circuit and descriptive complexity, and CSP.

There have been numerous attempts to extend ontology and query languages with
constructors capable of representing events over temporal data; see [5, 35] for surveys
and [15,49,50] for more recent developments. However, so far the focus has been on the uniform
complexity of reasoning with arbitrary ontologies and queries in a given language rather than
on understanding the data complexity and FO-rewritability of individual temporal OMQs.
On the other hand, the non-uniform analysis of OMQs in DLs or datalog mentioned above is
not applicable to standard temporal logics interpreted over linearly-ordered structures.

In this paper, we take a first step towards understanding the problem of FO-rewritability
of OMQs over temporal data by focusing on the temporal dimension and considering OMQs
given in linear temporal logic LTL interpreted over (Z, <).

▶ Example 1. Let O be an LTL ontology with the following axioms (describing a system’s
behaviour and) containing the temporal operators 2F/2P (always in the future/past), 3F /3P

(sometime in the future/past) and ⃝
F /⃝

P (the next/previous minute):

2P2F

(
Malfunction → 3F Fixed

)
, (1)

2P2F

(
Fixed → ⃝

F InOperation
)
, (2)

2P2F

(
Malfunction ∧ ⃝

P Malfunction ∧ ⃝2
P Malfunction → ¬⃝

F InOperation
)
. (3)

We query temporal data, say

A = {Malfunction(2),Malfunction(5),Malfunction(6),Fixed(6),Malfunction(7)}

by means of LTL-formulas such as

κ = 3P3F

(
Malfunction ∧

∨
1≤i≤5

⃝i
F (Fixed ∧

∨
1≤j≤5

¬⃝j
F InOperation)

)
asking whether there was a malfunction that was fixed in ≤ 5m but within the next 5m the
equipment went out of operation again. The certain answer to the OMQ q = (O,κ) over A
is yes because κ is true in all models of O and A. It is readily seen that the certain answer
to q over any given data instance A′ in the signature {Malfunction,Fixed} can be computed
by evaluating over A′ the following FO(<)-sentence, called an FO(<)-rewriting of q:

∃x
[
Malfunction(x) ∧

∨
1≤i≤5

(
Fixed(x+ i) ∧

∨
1≤j≤5

∧
0≤k≤2

Malfunction(x+ i+ j − k)
)]
.

Problem and related work. The problem we are interested in can be formulated in
complexity-theoretic terms: given an LTL OMQ q, determine the data complexity of
answering q over any data instance A in a given signature Ξ. For simplicity’s sake, let
us assume that q is Boolean (with a yes/no answer). Then the data instances A, over

V. Ryzhikov, Y. Savateev, and M. Zakharyaschev 10:3

which the answer to q is yes, form a language L(q) over the alphabet 2Ξ. In fact, using
the automata-theoretic view of LTL [48], one can show that L(q) is regular, and so can
be decided in NC1 [8, 10]. The circuit and descriptive complexity of regular languages was
investigated in [9, 43], which established an AC0/ACC0/NC1 trichotomy, gave algebraic
characterisations of languages in these classes (implying that the trichotomy is decidable)
and also in terms of extensions of FO. Namely, the languages L in AC0 are definable by
FO(<,≡)-sentences with unary predicates x ≡ 0 (mod n); those in ACC0 are definable by
FO(<,MOD)-sentences with quantifiers ∃nxψ(x) checking whether the number of positions
satisfying ψ is divisible by n; and all regular languages L are definable in FO(RPR) with
relational primitive recursion [20].

Thus, our problem can be equivalently formulated in logic terms: given an LTL OMQ q,
decide whether L(q) is FO(<,≡)- or FO(<,MOD)-definable. In the OBDA context, we are
also interested in FO(<)-definability (without any extra predicates, quantifiers or recursion),
which has been thoroughly investigated in both automata theory and logic; see, e.g., [23]
and references therein. In particular, deciding FO(<)-definability of regular languages given
by a NFA can be done in PSpace [13,41], with a matching lower bound established even for
languages given by a minimal DFA [18]. These classical results have recently been extended by
showing that deciding each of FO(<)-, FO(<,≡)-, and FO(<,MOD)-definability of languages
given by a two-way NFA can be done in PSpace, and that a matching lower bound holds
for languages given by a minimal DFA [33]. Note also that, by Kamp’s Theorem [30, 39],
FO(<)-rewritability reduces answering LTL OMQs to model checking LTL-formulas.

FO(RPR)-rewritability of all LTL OMQs was proved in [6], which also provided (uniform)
rewritability results for various classes of LTL OMQs (to be defined below); see Table 2.

Our contribution. Let L ∈ {FO(<),FO(<,≡),FO(<,MOD)}. To investigate L-rewritability
of LTL OMQs q = (O,κ), we follow the classification of [6], according to which the axioms
of every LTL ontology O are given in the clausal form

2P2F

(
C1 ∧ · · · ∧ Ck → Ck+1 ∨ · · · ∨ Ck+m

)
, (4)

where the Ci are atoms, possibly prefixed by the temporal operators ⃝
F , ⃝

P , 2F , 2P . Given
some o ∈ {2,⃝,2⃝} and c ∈ {bool, horn, krom, core}, we denote by LTLo

c the fragment of
LTL with clauses of the form (4), where the Ci can only use the (future and past) operators
indicated in o, and m ≤ 1 if c = horn; k+m ≤ 2 if c = krom; k+m ≤ 2 and m ≤ 1 if c = core;
and arbitrary k, m if c = bool. If o is omitted, the Ci are atomic. An LTLo

horn-ontology O is
linear if, in each of its axioms (4), at most one Ci, for 1 ≤ i ≤ k, can occur on the right-hand
side of an axiom in O (is an IDB predicate, in datalog parlance). We distinguish between
arbitrary LTLo

c OMQs q = (O,κ), where O is any LTLo
c ontology and κ any LTL-formula

with ⃝-, 2- and 3-operators; positive OMQs (OMPQs), where κ is →,¬-free; existential
OMPQs (OMPEQs) with 2-free κ; and atomic OMQs (OMAQs) with atomic κ.

The main result of this paper is the tight complexity bounds on deciding L-rewritability
(and so data complexity) of LTL OMQs in various classes defined above, which are summarised
in Table 1. The ExpSpace upper bound in the first stripe is shown using the L-definability
criteria recently obtained in [33] and exponential-size NFAs for LTL akin to those in [47];
in the proof of the matching lower bound, an exponential-size automaton is encoded in a
polynomial-size ontology. If the ontology in an LTL⃝

horn OMAQ is linear, we show that its
language (yes-data instances) can be captured by a 2NFA with polynomially many states,
which allows us to reduce the complexity of deciding L-rewritability to PSpace. However, for
linear LTL⃝

horn OMPQs (with more expressive queries κ), the existence of polynomial-state

TIME 2021

10:4 Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

Table 1 Complexity of deciding FO-rewritability of LTL OMQs.

class of OMQs FO(<) FO(<,≡), AC0 FO(<,MOD), ACC0

LTL⃝
horn OMAQs

ExpSpace ExpSpace ExpSpaceLTLkrom OMPEQs
LTL2⃝

bool OMQs
linear LTL⃝

horn OMAQ PSpace PSpace PSpace
linear LTL⃝

horn OMPQs ?
LTL⃝

krom OMAQs coNP
all in AC0 [6] –LTL⃝

core OMPEQs Πp
2

LTL⃝
core OMPQs PSpace

2NFAs remains open; instead, we show how the structure of the canonical (minimal) models
for LTL⃝

horn-ontologies can be utilised to yield a PSpace algorithm. In the third stripe
of the table, we deal with binary-clause ontologies. The coNP-completeness of deciding
FO-rewritability of LTL⃝

krom OMAQs is established using unary NFAs and results from [42].
The Πp

2-completeness for LTL⃝
core OMPEQs (without ∨ in ontologies but with ∧, ∨, 3 in

queries) and the PSpace-completeness for LTL⃝
core OMPQs (admitting 2 in queries, too)

can be explained by the fact that the combined complexity of answering such OMPEQs and
OMPQs is NP-hard rather than tractable as in the previous case.

All omitted details and proofs are provided in the full draft of the paper [40].

2 Preliminaries

Temporal ontology-mediated queries. In our setting, the alphabet of LTL comprises a
set of atomic concepts Ai, i < ω. Basic temporal concepts, C, are defined by the grammar
C ::= Ai | 2FC | 2PC | ⃝

FC | ⃝
PC. A temporal ontology, O, is a finite set of axioms in

normal form (4) with 2P2F omitted. An LTLo
c ontology-mediated query (OMQ) is a pair

q = (O,κ), where O is an LTLo
c ontology (defined above) and κ a temporal concept built

from atoms Ai using the Booleans and temporal operators ⃝
F , 2F , 3F and their past-time

counterparts ⃝
P , 2P , 3P . The set of atomic concepts occurring in q is denoted by sig(q).

A data instance – ABox in description logic parlance – is a finite set A of atoms Ai(ℓ), for
ℓ ∈ Z, together with a finite interval tem(A) = [m,n] ⊆ Z, the active domain of A, such that
m ≤ ℓ ≤ n, for all Ai(ℓ) ∈ A. If A = ∅, then tem(A) may also be ∅. Otherwise, we assume
(without loss of generality) that m = 0. If tem(A) is not specified explicitly, it is assumed to
be either empty or [0, n], where n is the maximal timestamp in A. By a signature, Ξ, we
mean any finite set of atomic concepts. An ABox A is a Ξ-ABox if Ai(ℓ) ∈ A implies Ai ∈ Ξ.

A temporal interpretation is a structure of the form I = (Z, AI
0 , A

I
1 , . . .) with AI

i ⊆ Z,
for every i < ω. The extension κI of a temporal concept κ in I is defined inductively
as usual in LTL under the “strict semantics” [22, 27]: (⃝

Fκ)I =
{
n ∈ Z | n + 1 ∈ κI }

,
(2Fκ)I =

{
n ∈ Z | k ∈ κI for all k > n

}
, (3Fκ)I =

{
n ∈ Z | there is k > n with k ∈ κI }

,
and symmetrically for the past-time operators. We say that an axiom (4) is true in I if
CI

1 ∩ · · · ∩CI
k ⊆ CI

k+1 ∪ · · · ∪CI
k+m. An interpretation I is a model of O if all axioms of O

are true in I; it is a model of A if Ai(ℓ) ∈ A implies ℓ ∈ AI
i .

We can treat q as a Boolean OMQ, which returns yes/no, or as a specific OMQ, which
returns timestamps from the ABox in question assigned to the free variable, say x, in the
standard FO-translation of κ. In the latter case, we write q(x) = (O,κ(x)). More precisely,
a certain answer to a Boolean OMQ q = (O,κ) over an ABox A is yes if, for every model

V. Ryzhikov, Y. Savateev, and M. Zakharyaschev 10:5

Table 2 Rewritability of LTL OMQs [6].

OMAQs OMPQs
c LTL2

c LTL⃝
c and LTL2⃝

c LTL2
c LTL⃝

c and LTL2⃝
c

bool

FO(<)

FO(RPR) FO(RPR) FO(RPR)krom FO(<,≡)

horn FO(RPR) FO(<)
core FO(<,≡) FO(<,≡)

I of O and A, there is k ∈ Z such that k ∈ κI , in which case we write (O,A) |= ∃xκ(x).
We write (O,A) |= κ(k), for k ∈ Z, if k ∈ κI in all models I of O and A. A certain answer
to a specific OMQ q(x) = (O,κ(x)) over A is any k ∈ tem(A) with (O,A) |= κ(k). By
the evaluation (or answering) problem for q or q(x) we understand the decision problem
“(O,A) |=? ∃xκ(x)” or “(O,A) |=? κ(k)” with input A or, respectively, A and k ∈ tem(A).

▶ Example 2.
(i) Suppose O1 = {A → 2FB, 2FB → C} and q1 = (O1, C ∧ D). The certain answer

to q1 over A1 = {D(0), B(1), A(1)} is yes, and no over A2 = {D(0), A(1)}. The only
answer to q1(x) =

(
O1, (C ∧D)(x)

)
over A1 is 0.

(ii) Let O2 = { ⃝
PA → B, ⃝

PB → A, A ∧ B → ⊥ }. The certain answer to q2 = (O2, C)
over A1 = {A(0)} is no, and yes over A2 = {A(0), A(1)}. There are no certain answers
to q2(x) = (O1, C(x)) over A1, while over A2 the answers are 0 and 1.

(iii) Consider now the ontology O3 = {⃝
PBk ∧ A0 → Bk, ⃝

PB1−k ∧ A1 → Bk | k = 0, 1}.
For any word e = e1 . . . en ∈ {0, 1}n, let Ae = {B0(0)} ∪ {Aei

(i) | 0 < i ≤ n} ∪ {E(n)}.
The answer to q3 = (O3, B0 ∧ E) over the ABox Ae is yes iff the number of 1s in e is
even.

▶ Remark 3. As follows from [4,25], if arbitrary (boxed) LTL-formulas are used as axioms of
an ontology O, then one can construct an LTL2⃝

bool ontology O′ that is a model conservative
extension of O. For example, let O′ be the result of replacing (1) in O from Example 1 by
Malfunction∧2FX → ⊥ and ⊤ → X ∨Fixed, for a fresh X. Then q = (O,κ) is equivalent to
q′ = (O′,κ) in the sense that q and q′ have the same certain answers over any sig(q)-ABox.

Let L ∈ {FO(<),FO(<,≡),FO(<,MOD),FO(RPR)}. A Boolean OMQ q is L-rewritable
over Ξ-ABoxes if there is an L-sentence Q such that, for any Ξ-ABox A, the certain answer
to q over A is yes iff SA |= Q. Here, SA is a structure with domain tem(A) ordered by <,
in which SA |= Ai(ℓ) iff Ai(ℓ) ∈ A. A specific OMQ q(x) is L-rewritable over Ξ-ABoxes
if there is an L-formula Q(x) with one free variable x such that, for any Ξ-ABox A, k is
a certain answer to q(x) over A iff SA |= Q(k). The sentence Q and the formula Q(x)
are called L-rewritings of the OMQs q and q(x), respectively. All LTL2⃝

bool (Boolean and
specific) OMQs are FO(RPR)-rewritable. The syntactic classification of LTL OMQs by their
rewritability type, obtained in [6], is shown in Table 2. It follows, e.g., that all LTL2⃝

core
OMPQs are FO(<,≡N)-rewritable, with some of them being not FO(<)-rewritable. It is
to be noted that FO(<,MOD)-rewritable OMQs such as q3 in Example 2 and 4 are not
captured by these syntactic classes.

TIME 2021

10:6 Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

▶ Example 4.
(i) An FO(<)-rewriting of q1(x) over arbitrary ABoxes is

Q1(x) = D(x) ∧ [C(x) ∨ ∃y (A(y) ∧ ∀z ((x < z ≤ y) → B(z)))],

∃xQ1(x) is an FO(<)-rewriting of q1.
(ii) An FO(<,≡)-rewriting of q2(x) is

Q2(x) = C(x) ∨ ∃x, y [(A(x) ∧A(y) ∧ odd(x, y)) ∨
(B(x) ∧ B(y) ∧ odd(x, y)) ∨ (A(x) ∧ B(y) ∧ ¬odd(x, y))],

where odd(x, y) =
(
x ≡ 0 (mod 2) ↔ y ̸≡ 0 (mod 2)

)
implies that |x− y| is odd, and an

FO(<,≡)-rewriting of q2 is ∃xQ2(x). Recall that odd is not expressible in FO(<) [34].
(iii) The OMQ q3 is not rewritable to an FO-formula with any numeric predicates as

PARITY is not in AC0 [26]; the following sentence is an FO(<,MOD)-rewriting of q3:

Q3 = ∃x, y
[
E(x) ∧ (y ≤ x) ∧ ∀z

(
(y < z ≤ x) → A0(z) ∨A1(z)

)
∧(

(B0(y) ∧ ∃2z ((y < z ≤ x) ∧A1(z))) ∨ (B1(y) ∧ ¬∃2z ((y < z ≤ x) ∧A1(z)))
)]
.

In this paper, our aim is to understand how (complex it is) to decide the optimal type of
FO-rewritability for a given LTL OMQ q over Ξ-ABoxes. Although all of our results hold for
both Boolean and specific OMQs, here we only focus on the former; detailed proofs for the
latter can be found in the full draft. We begin by observing an intimate connection between
L-rewritability of OMQs and L-definability of certain regular languages.

Automata, languages, and OMQs. A two-way nondeterministic finite automaton is a
quintuple A = (Q,Σ, δ, Q0, F) that consists of an alphabet Σ, a finite set of states Q with a
subset Q0 ̸= ∅ of initial states and a subset F of accepting states, and a transition function
δ : Q × Σ → 2Q×{−1,0,1} indicating the next state and whether the head should move left
(−1), right (1), or stay put (0). If Q0 = {q0} and |δ(q, a)| = 1, for all q ∈ Q and a ∈ Σ,
then A is deterministic, in which case we write A = (Q,Σ, δ, q0, F). If δ(q, a) ⊆ Q× {1}, for
all q ∈ Q and a ∈ Σ, then A is a one-way automaton, and we write δ : Q × Σ → 2Q. As
usual, DFA and NFA refer to one-way deterministic and non-deterministic finite automata,
respectively, while 2DFA and 2NFA to the corresponding two-way automata. Given a 2NFA
A, we write q →a,d q

′ if (q′, d) ∈ δ(q, a); given an NFA A, we write q →a q
′ if q′ ∈ δ(q, a).

A run of a 2NFA A is a word in (Q × N)∗. A run (q0, i0), . . . , (qm, im) is a run of A on a
word w = a0 . . . an ∈ Σ∗ if q0 ∈ Q0, i0 = 0 and there exist d0, . . . , dm−1 ∈ {−1, 0, 1} such
that qj →aj ,dj

qj+1 and ij+1 = ij + dj for all j, 0 ≤ j < m. The run is accepting if qm ∈ F ,
im = n+ 1. A accepts w ∈ Σ∗ if there is an accepting run of A on w; the language L(A) of
A is the set of all words accepted by A.

Given an NFA A, states q, q′ ∈ Q, and w = a0 . . . an ∈ Σ∗, we write q →w q′ if either
w = ε and q′ = q or there is a run of A on w that starts with (q0, 0) and ends with (q′, n+ 1).
We say that a state q ∈ Q is reachable if q′ →w q, for some q′ ∈ Q0 and w ∈ Σ∗. Given a
DFA A = (Q,Σ, δ, q0, F), for any word w ∈ Σ∗, we define a function δw : Q → Q by taking
δw(q) = q′ iff q →w q′.

A language L over an alphabet Σ is L-definable if there is an L-sentence φ in the
signature Σ, whose symbols are treated as unary predicates, such that, for any w ∈ Σ∗, we
have w = a0 . . . an ∈ L iff Sw |= φ, where Sw is a structure with domain {0, . . . , n}, in
which Sw |= a(i) iff a = ai, for i ≤ n.

V. Ryzhikov, Y. Savateev, and M. Zakharyaschev 10:7

For any OMQ q and Ξ ⊆ sig(q), we regard ΣΞ = 2Ξ as an alphabet. Any Ξ-ABox A can
be given as a ΣΞ-word wA = a0 . . . an with ai = {A | A(i) ∈ A}. Conversely, any ΣΞ-word
w = a0 . . . an gives the ABox Aw with tem(Aw) = [0, n] and A(i) ∈ Aw iff A ∈ ai. The word
∅ corresponds to A∅ = ∅ with tem(A∅) = [0, 0]. The language LΞ(q) is defined to be the set
of ΣΞ-words wA with a yes-answer to q over A.

▶ Proposition 5. The language LΞ(q) is regular. For L ∈ {FO(<),FO(<,≡),FO(<,MOD)},
the OMQ q is L-rewritable over Ξ-ABoxes iff LΞ(q) is L-definable.

Proof. Let subq be the set of temporal concepts in q and their negations. A type is any
maximal subset τ ⊆ subq consistent with O. Let T be the set of all types. Define an NFA A

over ΣΞ with L(A) = Σ∗
Ξ \ LΞ(q). Its states are Q¬κ = {τ ∈ T | ¬κ ∈ τ}. The transition

relation →a, for a ∈ ΣΞ, is defined by taking τ1 →a τ2 if the following conditions hold: (a)
a ⊆ τ2, (b) ⃝

FC ∈ τ1 iff C ∈ τ2, (c) 2FC ∈ τ1 iff C ∈ τ2 and 2FC ∈ τ2, (d) 3FC ∈ τ1 iff
C ∈ τ2 or 3FC ∈ τ2, and symmetrically for ⃝

P ,2P ,3P . The initial (accepting) states are
those τ ∈ Q¬κ , for which τ ∪ {2P ¬κ} (respectively, τ ∪ {2F ¬κ}) is consistent with O. Then
w ∈ L(A) iff (O,Aw) ̸|= ∃xκ(x), for any w ∈ Σ∗

Ξ. The number of states in A is 2O(|q|) and
A can be constructed using space polynomial in |q| as LTL-satisfiability is in PSpace. ◀

Thus, we can reformulate the evaluation problem for an LTL OMQ q over Ξ-ABoxes as
the word problem for the regular language LΞ(q).

3 Deciding FO-rewritability of LTL OMQs

In this section, we establish the complexity of recognising the rewritability type of an arbitrary
LTL2⃝

bool OMQ.

▶ Theorem 6. For any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-rewritability of
LTL2⃝

bool OMQs over Ξ-ABoxes is ExpSpace-complete; the lower bound holds already for
LTL⃝

horn OMAQs.

Proof. The upper bound follows from Proposition 5 and the fact that L-definability of the
language of an NFA can be checked in polynomial space [33]. Here, we sketch the proof of
the matching lower bound for LTL⃝

horn OMAQs, which is inspired by the reductions used for
the PSpace-hardness proofs of L-definability of DFA languages in [18] and [33, Theorem 2].

The structure of the proof is as follows: given a Turing machine M that decides a
language using at most N = exp(n) tape cells on any input of size n, for some exponential
function exp, we construct (following [33]) automata A<, A≡, and AMOD of size polynomial
in N whose languages L(A<), L(A≡), and L(AMOD) are, respectively, FO(<)-, FO(<,≡)-,
and FO(<,MOD)-definable iff M rejects x. Then we construct LTL⃝

horn OMAQs (O<, F),
(O≡, F), and (OMOD, F) of polynomial size in |x| and |M | that are rewritable into FO(<),
FO(<,≡), and FO(<,MOD), respectively, iff the corresponding language L(AL) is L-definable.

Suppose M = (Q,Σ, γ, b, q0, qacc) with a set Q of states, tape alphabet Σ with b for blank,
transition function γ, initial state q0 and accepting state qacc. Without loss of generality we
assume that M erases the tape before accepting and has its head at the left-most cell in an
accepting configuration, and if M does not accept the input, it runs forever. Given an input
word x = x1 . . . xn over Σ, we represent configurations c of the computation of M on x by
an N -long word written on the tape (with sufficiently many blanks at the end), in which
the symbol, y, in the active cell is replaced by the pair (q, y) for the current state q. The
accepting computation of M on x is encoded by the word ♯ c1 ♯ c2 ♯ . . . ♯ ck−1 ♯ ck♭ over the
alphabet Σ′ = Σ ∪ (Q× Σ) ∪ {♯, ♭}, with c1, c2, . . . , ck being the subsequent configurations.

TIME 2021

10:8 Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

In particular, c1 is the initial configuration on x of the form (q0, x1)x2 . . . xnb . . . b, and ck

is the accepting configuration the form (qacc, b)b . . . b. As usual for this representation of
computations, we may regard γ as a partial function from

(
Σ ∪ (Q× Σ)

)3 to Σ ∪ (Q× Σ).
Let p be the first prime such that p > N + 1 and p ̸≡ ±1 (mod 10). By [12, Corollary 1.6],

p is polynomial in N . Our first aim is to construct a p+ 1-long sequence Ai of disjoint DFAs
over Σ′ such that each Ai is of size polynomial in N and |M |, it checks certain properties of
an accepting computation on x, and M accepts x iff the intersection of the L(Ai) is not
empty and consists of the single word encoding the accepting computation on x.

The DFA A0 checks whether an input word starts with ♯c1 and ends with ♯ck♭:

q0
0start q1

0 q2
0 . . . qn+1

0
. . . qN+1

0

q0
1q1

1q2
1. . .qN+1

1f0

♯ (q1, x1) x2 xn b b

y ̸= ♯, ♭

♯

(qacc, b) ♯

y ̸= (qacc, b), ♯, ♭

bb♭

If 1 ≤ i ≤ N , the DFA Ai checks, for all j, whether γ(σj
i−1, σ

j
i , σ

j
i+1) = σj+1

i , where σk
l

denotes the lth symbol of ck. Finally, if N + 1 ≤ i ≤ p, then Ai accepts all words with a
single occurrence of ♭, which is the input’s last character. It is not hard to check that the Ai

are such that M accepts x iff
⋂p

i=0 L(Ai) ̸= ∅, in which case this intersection consists of a
single word that encodes the accepting computation of M on x.

Now we use the Ai to define the automata A<, A≡, and AMOD. To begin with, we
construct DFAs Bp

<, Bp
≡ and Bp

MOD, where p > 5 is a prime number, following the patterns
shown in the picture below for p = 7:

s0start

s1

s2

s3

s4

s5

s6

a

a
a

a

a
a

a

B7
<

s0start

s1

s2

s3

s4

s5

s6

a

♮

a
♮ a

♮

a

♮

a

♮a

♮
a

♮

B7
≡

s0start

s1

s2

s3

s4

s5

s6
s7

a

♮

a

♮

a

♮

a

♮

a

♮

a

♮
a

♮

a

♮

B7
MOD

In general, Bp
MOD =

(
{si | i ≤ p}, {a, ♮}, δB

p
MOD , s0, {s0}

)
, where

δ
Bp

MOD
a (sp) = sp, and δ

Bp
MOD

a (si) = sj if i, j < p and j ≡ i+ 1 (mod p);
δ
Bp

MOD
♮ (s0) = sp, δB

p
MOD

♮ (sp) = s0, and δB
p
MOD

♮ (si) = sj if 1 ≤ i, j < p and i·j ≡ p−1 (mod p),
that is, j = −1/i in the finite field Fp.

Now take some fresh symbols a1, a2. We define the automata A<, A≡, AMOD over the
same alphabet Σ+ = Σ′ ∪ {a1, a2, ♮} by taking, respectively, Bp

<, Bp
≡, Bp

MOD and replacing
each transition si →a sj in them by a fresh copy of Ai, for i ≤ p, as shown in the picture
below, where qi

0 is the initial state of Ai:

si sj ; si qi
0 fi sj

Ai

a a1 a2

V. Ryzhikov, Y. Savateev, and M. Zakharyaschev 10:9

We make A<, A≡, AMOD deterministic by adding a trash state tr looping on itself with
every y ∈ Σ+, and adding the missing transitions leading to tr. It follows that A<, A≡, and
AMOD are minimal DFAs of size polynomial in N and |M |. Using the algebraic properties of
respective syntactic monoids of these languages (see [33, Theorem 1]), one can prove that the
languages L(A<), L(A≡), and L(AMOD) are L-definable for the respective L iff M rejects x.

Now we define LTL⃝
horn ontologies O<, O≡ and OMOD simulating A<, A≡ and AMOD such

that the size of each ontology is polynomial in |x| and |M |.
While A0 is of size exponential in n, it has a rather repetitive structure with many

transitions of the “same type”: ql
0 →b ql+1

0 , for n < l < N . We deal with them with
the help of counters, where a counter is a set A = {Ai

j | i = 0, 1, j = 1, . . . , k} of
atoms for some k logarithmic in N that is used to store values between 0 and 2k − 1,
which can be different at different time points. We can define Boolean formulas such as
[A = c], [A > c], [A = B + 1] with self-explanatory names that are true iff the value
stored in the counters satisfies the corresponding condition. For example, the formula
[A = B] =

∧k
j=1

(
(B0

j → A0
j) ∧ (B1

j → A1
j)

)
is true at a time point m ∈ Z in an interpretation

I iff the values stored in A and B are the same. In particular, we can have counters A
and L with atomic concepts Ai

j and Li
j , for i = 0, 1, j = 1, . . . , k, and then the transitions

ql
0 →b q

l+1
0 for n < l < N in A0 are captured by the formula

[A = 0] ∧Q0 ∧ [L > n] ∧ [L < N + 1] ∧ b → [(⃝
FA) = 0] ∧ ⃝

FQ0 ∧ [(⃝
FL) = L + 1],

which is equivalent to polynomially-many LTL⃝
horn axioms. Using the same idea, we can

encode all of the transitions of the automata A< and A≡ by LTL⃝
horn ontologies O< and O≡

of size polynomial in n and M .
Given a word w = a1 . . . ak, we denote by Aw the ABox constructed by taking

⋃
{aj(j)}

and adding to it X(0) to mark the beginning of the word, and Y (k + 1) to mark the end.
We also add to the ontology axioms to ensure that an atomic concept F is entailed by the
counters and the end word marker Y when the values of the counters correspond to the
accepting state of AL. This way we have that A< accepts w iff (O<,Aw) |= ∃xF (x). Thus
(O<, F) is FO(<)-rewritable iff M rejects x, as required. O≡ is constructed very similarly
(see B7

< vs. B7
≡) and one can show that (O≡, F) is FO(<,≡)-rewritable iff M rejects x.

Defining OMOD requires some additional tricks. Most importantly, we need to extend O<

with axioms for handling ♮-transitions between certain states of AMOD as follows:

[A = 0] ∧ S ∧ ♮ → [(⃝
FA) = p] ∧ ⃝

FS, [A = p] ∧ S ∧ ♮ → [(⃝
FA) = 0] ∧ S,

[A > 0] ∧ [A < p] ∧ S ∧ ♮ → [(⃝
FA) = J] ∧ ⃝

FS.

Here, J is a new counter that stores the value j = −1/i in the field Fp, which is required
to make sure that, for i ̸= 0, p, we have OMOD |= [A = i] ∧ S ∧ ♮ → [(⃝

FA) = j] ∧ ⃝
FS.

We achieve this as follows. To compute modular inverses using the standard algorithm [31,
Exercise 4.5.2.39], we need to halve the number in a counter (easy), compare two counters
(using an additional counter), add and subtract (using extra counters for carries). All of this
can be done by means of O(k) counters (a fixed number of counters per O(k) steps of the
algorithm) with polynomially-many additional axioms. So we compute j when required and
store it in the counter J. ◀

We also observe that LTL⃝
horn ontologies can be encoded by positive existential queries

mediated by covering axioms available in LTLkrom:

▶ Theorem 7. L-rewritability of LTLkrom OMPEQs over Ξ-ABoxes is ExpSpace-complete.

TIME 2021

10:10 Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

Proof. Any LTL⃝
horn OMAQ q = (O, A) can be reduced to an LTL⃝

krom OMPEQ q′ = (O′,κ).
For example, we can encode O = {⃝

PA1 ∧A2 → A} by κ = A ∨ 3P3F (⃝
PA1 ∧A2 ∧ Ā), for

a fresh atom Ā, and O′ = {A ∧ Ā → ⊥, ⊤ → A ∨ Ā}. ◀

4 Deciding L-rewritability of linear positive LTL⃝
horn OMQs

As well known, deciding FO-rewritability of monadic datalog queries is 2ExpTime-complete
[11,21], which goes down to PSpace for the important class of linear monadic queries [21,45].
It is not hard to see that any DFA can be simulated by a linear LTL⃝

horn OMAQ, which
gives a PSpace lower bound for deciding L-rewritability. Also, recall from [6] that, for any
LTL2⃝

horn ontology O and ABox A consistent with O, there is a canonical model CO,A of O
and A such that (O,A) |= A(k) iff CO,A |= A(k), for all k ∈ Z. Given an interpretation I, an
OMQ q and k ∈ Z, we denote by τI(k) the q-type of k in I (see the proof of Proposition 5).

▶ Theorem 8.
(i) For any L ∈ {FO(<),FO(<,≡),FO(<,MOD)}, deciding L-rewritability of linear

LTL⃝
horn OMAQs over Ξ-ABoxes is PSpace-complete.

(ii) For any L ∈ {FO(<),FO(<,≡)}, deciding L-rewritability of linear LTL⃝
horn OMPQs

over Ξ-ABoxes is PSpace-complete.

Proof.
(i) We encode an OMAQ q as a polysize 2NFA AΞ

O over the alphabet 2Ξ, having (among
others) states qL for L ∈ idb(O) ∪ {⊥}, with LΞ(q) = {a ∈ Σ∗

Ξ | ∅N a∅N ∈ L(AΞ
O)}, idb(O)

comprising the IDB predicates of O and N = poly(|q|). To illustrate, the following transitions
are in AΞ

O for the axiom ⃝2
PA

′ ∧ ⃝
PA → B with IDB A: qA →a,−1 q′ for any a ∈ 2Ξ,

q′ →q,1 qh if A′ ∈ a and q′ →q,1 q
′′ otherwise, and q′′ →a,1 qB for any a ∈ 2Ξ, where qh

is a fixed trash state. Then we transform, in PSpace, the 2NFA AΞ
O to a DFA A′ with

LΞ(q) = L(A′) in the same way as in [33, Section 5], but with different initial and accepting
states, to reflect the fact that accepted words have ∅N as a prefix and suffix.

(ii) The canonical model property of LTL2⃝
horn allows us to formulate the following criteria

in terms of types of the canonical model and ABoxes (cf. [33, Theorem 1 (i), (ii)]):

▶ Lemma 9. An LTL2⃝
horn OMPQ q = (O,κ) is not FO(<)-rewritable iff there exist ABoxes

A, B, D and k ≥ 2 such that the following conditions hold:
(O,ABkD) is consistent, ¬κ ∈ τCO,ABkD

(|A|−1), τCO,ABkD
(|A|−1) = τCO,ABkD

(|ABk|−1);
either κ ∈ τCO,ABk+1D

(|AB| − 1) and τCO,ABk+1D
(|AB| − 1) = τCO,ABk+1D

(|ABk+1| − 1) or
(O,ABk+1D) is inconsistent.

Furthermore, q is not FO(<,≡)-rewritable iff there also exist ABoxes U and W such that
B = UW, |W| = |U| the following conditions hold:

τCO,ABkD
(|ABi| − 1) = τCO,ABkD

(|ABiU| − 1), for all i < k, and
either (O,ABk+1D) is inconsistent or τCO,ABk+1D

(|ABi| − 1) = τCO,ABk+1D
(|ABiU| − 1),

for all i, 1 ≤ i ≤ k.
Moreover, if O is linear, then |A|, |B|, |D|, |W|, |U|, k = 2O(|q|).

Similarly to the algorithm of [33, Theorem 3], we guess the ABoxes X required by
Lemma 9 in the form of quadruples of binary relations b(X) on the states of the 2NFA AΞ

O,
and then prove that checking the conditions of the lemma can be done in PSpace. ◀

We note that it is harder to transform [33, Theorem 1 (iii)] to a PSpace-checkable
condition on canonical models and ABoxes. The complexity of FO(<,MOD)-rewritability of
linear OMPQs remains open.

V. Ryzhikov, Y. Savateev, and M. Zakharyaschev 10:11

5 FO(<)-rewritability of LTL⃝
krom OMAQs and LTL⃝

core OMPQs

Our next aim is to look for non-trivial OMQ classes deciding FO-rewritability of which could
be “easier” than PSpace. Syntactically, the simplest type of axioms (4) are binary clauses:
C1 → C2 and C1 ∧C2 → ⊥, known as core axioms, which together with C1 ∨C2 form the class
Krom. In the atemporal case, the W3C standard language OWL 2 QL for ontology-based
data access allows core clauses only and uniformly guarantees FO-rewritability [3, 17].

By Theorem 7, OMPEQs with Krom axioms can simulate LTL⃝
horn OMAQs, and so are

too complex for our aims. On the other hand, LTL⃝
krom OMAQs and LTL⃝

core OMPQs are
all FO(<,≡)-rewritable [6], so we can focus on deciding FO(<)-rewritability in these classes.

▶ Theorem 10. FO(<)-rewritability of LTL⃝
krom OMAQs over Ξ-ABoxes is coNP-complete.

Proof. Given q = (O, A), let q′ = (O′, Y) with O′ = O ∪ {A → ⊥} and fresh Y /∈ Ξ. For
any Ξ-ABox A, we have (O,A) |= ∃xA(x) iff (O′,A) |= ∃xY (x) iff (O′,A) is inconsistent.
One can show, using Kromness, that if LBC = {∅n | O |= B → ⃝n+1

F ¬C} is FO(<)-definable
for all B,C ∈ Ξ, then so is LΞ(q′), and the OMAQ q is therefore FO(<)-rewritable. We
can construct a unary NFA accepting LBC in polynomial time [6]. It is also readily seen
that a unary language is FO(<)-definable iff it is finite or cofinite. Therefore, deciding
FO(<)-definability of a unary NFA is coNP-complete (using [42, Theorem 6.1]) and FO(<)-
rewritability of an LTL⃝

krom OMAQ is in coNP.
To show coNP-hardness, given a unary NFA A = (Q, {a}, δ, q0, F), we define an LTL⃝

core
ontology OA with the axioms X → ⃝

F q0, p → ⃝
F q for (p, a, q) ∈ δ, and Y ∧ q → ⊥ for q ∈ F :

X q0 q1, q2 q ∈ F , Y

For a {X,Y }-ABox A we have O,A |= ∃xA(x) iff there are m,n ∈ Z such that X(n) ∈ A,
Y (m) ∈ A, and am−n−1 ∈ L(A). Therefore, the OMAQ (OA, A) is FO(<)-rewritable over
{X,Y }-ABoxes iff L(A) is FO(<)-definable. ◀

In our next result, the ontology language is weaker (core, which is contained in both
Krom and Horn), but the queries are more expressive.

▶ Theorem 11. FO(<)-rewritability of LTL⃝
core OMPEQs q = (O,κ) over Ξ-ABoxes is

Πp
2-complete.

Proof. Let B = {w1 . . . wk ∈ Σ∗
Ξ | ∀i |w(i)| > 0,

∑
i |w(i)| ≤ |κ|}. For w ∈ B, consider the

language Lw = L(∅∗w1∅∗ . . . ∅∗wk∅∗) ∩ LΞ(q). For v, v′ ∈ Σ∗
Ξ, we write v′ ≤ v if |v| = |v′|

and v′
i ⊆ vi, for all i.

As q is an LTL⃝
core OMPEQ, we can prove by induction on |κ| that (O,A) |= ∃xκ(x)

iff (O,A′) |= ∃xκ(x), for some A′ ⊆ A with |A′| ≤ |κ|. Therefore, for every v ∈ Σ∗
Ξ, we

have v ∈ LΞ(q) iff there is v′ ≤ v with v′ ∈ Lw for some w ∈ B. It follows that LΞ(q) is
FO(<)-definable iff Lw is FO(<)-definable, for every w ∈ B.

For w = w1 . . . wk ∈ B and I = (i0, . . . , ik) let vw,I = ∅i0w1∅i1 . . . wk∅ik . If Lw is FO(<)-
rewritable, then for every j < k, the set {l | vw,I′ ∈ Lw, I

′ = (i1, . . . , ij−1, l, ij+1, . . . , ik)}
is finite or cofinite. For c ∈ N and I, let Ic→j be I with ij replaced by min(c, ij). We can
find c = 2O(|O|) such that Lw is FO(<)-definable iff, for any vw,I with max(I) ≤ 2c and any
j ≤ |I|, we have vw,I ∈ Lw iff vw,Ic→j

∈ Lw.
Now, q is not FO(<)-rewritable iff there are w ∈ B, I and j with max(I) ≤ 2c and j < |I|

such that only one of vw,I and vw,Ic→j
is in Lw. To check that vw,I ∈ Lw can be done in

NP, so FO(<)-rewritability of q is in coNPNP = Πp
2.

The lower bound is established by reduction of ∀∃3CNF. ◀

TIME 2021

10:12 Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

If we increase the expressive power of LTL⃝
core OMPEQs q = (O,κ) by allowing 2-

operators in κ, the problem of deciding FO(<)-rewritability becomes more complex:

▶ Theorem 12. FO(<)-rewritability of LTL⃝
core OMPQs over Ξ-ABoxes is PSpace-complete.

Proof. The upper bound is by Theorem 8. The lower one is proved by reduction of the
PSpace-complete DFA intersection problem [32]. Let Ai = (Qi,Σ, δi, q

i
0, Fi), i ≤ n, be

DFAs that do not accept ε and have disjoint Qi = {qi
j}. We let Ξ = {X,Y,B} ∪

⋃
i≤n δi

and κ = B ∧ X ∧ 2F

((∧
i≤n

∨
(qi

k
,a,qi

l
)∈δi

(qi
k, a, q

i
l)

)
∨ Y

)
. The ontology O contains the

following axioms: B → ⃝
F

⃝
FB, Y → ⃝

FY , X ∧ ⃝
FY → ⊥, X ∧ ⃝

F (qi
k, a, q

i
l) → ⊥ for

k ≠ 0, ⃝
FY ∧ (qi

k, a, q
i
l) → ⊥ for qi

l /∈ Fi, (qi
k, a, q

i
l) ∧ (qi

m, b, q
i
n) → ⊥ for all k ̸= m or l ̸= n,

(qi
k, a, q

i
l) ∧ ⃝

F (qi
m, b, q

i
n) → ⊥ for all l ̸= m, (qi

k, a, q
i
l) ∧ (qj

m, b, q
j
n) → ⊥ for all a ̸= b.

Let q = (O,κ). We prove that
⋂

i≤n L(Ai) ̸= ∅ iff q is not FO(<)-rewritable.

(⇒). Suppose w = a1 . . . ak ∈
⋂

i≤n L(Ai) and let (qi
0, a1, q

i
l1

) . . . (qi
lk−1

, ak, q
i
lk

) be the run
of the ith automaton on w. Let Ri

j = (qi
lj−1

, aj , q
i
lj

).
Consider Aw = {X(0)} ∪

(⋃
i∈[1,n]

⋃
j∈[1,k]{Ri

j(j)}
)

∪ {Y (k + 1)}. The answer to q over
Aw ∪{B(l)} is yes iff l ≤ 0 and even, because only in this case we have O,Aw ∪{B(l)} |= B(0)
and consequently O,Aw ∪ {B(l)} |= κ(0). Since the set {l | O,Aw ∪ {B(l)} |= ∃xκ(x)} is
not FO(<)-definable, the OMQ q is not FO(<)-rewritable. The picture below illustrates the
structure of the ABox Aw ∪ {B(l)}:

B

l

B B,X

0

(q1
0 , a1, q1

j1)
. . .

(qn
0 , a1, qn

j1)

(q1
jk−1

, ak, q1
jk

)
. . .

(qn
jk−1

, ak, qn
jk

) Y Y

(⇐). Suppose
⋂

i≤n L(Ai) = ∅. Then, for any ABox A and k, we have O,A |= κ(k) iff the
ABox A is inconsistent with O, by the construction of q. We can then easily construct the
FO(<)-rewriting of q by encoding the inconsistency axioms of O by FO(<)-formulas. ◀

6 Conclusions

Motivated by ontology-based access to temporal data – a paradigm relying on FO-rewritability
of ontology-mediated queries – we considered the problem of determining the optimal
rewritability type and data complexity of answering any given LTL OMQ. We showed that
this problem is closely related to deciding FO(<)-, FO(<,≡)- and FO(<,MOD)-definability
of regular languages given by DFAs, NFAs and 2NFAs of different size. Based on this
correspondence, we showed how the clausal form of ontology axioms in OMQs, the temporal
operators involved and the type of queries are reflected in the structure of automata accepting
the OMQs’ yes-data instances and the complexity of deciding their FO-definability.

Interesting open problems include understanding the impact of the 2-operators in linear
and core ontologies on the complexity of deciding FO-rewritability, extending our analysis to
MTL-ontologies where OMQs are not necessarily FO(RPR)-rewritable, and so are outside of
NC1, and to 2D combinations of LTL with description logics, in particular DL-Lite.

It would be also interesting to experiment with algorithms for checking L-rewritability of
LTL OMQs and constructing rewritings into various types of SQL queries. For some LTL2⃝

bool
OMQs and linear LTL⃝

horn OMQs, the best target rewriting language is FO(<,RPR), which
can only be captured in SQL with recursion or procedural extensions that are not always
supported by RDBMSs and are less efficient. The FO(<,MOD)-rewritable OMQs can be
implemented in the most basic SQL using the count operator, while FO(<,≡)-rewritable
ones do not need it.

V. Ryzhikov, Y. Savateev, and M. Zakharyaschev 10:13

References
1 S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-Wesley, 1995.
2 Foto N. Afrati and Christos H. Papadimitriou. The parallel complexity of simple logic programs.

J. ACM, 40(4):891–916, 1993. doi:10.1145/153724.153752.
3 A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and

relations. Journal of Artificial Intelligence Research (JAIR), 36:1–69, 2009.
4 A. Artale, R. Kontchakov, V. Ryzhikov, and M. Zakharyaschev. The complexity of clausal

fragments of LTL. In Proc. of the 19th Int. Conf. on Logic for Programming, Artificial
Intelligence and Reasoning, LPAR 2013, volume 8312 of Lecture Notes in Computer Science,
pages 35–52. Springer, 2013.

5 Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. Ontology-mediated query answering over temporal data: A survey
(invited talk). In Sven Schewe, Thomas Schneider, and Jef Wijsen, editors, 24th International
Symposium on Temporal Representation and Reasoning, TIME 2017, October 16-18, 2017,
Mons, Belgium, volume 90 of LIPIcs, pages 1:1–1:37. Schloss Dagstuhl - Leibniz-Zentrum für
Informatik, 2017. doi:10.4230/LIPIcs.TIME.2017.1.

6 Alessandro Artale, Roman Kontchakov, Alisa Kovtunova, Vladislav Ryzhikov, Frank Wolter,
and Michael Zakharyaschev. First-order rewritability of ontology-mediated queries in linear
temporal logic. CoRR, abs/2004.07221, 2020. arXiv:2004.07221.

7 J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential variables:
Walking the decidability line. Artificial Intelligence, 175(9–10):1620–1654, 2011.

8 David A. Mix Barrington. Bounded-width polynomial-size branching programs recognize
exactly those languages in NC1. J. Comput. Syst. Sci., 38(1):150–164, 1989.

9 David A. Mix Barrington, Kevin J. Compton, Howard Straubing, and Denis Thérien. Regular
languages in NC1. J. Comput. Syst. Sci., 44(3):478–499, 1992. doi:10.1016/0022-0000(92)
90014-A.

10 David A. Mix Barrington and Denis Thérien. Finite monoids and the fine structure of NC1.
J. ACM, 35(4):941–952, 1988. doi:10.1145/48014.63138.

11 Michael Benedikt, Balder ten Cate, Thomas Colcombet, and Michael Vanden Boom. The
complexity of boundedness for guarded logics. In 30th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS 2015, Kyoto, Japan, July 6-10, 2015, pages 293–304. IEEE
Computer Society, 2015. doi:10.1109/LICS.2015.36.

12 M. Bennett, G. Martin, K. O’Bryant, and A. Rechnitzer. Explicit bounds for primes in
arithmetic progressions. Illinois Journal of Mathematics, 62(1–4):427–532, 2018.

13 L. Bernátsky. Regular expression star-freeness is PSPACE-complete. Acta Cybern., 13(1):1–
21, 1997. URL: http://www.inf.u-szeged.hu/actacybernetica/edb/vol13n1/Bernatsky_
1997_ActaCybernetica.xml.

14 M. Bienvenu, B. ten Cate, C. Lutz, and F. Wolter. Ontology-based data access: A study
through disjunctive datalog, CSP, and MMSNP. ACM Transactions on Database Systems,
39(4):33:1–44, 2014.

15 Stefan Borgwardt, Walter Forkel, and Alisa Kovtunova. Finding new diamonds: Temporal
minimal-world query answering over sparse aboxes. In Paul Fodor, Marco Montali, Diego
Calvanese, and Dumitru Roman, editors, Rules and Reasoning - Third International Joint
Conference, RuleML+RR 2019, Bolzano, Italy, September 16-19, 2019, Proceedings, volume
11784 of Lecture Notes in Computer Science, pages 3–18. Springer, 2019. doi:10.1007/
978-3-030-31095-0_1.

16 A. Calì, G. Gottlob, and A. Pieris. Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence, 193:87–128, 2012. doi:10.1016/j.artint.2012.
08.002.

17 D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. Journal of Automated
Reasoning, 39(3):385–429, 2007.

TIME 2021

https://doi.org/10.1145/153724.153752
https://doi.org/10.4230/LIPIcs.TIME.2017.1
http://arxiv.org/abs/2004.07221
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1016/0022-0000(92)90014-A
https://doi.org/10.1145/48014.63138
https://doi.org/10.1109/LICS.2015.36
http://www.inf.u-szeged.hu/actacybernetica/edb/vol13n1/Bernatsky_1997_ActaCybernetica.xml
http://www.inf.u-szeged.hu/actacybernetica/edb/vol13n1/Bernatsky_1997_ActaCybernetica.xml
https://doi.org/10.1007/978-3-030-31095-0_1
https://doi.org/10.1007/978-3-030-31095-0_1
https://doi.org/10.1016/j.artint.2012.08.002
https://doi.org/10.1016/j.artint.2012.08.002

10:14 Deciding FO-Rewritability of Ontology-Mediated Queries in Linear Temporal Logic

18 Sang Cho and Dung T. Huynh. Finite-automaton aperiodicity is PSPACE-complete. Theoretical
Computer Science, 88(1):99–116, 1991. URL: https://core.ac.uk/download/pdf/82662203.
pdf.

19 C. Civili and R. Rosati. A broad class of first-order rewritable tuple-generating dependencies.
In Proc. of the 2nd Int. Datalog 2.0 Workshop, volume 7494 of Lecture Notes in Computer
Science, pages 68–80. Springer, 2012.

20 Kevin J. Compton and Claude Laflamme. An algebra and a logic for NC1. Inf. Comput.,
87(1/2):240–262, 1990.

21 Stavros S. Cosmadakis, Haim Gaifman, Paris C. Kanellakis, and Moshe Y. Vardi. Decidable
optimization problems for database logic programs (preliminary report). In STOC, pages
477–490, 1988. doi:10.1145/62212.62259.

22 Stéphane Demri, Valentin Goranko, and Martin Lange. Temporal Logics in Computer Science.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press, 2016.

23 Volker Diekert and Paul Gastin. First-order definable languages. In Jörg Flum, Erich
Grädel, and Thomas Wilke, editors, Logic and Automata: History and Perspectives [in Honor
of Wolfgang Thomas], volume 2 of Texts in Logic and Games, pages 261–306. Amsterdam
University Press, 2008.

24 Cristina Feier, Antti Kuusisto, and Carsten Lutz. Rewritability in monadic disjunctive datalog,
MMSNP, and expressive description logics. Logical Methods in Computer Science, 15(2), 2019.
doi:10.23638/LMCS-15(2:15)2019.

25 M. Fisher, C. Dixon, and M. Peim. Clausal temporal resolution. ACM Trans. Comput. Logic,
2(1):12–56, 2001.

26 Merrick L. Furst, James B. Saxe, and Michael Sipser. Parity, circuits, and the polynomial-time
hierarchy. Mathematical Systems Theory, 17(1):13–27, 1984.

27 D. Gabbay, A. Kurucz, F. Wolter, and M. Zakharyaschev. Many-Dimensional Modal Logics:
Theory and Applications, volume 148 of Studies in Logic. Elsevier, 2003.

28 Olga Gerasimova, Stanislav Kikot, Agi Kurucz, Vladimir V. Podolskii, and Michael Za-
kharyaschev. A data complexity and rewritability tetrachotomy of ontology-mediated queries
with a covering axiom. In Diego Calvanese, Esra Erdem, and Michael Thielscher, editors,
Proceedings of the 17th International Conference on Principles of Knowledge Representa-
tion and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pages 403–413, 2020.
doi:10.24963/kr.2020/41.

29 Mark Kaminski, Yavor Nenov, and Bernardo Cuenca Grau. Datalog rewritability of disjunctive
datalog programs and non-Horn ontologies. Artif. Intell., 236:90–118, 2016. doi:10.1016/j.
artint.2016.03.006.

30 Hans W. Kamp. Tense Logic and the Theory of Linear Order. PhD thesis, Computer Science
Department, University of California at Los Angeles, USA, 1968.

31 Donald Ervin Knuth. The art of computer programming, Volume II: Seminumerical Algorithms,
3rd Edition. Addison-Wesley, 1998. URL: https://www.worldcat.org/oclc/312898417.

32 Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Symposium on
Foundations of Computer Science (sfcs 1977), pages 254–266, 1977. doi:10.1109/SFCS.1977.
16.

33 Agi Kurucz, Vladislav Ryzhikov, Yury Savateev, and Michael Zakharyaschev. Deciding
FO-rewritability of regular languages, 2021. arXiv:2105.06202.

34 L. Libkin. Elements Of Finite Model Theory. Springer, 2004.
35 C. Lutz, F. Wolter, and M. Zakharyaschev. Temporal description logics: A survey. In Proc.

of the 15th Int. Symposium on Temporal Representation and Reasoning (TIME 2008), pages
3–14, 2008.

36 Carsten Lutz and Leif Sabellek. Ontology-mediated querying with the description logic EL:
trichotomy and linear datalog rewritability. In Proc. of the 26th Int. Joint Conf. on Artificial
Intelligence (IJCAI 2017), pages 1181–1187, 2017.

https://core.ac.uk/download/pdf/82662203.pdf
https://core.ac.uk/download/pdf/82662203.pdf
https://doi.org/10.1145/62212.62259
https://doi.org/10.23638/LMCS-15(2:15)2019
https://doi.org/10.24963/kr.2020/41
https://doi.org/10.1016/j.artint.2016.03.006
https://doi.org/10.1016/j.artint.2016.03.006
https://www.worldcat.org/oclc/312898417
https://doi.org/10.1109/SFCS.1977.16
https://doi.org/10.1109/SFCS.1977.16
http://arxiv.org/abs/2105.06202

V. Ryzhikov, Y. Savateev, and M. Zakharyaschev 10:15

37 Jerzy Marcinkowski. DATALOG sirups uniform boundedness is undecidable. In Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, New Brunswick, New Jersey,
USA, July 27-30, 1996, pages 13–24. IEEE Computer Society, 1996. doi:10.1109/LICS.1996.
561299.

38 Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzer-
ini, and Riccardo Rosati. Linking data to ontologies. Journal on Data Semantics, 10:133–173,
2008.

39 Alexander Rabinovich. A proof of Kamp’s theorem. Logical Methods in Computer Science,
10(1), 2014.

40 Vladislav Ryzhikov, Yury Savateev, and Michael Zakharyaschev. Deciding FO-rewritability
of ontology-mediated queries in linear temporal logic, 2021. URL: https://www.dcs.bbk.ac.
uk/~vlad/time21-full.pdf.

41 Jacques Stern. Complexity of some problems from the theory of automata. Inf. Control.,
66(3):163–176, 1985. doi:10.1016/S0019-9958(85)80058-9.

42 Larry J. Stockmeyer and Albert R. Meyer. Word problems requiring exponential time:
Preliminary report. In Alfred V. Aho, Allan Borodin, Robert L. Constable, Robert W. Floyd,
Michael A. Harrison, Richard M. Karp, and H. Raymond Strong, editors, Proceedings of the
5th Annual ACM Symposium on Theory of Computing, April 30 - May 2, 1973, Austin, Texas,
USA, pages 1–9. ACM, 1973. doi:10.1145/800125.804029.

43 Howard Straubing. Finite Automata, Formal Logic, and Circuit Complexity. Birkhauser Verlag,
1994.

44 Jeffrey D. Ullman and Allen Van Gelder. Parallel complexity of logical query programs.
Algorithmica, 3:5–42, 1988. doi:10.1007/BF01762108.

45 Ron van der Meyden. Predicate boundedness of linear monadic datalog is in PSPACE. Int. J.
Found. Comput. Sci., 11(4):591–612, 2000. doi:10.1142/S0129054100000351.

46 Moshe Y. Vardi. Decidability and undecidability results for boundedness of linear recursive
queries. In Chris Edmondson-Yurkanan and Mihalis Yannakakis, editors, Proceedings of the
Seventh ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems,
March 21-23, 1988, Austin, Texas, USA, pages 341–351. ACM, 1988. doi:10.1145/308386.
308470.

47 Moshe Y. Vardi. Automata-theoretic techniques for temporal reasoning. In Patrick Blackburn,
J. F. A. K. van Benthem, and Frank Wolter, editors, Handbook of Modal Logic, volume 3 of
Studies in logic and practical reasoning, pages 971–989. North-Holland, 2007. doi:10.1016/
s1570-2464(07)80020-6.

48 Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic program
verification (preliminary report). In Proc. of the Symposium on Logic in Computer Science
(LICS’86), pages 332–344, 1986.

49 Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kaminski, and Egor V. Kostylev.
Datalogmtl over the integer timeline. In Diego Calvanese, Esra Erdem, and Michael Thielscher,
editors, Proceedings of the 17th International Conference on Principles of Knowledge Repres-
entation and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pages 768–777,
2020. doi:10.24963/kr.2020/79.

50 Przemyslaw Andrzej Walega, Bernardo Cuenca Grau, Mark Kaminski, and Egor V. Kostylev.
Tractable fragments of datalog with metric temporal operators. In Christian Bessiere, editor,
Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence,
IJCAI 2020, pages 1919–1925. ijcai.org, 2020. doi:10.24963/ijcai.2020/266.

51 Guohui Xiao, Diego Calvanese, Roman Kontchakov, Domenico Lembo, Antonella Poggi,
Riccardo Rosati, and Michael Zakharyaschev. Ontology-based data access: A survey. In
Jérôme Lang, editor, Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence, IJCAI 2018, July 13-19, 2018, Stockholm, Sweden., pages 5511–5519.
ijcai.org, 2018. doi:10.24963/ijcai.2018/777.

52 Guohui Xiao, Linfang Ding, Benjamin Cogrel, and Diego Calvanese. Virtual knowledge
graphs: An overview of systems and use cases. Data Intell., 1(3):201–223, 2019. doi:
10.1162/dint_a_00011.

TIME 2021

https://doi.org/10.1109/LICS.1996.561299
https://doi.org/10.1109/LICS.1996.561299
https://www.dcs.bbk.ac.uk/~vlad/time21-full.pdf
https://www.dcs.bbk.ac.uk/~vlad/time21-full.pdf
https://doi.org/10.1016/S0019-9958(85)80058-9
https://doi.org/10.1145/800125.804029
https://doi.org/10.1007/BF01762108
https://doi.org/10.1142/S0129054100000351
https://doi.org/10.1145/308386.308470
https://doi.org/10.1145/308386.308470
https://doi.org/10.1016/s1570-2464(07)80020-6
https://doi.org/10.1016/s1570-2464(07)80020-6
https://doi.org/10.24963/kr.2020/79
https://doi.org/10.24963/ijcai.2020/266
https://doi.org/10.24963/ijcai.2018/777
https://doi.org/10.1162/dint_a_00011
https://doi.org/10.1162/dint_a_00011

	1 Introduction
	2 Preliminaries
	3 Deciding FO-rewritability of LTL OMQs
	4 Deciding L-rewritability of linear positive LTL_horn^{smash bigcirc} OMQs
	5 FO(<)-rewritability of LTL_krom^{smash{bigcirc}} OMAQs and LTL_core^{smash{{bigcirc}} OMPQs
	6 Conclusions

