
International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 66 -

DOI: 10.9781/ijimai.2021.02.001

* Corresponding author.

E-mail addresses: stefania.costantini@univaq.it (Stefania Costantini),
giovanni.degasperis@univaq.it (Giovanni De Gasperis), lorenzo.
delauretis@graduate.univaq.it (Lorenzo De Lauretis).

Keywords

AI For Ubiquitous
Computing, Answer Set
Programming, Intelligent
Software Agents,
Knowledge Based
Systems, Microservices.

Abstract

In this paper we introduce an approach to the possible adoption of Answer Set Programming (ASP) for the
definition of microservices, which are a successful abstraction for designing distributed applications as suites
of independently deployable interacting components. Such ASP-based components might be employed
in distributed architectures related to Cloud Computing or to the Internet of Things (IoT), where the ASP
microservices might be usefully coordinated with intelligent logic-based agents. We develop a case study
where we consider ASP microservices in synergy with agents defined in DALI, a well-known logic-based
agent-oriented programming language developed by our research group.

An Application of Declarative Languages in
Distributed Architectures: ASP and DALI Microservices
Stefania Costantini, Giovanni De Gasperis, Lorenzo De Lauretis *

Dipartimento di Ingegneria e Scienze dell’Informazione e Matematica Università degli Studi di
L’Aquila, L’Aquila (Italy)

Received 15 November 2020 | Accepted 13 December 2020 | Published 10 February 2021

I. Introduction

The remarkable success of Answer Set Programming (ASP) in a wide
variety of applications calls for the definition of specific software

engineering principles. ASP is a successfully logic programming
paradigm (cf. [1] and the references therein) stemming from the
Answer Set (or “Stable Model”) semantics of Gelfond and Lifschitz [2],
[3], and based on the programming methodology proposed by Marek,
Truszczyński and Lifschitz [4], [5]. ASP is put into practice by means
of effective inference engines, called solvers1. ASP has been widely
applied in many fields, e.g., to information integration, constraint
satisfaction, routing, planning, diagnosis, configuration, computer-
aided verification, biology/biomedicine, knowledge management, and
many others.

In this paper we discuss the possibility of exploiting ASP to define
components for distributed systems, to be deployed over different
nodes of a network. In this perspective, the connections between
components and the ways of exchanging information should be
clearly specified. Our approach is inspired by the microser-vices
architectural abstraction, which can be described as a particular
way of designing distributed software applications as suites of
independently deployable in-teracting services (cf. for instance the
survey [6], and https://martinfowler.com/articles/microservices.html#
CharacteristicsOfAMicroserviceArchitecture).

1 Many performant ASP solvers are available as open-source tools, a list is
reported at https://en.wikipedia.org/wiki/Answer_ set_programming.

A microservice is indeed a component, as it is a unit of software
that is independently replaceable and modifiable: in fact, it intended
as a self-contained piece of business functionality with clear interfaces
that can be accessed by the “external world”. This kind of architectural
abstraction enables distribution, as each microservice is meant to be
executed as an independent process, and heterogeneity, as it allows
different services to be written in different programming languages.
Microservices are a suitable architectural abstraction for the Internet
of Things (IoT): a microservice may incapsulate a physical object,
where service inputs and/or outputs can possibly be linked to sensors/
actuators. Microservices are by their very nature heterogeneous, so
open issues are: how microservices communicate with each other
(synchronous, asynchronous, which is the message format, etc.); and,
the protocols used for the communication.

Microservices in real distributed software architectures and in
cloud computing are usually deployed via lightweight containers.
In standard terminology borrowed from software engineering, a
container is a standard unit of software that packages up code and
all its dependencies; so, the application runs quickly and reliably and
can be seamlessly transferred from one computing environment to
another. A widely used tool to create containers is Docker, available in
the form of an open source Docker Engine2. A Docker container image
consists in a lightweight, standalone, executable package of software
that includes all elements needed to run an application: code, run-time
support, system tools, system libraries and settings.

Along this line, we propose ASP microservices that might be
blended into heterogeneous systems, and even into Multi-Agent-
System (MAS) since each such component may be seen as a reactive
agent. They could in perspective be employed in cloud computing and
in IoT, including robotic applications. In this paper we discuss how
these components, that we call µ  ASP-Services (µ  ASPSv’s), can be

2 See https://www.docker.com

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 67 -

specified, how their interfaces to the “external world” can be defined,
and how they should procedurally behave. In fact, a µ  ASPSv is meant
to be based upon a ‘core’ ASP program whose activities, however,
should be triggered by external stimula/requests coming from some
source, and whose results should be returned to the requesters.

In our view, the ‘core’ ASP program should be included into a
container, that can be possibly realized via the Docker technology,
which should also include: an interface, to provide the Âµ ASPSv with
inputs, and to select and deliver the outputs; solving capabilities to
compute the answer sets. So, a docker deployment for a Âµ ASPSv
should include the so For ASP, standalone versions of the most
important solvers are nowadays available. New solutions have been
recently introduced [7], that allow for incremental solving of an ASP
program under atoms/rules addition/deletion, and so might be used
to provide a µ ASPSv with new inputs and cancel old ones. Thus, a
docker deployment for a µ ASPSv should include the source program,
its ‘execution shell’, and the solver.

A small specimen of the proposed approach is represented in the
following example, which is meant to be (a fragment of) the code of
a controller component/agent, acting in the IoT. This piece of code
might be in fact the ASP ‘core’ of a µ ASPSv. test_ok is the input coming
from a sensor, with value ‘true’ if the controlled device is working
properly, (otherwise the value is set to false).

device_ok ← test_ok.
device_fault ← not test_ok.

wait ← not wait, not sensor_input.
In this simple example, inconsistency (due to the odd cycle over

wait) is to be interpreted as a ‘no-operation’ controller state, where
the component is waiting for sensor’s outcome. It can be assumed
that the sensor provides results at a certain frequency. The outcome,
i.e., device_ok or device_fault, is to be delivered to whatever other
components would ask for it.

In order to work in a standalone way within a distributed system,
an interface (or ‘shell’) will manage the ‘core’ ASP program, and in
particular will perform the following functions. First, manage the
inputs and outputs of the µ ASPSv: i.e., be able to detect input arrival
and to dispatch the outputs according to the request coming from
the µ ASPSv’s external environment. In the above example, inputs
can be: (1) queries over the device state for which an answer has to
be delivered, and (2) sensor outcomes, which are to be considered as
particular inputs which activate the module. In the general case, upon
the arrival of inputs, the shell will: (i) add the inputs to the ASP program
as facts; (ii) evaluate the answer sets of the resulting ASP program; (iii)
according to previously-received requests, extract (from the answer
sets) the answers and and deliver them to the external environment.
Notice that the shell, after delivering the outputs, will remove (some or
all of) the last-added program facts so as to bring back the controller
to the ‘no-operation’ state. In a ‘stateless component’, all inputs will be
removed, while some of the inputs can be left if instead the component
is meant to have a state; the shell functioning is enabled (or at least
greatly simplified) by the new advanced solving capabilities provided
in particular by the clingo ASP solver [7].

There are however complex devices in the Internet of Things that
should be managed in a coordinated way. Take for instance a car, where
modern cars include several control devices for the various parts. Each
such device will be managed by a microservice, where such microservices
should produce coordinated behavior. It is thus a reasonable choice to
define these components as agents. In this way, the overall control over
the complex device will be managed by a Multi-Agent-System (MAS),
which is by definition capable of integrated behavior. Several approaches
to logic-based agent-oriented languages exist (cf., e.g., [8]–[10]). We
may notice that such kind of agents can be the natural complement

to ASP microservices. In general terms, one might want to adopt ASP
microservices whenever there is the need to cope with uncertainty,
or the need to manage possible alternative scenarios. When instead
immediate direct reactive/proactive behavior is required, logical agent
may represent a suitable tool. Among the different existing logical-based
agent frameworks, to develop our case study we choose the DALI logic-
based agent-oriented language and framework (introduced in Section V),
which has been developed by our research group, and that (as illustrated
later) we have already used in synergy with ASP modules in past work.

In this paper we introduce a formal definition of ASP microservices
and we outline a possible logic-based semantics of an overall
heterogeneous distributed system encompassing such modules, and
other logical components/agents. The paper is structured as follows. In
Section II we introduce basic concepts about microservices. In Section
III we recall (for the sake of completeness) the Answer Set Programming
paradigm, and in Section IV we briefly survey and discuss existing
approaches to modularity in ASP. We introduce our contribution in
Sections VII and IX, i.e.: (1) how to define and implement µ ASPSv’s so
as to be able to get inputs and extract answers, and how the inner ASP
program might be structured; (2) how to provide a formal semantics to
a generic microservice architecture possibly encompassing µ ASPSv’s.
In Section VIII we discuss a small case study, developing a specific
µ ASPSv which implements an intelligent agent managing a road
intersection (i.e., a “virtual traffic light”), where cars are modeled as
DALI logical agents. Finally, in Section X we conclude. This paper is
in our view an evolution of the work in [11], in the sense that there,
as illustrated in Section VI, ASP modules were invoked as auxiliary
modules by agents in a DALI multi-agent system. Here, we make it
possible for an ASP program to act as an independent component, that
is able to interact with other components, among which agents.

II. Background: Microservices

In order to better understand Microservices, let us first introduce
the concept of “Service”. A Service, as a software component, is
a mechanism to enable access to one or more software capabilities
[12]. It provides other applications with stable, reusable software
functionalities at an application-oriented, business-related level of
granularity using certain standards [13]. Service-Oriented Architecture
(SOA) is a software architectural style that uses services as the main
building component [12]. Key features of SOA are heterogeneity,
standardization and “evolvability” of services.

Microservices can be seen as a technique for developing software
applications that, inheriting all the principles and concepts from
the SOA style, permits to structure a service-based application as a
collection of very small loosely coupled software services [14].

A MicroServices Architecture (MSA) is an evolution of the SOA
architecture, making the communication lighter and the software
parts (Microservices) smaller. As empasized in [15], it can be seen
as a new paradigm for programming applications by means of the
composition of small services, each one running its own processes and
communicating via light-weight mechanisms. Key features of MSA
are bounded scope, flexibility and modularity [15]. I.e., there is a clear
definition of the data a microservice service is responsible for and is
“bound to”. So, a microservice owns this data and is responsible for its
integrity and mutability.

The work in [16] shows that a distributed MSA can easily fit into
an IoT system. In particular, the set of microservices can be seen as a
Multi-Agent-System, cooperating to realize all system functionalities.

At the current day, microservices are still a new and emerging
paradigm, having building standards not perfectly defined and
communication protocols that are not well specified: in fact, following
one of the definitions of microservices [14], [15], they are small loosely

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 68 -

coupled software services that communicate, possibly exploiting
service discovery to find the route of communication between any
two of them. In our work, we are proposing a new approach, that is µ
ASPSv’s, which are based upon an inner ASP program.

III. Background: Answer Set Semantics (AS) and
Answer Set Programming (ASP)

The following introduction consists of standard material taken
(literally for what concerns long-established scientific terminology and
definitions) from [1], [17]–[19]. “Answer Set Programming” (ASP) (cf.
[1] and the references therein) is a successful programming paradigm
based on the Answer Set Semantics. In ASP, one can see an answer set
program (for short, just “program”) as a set of statements that specify
a problem, where each answer set represents a solution compatible
with this specification. Whenever a program has no answer sets (no
solution could be found), it is said to be inconsistent, otherwise it is
said to be consistent.

Syntactically, an ASP program Π is a collection of rules of the form

H ← A1, ..., Am, not Am+1, ... , not Am+n.
where H is an atom, m, n ≥ 0, and each Ai, i ≤ m + n, is an atom. Atoms

and their negations are called literals. Symbol ← is often indicated
as :- in practical programming. The left-hand side and the right-hand
side of the clause are called head and body, respectively. A rule with
empty body is called a fact. A rule with empty head is a constraint,
where a constraint of the form ‘←L1,..., Ln.’ states that literals L1,..., Ln
cannot be simultaneously true in any answer set. Constraints are often
rephrased as ‘f ← not f , L1,..., Ln.’ where f is a fresh atom. To avoid the
contradiction over f , some of the Li’s must be false thus forcing f to be
false, and this, if achieved, fulfills the constraint.

Actually, an ASP rule can have a more general form including a
disjunction of literals in the head, and “classical negation” of atoms
[3]; various useful programming constructs have been introduced
over time; for simplicity, we consider the basic form, i.e., “normal logic
programs”. The interested reader can refer, e.g., to [20] for a complete
up-to-date discussion about ASP syntax and practical use.

The answer set (or “stable model”) semantics (AS) [2] can be defined
in several ways (cf., e.g., [21], though more recently several other
definitions have appeared in the literature). However, answer sets of a
program Π are found among the supported minimal classical models
of the program (interpreted as a first-order theory in the obvious the
model (directly or indirectly) by its own negation. This is why it can
be the case that no answer set exists: take, e.g, simple ASP program
p ← not p which is equivalent to first-order theory p ∨ p with unique
minimal model { p } which is not an answer set as p is supported, in the
model, by its own negation. As it is well-known, AS extends the three-
valued Well-Founded semantics [22] for normal logic programs, where
every program Π has a well-founded model wfm (Π) = ⟨T, F ⟩ where T
is the set of true atoms, F is the set of false atoms, and the remaining
atoms (implicitly) form the set U = Undef (Π) of the undefined atoms.
For every answer set M it holds that T ⊆ M, so finding the answer sets
accounts to suitably assigning truth values to the undefined atoms.

The ASP approach to problem-solving consists basically in the
following: (i) encoding of the given problem via an ASP program;
(ii) computing the “answer sets” of the ground program via an ASP
solver (a list of available solvers can be found at https://en.wikipedia.
org/wiki/ Answer_set_programming), where, as a preliminary step,
solvers perform the “grounding” of the program, by substituting all
variables with the constants occurring in the program; (iii) extracting
the problem solutions by examining such answer sets; in fact, answer
set contents can be in general reformulated in order to present the
solution in terms of the given problem.

A top-down query answering device which is prolog-style, i.e., does
not compute answer sets in advance to extract the query answers, has
been defined in [23] for RAS, where RAS is a variation of AS where
every program admits answer sets3. RAS and AS coincide however
over a wide class of programs: some sufficient conditions that identify
classes of programs where the two semantics coincide are reported in
[26]. Queries that have been introduced are, first of all, “? A” asking
whether A is true w.r.t. some answer set of given program Π. Other
queries are the following: query “? not A” asks whether A is false w.r.t.
some answer set of Π, and therefore it succeeds if not A is true in some
of them (this implements the operator not introduced in [27]); query
“? not not A” asks whether not A is false in some answer set, and
therefore it succeeds if A is true in some of them, which corresponds
to query “? MA”, M standing for ‘possibility’ in the modal logic
sense; query “? not not A” asks whether it is not true that A is false
w.r.t. some answer set of Π, i.e., that A is true in all of them, which
corresponds to “? KA”, K standing for ‘knowledge’ in the modal logic
sense; query “? not notnot A” asks whether A is false in every answer
set, meaning Knot A, i.e., not MA (a new operator NOT is a shorthand
for not notnot A).

IV. Background: Modularity in ASP

Existing approaches to modularization of ASP programs have
been extensively reviewed in [18], to which the reader may refer
for a complete account. Reporting faithfully from there, such
approaches can be divided into two lines: “programming-in-the-
large”, where programs are understood as combinations of separate
and independent components, combined by means of compositional
operators; “programming-in-the-small”, in which logic programming
is enriched with new logical connectives for managing subprograms.

Considering the programming-in-the-small vision: in [28], program
modules are viewed as generalized quantifiers; [29] proposes templates
for defining subprograms; [30] developed a declarative language for
modular ASP, which allows a programmer to describe a state how
one ASP module can import processed answer sets from another ASP
module. The work in [31] explores how to divide an ASP program into
components according to its structure in terms of cycles.

Lifschitz and Turner’s “splitting set theorem” (cf. [32]), or variants
of it, is underlying many programming-in-the- large approaches. The
basic idea is that a program can be divided into two parts: a “bottom”
part and a “top” part, such that the former does not refer to predicates
defined in the latter. Computation of the answer sets of a program can
be simplified when the program is split into such parts.

[33] defines the notion of a “DLP-function” which is basically a
module for which a well-defined input/output interface is provided;
a suitable compositional semantics for modules is introduced. [34]
provides a simple and intuitive notion of a logic programming module
that interacts through an input/output interface. This is achieved by
accommodating modules as proposed by [35] to the context of Answer
Set Programming. Full compatibility of the module system with the
stable model semantics is achieved by allowing positive recursion to
occur inside modules only.

[36] focuses on modular non-monotonic logic programs (MLP)
under the answer set semantics, where modules may provide input to
other modules. Mutually recursive module calls are allowed.

[37] defines modules in terms of macros that can be called from a
program. [38] provides modules specification with information hiding,
where modules exchange information with a global state.

3 To the best of our knowledge, the only alternative query-answering device
for ASP that does not compute the answer sets in advance has been introduced
in [24], [25], though under some syntactic-semantic limitations.

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 69 -

In [39] a technique is proposed to allow an answer set program
to access the brave or cautious consequences of another answer
set program. [40] proposes “modular logic programs” as a modular
version of ASP. This work consider programs as modules and define
modular programs as sets of modules. The authors introduce “input
answer sets”, which is the key semantic object for communication
between modules.

[41] proposes to adopt ASP modules in order to simulate (within
reasonable complexity) possibility and necessity operators. Such
operators (given the underlying modules) are meant to be usable
in ASP programs, but possibly also programs written under other
programming paradigms.

It can be seen that none of the above approach tackles modularization
in view of using ASP modules as standalone components in distributed
systems. Therefore, our approach is a novelty in the landscape of the
current literature.

V. Background: Logical Agents and DALI

The material exposed in this section, which reports about our
previous work concerning logical agents so as to provide the notions
needed in the subsequent sections, is largely taken (in some parts
literally, to be faithful to well- established terminology) from [42]–[52]
and from the DALI web site https://github.com/AAAI-DISIM-UnivAQ/
DALI.

The original perspective on agents in Artificial Intelligence was
focused on the agents’ reasoning process, thus identifying “intelligence”
as rationality, thus neglecting the interactions of the agents with the
environment and with other agents. This perspective has been heavily
criticized for instance in [53], [54], that adopts in an extreme way
the opposite point of view, arguing that “intelligent” behavior results
solely from the ability of an agent to react appropriately to changes in
its environment.

Reasoning about beliefs, but also about what an agent means and
chooses to do, is the basis of the seminal approach of the BDI (Belief,
Desires, Intention) logic for modelling agents by [55], that resulted in
the definition of the AgentSpeak agent-oriented logic programming
language [56]. At the same time, in the approach of [57], agents were
theories (logic programs), each one with its name, and they were able
to communicate with each other via two communication primitives
(tell/told). A view of logical agents, able to be both rational and
reactive, i.e., capable not only to reason and to communicate, but also
to provide timely response to external events, has been introduced in
[58], [59].

After those seminal approaches, both the notion of agency and
its interpretation in computational logic have greatly evolved. Many
computational-logic-based agent- oriented languages and frameworks
to specify agents and Multi-Agent Systems (MAS) have in fact been
defined over time (for a survey of these languages and architectures
the reader may refer, among many, to [8]–[10]). Their added value
with respect to non-logical approaches is to provide clean semantics,
readability and verifiability, as well as transparency and explainability
‘by design’ (or almost), as logical rules can easily be transposed into
natural-language explanations.

DALI [42], [43], [60] is an Agent-Oriented Logic Programming
language, where the autonomous behaviour of a DALI agent is
triggered by several kinds of events: external events, internal, present
and past events.

External events are syntactically indicated by the postfix E.
Reaction to each such event is defined by a reactive rule, where the
special token :>. The agent remembers to have reacted by converting
an external event into a past event (postfix P). An event perceived

but not yet reacted to is called “present event” and is indicated by
the postfix N. It is often useful for an agent to reason about present
events, that make the agent aware of what is happening in its external
environment.

In DALI, actions (indicated with postfix A) may have or not
preconditions: in the former case, the actions are defined by actions
rules, in the latter case they are just action atoms. The new token :<
characterizes an action rule that specifies an action’s preconditions.
Similarly to events, actions are recorded as past actions.

Internal events is the device which makes a DALI agent proactive.
An internal event is syntactically indicated by the postfix I, and its
description is composed of two rules. The first one contains the
conditions (knowledge, past events, procedures, etc.) that must be
true so that the reaction (in the second rule) may happen. Thus, a
DALI agent is able to react to its own conclusions. Internal events are
automatically attempted with a default frequency, customizable by
means of user directives.

The DALI communication architecture [44] implements the DALI/
FIPA protocol, which consists of the main FIPA primitives4 , plus few
new primitives which are peculiar to DALI. Notice that, DALI has been
made compatible with the Docker technology (cf. [61] for details). So,
a DALI agent can be deployed within a container.

The semantics of DALI is based upon the declarative semantic
framework introduced in [45], aimed at encompassing approaches
to evolving logical agents, by understanding changes determined by
external events and by the agent’s own activities as the result of the
application of program- transformation functions.

We abstractly formalise an agent as the tuple Ag = ⟨PAg, E, I, A⟩
where Ag is the agent name and PAg is the “agent program” according
to the specific language adopted. E is the set of the external events,
i.e, events that the agent is capable to perceive and recognize: let
E = {E1, ... , En} for some n. I is the set of internal events (distinguished
internal conclusions, that may include agent’s desires and intentions):
let I = {I1, ... , Im} for some m. A is the set of actions that the agent can
possibly perform: let A = {A1, ... , Ak} for some k. Let ev = (E ∪ I ∪ A).

In the DALI syntax, used below for the examples, atoms indicated
with a postfix correspond to events of various kinds. In particular, if p
is an atom, pE is an external event, pA is an action and pI an internal
event.

According to this semantic account, one will have an initial program
Π0 obtained by the program PAg provided by a programmer. According
to events that happen, agent’s activities and internal reasoning, and
actions which are performed, Π0 will “evolve” through corresponding
program-transformation steps (each one transforming Πi into
Πi+1 , cf. [45]), and thus gives rise to a Program Evolution Sequence
PE = [Π0, ..., Πn, ...]. The program evolution sequence will imply a
corresponding Semantic Evolution Sequence ME = [M0, ..., Mn, ...]
where Mi is the semantic account of Πi.

Different languages and different formalisms in which an agent can
possibly be expressed will influence the following key points: (i) when
a transition from Πi to Πi+1 takes place, i.e., which are the external and
internal factors that determine a change in the agent; (ii) which kind
of transformations are performed; (iii) which semantic approach is
adopted, i.e., how Mi is obtained from Πi.

The semantic account includes an Initialization step, where
the program PAg written by the programmer is transformed into a
corresponding program Π0 by means of some sort of knowledge
compilation. In DALI for instance, the initialization step extracts the

4 FIPA is a widely used standardized ACL (Agent Communication Language), cf.
http://www.fipa.org/specs/fipa00037/SC00037J.html for language specification,
syntax and semantics.

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 70 -

list of internal and external events, and the control directives that are
associated to the program (e.g., for defining priorities among events
and frequencies for checking the occurrence of events). In general in
fact, Π0 can be simply a program (logical theory) or can have additional
control information associated to it.

Agents usually record events that happened and actions that they
performed. Notice that an agent can describe the state of the world
only in terms of its perceptions, where more recent remembrances
define the agent’s approximation of the current state of affairs. We
thus define set of current (i.e., most recent) past events, and a set
PNV where we store all previous ones (under certain conditions). We
define the ’history’ H of an agent as the tuple ⟨ , PNV⟩, dynamically
augmented with new events that happen. In DALI, a past event in P
is in the form pP : Ti , where p is an atom corresponding to an event,
postfix P stands for ’past’ and Ti  is a time-stamp indicating when the
event has been perceived. In [62] we have defined Past Constraints,
which allow one to define when and upon which conditions (apart
from arrival of more recent versions) past events should be moved into
PNV, and later on possibly removed.

Definition 1 (Evolutionary semantics). Let Ag be an agent. The
evolutionary semantics εAg of Ag is a tuple ⟨H, PE, ME⟩, where H
is the history of Ag, and PE and ME are its program and semantic
evolution sequence.

DALI has been fully implemented, and a programming environment
has been devised. The DALI programming environment [60] is freely
available, and at the current stage of development offers a multi-
platform folder environment, built upon Sicstus Prolog [63] programs,
shells scripts, Python scripts to integrate external applications, a JSON/
HTML5/jQuery web interface to integrate into DALI applications,
with a Python/Twisted/Flask web server capable to interact with
A DALI MAS at the backend. We have recently devised a cloud
DALI implementation, reported in [64], [65]. As shown in [64], the
preexisting DALI framework has been extended to “DALI 2.0” by using
open sources packages, protocols and web-based technologies. DALI
agents can thus be developed to act as high level cognitive robotic
controllers, and can be automatically integrated with conventional
embedded controllers. The web compatibility of the framework allows
real-time monitors and graphical visualizers of the underline MAS
activity to be specified, for checking the interaction between an agent
and some external device, that can possibly be a robotic subsystem.
The cloud package ServerDALI allows a DALI MAS to be integrated
into any practical environment. In [65] illustrate the recent “Koiné
DALI” framework, where a Koiné DALI MAS can cooperate without
problems with other MASs, programmed in other languages (logical or
non-logical), and with object-oriented applications. In summary, the
enhanced DALI can be used for multi-MAS applications and hybrid
multi-agents and object-oriented applications, and can be easily
integrated into preexisting applications.

The DALI framework has been experimented, e.g., in applications
for: unattended hardware testing of hardware-software platforms
in telecommunication industry; user monitoring and training;
emergencies management (such as first aid triage assignment);
security or automation contexts; home automation and processes
control. More generally, DALI has proved to be useful in every
situation that is characterised by asynchronous events sources that
require reasoning over a dynamic data collection: either simple
events, and/or events that are correlated to other ones even in
complex patterns. In fact, in order to be able to perform Complex
Event Processing, i.e., to actively monitor event data so as to make
automated decisions and take time-critical actions, DALI has been
empowered with CEP capabilities [66], of which the implementation
at this day is partial, but is being actively developed: since the 2018

release, DALI supports the double concurring events occurrence in a
predefined time window, so that reaction rules can be defined where
two events from different asynchronous sources happen to fall in
the same time interval. An architecture encompassing DALI agents
and called F&K (Friendly-and-Kind) system [67] has been proposed
for (though not restricted to) applications the e-Health domain. We
have since long equipped DALI with a plugin for invoking ASP solvers
and thus executing ASP modules in the so called ASP_DALI event,
postfix P stands for ’past’ and Ti is a time-stamp extension available
at our github organization repositories5. An ongoing experimentation
is about emotion recognition in the context of cognitive robotics [68],
were real time analysis of the non verbal communication interaction
between a human and the anthropomorphic NAO robot is performed
by an extended DALI, consisting in an ASP_- DALI and QuLog/
Teleor [69] multi-agent system. In this experimental setup, several
sub-symbolic perception systems generate real-time fluents about the
emotional state of the human while interacting with the robot, and
the MAS in background determines the best emotional state according
to a predefined model in a timely manner, so as to suggest the most
appropriate behaviour to the robot.

VI. DALI and ASP in Synergy: Past Work

The work presented in [11] studied the application of DALI and
ASP to the problem of dynamic goal decomposition and planning in
scenarios characterised by a strong inter-dependency between action
and context, for instance those related to rescue intervention in a
territory upon occurrence of some kind of catastrophic event. The
paper in particular proposed an architecture that integrates DALI
MASs (DALI Multi-Agent Systems) and ASP modules for reaching
goals in a flexible and timely way.

The effectiveness of this solution was demonstrated by means
of a case-study where DALI agents cooperate in order to explore
an unknown territory. The solution is based upon a MAS instead
of a monolithic software solution because it is important that each
software component, implemented as an agent, can partially retain
its autonomy during asynchronous event processing. In fact, in this
way each agent can be enriched with high-level reasoning/control
behaviours that can coexists with the planning/executing activity. The
MAS solution also permits to distribute the computational effort and
increases overall robustness.

The DALI   MAS is intended to fulfill the so-called bounded
rationality principle, by which a plan for reaching a goal has to
be devised and executed in a timely manner before a ultimate Tmax
deadline. There is a second deadline TPlanMax < TMax by which a plan has
to be computed and selected, so that the remaining time is sufficient
for plan execution.

In the context of microservices we might improve this solution by
defining a specific agent role called “micro- meta-planner” that shall
supervise the task allocation over ASP and DALI agents, and which
is responsible of the real-time compliance of the overall system. For
example, in those situation were the ASP module could not deliver
answer sets in polynomial time, the micro-planner shall take over
either by providing a fail-safe plan, or by providing a set of short
plans’ definitions aimed to obtain better working conditions for
the ASP solver and its grounding subsystem, such as the GRINGO
grounder [70].

Thus, given the input set TPlanMax, TMax, G, N, where G is the goal, and
N is the instance size of the problem to be solved (if applicable), the
MAS operates via the following steps.

i) Decompose the overall goal into suitable sub-goals;

5 https://github.com/AAAI-DISIM-UNIVAQ

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 71 -

ii) For each sub-goal, generate (via an ASP module) a plan within the
TPlanMax deadline;

iii) Execute the plan within the TMax deadline; in case of failure
(insufficient time), maximize the length of the partially executed
plan;

iv) In case of a change of conditions in the environment, re- plan,
possibly limiting this activity to specific sub-goals resulting from
the partitioning.

Sub-goals can be determined by any kind of goal partitioning
algorithm. In the disaster management case study, it was obtained
simply by sub-dividing the main geographical area into slightly
overlapping sub-territories.

The planner agent equipped with an ASP module may find more
than one plan for each (sub-)goal; so, metrics can be applied by which
a plan could be preferred to another one.

VII. µ ASPSv’s: Specification and Implementation
Guidelines

The present work can be seen as an evolution of the work in [11],
in the sense that we make it possible for an ASP program to act as
an independent component, instead of being invoked as an auxiliary
module by an agent.

In this section we provide in fact an abstract definition of a µ ASPSv,
and some more specific indication of how such a component might be
enacted and inserted into a distributed system, and how the inner ASP
program might be structured.

Definition 2. Let Π be an ASP program, and let U = Undef (Π). A
µASPSv based upon Π, denoted as µASPSv(Π), has the following
specification:

• Inner ASP program Π;

• Activation signal A (optional), with A ϵ Undef (Π);

• Stop signal S (optional), with S ϵ Undef (Π);

• Input set {I1, ..., Ik } ⊆ Undef (Π);

• Output set {O1, ..., Oh } ⊆ Heads (Π).

• Query result set {Q1 = v1, ..., Qr = vr } where {Q1, ..., Qr } are queries6,
formulated over atoms occurring in Heads (Π) and the vis can have
value “true” or “false”.

The elements listed above have the following meaning.

Whenever the activation signal is expected, if A is not true in Π,
then µASPSv(Π) is in a state of no-operation.

Whenever the stop signal is expected, if S becomes true in Π, then
µASPSv(Π) will go back into a state of no-operation.

The input set is a set of atoms that, when some of them are
added to Π, contribute to answer sets computation. Each of such
atom corresponds to an input/request received from the µASPSv’s
surrounding environment.

The output set is a set of atoms extracted from the answer sets
of Π plus the current input set. Each of these atoms corresponds to
an output/answer to be delivered into the µASPSv’s surrounding
environment.

The query result set is a set of truth values elicited from the answer
sets of Π. Each of these values corresponds to result of a query, to be
delivered into the µASPSv’s surrounding environment.

Notice that, we admit as inputs atoms included in Undef (Π), i.e.,
atoms that have truth value “undefined” in the well-founded model.
This means that external inputs are intended to activate behaviors

6 c.f. previous section for possible queries.

in program Π, without however threatening is basic functioning,
represented by the atoms which are true or false in the well-founded
model.

In order to make it possible for µASPSv(Π) to operate dynamically,
thus receiving inputs and delivering outputs and answers, a suitable
shell program must be defined, in any programming language able to
be interfaced with an answer set solver. Below we provide a schematic
essential definition of such a shell program, to be used as a guideline
for actual definition and implementation. The shell program will rely
upon an input-output table, where each potential and actual input
and potential and actual output will be annotated, together with the
list of external components sending inputs, and the list of external
components to which outputs are to be delivered.

Definition 3. The shell responsible to manage an ASP microservice
µASPSv(Π) can be specified by the following pseudo-code.

begin

1. while not activation then no-operation endwhile;

2. if activation then add atom A to Π as a fact to bring µASPSv(Π)
into operation;

3. while not stop do at frequency f

(a) detect and annotate actual inputs

 {Ij1, ..., Ijr } ⊆ {I1, ..., Ik };

(b) add {Ij1, ..., Ijr } to Π as facts;

(c) obtain the answer sets {S1, ..., Sn } of (the augmented) Π;

(d) elicit outputs {O1, ..., Ov } ⊆ {O1, ..., Oh } ;
(e) extract query results {Q1, ..., Qt } ⊆ {Q1, ..., Qr };

(f) deliver outputs and query results according to requests;

(g) remove {Iv1, ..., Ivs } ⊆ {Ij1, ..., Ijr } from Π

(h) and remove relative annotations;

endwhile;

4. add atom S to Π as a fact and remove atom A, to bring Π into no-
operation.

end.

This shell program is able to activate and stop a µASPSv, and to
execute, until possibly a stop signal arrives, a loop where: the inputs
are received from the external environment and delivered to Π; and,
outputs and query results are extracted from the answer sets of Π
(given the inputs) and delivered to the external environment. Precisely,
each input will arrive from some external component, and each output
will have to be delivered to some other (or to the same) component.
At the end of each cycle some or all of the inputs will be removed
from Π and the relative annotations will be eliminated; removing
all the inputs determines a stateless component, while omitting to
remove some of the inputs, forever of for some time interval, accounts
to defining a stateful component. Input detection will occur at a
certain frequency, suitable for each particular kind of component,
environment, and application domain. Some of the inputs may come
from sensors (and therefore they do not require any answer) and some
of the outputs may go to actuators. This is also annotated in the input-
output table. The parts concerning the activation and stopping of the
µASPSv (first and second line after the begin, and last line before the
end) will be omitted if the component is running forever rather being
first activated and then stopped.

Notice that the above definitions can find easier practical
application thanks to the advanced features of modern solvers such
as clingo [7], that provides “multi-shot”solving features, coping with
grounding and solving in continuously changing logic programs. In
particular, “multi-shot”solving allows a given ASP program to evolve

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 72 -

during the reasoning process, because data or constraints are added,
deleted, or replaced. This is exactly what is needed in order to send to
a µASPSv the activation and stop signals, and to cancel old inputs and
add new ones.

Many practical aspects remain however to be defined in order to
obtain an implementation. For instance, if a µASPSv is to be situated
within a multi-agent system, input-output-query exchange might
happen by means of the above-mentioned FIPA ACL. The shell
program can be made FIPA-compliant (i.e., able to exchange and
understand FIPA messages) either by developing suitable code, or,
better, by importing a suitable library such as, e.g., the freely available
JADE library7. The JADE library is an advance middleware that offers
many functionalities to “agentify” imperative or object-oriented or
other kinds of programs. In fact it provides: the agent abstraction (i.e.,
a given program, when running, is seen by the external environment
as an agent); the ability of peer to peer inter-agent FIPA asynchronous
message-passing; a yellow pages service supporting subscription
of agents and a discovery mechanism, and many other facilities to
support the development of distributed systems.

So for instance, an input can be sent to a µASPSv via a FIPA
“request” message with the input as argument, to be interpreted on
the µASPSv’s side as a request to reply with a “confirm” message,
containing the corresponding output. A query can be sent to the
µASPSv via a FIPA “query-if” message whose answer will be again a
“confirm”, conveying the truth value of the query. Notice that, to avoid
ambiguities, the FIPA syntax provides the facility to identify each
message via a certain arbitrary identifier, so that the answer message
can indicate that it is ‘in-reply-to’ to that identifier.

The JADE yellow pages services might be exploited by µASPSv’s
which would want to register as agents with a name and a role, and
then communicate with each other in an asynchronous way. Or, since
most MASs offer such a mediator service, µASPSv’s might enroll in
any agent community. Finally, they might communicate peer-to-peer
with other agents that they are aware of, or that they locate via the
mediator.

Let us now consider how to structure the ‘core’ program Π, on which
a microservice µASPSv(Π) is based. First, activation and stopping of a
module can be simply obtained by a couple of constraints, that make
the program inconsistent (in no-operation state) if either activation A
has not arrived, or stopping signal S has been issued:

: – not A. % module activation
: – S. % module stop
Then, when the module has been activated, upon arrival of new

inputs, the inner program Π will in general ‘produce’ (admit) answer
sets. If the answer set is unique then the outputs can be univocally
identified. Otherwise the shell, in the ‘elicit outputs’ part, will have
to adopt some kind of policy (e.g., preferences, utilities, costs or
other) to select which answer set to consider. The queries, being by
definition specified upon the whole set of answer sets, will always
return an univocal result. In case, given the present input, Π should
be inconsistent, then the output will consist in a failure signal (e.g., in
the FIFA ACL, there is the “failure” primitive to be used in such cases).

VIII. Case Study

The case study that we propose here is inspired to issues raised
by applications related to autonomous vehicles. Presently, machine
learning mechanism have been defined to allow autonomous cars to
comply with traffic lights by detecting their color, so as to pass with

7 https://jade.tilab.com where references to several related publications can
also be found

green and stop with red similarly to traditional cars. Such mechanisms
must be trained, are prone to errors, and are potentially subject to
adversarial machine learning.

In our view, physical traffic lights might in perspective disappear,
to be substituted by monitoring agents that would receive requests to
pass from cars and consequently issue authorisations. This either in
routes dedicated to autonomous vehicles, or in the (very reasonable)
hypothesis to equip also ‘traditional’ cars with a device to interact
with the monitoring agents.

Below we propose the sample design of the inner program
concerning a µASPSv which implements the monitoring agent of
a road intersection, taking the place of a physical traffic light. In
the example, the traffic light agent is called tl and, for the sake of
simplicity, behaves like a ‘real’ traffic light but just takes the colors
green (g for short) and red (r for short). In fact, the yellow is no longer
necessary as we assume that the involved cars (each one equipped
with its own driver agent) will obey the directives. We have two lanes,
one going north-south (ns for short) and the other one east-west (ew
for short), crossing at the traffic light. If the traffic light is green in one
direction it must be red in the other one, and vice versa. The traffic
light is activated by a signal active(t1), and never stopped unless there
is a fault, detected by the module itself by means of a sensor. A fault is
supposed to have occurred whenever f ault_tl is true, i.e., it has been
returned by the sensor.

tln(t1). % Traffic ‒ Light Identifier
active(t1).
: –not active(t1). % Sensor Check activation
: –lane(L), f ault_tl(t1, L, T ). % Sensor Check Possible Fault
Each car, say here c1, c2, c3, c4 and c58, wants to go, but it is allowed

to proceed only if it gets the green traffic light. Otherwise, it remains
dummy. We assume that all cars behave in the same way. Each one
issues a request of format car (C ), want_go (C, t1, L, T ) where L is the
lane, with possible values ns for north-south and ew for east-west; T is
the time of the request. Requests by various cars may for example give
rise to the addition of the following facts to the µASPSv’s program.

%INPUT : CARS
car (c1).
car (c2).
car (c3).
car (c4).
car (c5).

%INPUT : REQUESTS
want_go (c1, t1, ns, 2).
want_go (c2, t1, ns, 2).
want_go (c3, t1, ew, 2).
want_go (c4, t1, ns, 4).
want_go (c5, t1, ew, 4).
The following facts and rules define the lanes, and specify that this

monitoring agent has a lookahead of five time instants: after that, it
will have to be re-run.

lane (ns).
lane(ew).
time (1..5).
next (Y, X) :– time (X ), time (Y ),Y = X + 1.

8 The specification of which cars come and go in the traffic light surroundings
can be within the module’s inputs, and so the car list will be updated by the
shell.

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 73 -

The rules below define the color that the traffic light takes (in a
very standard way) as transitions from green to red and vice versa,
where the initial color is green. In reality, such a monitoring agent can
employ a much more sophisticated protocol such as for instance the
Contract Net Protocol (CNP). If adopting CNP, the agent might grant
priority to particular kinds of vehicles, e.g., police cars, ambulances,
cars transporting a disabled person, etc. More generally, any policy to
grant passage according to criteria could be implemented.

tl (r, TL, L1, T 1) :–
 time (T ), lane (L1), lane (L2), tln (TL), L1! = L2,
 next (T 1, T ), tl (g, TL, L1, T ), tl (r, TL, L2, T ).
tl (g, TL, L1, T 1) :–
 time (T ), lane (L1), lane (L2), tln (TL), L1! = L2,
 next (T 1, T ), tl (r, TL, L1, T ), tl (g, TL, L2, T ).
tl (g, TL, ns, 1) :– tln(TL).
tl (r, TL, ew, T) :–tln(TL), time(T ), tl(g, TL, ns, T ).
In our case the implemented protocol is fair, as cars that cannot

go now because it is red on their lane will be deferred to the next
time instant (by delaying their request), when the color will be green
(output in format go (Car, t1, Lane, Time)).

go (C, TL, L, T ) :–
 time (T), car (C), tln (TL), lane (L),
want_go (C, TL, L, T), tlpg, TL, L, T).
wait (C, TL, L, T) :–
 time (T), car (C), tln (TL), lane (L),
want_go (C, TL, L, T), tl (r, TL, L, T).
want_go (C, TL, L, T 1):– car (C), tln (TL), lane (L),
wait (C, TL, L, T), next (T 1, T).
:– time (T), car (C), tln (TL), lane (L),
 go (C, TL, L, T), tl (r, TL, L, T).
Clearly, this program can be ‘cloned’ (mutatis mutandis) to manage

any number of traffic lights. For the reader’s convenience, this program
is standalone and can be run exactly as it is to check its results.

We now provide a definition of a car in DALI. Or rather, we define
an agent capable to manage the situation where the car has to pass an
intersection controlled by a µASPSv such as the one defined above.
This agent will presumably be a component of an overall multi-agent
system managing the many appliances included in most recent cars.

The agent will receive data about its present position from an
infrastructure (which the road system may be equipped with at low
cost), that will periodically broadcast the information, that will be
received by cars. Then, the car will sense the presence of a crossing
(with its associated traffic-light component) from a signal broadcasted
up to a certain distance, that will communicate the identifier tl of that
traffic light. The car will annotate the present position’s external events
as past events (a reaction that does nothing has exactly the purpose of
annotating), where the most recent past event will be taken by default
in consideration during subsequent operation, to extract position
parameters. An external event signalling the presence of a crossing
will determine a reaction where the agent issues a request to pass to tl.
The request will be issued by sending a message whose performative
will be the FIPA primitive request. The message will include the agent’s
name (available in the predefined special variable Me) and the present
time, obtained by the system’s primitive time (T ). The predefined
predicate messageA (...) is processed by the DALI communication
architecture, which will fill the remaining unspecified parameters
expected by the FIPA syntax with default values, and will actually
send out a correct FIPA message. The agent becomes aware of being

enabled to pass when, via the enabled_passI first rule (where posfix I
indicates an internal event), that will be attempted automatically at
a certain frequency, it will detect the arrival of a message containing
the FIPA primitive accept_proposal. This primitive signals that the
traffic light accepts the request, and thus grants the permission, in
this case unconditionally: the list which occurs as second parameter
(here empty) might in general indicate conditions to be fulfilled. So,
success of the internal event via the first rule determines a reaction
(second rule), which consists in the action passA that will be physically
enacted by the car.

present_positionE (Road, Direction)  :> true.
crossingE (TL)  :> request_to_pass (TL) .
request_to_pass (TL)  :–time (T) ,
 present_position P (_, Direction) ,
 messageA (TL,
 request (want_go (Me, TL, Direction, Time) , Me) ) .
enabled_passI :–messageA (TL,
 accept_ pro posal (want_go (_, _, _) , [], Me) ) .
enable_passI :> passA.
To make the two components interact it is not needed to import

the whole FIPA protocol. For this simple case, the traffic light
µASPSv’s shell may extract the request from the input message, and
“package” the permission to pass (when granted) into the required
syntax before sending it back to the agent. An underlying (though
minimal) middleware must be implemented, so that each component
(many cars and traffic lights might in fact be present) can send/receive
input/outputs to the others. Notice that, as said before, DALI has been
integrated with the Docker technology, that may help to get this part
“for free” or almost.

IX. Overall System’s Semantics

The semantics of a single µASPSv is fully specified by: (i) the answer
sets of the inner ASP program; (ii) the policy employed in its shell to
select one single answer set; (iii) the set of queries that the shell possibly
performs over the entire set of answer sets, whose meaning is formally
specified in [26], [71]. We aim however to provide a semantics for the
overall distributed system composed of heterogeneous microservices
(where some of them can be agents), in order to provide a firm ground
and a guideline for implementation.

To do so, we resort to Multi-Context Systems (MCSs), that are a
well-established paradigm in Artificial Intelligence and Knowledge
Representation, aimed to model information exchange among
heterogeneous sources [72]–[74]. However, with some abuse of
notation (and some slight loss of generality) we adapt and readjust the
definitions to fit into our framework. To represent the heterogeneity
of sources, each component in a Multi-context system, called ‘context’,
is supposed to be based on its own logic, defined in a very general way
[73]. In particular, a logic is defined by the following features.

• A set F of possible formulas (or KB-elements) under some signature.

• A set KB of knowledge bases built out of elements of F. in our
framework, KB can also be a program in some programming
language.

• A function ACC, where ACC (kb, s) means that s is an acceptable set
of consequences of knowledge base kb ϵ KB, i.e., s ⊆ Cn, where Cn
is the set of all possible consequences that can be drawn from kb.
We assume here that ACC produces a unique set of consequences.
In case of a program written in a non-logical programming
language, such set can be the set of legal outputs given some
input, that will be a subset of all possible outputs Cn; for logical

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 74 -

components, it will be (one of) the kb model(s). For instance, as we
have seen the shell of a µASPSv will produce as consequences the
elements occurring in the answer set selected according to some
policy, along with query results.

A (Managed) multi-context system (MCS)

M = {C1, ...,Cr}

is a set of r = |M| contexts, each of them of the form Ci = ⟨ci, Li, kbi,
bri⟩, where:

• ci is the context name (unique for each context; if a specific name
is omitted, index i can act as a name). In [75] a context’s name can
be a term called “context designator”, denoting the kind of context
(for instance, mycardiologist(c), customercare(c), helpdesk(h),
etc.).

• Li is a logic.

• kbi ϵ KB is a knowledge base.

• bri is the set of bridge rules this context is equipped with.

Contexts in an MCS are meant to be heterogeneous distributed
components, that exchange data. In fact, bridge rules are the key
construct of MCSs, as it describes in a uniform way the communication/
data exchange patterns between contexts. Each bridge rule ρ ϵ bri has
the form

opi (s) ← (c1 : p1),..., (cj : pj ) (1)

where the left-hand side s is called the head, and the right-hand side
is called the body, and the comma stands for conjunction. The meaning
is that, each data item pi is supposed to come from context ci. Whenever
all the c1,..., cj have delivered their data item to the destination context
ci, the rule becomes applicable9. In case context designators are
employed, prior to checking a bridge rule for applicability, such terms
must have been substituted by actual context names from which to
acquire the data. For µASPSv’s, this task will be performed by the
shell, that must then be endowed with a list of contexts of eachtype.
When the rule is actually applied (where, in our approach, application
is optional and must be explicitly triggered in the destination context’s
code), its conclusion s, once elaborated by operator opi, will be added
to ci’s knowledge base. Operator opi can perform any elaboration on
the “raw” input s, such as format conversion, filtering, elaboration via
ontologies, etc. Its operation is specified via a management function
mngi, which is thus crucial for knowledge incorporation from
external sources. For simplicity, here we assume mngi to be monotonic
(i.e., to produce from s one or more data items) . Therefore, we can
extend the previous definition of a context as

Ci = ⟨ci, Li, kbi, bri, mngi⟩.
Notice that, in [66], [76], [77], the MCS approach has been extended

so that a context can possibly be a logic- based agent, and extensions
to bridge-rules format have been introduced for data and ontologies
exchange in this new setting.

A data state (or belief state) of an MCS M is a tuple = (S1, ..., Sr)
such that for 1 ≤ i ≤ r, Si ⊆ Cni. A data state can be seen as a view
of the distributed system by an external “observer”. app() is the set
composed of the head of those bridge rules which are applicable in .
This means, in logical terms, that their body is true w.r.t. . In practical
terms, we may say that a bridge rule ρ associated to context ci is
applicable in if all the data mentioned in the body of the bridge rule
can be delivered to the destination context. This is the case whenever
they are available in the contexts of origin, i.e., they occur in the

9 In the original formulation of bridge-rule syntax, there can be additional literals
not (c1 : pj+1), ..., not (cj : pn) in the body, meaning that in order for the bridge rule
to be applicable, the pj+1 ... pn must be false in the relative contexts. We disregard
this part, as non-logical components cannot use logical negation. There is no
loss of generality however, as each of the p1, ..., pj can state a negative fact.

present respective data state items in . In the original formulation
of MCS, all applicable bridge rules are automatically applied, and
their results, after the elaboration by the management function, are
added to the destination context’s knowledge base, that therefore
grows via bridge-rule application. Starting from a certain specific
data state, some bridge rules will be applicable and therefore they
will be applied. This will enhance the knowledge base in some of the
contexts, thus determining (in these contexts) a new set of acceptable
consequence, and therefore a new overall data state. In the new state
other bridge rules will be applicable, and so on, until a “stable” state,
called Equilibrium, will be reached. Technically, is an equilibrium for
an mMCS M iff, for 1 ≤ i ≤ | M |,

Si = ACCi (mngi (app(), kbi ))

which states that each element of the equilibrium is an acceptable
set of consequences after the application of every applicable bridge
rule, whose result has been incorporated into the context’s knowledge
base via the management function.

In [75] it is proved that, in the kind of MCS that we have just
described, an equilibrium will be reached in a finite number of steps.
Notice however that this definition assumes the system to be isolated
from any outside influence, and that an equilibrium, one reached, will
last forever. Instead, in real systems there will be interactions with
an external environment, and so equilibria may change over time.
Moreover, each context is not necessarily a passive receiver of data
sent by others.

To take these aspects into account, [75] proposes some extensions
to the original formulation, among which the following, that are
relevant in the present setting.

• It is noticed that contexts’ knowledge bases can evolve in time, not
only due to bridge-rule application. In fact, contexts receive sensor
inputs (passively or in consequence to active observation), or can
be affected by user’s modification (e.g., a context may encompass a
relational database that can be modified by users). So, each context
ci will have an associated Update Operator i (that can actually
consist in a tuple of operators, each one performing a different
kind of update). Updates and bridge rules both affect contexts’
knowledge base over time. So (assuming an underlying discrete
model of time) we will be able to consider, when necessary, ci [T ]
meaning context ci at time T, with its knowledge base kbi [T ];
consequently we will have an evolution over time of contexts.
Therefore, we will have a definition (not reported here) of Timed
Equilibria. Notice only that a timed equilibrium can be reached
at time T + 1 only if the actual elapsed time between T and T + 1
is sufficient for the system to “stabilize” by means of bridge-rules
application on the updated knowledge bases.

• Mandatory bridge-rule application (as it is in the original MCS
definition) constitutes a limitation: in fact, contexts would be
forced to accept inputs unconditionally, and this may be often
inappropriate. Consider for instance a context representing
a family doctor: the context may accept non-urgent patient’s
requests for appointments or consultation only within a certain
time windows. So, [75] introduces conditional bridge-rule
application, formalized via a timed triggering function, tri, which
specifies which applicable bridge rules are triggered (i.e., they are
practically applicable) at time T. It does so either based on certain
pre-defined conditions, or by performing some reasoning over the
present knowledge base contents. Therefore, the implementation
of tri [T ] my require an auxiliary piece of program, that in a
µASPSv’s shell will presumably be a logic program.

So, considering contexts which are µASPSv’s, in order to fit in the
vision of the overall system as an MCS, their shell must be empowered
as follows.

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 75 -

• Include the bridge rules associated to a µASPSv, and the definition/
implementation of the triggering function.

• Include a facility to resolve the context designators, so as to check
for applicability a triggered bridge rule after substituting context
designators occurring therein with actual contexts’ names.

• Include the definition of the specific management function, so as
to be able to apply it on bridge-rules’ results.

In the case study of previous section, each traffic light should be
equipped with a bridge rule that, by means of the instantiation of a
suitable context designator (say, anycar(c)) collects the cars’ requests.
Symmetrically, cars should be equipped with a bridge rule to collect the
permission to go by the traffic light (the nearest one, whose identifier
should replace a context designator of the form, e.g., a_traffic_light(t)).
The triggering function may allow cars to enable reception of traffic-
light communications only when needed.

Context designators are therefore useful to write general bridge
rules to be then customized to the particular situation at hand. They
also allow to devise a system where components do not know or are
aware of each other in advance, and where components can possibly
join/leave the system at any time. A suitable middleware should be
realized to allow component’s shells to instantiate bridge rules. In our
case study, that concerns an infrastructure for car traffic, both cars
and traffic lights might for instance broadcast their name and geo-
localization. In this way, cars might locate the traffic light of interest,
and traffic lights might become aware of nearby cars that might send
them a request.

X. Concluding Remarks

We have proposed a methodology for developing microservices in
Answer Set Programming, by means of the creation of a particular kind
of components, that can be activated/stopped, can receive external
requests and can deliver answers. We have provided a definition of
µASPSv’s and explained how they might be implemented, and we have
outlined a programming methodology. We have shown by means of a
case study how such components can be defined, and how they might
interact with other heterogeneous components, e.g., DALI logical
agents.

We have also outlined a possible uniform semantics to specify an
heterogeneous system in which µ ASPSv’s could be situated, also in
synergy with logic-based autonomous agents. This is an absolute
novelty for microservices in general, as no attempt has ever been made
to provide such a uniform model for an overall system. The proposed
semantics can constitute the ground for principled implementations.
Overall, this work can be considered as a creative combination of
existing technologies, in view of entirely new application domains of
answer set programming and logic programming in general.

Important application fields for µ ASPSv’s are Cloud computing and
IoT. We consider particularly important the various kinds of robotic
applications and the underlying infrastructural aspects (as shown in
the case study related to autonomous vehicles), and human-robot
interaction. Promising future applications might concern personalised
assistance in healthcare, where heterogeneous components might
include: µ ASPSv’s that manage sensors such as wearable devices to
monitor the patient’s conditions; personal assistant (possibly robotic)
agents; and components representing the available appliances for
patient’s management and vital support, and knowledge sources that
provide criteria for, e.g., evaluation of medical checks, dosage of drugs,
and medical diagnosis.

Future work includes: develop a real implementation; refine
the programming methodology; provide a user friendly graphical
interface, and perform experiments in realistic environments. We plan

to carry out an effective integration of µ ASPSv’s and DALI multi-agent
systems, and extend it to heterogeneous systems, possibly including
also QuLog/Teleor and AgentSpeak agents. We will then perform
experiments in the various domains where DALI is being applied,
including robotics. We have in mind applications concerning cognitive
robotic architectures, comprising hybrid multi-agent systems with
object detectors as perception layer, and DALI-ASP as reasoning layer.

Acknowledgements

We thank the anonymous reviewers for their interest in the
DALI language, and for insightful suggestions about modern ASP
grounders/solvers. This work has been realized and funded over the
years only by internal basic research activities of the authors, and
by consulting work concerning the exploitation of DALI tools in real
world applications, covered by no-disclosure agreements.

 References

[1] G. Brewka, T. Eiter, M. T. (eds.), “Answer set programming: Special issue,”
AI Magazine, vol. 37, no. 3, 2016.

[2] M. Gelfond, V. Lifschitz, “The stable model semantics for logic
programming.,” in Logic Programming, Proceedings of the Fifth
International Conference and Symposium, Seattle, Washington, August
15-19, 1988 (2 Volumes), vol. 88, 1988, pp. 1070–1080, MIT Press.

[3] M. Gelfond, V. Lifschitz, “Classical negation in logic programs and
disjunctive databases,” New generation computing, Springer, vol. 9, no.
3-4, pp. 365–385, 1991, doi: 10.1007/BF03037169.

[4] V. W. Marek, M. Truszczyński, “Stable models and an alternative logic
programming paradigm,” in The Logic Programming Paradigm, Springer,
1999, pp. 375–398, doi: 10.1007/978-3-642-60085-2_17.

[5] V. Lifschitz, “Answer set planning,” in Logic Programming: The 1999
International Conference, Las Cruces, New Mexico, USA, November 29 -
December 4, 1999, 1999, pp. 23–37, MIT Press.

[6] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, S. Tilkov, “Microservices:
The journey so far and challenges ahead,” IEEE Software, vol. 35, no. 3,
pp. 24–35, 2018, doi: 10.1109/MS.2018.2141039.

[7] M. Gebser, R. Kaminski, B. Kaufmann, T. Schaub, “Multi-shot ASP solving
with clingo,” Theory Pract. Log. Program., vol. 19, no. 1, pp. 27–82, 2019,
doi: 10.1017/S1471068418000054.

[8] R. H. Bordini, L. Braubach, M. Dastani, A. E. F. Seghrouchni, J. J.
Gómez-Sanz, J. Leite, G. M. P. O’Hare, A. Pokahr, A. Ricci, “A survey
of programming languages and platforms for multi-agent systems,”
Informatica (Slovenia), vol. 30, no. 1, pp. 33–44, 2006.

[9] A. Garro, M. Mühlhäuser, A. Tundis, M. Baldoni, C. Baroglio, F. Bergenti,
P. Torroni, “Intelligent agents: Multi-agent systems,” in Encyclopedia of
Bioinformatics and Computational Biology - Volume 1, S. Ranganathan,
M. Gribskov, K. Nakai, C. Schönbach Eds., Elsevier, 2019, pp. 315-320, doi:
10.1016/b978-0-12-809633-8.20328-2.

[10] R. Calegari, G. Ciatto, V. Mascardi, A. Omicini, “Logic-based technologies
for multi-agent systems: a systematic literature review,” Auton. Agents
Multi Agent Syst., vol. 35, no. 1, p. 1, 2021, doi: 10.1007/s10458-020-09478-3.

[11] S. Costantini, G. De Gasperis, “Dynamic goal decomposition and
planning in MAS for highly changing environments,” in Proceedings
of the 33rd Italian Conference on Computational Logic, Bolzano, Italy,
September 20-22, 2018, vol. 2214 of CEUR Workshop Proceedings, 2018,
pp. 40–54, CEUR-WS.org.

[12] D. Ameller, X. Burgués, O. Collell, D. Costal, X. Franch, M. P. Papazoglou,
“Development of service-oriented architectures using model-driven
development: A mapping study,” Information and Software Technology,
vol. 62, pp. 42 – 66, 2015, doi: https://doi.org/10.1016/j.infsof.2015.02.006.

[13] C. Legner, R. Heutschi, “Soa adoption in practice-findings from early soa
implementations,” 2007, Association for Information Systems.

[14] N. Dragoni, S. Giallorenzo, A. L. Lafuente, M. Mazzara, F. Montesi, R.
Mustafin, L. Safina, “Microservices: yesterday, today, and tomorrow,” in
Present and ulterior software engineering, Springer, 2017, pp. 195–216,
doi: 10.1007/978-3-319-67425-4_12.

[15] L. De Lauretis, “From monolithic architecture to microservices

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 76 -

architecture,” in 2019 IEEE International Symposium on Software
Reliability Engineering Workshops (ISSREW), 2019, pp. 93–96, IEEE.

[16] P. Krivic, P. Skocir, M. Kusek, G. Jezic, “Microservices as agents in iot
systems,” in KES International Symposium on Agent and Multi-Agent
Systems: Technologies and Applications, 2017, pp. 22–31, Springer.

[17] S. Costantini, A. Formisano, “Answer set programming with resources,”
Journal of Logic and Computation, vol. 20, no. 2, pp. 533–571, 2010, doi:
10.1093/logcom/exp071.

[18] A. Dyoub, S. Costantini, G. De Gasperis, “Answer set programming
and agents,” Knowledge Eng. Review, vol. 33, p. e19, 2018, doi: 10.1017/
S0269888918000164.

[19] S. Costantini, “About epistemic negation and world views in epistemic
logic programs,” Theory Pract. Log. Program., vol. 19, no. 5-6, pp. 790–
807, 2019.

[20] W. Faber, “An introduction to answer set programming and some of its
extensions,” in Reasoning Web. Declarative Artificial Intelligence - 16th
International Summer School 2020, Oslo, Norway, June 24-26, 2020,
Tutorial Lectures, vol. 12258 of Lecture Notes in Computer Science, 2020,
pp. 149–185, Springer.

[21] V. Lifschitz, “Twelve definitions of a stable model,” in Proc. of the 24th
Intl. Conf. on Logic Programming, vol. 5366 of LNCS, 2008, pp. 37–51,
Springer.

[22] A. Van Gelder, K. A. Ross, J. S. Schlipf, “The well-founded semantics for
general logic programs,” Journal of the ACM, vol. 38, no. 3, pp. 620–650,
1991, doi: 10.1145/116825.116838.

[23] S. Costantini, A. Formisano, “Negation as a resource: A novel view
on answer set semantics,” in Logic Programming and Nonmonotonic
Reasoning, 12th Intl. Conf., LPNMR 2013, vol. 8148 of Lecture Notes in
Computer Science, 2013, pp. 257–263, Springer.

[24] K. Marple, G. Gupta, “Dynamic consistency checking in goal-directed
answer set programming,” TPLP, vol. 14, no. 4-5, pp. 415–427, 2014, doi:
10.1017/S1471068414000118.

[25] G. Gupta, E. Salazar, K. Marple, Z. Chen, F. Shakerin, “A case for
query-driven predicate answer set programming,” in ARCADE 2017,
1st International Workshop on Automated Reasoning: Challenges,
Applications, Directions, Exemplary Achievements, Gothenburg,
Sweden, 6th August 2017, vol. 51 of EPiC Series in Computing, 2017, pp.
64–68, EasyChair.

[26] S. Costantini, F. A. Lisi, R. Olivieri, “Digforasp: A european cooperation
network for logic-based AI in digital forensics,” in Proceedings of the
34th Italian Conference on Computational Logic, Trieste, Italy, June 19-
21, 2019, vol. 2396 of CEUR Workshop Proceedings, 2019, pp. 138–146,
CEUR-WS.org.

[27] Y. Shen, T. Eiter, “Evaluating epistemic negation in answer set
programming,” Artificial Intelligence, vol. 237, pp. 115–135, 2016, doi:
10.1016/j.artint.2016.04.004.

[28] T. Eiter, G. Gottlob, H. Veith, “Modular logic programming and
generalized quantifiers,” in Logic Programming and Nonmonotonic
Reasoning, Springer, 1997, pp. 289–308, doi: 10.1007/3-540-63255-7_22.

[29] G. Ianni, G. Ielpa, A. Pietramala, M. C. Santoro, F. Calimeri, “Enhancing
answer set programming with templates.,” in 10th International
Workshop on Non-Monotonic Reasoning (NMR 2004), Whistler, Canada,
June 6-8, 2004, Proceedings, 2004, pp. 233–239.

[30] L. Tari, C. Baral, S. Anwar, “A language for modular answer set
programming: Application to ACC tournament scheduling.,” in Answer
Set Programming, Advances in Theory and Implementation, Proceedings
of the 3rd Intl. ASP’05 Workshop, Bath, UK, September 27-29, 2005, vol.
142 of CEUR Workshop Proceedings, 2005, CEUR-WS.org.

[31] S. Costantini, “On the existence of stable models of non-stratified logic
programs,” Theory and Practice of Logic Programming, vol. 6, no. 1-2,
2006, doi: 10.1017/S1471068405002589.

[32] V. Lifschitz, H. Turner, “Splitting a logic program.,” in Logic Programming,
Proceedings of the Eleventh International Conference on Logic
Programming, Santa Marherita Ligure, Italy, June 13-18, 1994, vol. 94,
1994, pp. 23–37, MIT Press.

[33] T. Janhunen, E. Oikarinen, H. Tompits, S. Woltran, “Modularity aspects
of disjunctive stable models,” Journal of Artificial Intelligence Research,
pp. 813–857, 2009, doi: 10.1613/jair.2810.

[34] E. Oikarinen, Modularity in answer set programs. PhD dissertation,
Helsinki University of Technology, Finland, 2008.

[35] H. Gaifman, E. Shapiro, “Fully abstract compositional semantics for
logic programs,” in Proceedings of the 16th ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, 1989, pp. 134–142,
ACM.

[36] M. Dao-Tran, T. Eiter, M. Fink, T. Krennwallner, “Modular nonmonotonic
logic programming revisited,” in Logic Programming, Springer, 2009, pp.
145–159, doi: 10.1007/978-3-642-02846-5_16.

[37] C. Baral, J. Dzifcak, H. Takahashi, “Macros, macro calls and use of
ensembles in modular answer set programming,” in Logic Programming,
Springer, 2006, pp. 376–390, doi: 10.1007/11799573_28.

[38] M. Balduccini, “Modules and signature declarations for a-prolog:
Progress report,” Workshop on Software Engineering for Answer Set
Programming (SEA’07), pp. 41–55, 2007.

[39] W. Faber, S. Woltran, “Manifold answer-set programs for meta-reasoning,”
in Logic Programming and Non-monotonic Reasoning, Springer, 2009,
pp. 115–128, doi: 10.1007/978-3-642-04238-6_12.

[40] Y. Lierler, M. Truszczyński, “Modular answer set solving,” Late-
Breaking Developments in the Field of Artificial Intelligence, Bellevue,
Washington, USA, July 14-18, AAAI, vol. WS-13-17, 2013.

[41] S. Costantini, “Answer set modules for logical agents,” in Datalog
Reloaded - First Intl. Workshop, Datalog 2010, Revised Selected Papers,
O. de Moor, G. Gottlob, T. Furche, A. J. Sellers Eds., no. 6702 in Lecture
Notes in Computer Science, Springer, 2011, pp. 37–58, doi: 10.1007/978-
3-642-24206-9_3.

[42] S. Costantini, A. Tocchio, “A logic programming language for multi-
agent systems,” in Logics in Artificial Intelligence, Proc. of the 8th Europ.
Conf.,JELIA 2002, LNAI 2424, 2002, pp. 1–13, Springer-Verlag, Berlin.

[43] S. Costantini, A. Tocchio, “The DALI logic programming agent-oriented
language,” in Logics in Artificial Intelligence, 9th European Conference,
JELIA 2004, Proceedings, vol. 3229 of Lecture Notes in Computer Science,
2004, pp. 685–688, Springer.

[44] S. Costantini, A. Tocchio, A. Verticchio, “Communication and trust in
the DALI logic programming agentoriented language,” Intelligenza
Artificiale, vol. 2, no. 1, pp. 39–46, 2005. Journal of the Italian Association
AI*IA.

[45] S. Costantini, A. Tocchio, “About declarative semantics of logic-based
agent languages,” in Declarative Agent Languages and Technologies
III, Third International Workshop, DALT 2005, Selected and Revised
Papers, vol. 3904 of Lecture Notes in Computer Science, M. Baldoni, U.
Endriss, A. Omicini, P. Torroni Eds., Springer, 2005, pp. 106–123, doi:
10.1007/11691792_7.

[46] S. Costantini, P. Dell’Acqua, L. M. Pereira, “A multilayer framework
for evolving and learning agents,” in Proceedings of Metareasoning:
Thinking about thinking workshop at AAAI 2008, Chicago, USA, 2008.

[47] S. Costantini, A. Tocchio, “DALI: An architecture for intelligent logical
agents,” in Proceedings of the Int. Workshop on Architectures for
Intelligent Theory-Based Agents (AITA08), AAAI Spring Symposium
Series, 2008.

[48] S. Costantini, “Self-checking logical agents,” in Proceedings of the Eighth
Latin American Workshop on Logic, Languages, Algorithms and New
Methods of Reasoning LA-NMR 2012, vol. 911 of CEUR Workshop
Proceedings, 2012, pp. 3–30, CEUR-WS.org. Invited Paper, Extended
Abstract in Proceedings of AAMAS 2013, 12th Intl. Conf. on Autonomous
Agents and Multi-Agent Systems.

[49] S. Costantini, A. D’Andrea, G. De Gasperis, N. Florio, Tocchio, “DALI
logical agents into play,” in Proceedings of the AI*IA Workshop
“Popularize Artificial Intelligence” (PAI-2012), 2012.

[50] S. Costantini, G. D. Gasperis, “Complex reactivity with preferences in
rule-based agents,” in Rules on the Web: Research and Applications -
6th International Symposium, RuleML 2012, Montpellier, France, August
27-29, 2012. Proceedings, vol. 7438 of Lecture Notes in Computer Science,
2012, pp. 167–181, Springer.

[51] S. Costantini, G. De Gasperis, G. Nazzicone, “Exploration of unknown
territory via DALI agents and ASP modules,” in Distributed Computing
and Artificial Intelligence, 12th International Conference, DCAI 2015.
Proceedings, vol. 373 of Advances in Intelligent Systems and Computing,
2015, pp. 285–292, Springer.

[52] S. Costantini, G. De Gasperis, G. Nazzicone, “DALI for cognitive robotics:
Principles and prototype implementation,” in Practical Aspects of
Declarative Languages - 19th International Symposium, PADL 2017,

Special Issue on Artificial Intelligence, Paving the Way to the Future

- 77 -

Proceedings, vol. 10137 of Lecture Notes in Computer Science, 2017, pp.
152–162, Springer.

[53] R. A. Brooks, “Intelligence without reason,” in Proceedings of the
12th International Joint Conference on Artificial Intelligence. Sydney,
Australia, August 24-30, 1991, 1991, pp. 569–595, Morgan Kaufmann.

[54] R. A. Brooks, “Intelligence without representation,” Artif. Intell., vol. 47,
no. 1-3, pp. 139–159, 1991.

[55] A. S. Rao, M. Georgeff, “Modeling rational agents within a BDI-
architecture,” in Proc. of the Second Int. Conf. on Principles of Knowledge
Representation and Reasoning (KR’91), 1991, pp. 473–484, Morgan
Kaufmann.

[56] A. S. Rao, “AgentSpeak (L): BDI agents speak out in a logical computable
language,” in Agents Breaking Away, 7th European Workshop on
Modelling Autonomous Agents in a Multi-Agent World, Eindhoven, The
Netherlands, January 22-25, 1996, Proceedings, Springer, 1996, pp. 42–55,
doi: 10.1007/BFb0031845.

[57] S. Costantini, P. Dell’Acqua, G. A. Lanzarone, “Reflective agents
in metalogic programming,” in Meta-Programming in Logic, 3rd
International Workshop, META-92, Proceedings, vol. 649 of Lecture
Notes in Computer Science, 1992, pp. 135–147, Springer.

[58] R. A. Kowalski, F. Sadri, “Towards a unified agent architecture that
combines rationality with reactivity,” in Logic in Databases, International
Workshop LID’96, Proceedings, vol. 1154 of Lecture Notes in Computer
Science, 1996, pp. 137–149, Springer.

[59] P. Dell’Acqua, F. Sadri, F. Toni, “Combining introspection and
communication with rationality and reactivity in agents,” in Logics
in Artificial Intelligence, European Workshop, JELIA ’98, Dagstuhl,
Germany, October 12-15, 1998, Proceedings, vol. 1489 of Lecture Notes in
Computer Science, 1998, pp. 17–32, Springer.

[60] G. De Gasperis, S. Costantini, G. Nazzicone, “Dali multi agent systems
framework, doi 10.5281/zenodo.11042.” DALI GitHub Software
Repository, July 2014. Accessed: December 2020, DALI: http:// github.
com/AAAI-DISIM-UnivAQ/DALI.

[61] S. Costantini, G. De Gasperis, V. Pitoni, A. Salutari, “DALI: A multi
agent system framework for the web, cognitive robotic and complex
event processing,” in Joint Proceedings of the 18th Italian Conference
on Theoretical Computer Science and the 32nd Italian Conference on
Computational Logic co-located with the 2017 IEEE International
Workshop on Measurements and Networking (2017 IEEE M&N), vol.
1949 of CEUR Workshop Proceedings, 2017, pp. 286–300, CEUR-WS.org.

[62] S. Costantini, “Defining and maintaining agent’s experience in logical
agents,” in Proc. of the Seventh Latin American Workshop on Non-
Monotonic Reasoning LANMR 2011, vol. 804, 2011, pp. 151–165. (also in
the Informal Proc. of the LPMAS ”Logic Programming for Multi-Agent
Systems” Workshop at ICLP 2011).

[63] M. Carlsson, P. Mildner, “Sicstus prolog–the first 25 years,” arXiv preprint
arXiv:1011.5640, 2010.

[64] S. Costantini, G. De Gasperis, G. Nazzicone, “DALI for cognitive robotics:
Principles and prototype implementation,” in Practical Aspects of
Declarative Languages - 19th International Symposium, Proceedings, vol.
10137 of Lecture Notes in Computer Science, 2017, pp. 152–162, Springer.

[65] S. Costantini, G. De Gasperis, V. Pitoni, A. Salutari, “Dali: A multi
agent system framework for the web, cognitive robotic and complex
event processing,” in Proceedings of the 32nd Italian Conference on
Computational Logic, vol. 1949 of CEUR Workshop Proceedings, 2017,
pp. 286–300, CEUR-WS.org. http://ceurws.org/Vol-1949/CILCpaper05.
pdf.

[66] S. Costantini, “ACE: a flexible environment for complex event
processing in logical agents,” in Engineering Multi-Agent Systems, Third
International Workshop, EMAS 2015, Revised Selected Papers, vol. 9318
of Lecture Notes in Computer Science, 2015, pp. 70–91, Springer.

[67] F. Aielli, D. Ancona, P. Caianiello, S. Costantini, G. De Gasperis, A. D.
Marco, A. Ferrando, V. Mascardi, “FRIENDLY & KIND with your health:
Human-friendly knowledge-intensive dynamic systems for the e-health
domain,” in Highlights of Practical Applications of Scalable Multi-Agent
Systems. The PAAMS Collection International Workshops of PAAMS
2016, Proceedings, vol. 616 of Communications in Computer and
Information Science, 2016, pp. 15–26, Springer.

[68] S. Costantini, G. De Gasperis, P. Migliarini, “Multiagent system
engineering for emphatic human-robot interaction,” in 2019 IEEE Second
International Conference on Artificial Intelligence and Knowledge

Engineering (AIKE), 2019, pp. 36–42, IEEE.
[69] K. L. Clark, P. J. Robinson, “Concurrent task programming of robotic

agents in teleor.,” in RuleML+ RR (Supplement), 2017.
[70] M. Gebser, T. Schaub, S. Thiele, “Gringo: A new grounder for answer set

programming,” in International Conference on Logic Programming and
Non- monotonic Reasoning, 2007, pp. 266–271, Springer.

[71] S. Costantini, A. Formisano, “Query answering in resource-based answer
set semantics,” Theory and Practice of Logic Programming, vol. 16, no.
5-6, pp. 619–635, 2016, doi: 10.1017/S1471068416000478.

[72] G. Brewka, T. Eiter, “Equilibria in heterogeneous nonmonotonic
multi-context systems,” in Proc. of the 22nd AAAI Conf. on Artificial
Intelligence, 2007, pp. 385–390, AAAI Press.

[73] G. Brewka, T. Eiter, M. Fink, “Nonmonotonic multicontext systems: A
flexible approach for integrating heterogeneous knowledge sources,”
in Logic Programming, Knowledge Representation, and Nonmonotonic
Reasoning - Essays Dedicated to Michael Gelfond on the Occasion of His
65th Birthday, vol. 6565 of Lecture Notes in Computer Science, 2011, pp.
233–258, Springer.

[74] G. Brewka, S. Ellmauthaler, J. Pührer, “Multi-context systems for reactive
reasoning in dynamic environments,” in ECAI 2014, Proc. of the 21st
European Conf. on Artificial Intelligence, 2014, pp. 159–164, IJ- CAI/
AAAI.

[75] P. Cabalar, S. Costantini, G. De Gasperis, A. Formisano, “Multi-context
systems in dynamic environments,” Ann. Math. Artif. Intell., vol. 86, no.
1-3, pp. 87–120, 2019, doi: 10.1007/s10472-019-09622-0.

[76] S. Costantini, G. De Gasperis, “Exchanging data and ontological
definitions in multi-agent-contexts systems,” in Proceedings of the
RuleML 2015 Challenge, the Special Track on Rule-based Recommender
Systems for the Web of Data, the Special Industry Track and the RuleML
2015 Doctoral Consortium hosted by the 9th International Web Rule
Symposium (RuleML 2015), Berlin, Germany, August 2-5, 2015, vol. 1417
of CEUR Workshop Proceedings, 2015, CEUR-WS.org.

[77] S. Costantini, “Knowledge acquisition via non-monotonic reasoning in
distributed heterogeneous environments,” in 13th Int. Conf. on Logic
Programming and Nonmonotonic Reasoning LPNMR 2013. Proc., vol.
9345 of Lecture Notes in Computer Science, 2015, pp. 228–241, Springer.

Stefania Costantini

Stefania Costantini (Female, married, two children,
Daniele and Alice, born in 1993 and 1996) graduated
with honors at the University of Pisa, Italy, in 1983. She
worked at Italtel SIT (a telecommunications company) in
Milan, Italy. In 1986 she became research associate and
then (in 1990) Assistant Professor of Computer Science
at the University of Milan, Italy. In 2001 she became

Associate Professor at the University of L’Aquila (Italy) where, since 2005,
she is Full Professor in Computer Science at the Department of Computer
Science and Engineering and Mathematics (DISIM). She is the Head of the
research group AAAI@AQ (Autonomous Agents and Artificial Intelligence
at the University of L’Aquila). She has more than 150 publications. Her
research interests are in (theory and practice of) Artificial Intelligence and
Computational Logic, including Intelligent Software Agents and Multi-Agent
Systems, Answer Set Programming, Non-Monotonic Reasoning, Knowledge
Representation, Cognitive Robotics. She invented, defined and coordinated the
first implementation of the DALI agent- oriented logic programming language.
She served in the Program Committee of the main Conferences of her fields of
interest, and she is a member of the Editorial Board of the journal Theory
and Practice of Logic Programming (Cambridge). She is currently the President
of the Italian Association of Computational Logic (GULP), and Member of the
Board of the Italian Association for Artificial Intelligence (AIxIA).

International Journal of Interactive Multimedia and Artificial Intelligence, Vol. 6, Nº5

- 78 -

Lorenzo De Lauretis

born in L’Aquila in 1991, graduated in Computer Science
at Università degli studi dell’Aquila in 2016. He got his
Master Degree cum Laude in Computer Science in 2018
at Università degli studi dell’Aquila. He became a PhD
student in October 2018.

Giovanni De Gasepris

Master Degree in Electronics Enginering cum Laude
(1991) and Ph.D. in Electronics Engineering (1995) from
the University of L’Aquila, Italy. He has been a Post
Doctoral Fellow at University of Texas, M.D. Anderson
Cancer Center in Houston, TX, USA (1995-1998).
Technologist and freelance computer consultant in Italy
(1998-2006). Contract lecturer of Computer Engineering

at University of L’Aquila, Italy (2000-2006). Since 2007 he is an Assistant
Professor at Department of Information Engineering and Computer Science and
Mathematics, at the University of L’Aquila, Italy. He is teaching since 2015 the
course of ”Intelligent Systems and Robotics Laboratory” at the Master Degree
in Computer Science, and the course ”Virtual Reality and Archeomatics” at
the Master Degree in Cultural Heritage at the Human Science Department.
His current research interests are: Cognitive Robotics, Internet of Things,
Natural Language Processing, Emotion Recognition, Virtual Reality. He is
Core Developer and Coordinator for the development of many open source
software packages through the research group github organization (https://
github.com/AAAI-DISIM-UNIVAQ), among which the DALI logic multi agent
system framework and its ASP_DALI extension. He is member of the Italian
Association for Artificial Intelligence (AIxIA) since 2009.

