11 research outputs found

    Replica Placement on Bounded Treewidth Graphs

    Full text link
    We consider the replica placement problem: given a graph with clients and nodes, place replicas on a minimum set of nodes to serve all the clients; each client is associated with a request and maximum distance that it can travel to get served and there is a maximum limit (capacity) on the amount of request a replica can serve. The problem falls under the general framework of capacitated set covering. It admits an O(\log n)-approximation and it is NP-hard to approximate within a factor of o(log⁥n)o(\log n). We study the problem in terms of the treewidth tt of the graph and present an O(t)-approximation algorithm.Comment: An abridged version of this paper is to appear in the proceedings of WADS'1

    Capacitated Covering Problems in Geometric Spaces

    Get PDF
    In this article, we consider the following capacitated covering problem. We are given a set P of n points and a set B of balls from some metric space, and a positive integer U that represents the capacity of each of the balls in B. We would like to compute a subset B\u27 subseteq B of balls and assign each point in P to some ball in B\u27 that contains it, such that the number of points assigned to any ball is at most U. The objective function that we would like to minimize is the cardinality of B\u27. We consider this problem in arbitrary metric spaces as well as Euclidean spaces of constant dimension. In the metric setting, even the uncapacitated version of the problem is hard to approximate to within a logarithmic factor. In the Euclidean setting, the best known approximation guarantee in dimensions 3 and higher is logarithmic in the number of points. Thus we focus on obtaining "bi-criteria" approximations. In particular, we are allowed to expand the balls in our solution by some factor, but optimal solutions do not have that flexibility. Our main result is that allowing constant factor expansion of the input balls suffices to obtain constant approximations for this problem. In fact, in the Euclidean setting, only (1+epsilon) factor expansion is sufficient for any epsilon > 0, with the approximation factor being a polynomial in 1/epsilon. We obtain these results using a unified scheme for rounding the natural LP relaxation; this scheme may be useful for other capacitated covering problems. We also complement these bi-criteria approximations by obtaining hardness of approximation results that shed light on our understanding of these problems

    Proceedings of the 26th International Symposium on Theoretical Aspects of Computer Science (STACS'09)

    Get PDF
    The Symposium on Theoretical Aspects of Computer Science (STACS) is held alternately in France and in Germany. The conference of February 26-28, 2009, held in Freiburg, is the 26th in this series. Previous meetings took place in Paris (1984), Saarbr¨ucken (1985), Orsay (1986), Passau (1987), Bordeaux (1988), Paderborn (1989), Rouen (1990), Hamburg (1991), Cachan (1992), W¨urzburg (1993), Caen (1994), M¨unchen (1995), Grenoble (1996), L¨ubeck (1997), Paris (1998), Trier (1999), Lille (2000), Dresden (2001), Antibes (2002), Berlin (2003), Montpellier (2004), Stuttgart (2005), Marseille (2006), Aachen (2007), and Bordeaux (2008). ..

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    EUROCOMB 21 Book of extended abstracts

    Get PDF

    Seventh Biennial Report : June 2003 - March 2005

    No full text

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    A Polyhedral Study of Mixed 0-1 Set

    Get PDF
    We consider a variant of the well-known single node fixed charge network flow set with constant capacities. This set arises from the relaxation of more general mixed integer sets such as lot-sizing problems with multiple suppliers. We provide a complete polyhedral characterization of the convex hull of the given set
    corecore