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Abstract

In this paper we introduce an approach to the possible adoption of Answer Set Programming (ASP) for the 
definition of microservices, which are a successful abstraction for designing distributed applications as suites 
of independently deployable interacting components. Such ASP-based components might be employed 
in distributed architectures related to Cloud Computing or to the Internet of Things (IoT), where the ASP 
microservices might be usefully coordinated with intelligent logic-based agents. We develop a case study 
where we consider ASP microservices in synergy with agents defined in DALI, a well-known logic-based 
agent-oriented programming language developed by our research group.
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I. Introduction

The remarkable success of Answer Set Programming (ASP) in a wide 
variety of applications calls for the definition of specific software 

engineering principles. ASP is a successfully logic programming 
paradigm (cf. [1] and the references therein) stemming from the 
Answer Set (or “Stable Model”) semantics of Gelfond and Lifschitz [2], 
[3], and based on the programming methodology proposed by Marek, 
Truszczyński and Lifschitz [4], [5]. ASP is put into practice by means 
of effective inference engines, called solvers1. ASP has been widely 
applied in many fields, e.g., to information integration, constraint 
satisfaction, routing, planning, diagnosis, configuration, computer-
aided verification, biology/biomedicine, knowledge management, and 
many others.

In this paper we discuss the possibility of exploiting ASP to define 
components for distributed systems, to be deployed over different 
nodes of a network. In this perspective, the connections between 
components and the ways of exchanging information should be 
clearly specified. Our approach is inspired by the microser-vices 
architectural abstraction, which can be described as a particular 
way of designing distributed software applications as suites of 
independently deployable in-teracting services (cf. for instance the 
survey [6], and https://martinfowler.com/articles/microservices.html# 
CharacteristicsOfAMicroserviceArchitecture). 

1 Many performant ASP solvers are available as open-source tools, a list is 
reported at https://en.wikipedia.org/wiki/Answer_ set_programming.

A microservice is indeed a component, as it is a unit of software 
that is independently replaceable and modifiable: in fact, it intended 
as a self-contained piece of business functionality with clear interfaces 
that can be accessed by the “external world”. This kind of architectural 
abstraction enables distribution, as each microservice is meant to be 
executed as an independent process, and heterogeneity, as it allows 
different services to be written in different programming languages. 
Microservices are a suitable architectural abstraction for the Internet 
of Things (IoT): a microservice may incapsulate a physical object, 
where service inputs and/or outputs can possibly be linked to sensors/
actuators. Microservices are by their very nature heterogeneous, so 
open issues are: how microservices communicate with each other 
(synchronous, asynchronous, which is the message format, etc.); and, 
the protocols used for the communication.

Microservices in real distributed software architectures and in 
cloud computing are usually deployed via lightweight containers. 
In standard terminology borrowed from software engineering, a 
container is a standard unit of software that packages up code and 
all its dependencies; so, the application runs quickly and reliably and 
can be seamlessly transferred from one computing environment to 
another. A widely used tool to create containers is Docker, available in 
the form of an open source Docker Engine2. A Docker container image 
consists in a lightweight, standalone, executable package of software 
that includes all elements needed to run an application: code, run-time 
support, system tools, system libraries and settings.

Along this line, we propose ASP microservices that might be 
blended into heterogeneous systems, and even into Multi-Agent-
System (MAS) since each such component may be seen as a reactive 
agent. They could in perspective be employed in cloud computing and 
in IoT, including robotic applications. In this paper we discuss how 
these components, that we call µ  ASP-Services (µ  ASPSv’s), can be 

2 See https://www.docker.com
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specified, how their interfaces to the “external world” can be defined, 
and how they should procedurally behave. In fact, a µ  ASPSv is meant 
to be based upon a ‘core’ ASP program whose activities, however, 
should be triggered by external stimula/requests coming from some 
source, and whose results should be returned to the requesters.

In our view, the ‘core’ ASP program should be included into a 
container, that can be possibly realized via the Docker technology, 
which should also include: an interface, to provide the Âµ ASPSv with 
inputs, and to select and deliver the outputs; solving capabilities to 
compute the answer sets. So, a docker deployment for a Âµ ASPSv 
should include the so For ASP, standalone versions of the most 
important solvers are nowadays available. New solutions have been 
recently introduced [7], that allow for incremental solving of an ASP 
program under atoms/rules addition/deletion, and so might be used 
to provide a µ ASPSv with new inputs and cancel old ones. Thus, a 
docker deployment for a µ ASPSv should include the source program, 
its ‘execution shell’, and the solver.

A small specimen of the proposed approach is represented in the 
following example, which is meant to be (a fragment of) the code of 
a controller component/agent, acting in the IoT. This piece of code 
might be in fact the ASP ‘core’ of a µ ASPSv. test_ok is the input coming 
from a sensor, with value ‘true’ if the controlled device is working 
properly, (otherwise the value is set to false).

device_ok ← test_ok. 
device_fault ← not test_ok.

wait ← not wait, not sensor_input.
In this simple example, inconsistency (due to the odd cycle over 

wait) is to be interpreted as a ‘no-operation’ controller state, where 
the component is waiting for sensor’s outcome. It can be assumed 
that the sensor provides results at a certain frequency. The outcome, 
i.e., device_ok or device_fault, is to be delivered to whatever other 
components would ask for it.

In order to work in a standalone way within a distributed system, 
an interface (or ‘shell’) will manage the ‘core’ ASP program, and in 
particular will perform the following functions. First, manage the 
inputs and outputs of the µ ASPSv: i.e., be able to detect input arrival 
and to dispatch the outputs according to the request coming from 
the µ ASPSv’s external environment. In the above example, inputs 
can be: (1) queries over the device state for which an answer has to 
be delivered, and (2) sensor outcomes, which are to be considered as 
particular inputs which activate the module. In the general case, upon 
the arrival of inputs, the shell will: (i) add the inputs to the ASP program 
as facts; (ii) evaluate the answer sets of the resulting ASP program; (iii) 
according to previously-received requests, extract (from the answer 
sets) the answers and and deliver them to the external environment. 
Notice that the shell, after delivering the outputs, will remove (some or 
all of) the last-added program facts so as to bring back the controller 
to the ‘no-operation’ state. In a ‘stateless component’, all inputs will be 
removed, while some of the inputs can be left if instead the component 
is meant to have a state; the shell functioning is enabled (or at least 
greatly simplified) by the new advanced solving capabilities provided 
in particular by the clingo ASP solver [7].

There are however complex devices in the Internet of Things that 
should be managed in a coordinated way. Take for instance a car, where 
modern cars include several control devices for the various parts. Each 
such device will be managed by a microservice, where such microservices 
should produce coordinated behavior. It is thus a reasonable choice to 
define these components as agents. In this way, the overall control over 
the complex device will be managed by a Multi-Agent-System (MAS), 
which is by definition capable of integrated behavior. Several approaches 
to logic-based agent-oriented languages exist (cf., e.g., [8]–[10]). We 
may notice that such kind of agents can be the natural complement 

to ASP microservices. In general terms, one might want to adopt ASP 
microservices whenever there is the need to cope with uncertainty, 
or the need to manage possible alternative scenarios. When instead 
immediate direct reactive/proactive behavior is required, logical agent 
may represent a suitable tool. Among the different existing logical-based 
agent frameworks, to develop our case study we choose the DALI logic-
based agent-oriented language and framework (introduced in Section V), 
which has been developed by our research group, and that (as illustrated 
later) we have already used in synergy with ASP modules in past work.

In this paper we introduce a formal definition of ASP microservices 
and we outline a possible logic-based semantics of an overall 
heterogeneous distributed system encompassing such modules, and 
other logical components/agents. The paper is structured as follows. In 
Section II we introduce basic concepts about microservices. In Section 
III we recall (for the sake of completeness) the Answer Set Programming 
paradigm, and in Section IV we briefly survey and discuss existing 
approaches to modularity in ASP. We introduce our contribution in 
Sections VII and IX, i.e.: (1) how to define and implement µ ASPSv’s so 
as to be able to get inputs and extract answers, and how the inner ASP 
program might be structured; (2) how to provide a formal semantics to 
a generic microservice architecture possibly encompassing µ ASPSv’s. 
In Section VIII we discuss a small case study, developing a specific 
µ ASPSv which implements an intelligent agent managing a road 
intersection (i.e., a “virtual traffic light”), where cars are modeled as 
DALI logical agents. Finally, in Section X we conclude. This paper is 
in our view an evolution of the work in [11], in the sense that there, 
as illustrated in Section VI, ASP modules were invoked as auxiliary 
modules by agents in a DALI multi-agent system. Here, we make it 
possible for an ASP program to act as an independent component, that 
is able to interact with other components, among which agents.

II. Background: Microservices

In order to better understand Microservices, let us first introduce 
the concept of “Service”. A Service, as a software component, is 
a mechanism to enable access to one or more software capabilities 
[12]. It provides other applications with stable, reusable software 
functionalities at an application-oriented, business-related level of 
granularity using certain standards [13]. Service-Oriented Architecture 
(SOA) is a software architectural style that uses services as the main 
building component [12]. Key features of SOA are heterogeneity, 
standardization and “evolvability” of services.

Microservices can be seen as a technique for developing software 
applications that, inheriting all the principles and concepts from 
the SOA style, permits to structure a service-based application as a 
collection of very small loosely coupled software services [14].

A MicroServices Architecture (MSA) is an evolution of the SOA 
architecture, making the communication lighter and the software 
parts (Microservices) smaller. As empasized in [15], it can be seen 
as a new paradigm for programming applications by means of the 
composition of small services, each one running its own processes and 
communicating via light-weight mechanisms. Key features of MSA 
are bounded scope, flexibility and modularity [15]. I.e., there is a clear 
definition of the data a microservice service is responsible for and is 
“bound to”. So, a microservice owns this data and is responsible for its 
integrity and mutability.

The work in [16] shows that a distributed MSA can easily fit into 
an IoT system. In particular, the set of microservices can be seen as a 
Multi-Agent-System, cooperating to realize all system functionalities.

At the current day, microservices are still a new and emerging 
paradigm, having building standards not perfectly defined and 
communication protocols that are not well specified: in fact, following 
one of the definitions of microservices [14], [15], they are small loosely 
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coupled software services that communicate, possibly exploiting 
service discovery to find the route of communication between any 
two of them. In our work, we are proposing a new approach, that is µ 
ASPSv’s, which are based upon an inner ASP program.

III. Background: Answer Set Semantics (AS) and 
Answer Set Programming (ASP)

The following introduction consists of standard material taken 
(literally for what concerns long-established scientific terminology and 
definitions) from [1], [17]–[19]. “Answer Set Programming” (ASP) (cf. 
[1] and the references therein) is a successful programming paradigm 
based on the Answer Set Semantics. In ASP, one can see an answer set 
program (for short, just “program”) as a set of statements that specify 
a problem, where each answer set represents a solution compatible 
with this specification. Whenever a program has no answer sets (no 
solution could be found), it is said to be inconsistent, otherwise it is 
said to be consistent.

Syntactically, an ASP program Π is a collection of rules of the form

H ← A1, ..., Am, not Am+1, ... , not Am+n.
where H is an atom, m, n ≥ 0, and each Ai, i ≤ m + n, is an atom. Atoms 

and their negations are called literals. Symbol ← is often indicated 
as :- in practical programming. The left-hand side and the right-hand 
side of the clause are called head and body, respectively. A rule with 
empty body is called a fact. A rule with empty head is a constraint, 
where a constraint of the form ‘←L1,..., Ln.’ states that literals L1,..., Ln 
cannot be simultaneously true in any answer set. Constraints are often 
rephrased as ‘f ← not f , L1,..., Ln.’ where f is a fresh atom. To avoid the 
contradiction over f , some of the Li’s must be false thus forcing f to be 
false, and this, if achieved, fulfills the constraint.

Actually, an ASP rule can have a more general form including a 
disjunction of literals in the head, and “classical negation” of atoms 
[3]; various useful programming constructs have been introduced 
over time; for simplicity, we consider the basic form, i.e., “normal logic 
programs”. The interested reader can refer, e.g., to [20] for a complete 
up-to-date discussion about ASP syntax and practical use. 

The answer set (or “stable model”) semantics (AS) [2] can be defined 
in several ways (cf., e.g., [21], though more recently several other 
definitions have appeared in the literature). However, answer sets of a 
program Π are found among the supported minimal classical models 
of the program (interpreted as a first-order theory in the obvious the 
model (directly or indirectly) by its own negation. This is why it can 
be the case that no answer set exists: take, e.g, simple ASP program  
p ← not p which is equivalent to first-order theory p ∨ p with unique 
minimal model { p } which is not an answer set as p is supported, in the 
model, by its own negation. As it is well-known, AS extends the three-
valued Well-Founded semantics [22] for normal logic programs, where 
every program Π has a well-founded model wfm (Π) = ⟨T, F ⟩ where T 
is the set of true atoms, F is the set of false atoms, and the remaining 
atoms (implicitly) form the set U = Undef (Π) of the undefined atoms. 
For every answer set M it holds that T ⊆ M, so finding the answer sets 
accounts to suitably assigning truth values to the undefined atoms.

The ASP approach to problem-solving consists basically in the 
following: (i) encoding of the given problem via an ASP program; 
(ii) computing the “answer sets” of the ground program via an ASP 
solver (a list of available solvers can be found at https://en.wikipedia.
org/wiki/ Answer_set_programming), where, as a preliminary step, 
solvers perform the “grounding” of the program, by substituting all 
variables with the constants occurring in the program; (iii) extracting 
the problem solutions by examining such answer sets; in fact, answer 
set contents can be in general reformulated in order to present the 
solution in terms of the given problem.

A top-down query answering device which is prolog-style, i.e., does 
not compute answer sets in advance to extract the query answers, has 
been defined in [23] for RAS, where RAS is a variation of AS where 
every program admits answer sets3. RAS and AS coincide however 
over a wide class of programs: some sufficient conditions that identify 
classes of programs where the two semantics coincide are reported in 
[26]. Queries that have been introduced are, first of all, “? A” asking 
whether A is true w.r.t. some answer set of given program Π. Other 
queries are the following: query “? not A” asks whether A is false w.r.t. 
some answer set of Π, and therefore it succeeds if not A is true in some 
of them (this implements the operator not introduced in [27]); query  
“? not not A” asks whether not A is false in some answer set, and 
therefore it succeeds if A is true in some of them, which corresponds 
to query “? MA”, M standing for ‘possibility’ in the modal logic 
sense; query “? not not A” asks whether it is not true that A is false 
w.r.t. some answer set of Π, i.e., that A is true in all of them, which 
corresponds to “? KA”, K standing for ‘knowledge’ in the modal logic 
sense; query “? not notnot A” asks whether A is false in every answer 
set, meaning Knot A, i.e., not MA (a new operator NOT is a shorthand 
for not notnot A).

IV. Background: Modularity in ASP

Existing approaches to modularization of ASP programs have 
been extensively reviewed in [18], to which the reader may refer 
for a complete account. Reporting faithfully from there, such 
approaches can be divided into two lines: “programming-in-the-
large”, where programs are understood as combinations of separate 
and independent components, combined by means of compositional 
operators; “programming-in-the-small”, in which logic programming 
is enriched with new logical connectives for managing subprograms.

Considering the programming-in-the-small vision: in [28], program 
modules are viewed as generalized quantifiers; [29] proposes templates 
for defining subprograms; [30] developed a declarative language for 
modular ASP, which allows a programmer to describe a state how 
one ASP module can import processed answer sets from another ASP 
module. The work in [31] explores how to divide an ASP program into 
components according to its structure in terms of cycles.

Lifschitz and Turner’s “splitting set theorem” (cf. [32]), or variants 
of it, is underlying many programming-in-the- large approaches. The 
basic idea is that a program can be divided into two parts: a “bottom” 
part and a “top” part, such that the former does not refer to predicates 
defined in the latter. Computation of the answer sets of a program can 
be simplified when the program is split into such parts.

[33] defines the notion of a “DLP-function” which is basically a 
module for which a well-defined input/output interface is provided; 
a suitable compositional semantics for modules is introduced. [34] 
provides a simple and intuitive notion of a logic programming module 
that interacts through an input/output interface. This is achieved by 
accommodating modules as proposed by [35] to the context of Answer 
Set Programming. Full compatibility of the module system with the 
stable model semantics is achieved by allowing positive recursion to 
occur inside modules only.

[36] focuses on modular non-monotonic logic programs (MLP) 
under the answer set semantics, where modules may provide input to 
other modules. Mutually recursive module calls are allowed.

[37] defines modules in terms of macros that can be called from a 
program. [38] provides modules specification with information hiding, 
where modules exchange information with a global state.

3 To the best of our knowledge, the only alternative query-answering device 
for ASP that does not compute the answer sets in advance has been introduced 
in [24], [25], though under some syntactic-semantic limitations.
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In [39] a technique is proposed to allow an answer set program 
to access the brave or cautious consequences of another answer 
set program. [40] proposes “modular logic programs” as a modular 
version of ASP. This work consider programs as modules and define 
modular programs as sets of modules. The authors introduce “input 
answer sets”, which is the key semantic object for communication 
between modules.

[41] proposes to adopt ASP modules in order to simulate (within 
reasonable complexity) possibility and necessity operators. Such 
operators (given the underlying modules) are meant to be usable 
in ASP programs, but possibly also programs written under other 
programming paradigms.

It can be seen that none of the above approach tackles modularization 
in view of using ASP modules as standalone components in distributed 
systems. Therefore, our approach is a novelty in the landscape of the 
current literature.

V. Background: Logical Agents and DALI

The material exposed in this section, which reports about our 
previous work concerning logical agents so as to provide the notions 
needed in the subsequent sections, is largely taken (in some parts 
literally, to be faithful to well- established terminology) from [42]–[52] 
and from the DALI web site https://github.com/AAAI-DISIM-UnivAQ/
DALI.

The original perspective on agents in Artificial Intelligence was 
focused on the agents’ reasoning process, thus identifying “intelligence” 
as rationality, thus neglecting the interactions of the agents with the 
environment and with other agents. This perspective has been heavily 
criticized for instance in [53], [54], that adopts in an extreme way 
the opposite point of view, arguing that “intelligent” behavior results 
solely from the ability of an agent to react appropriately to changes in 
its environment.

Reasoning about beliefs, but also about what an agent means and 
chooses to do, is the basis of the seminal approach of the BDI (Belief, 
Desires, Intention) logic for modelling agents by [55], that resulted in 
the definition of the AgentSpeak agent-oriented logic programming 
language [56]. At the same time, in the approach of [57], agents were 
theories (logic programs), each one with its name, and they were able 
to communicate with each other via two communication primitives 
(tell/told). A view of logical agents, able to be both rational and 
reactive, i.e., capable not only to reason and to communicate, but also 
to provide timely response to external events, has been introduced in 
[58], [59].

After those seminal approaches, both the notion of agency and 
its interpretation in computational logic have greatly evolved. Many 
computational-logic-based agent- oriented languages and frameworks 
to specify agents and Multi-Agent Systems (MAS) have in fact been 
defined over time (for a survey of these languages and architectures 
the reader may refer, among many, to [8]–[10]). Their added value 
with respect to non-logical approaches is to provide clean semantics, 
readability and verifiability, as well as transparency and explainability 
‘by design’ (or almost), as logical rules can easily be transposed into 
natural-language explanations.

DALI [42], [43], [60] is an Agent-Oriented Logic Programming 
language, where the autonomous behaviour of a DALI agent is 
triggered by several kinds of events: external events, internal, present 
and past events.

External events are syntactically indicated by the postfix E. 
Reaction to each such event is defined by a reactive rule, where the 
special token :>. The agent remembers to have reacted by converting 
an external event into a past event (postfix P). An event perceived 

but not yet reacted to is called “present event” and is indicated by 
the postfix N. It is often useful for an agent to reason about present 
events, that make the agent aware of what is happening in its external 
environment.

In DALI, actions (indicated with postfix A) may have or not 
preconditions: in the former case, the actions are defined by actions 
rules, in the latter case they are just action atoms. The new token :< 
characterizes an action rule that specifies an action’s preconditions. 
Similarly to events, actions are recorded as past actions.

Internal events is the device which makes a DALI agent proactive. 
An internal event is syntactically indicated by the postfix I, and its 
description is composed of two rules. The first one contains the 
conditions (knowledge, past events, procedures, etc.) that must be 
true so that the reaction (in the second rule) may happen. Thus, a 
DALI agent is able to react to its own conclusions. Internal events are 
automatically attempted with a default frequency, customizable by 
means of user directives.

The DALI communication architecture [44] implements the DALI/
FIPA protocol, which consists of the main FIPA primitives4 , plus few 
new primitives which are peculiar to DALI. Notice that, DALI has been 
made compatible with the Docker technology (cf. [61] for details). So, 
a DALI agent can be deployed within a container.

The semantics of DALI is based upon the declarative semantic 
framework introduced in [45], aimed at encompassing approaches 
to evolving logical agents, by understanding changes determined by 
external events and by the agent’s own activities as the result of the 
application of program- transformation functions.

We abstractly formalise an agent as the tuple Ag = ⟨PAg, E, I, A⟩ 
where Ag is the agent name and PAg is the “agent program” according 
to the specific language adopted. E is the set of the external events, 
i.e, events that the agent is capable to perceive and recognize: let  
E = {E1, ... , En} for some n. I is the set of internal events (distinguished 
internal conclusions, that may include agent’s desires and intentions): 
let I = {I1, ... , Im} for some m. A is the set of actions that the agent can 
possibly perform: let A = {A1, ... , Ak} for some k. Let ev = (E ∪ I ∪ A).

In the DALI syntax, used below for the examples, atoms indicated 
with a postfix correspond to events of various kinds. In particular, if p 
is an atom, pE is an external event, pA is an action and pI an internal 
event.

According to this semantic account, one will have an initial program 
Π0 obtained by the program PAg provided by a programmer. According 
to events that happen, agent’s activities and internal reasoning, and 
actions which are performed, Π0 will “evolve” through corresponding 
program-transformation steps (each one transforming Πi into 
Πi+1 , cf. [45]), and thus gives rise to a Program Evolution Sequence  
PE = [Π0, ..., Πn, ...]. The program evolution sequence will imply a 
corresponding Semantic Evolution Sequence ME = [M0, ..., Mn, ...] 
where Mi is the semantic account of Πi.

Different languages and different formalisms in which an agent can 
possibly be expressed will influence the following key points: (i) when 
a transition from Πi to Πi+1 takes place, i.e., which are the external and 
internal factors that determine a change in the agent; (ii) which kind 
of transformations are performed; (iii) which semantic approach is 
adopted, i.e., how Mi is obtained from Πi.

The semantic account includes an Initialization step, where 
the program PAg written by the programmer is transformed into a 
corresponding program Π0 by means of some sort of knowledge 
compilation. In DALI for instance, the initialization step extracts the 

4  FIPA is a widely used standardized ACL (Agent Communication Language), cf. 
http://www.fipa.org/specs/fipa00037/SC00037J.html for language specification, 
syntax and semantics.
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list of internal and external events, and the control directives that are 
associated to the program (e.g., for defining priorities among events 
and frequencies for checking the occurrence of events). In general in 
fact, Π0 can be simply a program (logical theory) or can have additional 
control information associated to it.

Agents usually record events that happened and actions that they 
performed. Notice that an agent can describe the state of the world 
only in terms of its perceptions, where more recent remembrances 
define the agent’s approximation of the current state of affairs. We 
thus define set  of current (i.e., most recent) past events, and a set 
PNV where we store all previous ones (under certain conditions). We 
define the ’history’ H of an agent as the tuple ⟨ , PNV⟩, dynamically 
augmented with new events that happen. In DALI, a past event in P 
is in the form pP : Ti , where p is an atom corresponding to an event, 
postfix P stands for ’past’ and Ti  is a time-stamp indicating when the 
event has been perceived. In [62] we have defined Past Constraints, 
which allow one to define when and upon which conditions (apart 
from arrival of more recent versions) past events should be moved into 
PNV, and later on possibly removed.

Definition 1 (Evolutionary semantics). Let Ag be an agent. The 
evolutionary semantics εAg of Ag is a tuple ⟨H, PE, ME⟩, where H 
is the history of Ag, and PE and ME are its program and semantic 
evolution sequence.

DALI has been fully implemented, and a programming environment 
has been devised. The DALI programming environment [60] is freely 
available, and at the current stage of development offers a multi-
platform folder environment, built upon Sicstus Prolog [63] programs, 
shells scripts, Python scripts to integrate external applications, a JSON/
HTML5/jQuery web interface to integrate into DALI applications, 
with a Python/Twisted/Flask web server capable to interact with 
A DALI MAS at the backend. We have recently devised a cloud 
DALI implementation, reported in [64], [65]. As shown in [64], the 
preexisting DALI framework has been extended to “DALI 2.0” by using 
open sources packages, protocols and web-based technologies. DALI 
agents can thus be developed to act as high level cognitive robotic 
controllers, and can be automatically integrated with conventional 
embedded controllers. The web compatibility of the framework allows 
real-time monitors and graphical visualizers of the underline MAS 
activity to be specified, for checking the interaction between an agent 
and some external device, that can possibly be a robotic subsystem. 
The cloud package ServerDALI allows a DALI MAS to be integrated 
into any practical environment. In [65] illustrate the recent “Koiné 
DALI” framework, where a Koiné DALI MAS can cooperate without 
problems with other MASs, programmed in other languages (logical or 
non-logical), and with object-oriented applications. In summary, the 
enhanced DALI can be used for multi-MAS applications and hybrid 
multi-agents and object-oriented applications, and can be easily 
integrated into preexisting applications.

The DALI framework has been experimented, e.g., in applications 
for: unattended hardware testing of hardware-software platforms 
in telecommunication industry; user monitoring and training; 
emergencies management (such as first aid triage assignment); 
security or automation contexts; home automation and processes 
control. More generally, DALI has proved to be useful in every 
situation that is characterised by asynchronous events sources that 
require reasoning over a dynamic data collection: either simple 
events, and/or events that are correlated to other ones even in 
complex patterns. In fact, in order to be able to perform Complex 
Event Processing, i.e., to actively monitor event data so as to make 
automated decisions and take time-critical actions, DALI has been 
empowered with CEP capabilities [66], of which the implementation 
at this day is partial, but is being actively developed: since the 2018 

release, DALI supports the double concurring events occurrence in a 
predefined time window, so that reaction rules can be defined where 
two events from different asynchronous sources happen to fall in 
the same time interval. An architecture encompassing DALI agents 
and called F&K (Friendly-and-Kind) system [67] has been proposed 
for (though not restricted to) applications the e-Health domain. We 
have since long equipped DALI with a plugin for invoking ASP solvers 
and thus executing ASP modules in the so called ASP_DALI event, 
postfix P stands for ’past’ and Ti is a time-stamp extension available 
at our github organization repositories5. An ongoing experimentation 
is about emotion recognition in the context of cognitive robotics [68], 
were real time analysis of the non verbal communication interaction 
between a human and the anthropomorphic NAO robot is performed 
by an extended DALI, consisting in an ASP_- DALI and QuLog/
Teleor [69] multi-agent system. In this experimental setup, several 
sub-symbolic perception systems generate real-time fluents about the 
emotional state of the human while interacting with the robot, and 
the MAS in background determines the best emotional state according 
to a predefined model in a timely manner, so as to suggest the most 
appropriate behaviour to the robot.

VI. DALI and ASP in Synergy:  Past Work

The work presented in [11] studied the application of DALI and 
ASP to the problem of dynamic goal decomposition and planning in 
scenarios characterised by a strong inter-dependency between action 
and context, for instance those related to rescue intervention in a 
territory upon occurrence of some kind of catastrophic event. The 
paper in particular proposed an architecture that integrates DALI 
MASs (DALI Multi-Agent Systems) and ASP modules for reaching 
goals in a flexible and timely way.

The effectiveness of this solution was demonstrated by means 
of a case-study where DALI agents cooperate in order to explore 
an unknown territory. The solution is based upon a MAS instead 
of a monolithic software solution because it is important that each 
software component, implemented as an agent, can partially retain 
its autonomy during asynchronous event processing. In fact, in this 
way each agent can be enriched with high-level reasoning/control 
behaviours that can coexists with the planning/executing activity. The 
MAS solution also permits to distribute the computational effort and 
increases overall robustness.

The DALI   MAS is intended to fulfill the so-called bounded 
rationality principle, by which a plan for reaching a goal has to 
be devised and executed in a timely manner before a ultimate Tmax 
deadline. There is a second deadline TPlanMax < TMax by which a plan has 
to be computed and selected, so that the remaining time is sufficient 
for plan execution.

In the context of microservices we might improve this solution by 
defining a specific agent role called “micro- meta-planner” that shall 
supervise the task allocation over ASP and DALI agents, and which 
is responsible of the real-time compliance of the overall system. For  
example,  in those situation were the ASP module could not deliver 
answer sets in polynomial time, the micro-planner shall take over 
either by providing a fail-safe plan,  or by  providing  a set of short 
plans’ definitions aimed to obtain better working conditions for 
the ASP solver and its grounding subsystem, such as the GRINGO 
grounder [70].

Thus, given the input set TPlanMax, TMax, G, N, where G is the goal, and 
N is the instance size of the problem to be solved (if applicable), the 
MAS operates via the following steps.

i) Decompose the overall goal into suitable sub-goals;

5  https://github.com/AAAI-DISIM-UNIVAQ
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ii) For each sub-goal, generate (via an ASP module) a plan within the 
TPlanMax deadline;

iii) Execute the plan within the TMax deadline; in case of failure 
(insufficient time), maximize the length of the partially executed 
plan;

iv) In case of a change of conditions in the environment, re- plan, 
possibly limiting this activity to specific sub-goals resulting from 
the partitioning.

Sub-goals can be determined by any kind of goal partitioning 
algorithm. In the disaster management case study, it was obtained 
simply by sub-dividing the main geographical area into slightly 
overlapping sub-territories.

The planner agent equipped with an ASP module may find more 
than one plan for each (sub-)goal; so, metrics can be applied by which 
a plan could be preferred to another one. 

VII.  µ ASPSv’s: Specification and Implementation 
Guidelines

The present work can be seen as an evolution of the work in [11], 
in the sense that we make it possible for an ASP program to act as 
an independent component, instead of being invoked as an auxiliary 
module by an agent.

In this section we provide in fact an abstract definition  of a µ ASPSv, 
and some more specific indication of how such a component might be 
enacted and inserted into a distributed system, and how the inner ASP 
program might be structured.

Definition 2. Let Π be an ASP program, and let U = Undef (Π). A 
µASPSv based upon Π, denoted as µASPSv(Π), has the following 
specification:

• Inner ASP program Π;

• Activation signal A (optional), with A ϵ Undef (Π);

• Stop signal S (optional), with S ϵ Undef (Π);

• Input set {I1, ..., Ik } ⊆ Undef (Π);

• Output set {O1, ..., Oh } ⊆ Heads (Π).

• Query result set {Q1 = v1, ..., Qr = vr } where {Q1, ..., Qr } are queries6, 
formulated over atoms occurring in Heads (Π) and the vis can have 
value “true” or “false”.

The elements listed above have the following meaning. 

Whenever the activation signal is expected, if A is not true in Π, 
then µASPSv(Π) is in a state of no-operation.

Whenever the stop signal is expected, if S becomes true in Π, then 
µASPSv(Π) will go back into a state of no-operation.

The input set is a set of atoms that, when some of them are 
added to Π, contribute to answer sets computation. Each of such 
atom corresponds to an input/request received from the µASPSv’s 
surrounding environment.

The output set is a set of atoms extracted from the answer sets 
of Π plus the current input set. Each of these atoms corresponds to 
an output/answer to be delivered into the µASPSv’s surrounding 
environment.

The query result set is a set of truth values elicited from the answer 
sets of Π. Each of these values corresponds to result of a query, to be 
delivered into the µASPSv’s surrounding environment.

Notice that, we admit as inputs atoms included in Undef (Π), i.e., 
atoms that have truth value “undefined” in the well-founded model. 
This means that external inputs are intended to activate behaviors 

6  c.f. previous section for possible queries.

in program Π, without however threatening is basic functioning, 
represented by the atoms which are true or false in the well-founded 
model.

In order to make it possible for µASPSv(Π) to operate dynamically, 
thus receiving inputs and delivering outputs and  answers,  a  suitable  
shell  program  must  be defined, in any programming language able to 
be interfaced with  an answer set solver. Below we provide a schematic 
essential definition of such a  shell  program,  to  be  used as a guideline 
for actual definition and implementation. The shell program will rely 
upon an input-output table, where each potential and actual input 
and potential and actual output will be annotated, together with the 
list of external components sending inputs, and the list of external 
components to which outputs are to be delivered.

Definition 3. The shell responsible to manage an ASP microservice 
µASPSv(Π) can be specified by the following pseudo-code.

begin

1. while not activation then no-operation endwhile;

2. if activation then add atom A to Π as a fact to bring µASPSv(Π) 
into operation;

3. while not stop do at frequency f

(a) detect and annotate actual inputs

    {Ij1, ..., Ijr } ⊆ {I1, ..., Ik };

(b) add {Ij1, ..., Ijr } to Π as facts;

(c) obtain the answer sets {S1, ..., Sn } of (the augmented) Π;

(d) elicit outputs {O1, ..., Ov } ⊆ {O1, ..., Oh } ;
(e) extract query results {Q1, ..., Qt } ⊆ {Q1, ..., Qr };

(f) deliver outputs and query results according to requests;

(g) remove {Iv1, ..., Ivs } ⊆ {Ij1, ..., Ijr } from Π

(h) and remove relative annotations;

endwhile;

4. add atom S to Π as a fact and remove atom A, to bring Π into no-
operation. 

end.

This shell program is able to activate and stop a µASPSv, and to 
execute, until possibly a stop signal arrives, a loop where: the inputs 
are received from the external environment and delivered to Π; and, 
outputs and query results are extracted from the answer sets of Π 
(given the inputs) and delivered to the external environment. Precisely, 
each input will arrive from some external component, and each output 
will have to be delivered to some other (or to the same) component. 
At the end of each cycle some or all of the inputs will  be removed 
from Π and the relative annotations will be eliminated; removing 
all the inputs determines a stateless component, while omitting to 
remove some of the inputs, forever of for some time interval, accounts 
to defining a stateful component. Input detection will occur at a 
certain frequency, suitable for each particular kind of component, 
environment, and application domain. Some of the inputs may come 
from sensors (and therefore they do not require any answer) and some 
of the outputs may go to actuators. This is also annotated in the input-
output table. The parts concerning the activation and stopping of the 
µASPSv (first and second line after the begin, and last line before the 
end) will be omitted if the component is running forever rather being 
first activated and then stopped.

Notice that the above definitions can find easier practical 
application thanks to the advanced features of modern solvers such 
as clingo [7], that provides “multi-shot”solving features, coping with 
grounding and solving in continuously changing logic programs. In 
particular, “multi-shot”solving allows a given ASP program to evolve 
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during the reasoning process, because data or constraints are added, 
deleted, or replaced. This is exactly what is needed in order to send to 
a µASPSv the activation and stop signals, and to cancel old inputs and 
add new ones.

Many practical aspects remain  however  to  be defined in order to 
obtain an implementation. For instance, if a µASPSv is to be situated 
within a multi-agent system, input-output-query exchange might 
happen by means of the above-mentioned FIPA  ACL. The shell 
program can  be made FIPA-compliant (i.e., able to exchange and 
understand FIPA messages) either by developing suitable code, or, 
better, by importing a suitable library such as, e.g., the freely available 
JADE library7. The JADE library is an advance middleware that offers 
many functionalities to “agentify” imperative or object-oriented or 
other kinds of programs. In fact it provides:  the  agent  abstraction (i.e., 
a given program, when running, is seen by the external environment 
as an agent); the ability of peer to peer inter-agent FIPA asynchronous 
message-passing; a yellow pages service supporting subscription 
of agents and a discovery mechanism, and many other facilities to 
support the development of distributed systems.

So for instance, an input can be sent to a µASPSv via a FIPA 
“request” message with the input as argument, to be interpreted on 
the µASPSv’s side as a request to reply with a “confirm” message, 
containing the corresponding output. A query can be sent to the 
µASPSv via a FIPA “query-if” message whose answer will be again a 
“confirm”, conveying the truth value of the query. Notice that, to avoid 
ambiguities, the FIPA syntax provides the facility to identify each 
message via a certain arbitrary identifier, so that the answer message 
can indicate that it is ‘in-reply-to’ to that identifier.

The JADE yellow pages services might be exploited by µASPSv’s 
which would want to register as agents with a name and a role,  and 
then communicate with each other  in an asynchronous way. Or, since 
most MASs offer such a mediator service, µASPSv’s might enroll in 
any agent community. Finally, they might communicate peer-to-peer 
with other agents that they are aware of, or that they locate via the 
mediator.

Let us now consider how to structure the ‘core’ program Π, on which 
a microservice µASPSv(Π) is based. First, activation and stopping of a 
module can be simply obtained by a couple of constraints, that make 
the program inconsistent (in no-operation state) if either activation  A 
has not arrived, or stopping signal S has been issued:

: – not A.  % module activation
: – S.  % module stop
Then, when the module has been activated, upon arrival of new 

inputs, the inner program Π will in general ‘produce’ (admit) answer 
sets. If  the  answer  set  is  unique  then  the outputs can be univocally 
identified. Otherwise the shell, in the ‘elicit outputs’ part, will have 
to adopt some kind of policy (e.g., preferences, utilities, costs or 
other) to select which answer set to consider. The queries, being by 
definition specified upon the whole set of answer sets, will always 
return an univocal result. In case, given the present input, Π should 
be inconsistent, then the output will consist in a failure signal (e.g., in 
the FIFA ACL, there is the “failure” primitive to be used in such cases).

VIII.  Case Study

The case study that we propose here is inspired to issues raised 
by applications related to autonomous vehicles. Presently, machine 
learning mechanism have been defined to allow autonomous cars to 
comply with traffic lights by detecting their color, so as to pass with 

7 https://jade.tilab.com where references to several related publications can 
also be found

green and stop with red similarly to traditional cars. Such mechanisms 
must be trained, are prone to errors, and are potentially subject to 
adversarial machine learning.

In our view, physical traffic lights might in perspective disappear, 
to be substituted by monitoring agents that would receive requests to 
pass from cars and consequently issue authorisations. This either in 
routes dedicated to autonomous vehicles, or in the (very reasonable) 
hypothesis to equip also ‘traditional’ cars with a device to interact 
with the monitoring agents.

Below we propose the sample design of the inner program 
concerning a µASPSv which implements the monitoring agent of 
a road intersection, taking the place of a physical traffic light. In 
the example, the traffic light agent is called tl and, for the sake of 
simplicity, behaves like a ‘real’ traffic light but just takes the colors 
green (g for short) and red (r for short). In fact, the yellow is no longer 
necessary as we assume that the involved cars (each one equipped 
with its own driver agent) will obey the directives. We have two lanes, 
one going north-south (ns for short) and the other one east-west (ew 
for short), crossing at the traffic light. If the traffic light is green in one 
direction it must be red in the other one, and vice versa. The traffic 
light is activated by a signal active(t1), and never stopped unless there 
is a fault, detected by the module itself by means of a sensor. A fault is 
supposed to have occurred whenever f ault_tl is true, i.e., it has been 
returned by the sensor.

tln(t1).   % Traffic ‒ Light Identifier 
active(t1).
: –not  active(t1).   % Sensor Check activation
: –lane(L), f ault_tl(t1, L, T ). % Sensor Check Possible Fault
Each car, say here c1, c2, c3, c4 and c58, wants to go, but it is allowed 

to proceed only if it gets the green traffic light. Otherwise, it remains 
dummy. We assume that all cars behave in the same way. Each one 
issues a request of format car (C ), want_go (C, t1, L, T ) where L is the 
lane, with possible values ns for north-south and ew for east-west; T is 
the time of the request. Requests by various cars may for example give 
rise to the addition of the following facts to the µASPSv’s program.

%INPUT : CARS
car (c1).
car (c2).
car (c3).
car (c4).
car (c5).

%INPUT : REQUESTS
want_go (c1, t1, ns, 2).
want_go (c2, t1, ns, 2).
want_go (c3, t1, ew, 2).
want_go (c4, t1, ns, 4).
want_go (c5, t1, ew, 4).
The following facts and rules define the lanes, and specify that this 

monitoring agent has a lookahead of five time instants: after that, it 
will have to be re-run.

lane (ns). 
lane(ew).
time (1..5).
next (Y, X) :– time (X ), time (Y ),Y = X + 1.

8  The specification of which cars come and go in the traffic light surroundings 
can be within the module’s inputs, and so the car list will be updated by the 
shell.
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The rules below define the color that the traffic light takes (in a 
very standard way)  as transitions from green   to red and vice versa, 
where the initial color is green. In reality, such a monitoring agent can 
employ a much more sophisticated protocol such as for instance the 
Contract Net Protocol (CNP). If adopting CNP, the agent might grant 
priority to particular kinds of vehicles, e.g., police cars, ambulances, 
cars transporting a disabled person, etc. More generally, any policy to 
grant passage according to criteria could be implemented.

tl (r, TL, L1, T 1) :–
 time (T ), lane (L1), lane (L2), tln (TL), L1! = L2, 
 next (T 1, T ), tl (g, TL, L1, T ), tl (r, TL, L2, T ).
tl (g, TL, L1, T 1) :–
 time (T ), lane (L1), lane (L2), tln (TL), L1! = L2, 
 next (T 1, T ), tl (r, TL, L1, T ), tl (g, TL, L2, T ).
tl (g, TL, ns, 1) :– tln(TL).
tl (r, TL, ew, T ) :–tln(TL), time(T ), tl(g, TL, ns, T ).
In our case the implemented protocol is fair, as cars that cannot 

go now because it is red on their lane will be deferred to the next 
time instant (by delaying their request), when the color will be green 
(output in format go (Car, t1, Lane, Time)).

go (C, TL, L, T ) :–
     time (T ), car (C), tln (TL), lane (L), 
want_go (C, TL, L, T ), tlpg, TL, L, T ).
wait (C, TL, L, T ) :–
     time (T ), car (C), tln (TL), lane (L), 
want_go (C, TL, L, T ), tl (r, TL, L, T ).
want_go (C, TL, L, T 1):– car (C), tln (TL), lane (L), 
wait (C, TL, L, T ), next (T 1, T ).
:– time (T ), car (C), tln (TL), lane (L), 
    go (C, TL, L, T ), tl (r, TL, L, T ).
Clearly, this program can be ‘cloned’ (mutatis mutandis) to manage 

any number of traffic lights. For the reader’s convenience, this program 
is standalone and can be run exactly as it is to check its results.

We now provide a definition of a car in DALI. Or rather, we define 
an agent capable to manage the situation where the car has to pass an 
intersection controlled by a µASPSv such as the one defined above. 
This agent will presumably be a component of an overall multi-agent 
system managing the many appliances included in most recent cars.

The agent will receive data about its present position from an 
infrastructure (which the road system may be equipped with at low 
cost), that will periodically broadcast the information, that will be 
received by cars. Then, the car will sense the presence of a crossing 
(with its associated traffic-light component) from a signal broadcasted 
up to a certain distance, that will communicate the identifier tl of that 
traffic light. The car will annotate the present position’s external events 
as past events (a reaction that does nothing has exactly the purpose of 
annotating), where the most recent past event will be taken by default 
in consideration during subsequent operation, to extract position 
parameters. An external event signalling the presence of a crossing 
will determine a reaction where the agent issues a request to pass to tl. 
The request will be issued by sending a message whose performative 
will be the FIPA primitive request. The message will include the agent’s 
name (available in the predefined special variable Me) and the present 
time, obtained by the system’s primitive time (T ). The predefined 
predicate messageA (...) is processed by the DALI communication 
architecture, which will fill the remaining unspecified parameters 
expected by the FIPA syntax with default values, and will actually 
send out a correct FIPA message. The agent becomes aware of being 

enabled to pass when, via the enabled_passI first rule (where posfix I 
indicates an internal event), that will be attempted automatically at 
a certain frequency, it will detect the arrival of a message containing 
the FIPA primitive accept_proposal. This primitive signals that the 
traffic light accepts the request, and thus grants the permission, in 
this case unconditionally: the list which occurs as second parameter 
(here empty) might in general indicate conditions to be fulfilled. So, 
success of the internal event via the first rule determines a reaction 
(second rule), which consists in the action passA that will be physically 
enacted by the car.

present_positionE (Road, Direction)  :> true. 
crossingE (TL)  :> request_to_pass (TL) . 
request_to_pass (TL)  :–time (T) ,
 present_position P (_, Direction) , 
 messageA (TL,
      request (want_go (Me, TL, Direction, Time) , Me) ) . 
enabled_passI :–messageA (TL,
      accept_ pro posal (want_go (_, _, _) , [], Me) ) . 
enable_passI :> passA.
To make the two components interact it is not needed to import 

the whole FIPA protocol. For this simple case, the traffic light 
µASPSv’s shell may extract the request from the input message, and 
“package” the permission to pass (when granted) into the required 
syntax before sending it back to the agent. An underlying (though 
minimal) middleware must be implemented, so that each component 
(many cars and traffic lights might in fact be present) can send/receive 
input/outputs to the others. Notice that, as said before, DALI has been 
integrated with the Docker technology, that may help to get this part 
“for free” or almost.

IX.  Overall System’s Semantics

The semantics of a single µASPSv is fully specified by: (i) the answer 
sets of the inner ASP program; (ii) the policy employed in its shell to 
select one single answer set; (iii) the set of queries that the shell possibly 
performs over the entire set of answer sets, whose meaning is formally 
specified in [26], [71]. We aim however to provide a semantics for the 
overall distributed system composed of heterogeneous microservices 
(where some of them can be agents), in order to provide a firm ground 
and a guideline for implementation.

To do so, we resort to Multi-Context Systems (MCSs), that are a 
well-established paradigm in Artificial Intelligence and Knowledge 
Representation, aimed to model information exchange among 
heterogeneous sources [72]–[74]. However, with some abuse of 
notation (and some slight loss of generality) we adapt and readjust the 
definitions to fit into our framework. To represent the heterogeneity 
of sources, each component in a Multi-context system, called ‘context’, 
is supposed to be based on its own logic, defined in a very general way 
[73]. In particular, a logic is defined by the following features.

• A set F of possible formulas (or KB-elements) under some signature.

• A set KB of knowledge bases built out of elements of F. in our 
framework, KB can also be a program in some programming 
language.

• A function ACC, where ACC (kb, s) means that s is an acceptable set 
of consequences of knowledge base kb ϵ KB, i.e., s ⊆ Cn, where Cn 
is the set of all possible consequences that can be drawn from kb. 
We assume here that ACC produces a unique set of consequences. 
In case of a program written in a non-logical programming 
language, such set can be the set of legal outputs given some 
input, that will be a subset of all possible outputs Cn; for logical 
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components, it will be (one of) the kb model(s). For instance, as we 
have seen the shell of a µASPSv will produce as consequences the 
elements occurring in the answer set selected according to some 
policy, along with query results.

A (Managed) multi-context system (MCS)

M = {C1, ...,Cr}

is a set of r = |M| contexts, each of them of the form Ci = ⟨ci, Li, kbi, 
bri⟩, where:

• ci is the context name (unique for each context; if a specific name 
is omitted,  index i can act as a name). In [75] a context’s name can 
be a term called “context designator”, denoting the kind of context 
(for instance, mycardiologist(c), customercare(c), helpdesk(h), 
etc.).

• Li is a logic.

• kbi ϵ KB is a knowledge base.

• bri is the set of bridge rules this context is equipped with.

Contexts in an MCS are meant to be heterogeneous distributed 
components, that exchange data. In fact, bridge rules are the key 
construct of MCSs, as it describes in a uniform way the communication/
data exchange patterns between contexts. Each bridge rule ρ ϵ bri has 
the form

opi (s) ← (c1 : p1),..., (cj : pj ) (1)

where the left-hand side s is called the head, and the right-hand side 
is called the body, and the comma stands for conjunction. The meaning 
is that, each data item pi is supposed to come from context ci. Whenever  
all the c1,..., cj have delivered their data item to the destination context 
ci, the rule becomes applicable9. In case context designators are 
employed, prior to checking a bridge rule for applicability, such terms 
must have been substituted  by actual context names from which to 
acquire the data.  For µASPSv’s, this task will be performed by  the  
shell, that must then be endowed with a list of contexts of eachtype. 
When the rule is actually applied (where, in our approach, application 
is optional and must be explicitly triggered in the destination context’s 
code), its conclusion s, once elaborated by operator opi, will be added 
to ci’s knowledge base. Operator opi can perform any elaboration on 
the “raw” input s, such as format conversion, filtering, elaboration via 
ontologies, etc. Its operation is specified  via a management function 
mngi, which  is  thus  crucial  for knowledge incorporation from 
external sources. For simplicity, here we assume mngi to be monotonic 
(i.e., to produce from s one or more data items) . Therefore,  we  can 
extend the previous definition of a context as

Ci = ⟨ci, Li, kbi, bri, mngi⟩.
Notice that, in [66], [76], [77], the MCS approach  has been extended 

so that a context can possibly be a logic- based agent, and extensions 
to bridge-rules format have been introduced for data and ontologies 
exchange in this new setting.

A data state (or belief state)  of an MCS M is a tuple  = (S1, ..., Sr) 
such that for 1 ≤ i ≤ r, Si ⊆ Cni. A data state can be seen as a view 
of the distributed system by an external “observer”. app( ) is the set 
composed of the head of those bridge rules which are applicable in . 
This means, in logical terms, that their body is true w.r.t. . In practical 
terms, we may say that a bridge rule ρ associated to context ci is 
applicable in  if all the data mentioned in the body of the bridge rule 
can be delivered to the destination context. This is the case whenever 
they are available in the contexts of origin, i.e., they occur in the 

9 In the original formulation of bridge-rule syntax, there can be additional literals 
not (c1 : pj+1), ..., not (cj : pn) in the body, meaning that in order for the bridge rule 
to be applicable, the pj+1 ... pn must be false in the relative contexts. We disregard 
this part, as non-logical components cannot use logical negation. There is no 
loss of generality however, as each of the p1, ..., pj can state a negative fact.

present respective data state items in . In the original formulation 
of MCS, all applicable bridge rules are automatically applied, and 
their results, after the elaboration by the management function, are 
added to the destination context’s knowledge base, that therefore 
grows via bridge-rule application. Starting from a certain specific 
data state, some bridge rules will be applicable and therefore they 
will be applied. This will enhance the knowledge base in some of the 
contexts, thus determining (in these contexts) a new set of acceptable 
consequence, and therefore a new overall data state. In the new state 
other bridge rules will be applicable, and so on, until a “stable” state, 
called Equilibrium, will be reached. Technically,  is an equilibrium for 
an mMCS M iff, for 1 ≤ i ≤ | M |,

Si = ACCi (mngi (app( ), kbi ))

which states that each element of the equilibrium is an acceptable 
set of consequences after the application of every applicable bridge 
rule, whose result has been incorporated into the context’s knowledge 
base via the management function.

In [75] it is proved that, in the kind of MCS that we have just 
described, an equilibrium will be reached in a finite number of steps. 
Notice however that this definition assumes the system to be isolated 
from any outside influence, and that an equilibrium, one reached, will 
last forever. Instead, in real systems there will be interactions with 
an external environment, and so equilibria may change over time. 
Moreover, each context is not necessarily a passive receiver of data 
sent by others.

To take these aspects into account, [75] proposes some extensions 
to the original formulation, among which the following, that are 
relevant in the present setting.

• It is noticed that contexts’ knowledge bases can evolve in time, not 
only due to bridge-rule application. In fact, contexts receive sensor 
inputs (passively or in consequence to active observation), or can 
be affected by user’s modification (e.g., a context may encompass a 
relational database that can be modified by users). So, each context 
ci will have an associated Update Operator i (that can actually 
consist in a tuple of operators, each one performing a different 
kind of update). Updates and bridge rules both affect contexts’ 
knowledge base over time. So (assuming an underlying discrete 
model of time) we will be able to consider, when necessary, ci [T ] 
meaning context ci at time T, with its knowledge base kbi [T ]; 
consequently we will have an evolution over time of contexts. 
Therefore, we will have a definition (not reported here) of Timed 
Equilibria. Notice only that a timed equilibrium can be reached 
at time T + 1 only if the actual elapsed time between T and T + 1 
is sufficient for the system to “stabilize” by means of bridge-rules 
application on the updated knowledge bases.

• Mandatory bridge-rule application (as it is in the original MCS 
definition) constitutes a limitation: in fact, contexts would be 
forced to accept inputs unconditionally, and this may be often 
inappropriate. Consider for instance a context representing 
a family doctor: the context may accept non-urgent patient’s 
requests for appointments or consultation only within a certain 
time windows. So, [75] introduces conditional bridge-rule 
application, formalized via a timed triggering function, tri, which 
specifies which applicable bridge rules are triggered (i.e., they are 
practically applicable) at time T. It does so either based on certain 
pre-defined conditions, or by performing some reasoning over the 
present knowledge base contents. Therefore, the implementation 
of tri [T ] my require an auxiliary piece of program, that in  a 
µASPSv’s shell will presumably be a logic program.

So, considering contexts which are µASPSv’s, in order to fit in the 
vision of the overall system as an MCS, their shell must be empowered 
as follows.
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• Include the bridge rules associated to a µASPSv, and the definition/
implementation of the triggering function.

• Include a facility to resolve the context designators, so as to check 
for applicability a triggered bridge rule after substituting context 
designators occurring therein with actual contexts’ names.

• Include the definition of the specific management function, so as 
to be able to apply it on bridge-rules’ results.

In the case study of previous section, each traffic light should be 
equipped with a bridge rule that, by means of the instantiation of a 
suitable context designator (say, anycar(c)) collects the cars’ requests. 
Symmetrically, cars should be equipped with a bridge rule to collect the 
permission to go by the traffic light (the nearest one, whose identifier 
should replace a context designator of the form, e.g., a_traffic_light(t)). 
The triggering function may allow cars to enable reception of traffic-
light communications only when needed.

Context designators are therefore useful to write general bridge 
rules to be then customized to the particular situation at hand. They 
also allow to devise a system where components do not know or are 
aware of each other in advance, and where components can possibly 
join/leave the system at any time. A suitable middleware should be 
realized to allow component’s shells to instantiate bridge rules. In our 
case study, that concerns an infrastructure for car traffic, both cars 
and traffic lights might for instance broadcast their name and geo-
localization. In this way, cars might locate the traffic light of interest, 
and traffic lights might become aware of nearby cars that might send 
them a request.

X.  Concluding Remarks

We have proposed a methodology for developing microservices in 
Answer Set Programming, by means of the creation of a particular kind 
of components, that can be activated/stopped, can receive external 
requests and can deliver answers. We have provided a definition of 
µASPSv’s and explained how they might be implemented, and we have 
outlined a programming methodology. We have shown by means of a 
case study how such components can be defined, and how they might 
interact with other heterogeneous components, e.g., DALI logical 
agents.

We have also outlined a possible uniform semantics to specify an 
heterogeneous system in which µ ASPSv’s could be situated, also in 
synergy with logic-based autonomous agents. This is an absolute 
novelty for microservices in general, as no attempt has ever been made 
to provide such a uniform model for an overall system. The proposed 
semantics can constitute the ground for principled implementations. 
Overall, this work can be considered as a creative combination of 
existing technologies, in view of entirely new application domains of 
answer set programming and logic programming in general.

Important application fields for µ ASPSv’s are Cloud computing and 
IoT. We consider  particularly  important the various kinds of robotic 
applications and the underlying infrastructural aspects (as shown in 
the case study related to autonomous vehicles), and human-robot 
interaction. Promising future applications might concern personalised 
assistance in healthcare, where heterogeneous components might 
include: µ ASPSv’s that manage sensors such as wearable devices to 
monitor the patient’s conditions; personal assistant (possibly robotic) 
agents; and components representing the available appliances for 
patient’s management and vital support, and knowledge sources that 
provide criteria for, e.g., evaluation of medical checks, dosage of drugs, 
and medical diagnosis.

Future work includes: develop a real implementation; refine 
the programming methodology; provide a user friendly graphical 
interface, and perform experiments in realistic environments. We plan 

to carry out an effective integration of µ ASPSv’s and DALI multi-agent 
systems, and extend it to heterogeneous systems, possibly including 
also QuLog/Teleor and AgentSpeak agents. We will then perform 
experiments in the various domains where DALI is being applied, 
including robotics. We have in mind applications concerning cognitive 
robotic architectures, comprising hybrid multi-agent systems with 
object detectors as perception layer, and DALI-ASP as reasoning layer.
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