
Proceedings of the Fifth European Workshop
on Probabilistic Graphical Models

Edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola

Helsinki Institute for Information Technology HIIT
HIIT Publications 2010–2
ISBN 978–952–60–3314–3 (electronic)
ISSN 1458–946X

Proceedings of The Fifth European Workshop on

Probabilistic Graphical Models

13-15 September, 2010

Helsinki, Finland

Petri Myllymäki, Teemu Roos and Tommi Jaakkola,

editors

Conference Organization

Programme Chairs
Petri Myllymäki
Teemu Roos
Tommi Jaakkola

Organizing Chairs
Petri Myllymäki
Teemu Roos

Programme Committee

Concha Bielza
Wray Buntine
Adnan Darwiche
Luis de Campos
Francisco Diez
Marek Druzdzel
Ad Feelders
Julia Flores
Jose Gámez
Christophe Gonzales
Patrik Hoyer
Juan Huete
Manfred Jaeger
Finn Jensen
Radim Jiroušek
Kristian Kersting

Uffe Kjaerulff
Mikko Koivisto
Petri Kontkanen
Matti Kääriäinen
Helge Langseth
Pedro Larrañaga
Jose Lozano
Peter Lucas
Serafin Moral
Jens Nielsen
Thomas Nielsen
Kristian Olesen
Jose Peña
Jose Puerta
Silja Renooij
David Rios

Antonio Salmerón
Prakash Shenoy
Tomi Silander
Jim Smith
Harald Steck
Milan Studený
Marco Valtorta
Linda van der Gaag
Jǐŕı Vomlel
Marta Vomlelová
Jon Williamson
Yang Xiang
Huizhen Yu
Marco Zaffalon
Nevin Zhang

Additional reviewers
Juan I. Alonso-Barba, Tao Chen, Sander Evers, Arjen Hommersom, Thorsten Ottosen,
Yi Wang.

Sponsors
The financial support of University of Helsinki, Helsinki Institute for Information Tech-
nology HIIT, Federation of Finnish Learned Societies, Finnish Cultural Foundation
(through the Studia Stemmatologica project), Pascal Network of Excellence, and Mi-
crosoft Research is gratefully ackowledged.

Preface

The European Workshop on Probabilistic Graphical Models (PGM) is a biennial
workshop that brings together researchers interested in all aspects of graphical models for
probabilistic reasoning, decision making, and learning. PGM 2010 is the fifth edition of
the workshop, and took place in Helsinki, Filnland, in September 13–15, 2010. Previous
meetings in the series were held in Cuenca, Spain (PGM 2002), Leiden, Netherlands
(PGM 2004), Prague, Czech Republic (PGM 2006), and Hirtshals, Denmark (PGM
2008).

The aim of the workshop is to bring together people interested in probabilistic graph-
ical models and provide a forum for discussion of the latest research developments in
this field. The workshop is organized so as to facilitate discussions and collaboration
among the participants also outside the workshop sessions.

This year there were 57 papers submitted to the workshop. The papers went through
a rigorous reviewing process, where each submission was reviewed by at least three
members of the PGM2010 programme committee. We would like to thank the 47 pro-
gramme committee members for their outstanding job during the review process, which
is of course crucial for a successful workshop. In addition to the programme committee
members, there were also six additional reviewers to whom we are also most grateful.

Of the 57 submissions, 36 were accepted for presentation at the workshop, where
each accepted paper was given a slot both in a plenary and in a poster session taking
place on the same day as the talk. In addition to the presentation of technical papers,
we were very pleased to have three distinguished invited speakers this year: Adnan
Darwiche (UCLA), Chris Howe (University of Cambridge) and Thore Graepel (Microsoft
Research). The first of the invited talks was organized jointly with a co-located event,
the 12th European Conference on Logics in Artificial Intelligence (JELIA 2010).

Petri Myllymäki, Teemu Roos and Tommi Jaakkola
September 2010

Contents

John Agosta, Omar Zia Khan, Pascal Poupart: Evaluation Results for a Query-
Based Diagnostics Application . 1

Babak Ahmadi, Kristian Kersting, Fabian Hadiji: Lifted Belief Propagation:
Pairwise Marginals and Beyond . 9

Sourour Ammar, Philippe Leray, François Schnitzler, Louis Wehenkel: Sub-
quadratic Markov tree mixture learning based on randomizations of the
Chow-Liu algorithm . 17

Hanen Borchani, Concha Bielza, Pedro Larrañaga: Learning CB-decomposable
multi-dimensional Bayesian network classifiers 25

Wray Buntine, Lan Du, Petteri Nurmi: Bayesian networks on Dirichlet dis-
tributed vectors . 33

Cory Butz, Wen Yan: The semantics of intermediate CPTs in variable elimination 41
Andrés Cano, Manuel Gómez-Olmedo, Serafin Moral, Antonio Salmerón, Cora

Pérez-Ariza: Learning recursive probability trees from probabilistic po-
tentials . 49

Marco Cattaneo: Likelihood-based inference for probabilistic graphical models:
Some preliminary results . 57

Arthur Choi, Adnan Darwiche: On a discrete Dirichlet model 65
Morgan Chopin, Pierre-Henri Wuillemin: Optimizing the triangulation of dy-

namic Bayesian networks . 73
Tom Claassen, Tom Heskes: Learning causal network structure from multiple

(in)dependence models . 81
Barry Cobb: An influence diagram model for detecting credit card fraud . . . 89
Barry Cobb: Continuous decision variables with multiple continuous parents 97
Daniele Codetta-Raiteri, Luigi Portinale: Generalized continuous time Bayesian

networks and their GSPN semantics . 105
Adnan Darwiche, Arthur Choi: Same-decision probability: A confidence mea-

sure for threshold-based decisions under noisy sensors 113
Doris Entner, Patrik Hoyer: On causal discovery from time series data using

FCI . 121
Sander Evers, Peter Lucas: Variable elimination by factor indexing 129
Antonio Fernández, Helge Langseth, Thomas Nielsen, Antonio Salmerón: Pa-

rameter learning in MTE networks using incomplete data 137
Miguel Angel Gómez-Villegas, Paloma Main, Hilario Navarro, Rosario Susi:

Dealing with uncertainty in Gaussian Bayesian networks from a regression
perspective . 145

Antti Hyttinen, Frederick Eberhardt, Patrik Hoyer: Causal discovery for linear
cyclic models with latent variables . 153

Finn Jensen, Elena Gatti: Information enhancement for approximate repre-
sentation of optimal strategies from influence diagrams 161

Jan Lemeire, Stijn Meganck, Francesco Cartella: Robust independence-based
causal structure learning in absence of adjacency faithfulness 169

Heejin Lim, Changhe Yuan, Eric Hansen: Scaling up MAP search in Bayesian
networks using external memory . 177

Peter Lucas, Arjen Hommersom: Modelling the interactions between discrete
and continuous causal factors in Bayesian networks 185

Wannes Meert, Jan Struyf, Hendrik Blockeel: Contextual variable elimination
with overlapping contexts . 193

Thorsten Ottosen, Jǐŕı Vomlel: All roads lead to Rome – New search methods
for optimal triangulations . 201

Thorsten Ottosen, Jǐŕı Vomlel: Honour thy neighbour – Clique maintenance
in dynamic graphs . 209

Demet Özgür-Ünlüakin, Taner Bilgiç: An aggregation and disaggregation pro-
cedure for the maintenance of a dynamic system under partial obser-
vations . 217

Jose Peña: Reading dependencies from polytree-like Bayesian networks re-
visited . 225

Silja Renooij: Bayesian network sensitivity to arc-removal 233
Silja Renooij: Efficient sensitivity analysis in hidden Markov models 241
Alberto Roverato, Robert Castelo: Learning undirected graphical models from

multiple datasets with the generalized non-rejection rate 249
Milan Studený, Raymond Hemmecke, Silvia Lindner: Characteristic imset: A

simple algebraic representative of a Bayesian network structure 257
Hongyu Su, Markus Heinonen, Juho Rousu: Multilabel classification of drug-

like molecules via max-margin conditional random fields 265
Lionel Torti, Pierre-Henri Wuillemin, Christophe Gonzales: Reinforcing the

object-oriented aspect of probabilistic relational models 273
Yang Xiang: Acquisition and computation issues with NIN-AND tree models 281

Pp. 1–9 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Evaluation Results for a Query-Based Diagnostics Application

John Mark Agosta, john.m.agosta@intel.com

Intel Labs, Santa Clara, CA, USA

Omar Zia Khan and Pascal Poupart {ozkhan,ppoupart}@cs.uwaterloo.ca

University of Waterloo, Waterloo, Ontario, Canada

Abstract

Query-Based Diagnostics refers to the simultaneous building and use of Bayes network

diagnostic models, removing the distinction between elicitation and inference phases. In

this paper we describe a successful �eld trial of such a system in manufacturing. The

detailed session logs that are collected during use of the system reveal how the model

evolved in use, and pose challenging questions on how the models can be adapted to

session outcomes.

1 Introduction

Diagnostic models for optimizing fault isolation

represented as Bayes networks is a mature �eld

that has seen numerous practical applications.

These models have been shown to perform well

given one has a comprehension model of the

domain to which they apply. In many cases

the challenge is to come up with an adequate

model: This is the so-called �knowledge elici-

tation bottleneck.� As described in a previous

paper (Agosta et al., 2008) we proposed an ap-

proach to ease model creation, by combining the

elicitation and model-building phase with the

model use phase so that the model is improved

as it is used. This combination accords well with

the expert's view of the process: In the midst of

actual problem-solving is the time when the ex-

pert is most aware of her mental model, and is

best able to express it. We've called this ap-

proach query-based diagnostics, (QBD) to high-

light the dependence of the model on the user's

inquiries as they use the model. We report here

the �eld trial results that we had proposed to

undertake then. The reader is referred to that

paper for the motivation and details of the web-

based application which is described therein.

A diagnostic troubleshooting QBD applica-

tion employing these ideas has been successfully

�elded and evaluated by Intel Manufacturing to

validate its use in practice. We will refer to it

here as �The QBD Application.� This paper de-

scribes the design and scope of the evaluation

trial and the factors that led to its success.

At the start of our involvement with our

client, we attempted to implement knowledge-

based Bayes network diagnostics for corrective

maintenance of factory equipment. Our client

was critical of the need to pre-build models by

conventional elicitation methods, because engi-

neers and technicians could not be spared to

be taken out of their daily activities for model-

building, which in their opinion properly be-

longed under their control. Also repair knowl-

edge is dynamic and would quickly get out of

date. The alternative of learning models by sta-

tistical methods is not practical because fail-

ures are relatively rare by their nature, mak-

ing available data too sparse. Our response

to this quandary was to integrate model cre-

ation within the routine work-�ow by which

they were trained, by this aforementioned ap-

proach of mingling model creation and use.

Corrective maintenance refers to unantici-

pated failure of equipment that takes it out

of production. The transition from operating

to not operating is the breakdown; the transi-

tion back is the repair. When a factory opera-

tion is capacity limited, as opposed to demand

limited, equipment breakdowns that constrain

2 Agosta et al.

capacity incur signi�cant revenue opportunity

losses. The purpose of the evaluation trial was

to validate that such losses could be substan-

tially avoided by adoption of the QBD Applica-

tion.

The QBD Application contributes to the Lean

Manufacturing philosophy of the �rm, speci�-

cally by standardizing problem-solving for di-

agnosis and repair. �Lean� refers to the meth-

ods made popular by Toyota for continuous e�-

ciency improvement (Womack, 1990). The justi-

�cation for the Application as a way to promote

knowledge-sharing and the criteria on which it

was evaluated both have their roots in �Lean.�

The trial was evaluated by the QBD Applica-

tion's estimated contribution to the overall prof-

itability of the factory. By virtue of running the

software in the �eld we were also able to col-

lect detailed session logs capturing user actions

that revealed how the Application performed.

After a brief look at the relevant literature in

Section 2, we detail the analysis and �ndings of

the evaluation, and the case they make for QBD

in Section 3.

The success of the trial leads to several new

challenges. One raised in our previous work is

the adaptation of the model as sessions generate

veri�ed cases. In the course of the trial it also

became apparent that user feedback, both active

and passive in the sense of expert users following

or not following the model's recommended steps

can be used to improve the model. We discuss

this in Section 4 of the paper.

2 Background

For the developments in Bayes networks for

building normative troubleshooting models and

the �urry of research done in the 80's and 90's

on this topic we refer the reader to (Jensen,

2001), particularly in the bibliography included

in the Preface. In a conventional application the

model guides the user during a diagnostic ses-

sion with a ranking of causes and tests. Causes

are ranked by their marginal posteriors, condi-

tioned on the evidence o�ered by the user, and

tests are ranked by diagnostic value, often ap-

proximated as mutual information, or decrease

in entropy of the causes' marginals. The model

is run repeatedly, creating a dialog with the user

of test suggestions alternating with test execu-

tion and the entering of new evidence into the

model.

As described in the previous paper, the QBD

application extends the concept of a diagnostic

session by with editing functionality for active

input of causal relations between variables, and

simple inferences of causal relations based on

passive observation of model building steps all

captured by detailed logging of diagnostic ses-

sions. Thus at any point in the session, the ac-

tions available to the user are

1. Enter a test result as evidence,

2. Create a new cause or new test node,

3. Add or remove a dependency arc between

a cause and test node,

4. Choose a cause on which to perform a re-

pair, ending the session.

In this way we were able to create models

without making the Bayes network explicit. The

goal is to have the software bootstrap the mod-

eling task, so that, in principle the software

could be �elded before any model-building com-

menced. Not surprisingly the model complex-

ity is limited. The models are relatively sparse

bipartite graphs with probabilities set qualita-

tively; see Figure 2 for an example. Despite

their simplicity they suit the situation well, with

the right blend of dynamicism, ease of use and

comprehensive knowledge-capture.

There is a small but growing literature on

applications of diagnostics Bayes networks and

their evaluation in use (Pourret et al., 2008).

This literature is largely concerned with their

accuracy (Przytula et al., 2003). Published

cases where the net bene�t of an application in

use are unknown to the authors, especially of

the type we o�er here.

3 Evaluation Trial

This section describes the purpose of the trial,

the evaluation design, and what the results were.

Agosta et al. 3

The trial ran for seven weeks in one factory, with

the team responsible for four types of equipment

used in semiconductor process fabrication. The

evaluation e�ort was carried out by the team

that owns the Lean program.

3.1 Purpose of evaluation

An �ROI� study is required by the �rm before it

will adopt new software. Although the factory

has implemented comprehensive data collection

and analysis in all aspects of process and equip-

ment monitoring, there is no system for the cap-

ture and use of �soft� user knowledge. In par-

ticular, support for maintenance activities ex-

tends only to on-line display of reference manu-

als. The QBD Application was the �rst trial in

Manufacturing where the collection of soft data

has been justi�ed by its e�ect on improving key

measures of performance.

3.2 ROI analysis

With the caveat that con�dentiality considera-

tions prevent revealing in this paper actual �-

nancial cost numbers, we can say that the trial

showed substantial improvements in key mea-

sures of performance by which the success of

the factory is evaluated. Expressed in dollar

amounts, the net value of the trial would more

than justify the annual budget for the entire lab

where the Application was developed!

In the ROI analysis design, the value of the

Application was expressed solely by its e�ect on

equipment utilization. Capital utilization and

resultant improvement in revenue dwarfed all

other cost and bene�t terms. Direct labor and

material cost and savings, for instance were im-

material in comparison.

3.2.1 Trial and Model Assumptions

Despite the use of the term �ROI�, the value

analysis consisted of computing change in rev-

enue net of cost, extrapolated to a year.

Assumptions: Three assumptions were

made: 1) The equipment to which the model is

applied constrains current production capacity.

2) The model would self-populate during the

trial. 3) Technicians of various abilities would

be involved, some contributing knowledge to

Improvement in Means over Baseline

MTBF 14%

MTTR 24%

Table 1: Mean values for performance improve-

ments for weeks 14-20 compared to weeks 1-13.

the Application, others bene�ting from the

knowledge that had been entered.

Bene�t: Management systems in the factory

track Time To Repair (TTR) and Time Between

Failure (TBR) by recording the times each ma-

chine goes down and comes back up. The change

in equipment availability is a function of Mean

TTR and Mean TBR. Improvement in factory

throughput is estimated from availability of the

capacity-limiting equipment step in the produc-

tion process. Then, knowing weekly production

throughput and �nancial contribution of each

unit of product, additional revenue can be es-

timated. In short, starting with uptime and

downtime statistics to estimate improvement in

availability, one can estimate

increased_revenue

= availability_improvement(MTTR,MTBF)
×production_volume

×contribution/unit (1)

Cost: The only direct cost was one additional

half day of the planned Lean Manufacturing

training. There were no additional R&D or

IT infrastructure costs. One might argue that

the time spent in sessions with the Application

should be counted: From the session logs, we

generously estimated that a total of less than

two weeks of labor over the entire trial.

3.2.2 Results

We present here quantitative results for one

of the four types of equipment involved. The

conclusions are similar for each. MTTR and

MTBR improved for the pilot period compared

to the baseline period. Boxplots for both peri-

ods are shown in Figure 1. The total repair

time decreased by 41% while Mean Time

to Repair decreased by 24%, as shown in

4 Agosta et al.

Variance Weeks Decrease P value

1-13 14-20

Repair

Variance 1443. 148.8 0.103 0.0054

Availability

Variance 50.51 6.90 0.137 0.011

Table 2: Variance reduction for the trial period

compared to the previous period.

Table 1. More impressive is the improve-

ment due to the variance of availability,

which decreased by more than a factor

of 10, as shown in Table 2, a decrease that

passed a conventional test for statistical signi�-

cance.

Since the QBD Application was an integral

part of a new Lean program, it is not possible

to tease apart the contribution of the Lean phi-

losophy and the introduction of the Application;

the software would not have been used had it not

been part of the program, and the Lean work-

�ow would not have been enforced without the

software.

Clearly the decrease in repair variance has

substantial value for manufacturing perfor-

mance, on a par with the value of improvements

in MTBF and MTTR. Ironically there were no

�nancial analysis techniques available to value

this decrease, even though its contribution may

be more important than the value attributed to

the increase in availability.

3.3 Model-building During Sessions

A bene�t of the detailed session logging is the

record of when and how model building occurred

during diagnostic sessions. In this section we

consider the sessions for the three machines for

one type of equipment. The session logs cap-

tured the entire sequence of user actions: the

symptom indicating the breakdown, each cause

or test selected, what values tests were set to,

and most importantly when causes, tests or de-

pendencies were added to the models.

If we also had had detailed TTR and TBF

records for each machine we could have associ-

ated sessions with repairs to obtain a more de-

Baseline Pilot

Pilot Improvement

Re
p

ai
r H

o
u

rs
 /

 w
ee

k

42% change
in means

Figure 1: Compared to the previous period, the mean
repair hours per week decreased substantially, relieving
a production bottleneck and leading to an increase in
overall factory availability.

tailed analysis of the relationship between them,

and a session-level analysis of e�ectiveness.

We validated our presumption in the previ-

ous paper, that within a few months mod-

els would mature in size, incorporating

a useful level of coverage. Model build-

ing occurred continually and extensively dur-

ing the trial, validating our supposition that in-

termingling model-building with diagnostic ses-

sions can replace conventional means of model

elicitation. During the trial's seven weeks, users

ran 157 sessions, 54 of which terminated with

a repair action. Also we counted the number of

diagnostic and model building actions in each

session; the cumulative counts over all sessions,

shown in Figure 3, show the rate of model-

building. Our surrogate for diagnostic steps

were the actions of setting the value of a test

variable. Model building steps (e.g. adding a

cause, test or dependency) out-paced diagnostic

steps, except for a few short intervals near the

end of the trial. We interpret this to imply that

the models had not yet reached �saturation� by

the trial's end. We would expect that we'd see

the rate of testing surpass the rate of additions

to the model as models continued to mature.

The arcs shown in the created network, Fig-

ure 2, were inferred from the sequence of user

Agosta et al. 5

Figure 2: The bipartite network created in use during the pilot contains 115 test and 82 root cause variables,
connected by 188 dependencies. Causes appear in the top row, and tests in the bottom.

0 50 100 150

0
10

0
20

0
30

0
40

0
50

0

Progress in Model Building over Trial Sessions

Session Index

C
u

m
u

la
ti

ve
 A

ct
io

n
s

Build steps
Set−Test steps

Figure 3: Model building occurred consistently over
the course of the 157 sessions during the trial, with a
slight decline during the end, and out-pacing the rate of
diagnostic actions, except occasionally towards the end.

actions. The result is to generate a singly con-

nected, network of test and cause pairs with all

causes linked to one common symptom. All arcs

that were not generated in this automatic fash-

ion were added explicitly, using a cause-to-test

linking feature in the interface.

4 Adaptation

In this section we present a method where we

can make improvements to models by incorpo-

rating the results of explicit user feedback from

sessions. There are two types of feedback we

consider, �rst the user's ranking of causes, sec-

ondly of tests. Both types are represented as

cases, serving as constraints to which the model

should conform, as explained in the previous pa-

per, where this consistency condition was pre-

sented:

De�nition 1 (Case Cause-Consistency1). A

model M∗ is cause-consistent with a case j, to
level k, if the list of ordered fault marginals

given the evidence e(j) agrees with the case:

P
(
C(1) | e(j),M∗

) ≥ . . . ≥ P
(
C(k) | e(j),M∗

)
.

A case that raised cause consistency would

occur if, after completing the diagnosis test se-

quence, the diagnostician discovers in the course

of repair that C∗ is the cause of the breakdown,
not the C recommended by the model.

Extending the last paper, we consider an-

other consistency condition that follows from

the user's behavior in selecting tests in a di�er-

ent order than the diagnostic ranking provided

by the model.

De�nition 2 (Case Test-Consistency). A

model M∗ is test-consistent with a case j,
to level k, if the list of ordered diagnos-

tic test values MI
(
T (i) | e(j)

)
for tests T (i)

given the evidence e(j) agrees with the case:

MI
(
T (1) | e(j),M∗

) ≥ . . . ≥ MI
(
T (k) | e(j),M∗

)
.

For example, if, after observing the vector

of evidence e, the diagnostician picks test T ∗

rather than a test T that is ranked with higher

diagnostic value, then the model is inconsistent

with the diagnostician's choice. In the QBD Ap-

plication, diagnosticians cannot indicate an in-

consistency in test selections directly, but incon-

sistencies appear when the highest ranked test

computed by the model with the evidence at

that point in the session sequence is not the one

chosen by the diagnostician. This is can be de-

termined by running the model and comparing

1This is the de�nition from (Agosta et al., 2008)

6 Agosta et al.

its recommendations to test actions in the ses-

sion log.

4.1 Modifying the network

If we believe the cases o�ered by experts that

are inconsistent with the model are correct (and

thus the model is giving the wrong recommenda-

tion), the model can be improved by modifying

it to be consistent with the cases.

Consider the simple case of a four node net-

work, as shown in Figure 4, but with the arc

from C1 to T2 missing, such that the network

is singly connected. The upper layer nodes la-

beled with Cx represent possible causes. The

lower layer nodes labeled Ty represent possible

diagnostic tests. Assume the case where the di-

agnostician ranks T1 higher than T2, in contrast

to the model's ranking, which is the reverse.

Consistency could be restored by either modi-

fying the CPT of T1, since it arbitrates between

the two causes, or, assuming T1 is a Noisy-OR,

symmetric in both causes, exploiting its �Inde-

pendence of Causal In�uences� property using

T2 to change the balance between causes. The

�rst approach is more direct, and seems most

natural given its role in relating the two causes.

In the opposite case where the diagnostician

ranks T2 higher than T1, in contrast to the

model's ranking, the same options apply, to

change the CPT of either T1 or T2 to restore

consistency. However it may be most natural to

add the arc from C1 to T2, so that T2 is infor-

mative of both causes.

Once the network is multiply connected, such

as the fully connected version in Figure 4, then

intuitions are not so simple about how to modify

the network to achieve consistency, and we pro-

pose a method that resorts to formulating the

problem as a constrained optimization problem.

We show in the next section how this might be

done, and why the constraints being non-convex

make this problem challenging.

4.2 Model Re�nement as Optimization

We consider how a test-consistency constraint

may be applied to an existing model by revising

the parameters of the model such that the model

becomes consistent with the case. To elabo-

Figure 4: A bipartite diagnostic Bayes network with
two causes and two tests.

rate our approach for model re�nement, we use

the simple diagnostic Bayesian network shown

in Figure 4.

Assume that both causes and tests are

binary variables. The variable c
(x)
i in-

dicates the value for P(Cx = i) whereas

the variable tym|c1c2 indicates the value for

P (Ty = m |C1 = c1, C2 = c2). The tables in

Figure 4 only show half of the CPTs for these

variables for the case where the value of the vari-

able is true.

If a model is inconsistent with a case, it means

that the parameters of this Bayesian network

i.e., the Conditional Probability Tables (CPTs)

are not accurate due to which the ranking of

tests is incorrect. Thus, our goal is to re�ne

these parameters (or CPTs). If the model is

consistent with a case, we may not need to re�ne

the parameters, however it is still necessary to

impose a constraint so that future re�nements

due to another case do not result in a model that

is inconsistent to a previous case.

Consider the case where an expert chooses

test T1 initially without any evidence. We

express the diagnostic value as mutual in-

formation. Thus the mutual information

MI(C1, C2 |T1) of the causes C1, C2 and test T1

will be higher than that of the causes C1, C2 and

test T2. We can express this information as the

following inequality constraint.

MI(C1, C2 |T1) ≥ MI(C1, C2 |T2) (2)

Writing out the mutual information:

MI(C1 . . . Cn |Ty) = H(C1 . . . Cn)−∑
m∈{T,F}

tymH(C1 . . . Cn|Ty = m), (3)

Agosta et al. 7

where H(C1 . . . Cn) refers to the joint entropy
of the network's causes, computed as follows:

H(C1 . . . Cn) = −
∑

c1,c2∈{T,F}
P(c1, c2) log2 (c1, c2).

(4)

Using Equations 3 and 4, we can rewrite the

constraint in Equation 2 as follows.

0 ≥−
∑

t1,c1,c2∈{T,F}
P(t1)P (c1, c2 | t1) log2 P (c1, c2 | t1)

+
∑

t2,c1,c2∈{T,F}
P(t2)P (c1, c2 | t2) log2 P (c1, c2 | t2)

(5)

The constraint shown in Equation 5 is non-

linear. This is evident if we use Bayes' theorem

and rewrite the constraint only using the param-

eters of the Bayes network as shown here:

0 ≥
∑

i,j∈{T,F}
c
(1)
i c

(2)
j

2∑
y=1

∑
m∈{T,F}

t
(y)
m|i,j×[

log2 t
(y)
m|i,j + log2 c

(1)
i + log2 c

(2)
j − log2 k

(y)
m

]
(6)

In the above equation, k
(y)
m are normalization

constants. They can be evaluated as follows.

k(y)
m =

∑
i,j∈{T,F}

t
(y)
m|i,jc

(1)
i c

(2)
j

The CPTs for the causes are the priors over

those causes. This information can be learned

using historical data as it only relates to the

frequency with which a cause occurs. Thus, we

can exclude this from the set of the parameters

to be learned or re�ned and restrict ourselves

to the CPTs of the tests, which are of the form

t
(y)
m|i,j in Equation 6.

The above constraint is the simplest possible

version of a network, where there are only two

causes, two nodes and no evidence available. For

more complex networks, the constraints will be

more complicated.

Most signi�cantly, this constraint is not con-

vex. It is well-known that entropy is concave,

while mutual information is neither concave nor

convex (Cover and Thomas, 1991). Since our

constraint is a di�erence of mutual information

it follows that it is a di�erence of two non-convex

functions. There has been previous work on us-

ing EM algorithm with constraints to learn the

parameters of a Bayes network (Niculescu et al.,

2006). However, the constraints considered in

those settings are linear, and thus convex.

This problem is also di�erent as unlike tradi-

tional parameter learning problems, we do not

have a lot of data to learn from. Thus, the

traditional objective function of maximizing the

data log likelihood may also not be useful as

it could lead to over-�tting. Finally, we are al-

ready provided an existing model which needs to

be re�ned rather than a new model learned from

scratch. An alternate approach is to minimize

distance from the original model using a mea-

sure such as an Lp-norm. However, this may not

lead to a robust approach since when the model

is not consistent, the distance measure will force

the re�ned model to be at a corner point of the

new feasible region. Instead, we are interested in

an objective function that forces the parameters

of the re�ned model to lie in the interior of the

new feasible region, as far as possible from all

the constraint surfaces. In this manner, the re-

�ned model is more likely to be consistent with

any future constraints. Currently we are inves-

tigating the use of KL-divergence as a possible

objective function that can help us achieve this

goal.

5 Conclusion

The results presented in this paper show over-

whelming bene�ts from employing an implemen-

tation of a QBD Application; bene�ts that out-

weighed costs by orders of magnitude, and made

a material di�erence in the factory's estimated

�nancial performance. One may wonder what

this is attributable to, given the simplicity of the

models and their lack of maturity, being created

in the course of the trial. The answer is that the

success of the trial relied on success in all three

areas, �nancial, organizational and human in-

terface. The lessons learned from this trial are

8 Agosta et al.

several:

1. Diagnostic applications have a natural ap-

plication in improving equipment e�ciency.

In capital-intensive companies, improving

capital e�ciency justi�es such applications

since these savings dwarf those in other ar-

eas such as direct costs of labor and mate-

rials.

2. Lean manufacturing principles pave the

way for introducing technology to improve

e�ciency, by making it clear to the organi-

zation where the technology �ts. Manage-

ment in the organization views the applica-

tion as a way to capture and share �tribal�

knowledge for Lean problem solving.

3. A new technology has to make the job eas-

ier for the person who uses it, or else it

will not be adopted. Here the users com-

ments were varied, ranging from �no tool

(i.e. computer application) has as comfort-

able a user interface as QBD�; to critical:

�System design still needs improvement to

simplify usage� and �(It) Would be best if

system was integrated into existing tools.�

It is well known that working in a domain

is facilitated by agreeing on a common, famil-

iar vocabulary with the domain expert. Analo-

gously, adopting a standard work-�ow from the

way that the client believes the diagnostic task

should be performed, as the application work-

�ow is also key to the application's acceptance.

Knowledge elicitation methods recognize the im-

portance of process and task analysis (Schreiber

et al., 2000). Ours is a stronger statement, that

the process steps incorporated in the application

adopt the normative model that the organiza-

tion uses.

In addition to the validation of the applica-

tion, the trial identi�ed areas for future work.

The plan for the current software is to improve

the interface and integration into existing soft-

ware systems, and prove these changes in ad-

ditional trials. Also the trial revealed other

places where user actions may be used as in-

put for the automated learning methods we are

developing to improve the model, for instance

Test-Consistency. Furthermore we are also con-

sidering the applicability of QBD to other di-

agnostic problem solving tasks, and to extend

the method with test and repair costs and with

replacement and repair actions, in a dynamic

model.

Acknowledgments

It is our pleasure to give credit to Marek

Druzdzel, Thomas Gardos, Matthias Giessler,

Dan Peters, and Bryan Pollard, who in di�erent

ways contributed to and made this project pos-

sible. The QBD Application was built using the

SMILE library.

References

John Mark Agosta, Tom R. Gardos, and Marek J.
Druzdzel. 2008. Query-based diagnostics. In
Probabilistic Graphical Models, September.

Thomas M. Cover and Joy A. Thomas. 1991. El-
ements of Information Theory. John Wiley &
Sons, Inc.

Finn V. Jensen. 2001. Bayesian Networks and De-
cision Graphs. Springer Verlag.

Radu Stefan Niculescu, Tom M. Mitchell, and
R. Bharat Rao. 2006. Bayesian network learning
with parameter constraints. Journal of Machine
Learning Research, 7:1357�1383.

Olivier Pourret, Patrick Na�'im, and Bruce Marcot,
editors. 2008. Bayesian Networks: A Practical
Guide to Applications. John Wiley & Sons, Inc.

K. Woytek Przytula, Denver Dash, and Don Thomp-
son. 2003. Evaluation of Bayesian networks used
for diagnostics. In IEEE Proceedings Aerospace
Conference.

Guus Schreiber, Hans Schreiber, Anjo Akkermans,
Robert de Anjewierden, Nigel Shadbolt Hoog,
Walter Van de Velde, and Bob Wielinga. 2000.
Knowledge Engineering and Management: The
CommonKADS Methodology. MIT Press.

James P. Womack. 1990. The Machine That
Changed the World. Simon & Schuster.

Pp. 9–17 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Lifted Belief Propagation: Pairwise Marginals and Beyond

Babak Ahmadi and Kristian Kersting and Fabian Hadiji
Knowledge Dicovery Department, Fraunhofer IAIS

53754 Sankt Augustin, Germany
firstname.lastname@iais.fraunhofer.de

Abstract

Lifted belief propagation (LBP) can be extremely fast at computing approximate marginal
probability distributions over single variables and neighboring ones in the underlying
graphical model. It does, however, not prescribe a way to compute joint distributions
over pairs, triples or k-tuples of distant random variables. In this paper, we present an
algorithm, called conditioned LBP, for approximating these distributions. Essentially, we
select variables one at a time for conditioning, running lifted belief propagation after
each selection. This naive solution, however, recomputes the lifted network in each step
from scratch, therefore often canceling the benefits of lifted inference. We show how to
avoid this by efficiently computing the lifted network for each conditioning directly from
the one already known for the single node marginals. Our experimental results validate
that significant efficiency gains are possible and illustrate the potential for second-order
parameter estimation of Markov logic networks.

1 Introduction

There has been much recent interest in meth-
ods for performing lifted probabilistic inference,
handling whole sets of indistinguishable objects
together, see e.g. (Milch et al., 2008; Sen et
al., 2009) and references in there. Most of
these lifted inference approaches are extremely
complex, so far do not easily scale to realis-
tic domains and hence have only been applied
to rather small artificial problems. A remark-
able exception are lifted versions of belief prop-
agation (Singla and Domingos, 2008; Kersting
et al., 2009). They grouped together random
variables that have identical computation trees
but now run a modified belief propagation (BP)
on the resulting lifted, i.e., clustered network.
Being instances of BP, they can be extremely
fast at computing approximate marginal prob-
ability distributions over single variable nodes
and neighboring ones in the underlying graph-
ical model. Above all, they naturally scale to
realistic domain sizes. Despite their success,
however, lifted BP approaches do not provide a
prescription to compute joint probabilities over

pairs of non-neighboring variables in the graph.
When the underlying graphical model is a tree,
there is a single chain connecting any two nodes,
and dynamic programming techniques might be
developed for efficiently integrating out the in-
ternal variables. When cycles exist, however, it
is not clear what approximate procedure is ap-
propriate. The situation is even more frustrat-
ing when computing marginals over triples or
k-tuples of distant nodes. As for the non-lifted
case, sophisticated exact lifted inference algo-
rithms are only tractable on rather small mod-
els and do not scale to realistic domain sizes. It
is precisely this problem that we are addressing
in this paper, that is we are interested in ap-
proximate lifted inference algorithms based on
the conditioning idea that scale to realistic do-
main sizes. Specifically, we present conditioned
LBP (CLBP), a scalable lifted inference algo-
rithm for approximate inference based on con-
ditioning. Essentially, we select variables one
at a time for conditioning and run lifted be-
lief propagation after each selection. This naive
solution, however, recomputes the lifted net-
work in each step from scratch, therefore often

10 Ahmadi et al.

canceling the benefits of lifted inference. We
show how to avoid this by efficiently comput-
ing the lifted network for each conditioning di-
rectly from the one already known for the sin-
gle node marginals. There has been some prior
work for related problems. Delcher et al. (1996)
propose a data structure that allows efficient
queries when new evidence is incorporated in
singly connected Bayesian networks and Acar
et al. (2008) present an algorithm to adapt the
model to structural changes using an extension
of Rake-and-Compress Trees. The only lifted
inference approach we are aware of is the work
by Nath and Domingos (2010) that was inde-
pendently developed in parallel. The authors
essentially simulate their lifting procedure for a
set of changed variables, obtaining the adapted
lifted network.

We also consider the problem of determining
the best variable to condition on in each itera-
tion to stay maximally lifted over all iterations
and propose a simple heuristic. Our experimen-
tal evaluation including experiments on second-
order parameter estimation for Markov logic
networks (Richardson and Domingos, 2006)
shows that significant efficiency gains are ob-
tainable compared to naively running (lifted)
BP in each iteration. CLBP may also have fu-
ture applications in more advanced relational
learning tasks such as active learning.

We proceed as follows. We start off by briefly
reviewing LBP. Then, we introduce CLBP,
prove its soundness, and touch upon the prob-
lem of determining the best variable to condi-
tion on at each level of recursion. Before con-
cluding, we present the results of our experi-
mental evaluation.

2 Lifted Belief Propagation

Let X = (X1, X2, . . . , Xn) be a set of n discrete-
valued random variables each having d states,
and let xi represent the possible realizations of
random variable Xi. Graphical models com-
pactly represent a joint distribution over X as
a product of factors (Pearl, 1991), i.e.,

P (X = x) = Z−1
∏

k
fk(xk) .

X
1 X

2 X
3

f
1

f
2

X
1

X
2

f
1

X
2

X
3

f
2

… X
n+1

f
n

X
n

X
n+1

f
n

X
1

X
2

f
1

True True 1.2

True False 1.4

False True 2.0

False False 0.4

X
2

X
3

f
2

True True 1.2

True False 1.4

False True 2.0

False False 0.4

…

X
n

X
n+1

f
n

True True 1.2

True False 1.4

False True 2.0

False False 0.4

Xn Xn+1X1 Xn/2-1

Xn Xn+1X1 X2 Xn/2-1

X2

…

c

cc
Xn Xn+1X1 Xn/2-1X2

cc

Figure 1: (Top) An example for a factor graph
— a chain graph model with n+1 nodes — with
associated potentials. Circles denote variables,
squares denote factors. (Bottom) Supernodes,
indicated by the shades of the original nodes,
produced by repeatedly clamping nodes, indi-
cated by ”c”,on a chain graph model with n+ 1
nodes. Factors have been omitted. The con-
ditioning order is π = {2, 1, 3, 4, . . . , n − 2, n −
1, n + 1, n}. After clamping X2 all subsequent
LBP runs work on the fully grounded network.

Each factor fk is a non-negative function of a
subset of the variables xk, and Z is a normal-
ization constant. If P (X = x) > 0 for all
joint configurations x, the distribution can be
equivalently represented as a log-linear model:
P (X = x) = Z−1 exp [

∑
iwi · gi(x)], where the

features gi(x) are arbitrary functions of (a sub-
set of) the configuration x. Each graphical
model can be represented as a factor graph.
A factor graph, cf. Fig 1 (top), is a bipar-
tite graph that expresses the factorization struc-
ture of the joint distribution. It has a variable
node (denoted as a circle) for each variable Xi,
a factor node (denoted as a square) for each fk,
with an edge connecting variable node i to fac-
tor node k if and only if Xi is an argument of fk.
We assume one factor fi(x) = exp [wi · gi(x)]
per feature gi(x).

An important (#P-complete) inference task
is to compute the conditional probability of vari-
ables given the values of some others, the evi-
dence, by summing out the remaining variables.

Ahmadi et al. 11

The belief propagation (BP) algorithm is an ef-
ficient way to solve this problem that is exact
when the factor graph is a tree, but only ap-
proximate when the factor graph has cycles. Al-
though this loopy BP has no guarantees of con-
vergence or of giving the correct result, in prac-
tice it often does, and can be much more effi-
cient than other methods. BP can be elegantly
described in terms of sending messages within
a factor graph. The message from a variable X
to a factor f is

µX→f (x) =
∏

h∈nb(X)\{f} µh→X(x)

where nb(X) is the set of factors X appears in.
The message from a factor to a variable is

µf→X(x) =
∑
¬{X}

f(x)
∏

Y ∈nb(f)\{X}
µY→f (y)

where nb(f) are the arguments of f , and the
sum is over all of these except X, denoted as
¬{X}. The messages are usually initialized to
1, and the unnormalized belief of each variable
Xi can be computed from the equation

bi(xi) =
∏

f∈nb(Xi)
µf→Xi

(xi) .

Evidence is incorporated by setting f(x) = 0 for
states x that are incompatible with it. Different
schedules may be used for message-passing.

Although already quite efficient, many graph-
ical models produce factor graphs with a lot of
symmetries not reflected in the graphical struc-
ture. Consider the factor graph in Fig. 1(top).
The associated potentials are identical. Lifted
BP (LBP) can make use of this fact. It essen-
tially performs two steps: Given a factor graph
G, it first computes a compressed factor graph
G and then runs a modified BP on G. We use
fraktur letters such as G, X, and f to denote the
lifted, i.e., compressed graphs, nodes, and fac-
tors. For the present paper, only the first step
is important, which we will now briefly review.

Step 1 of LBP — Lifting by Color-
Passing (CP): Let G be a given factor graph
with variable and factor nodes. Initially, all
variable nodes fall into d + 1 groups (one or
more of these may be empty) — known states
s1, . . . , sd, and unknown — represented by col-
ors. All factor nodes with the same associated

potentials also fall into one group represented
by a shade. Now, each variable node sends a
message to its neighboring factor nodes saying
“I am of color C”. A factor node sorts the in-
coming colors into a vector according to the or-
der the variables appear in its arguments. The
last entry of the vector is the factor node’s own
color. This color signature is sent back to the
neighboring variables nodes, essentially saying
“You have communicated with these kinds of
nodes”. The variable nodes stack the incoming
signatures together and, hence, form unique sig-
natures of their one-step message history. Vari-
able nodes with the same stacked signatures are
grouped together, and a new color is assigned to
each group. The factors are grouped in a similar
fashion based on the incoming color signatures
of neighboring nodes. This CP process is iter-
ated until no new colors are created anymore.
As the effect of the evidence propagates through
the factor graph, more groups are created. The
final lifted graph G is constructed by grouping
nodes (factors) with the same color (signatures)
into supernodes (superfactors). Supernodes (su-
perfactors) are sets of nodes (factors) that send
and receive the same messages at each step of
carrying out BP on G and form a partition of
the nodes in G. On this lifted network, LBP
runs an efficient modified BP (MBP). We refer
to (Singla and Domingos, 2008; Kersting et al.,
2009) for details.

3 Lifted Conditioning
We are often faced with the problem of repeat-
edly answering slightly modified queries on the
same network. Consider e.g. computing a joint
distribution P (X1, X2, . . . , Xk) using LBP. A
simple method is the following conditioning pro-
cedure that we call conditioned LBP (CLBP).
Let π define a conditioning order on the nodes,
i.e., a permutation on the set {1, 2, . . . , k} and
its i-th element be denoted as π(i). The sim-
plest one is π(i) = i. Now, we select variables
one at a time for conditioning, running LBP
after each selection, and combine the resulting
marginals. More precisely,

1. Run LBP to compute the prior distribution
P (Xπ(1)).

12 Ahmadi et al.

2. Clamp Xπ(1) to a specific state xπ(1). Run
LBP to compute the conditional distribu-
tion P (Xπ(2)|xπ(1)).

3. Do this for all states of Xπ(1) to
obtain all conditional distributions
P (Xπ(2)|Xπ(1)). The joint distri-
bution is now P (Xπ(2), Xπ(1)) =
P (Xπ(2)|Xπ(1)) · P (Xπ(1)).

By iterating steps 2) and 3) and
employing the chain rule we have
P (X1, . . . , Xk) = P (Xπ(1), . . . , Xπ(k)) =∏k
i=1 P (Xπ(i)|Xπ(i−1), . . . , Xπ(1)) . CLBP is

simple and even exact for tree-structured
models. Indeed, it is common to apply (L)BP
to graphs with cycles as well. In this case
the beliefs will in general not equal the true
marginals, but often provide good approxi-
mations in practice. Moreover, Welling and
Teh (2003) report that conditioning performs
surprisingly well in terms of accuracy for
estimating the covariance1. In the lifted case,
however, the naive solution of repeatedly
calling LBP may perform poorly in terms of
running time. We are repeatedly answering
slightly modified queries on the same graph.
Because LBP generally lacks the opportunity
of adaptively changing the lifted graph and
using the updated lifted graph for efficient
inference, it is doomed to lift the original
model in each iteration again from scratch.
Each CP run scales O(n · m) where n is the
number of nodes and m is the length of the
longest path without loop. Hence, CLBP
essentially spends O(k · n · m) time just on
lifting. Moreover, in contrast to the proposi-
tional case, the conditioning order has an effect
on the sizes of the lifted networks produced
and, hence, the running time of MBP. It may
even cancel out the benefit of lifted inference.
Reconsider our chain example2 from Fig. 1.
Fig. 1(bottom) sketches the lifted networks

1The symmetrized estimate of the covariance matrix
is typically not positive semi-definite and marginals com-
puted from the joint distributions are often inconsistent
with each other.

2When the graph is a chain or a tree there is a sin-
gle chain connecting any two nodes and LBP together
with dynamic programming can be used to efficiently

produced over time when using the conditioning
order π = {2, 1, 3, 4, . . . , n − 2, n − 1, n + 1, n}.
As one can see, clamping X2 dooms all sub-
sequent iterations to run MBP on the fully
grounded network, canceling the benefits
of lifted inference. In contrast, the order
π = {1, n+ 1, 2, n, . . . , n/2− 1} produces lifted
and fully grounded networks alternatingly, the
best we can achieve for chain models. We now
address both issues.

Shortest-Paths Lifting: Consider the sit-
uation depicted in Fig. 2. Given the network
in (A) and the prior lifted network, i.e., the
lifted network when no evidence has been set
(B), we want to compute P (X|x3) as shown in
(C). To do so, it is useful to describe BP in
terms of its computation tree (CT), see e.g. (Ih-
ler et al., 2005). The CT is the unrolling of
the (loopy) graph structure where each level
i corresponds to the i-th iteration of message
passing. Similarly we can view CP, i.e., the
lifting procedure as a colored computation tree
(CCT). More precisely, one considers for every
node X the computation tree rooted in X but
now each node in the tree is colored according
to the nodes’ initial colors, cf. Fig. 2(bottom).
Each CCT encodes the root nodes’ local com-
munication patterns that show all the colored
paths along which node X communicates in the
network. Consequently, CP groups nodes with
respect to their CCTs: nodes having the same
set of rooted paths of colors (node and factor
names neglected) are clustered together. For
instance, Fig. 2(A) shows the CCTs for X3 and
X5. Because their set of paths are different, X3

and X5 are clustered into different supernodes
as shown in Fig. 2(B). The prior lifted network
can be encoded as the vector l = (0, 0, 1, 1, 0, 0)
of node colors. Now, when we clamp a node,
say X3, to a value x3, we change the communi-
cation pattern of every node having a path to
X. Specifically, we change X3’s (and only X3’s)
color in all CCTs X3 is involved. This is illus-
trated in Fig. 2(B). For the prior lifted network,
the dark and light nodes in Fig. 2(B) exhibit the

integrate out the internal variables. When cycles exist,
however, it is unclear what approximate procedure is ap-
propriate.

Ahmadi et al. 13

X5

X4

X6

X2X1

X3

X1

X3

X2

X5

X6

X4

X3

X4

X1

X6

X5

X2

(B) Lifted model - no evidence

Examples of colored computation trees

(A) Originial factor graph

X1

X3

X2

X5

X6

X4

(C) Lifted model - evidence

X1

X3

X2

X5

X6

X4

X5

X4

X6

X2X1

X3

X5

X4

X6

X2X1

X3
c

X1

X3

X2

X6X5

X4

c X3

X4

c

(D) Shortest Path Distances

X1 X2 X3 X4 X6 X6

X1 0 2 1 2 3 3
X2 2 0 1 2 3 3
X3 1 1 0 1 2 2
X4 2 2 1 0 1 1
X5 3 3 2 1 0 1
X6 3 3 2 1 1 0

X5
X6

X2X1

Figure 2: (A): Original factor graph. (B): Prior lifted network, i.e., lifted factor graph with no
evidence. (C): Lifted factor graph when X3 is set to some evidence. Factor graphs are shown (top)
with corresponding colored computation trees (bottom). For the sake of simplicity, we assume
identical factors (omitted here). Ovals denote variables/nodes. The shades in (B) and (C) encode
the supernodes. (D): Shortest-path distances of the nodes. The i-th row will be denoted di.

same communication pattern in the network.
Consequently, X3 appears at the same positions
in all corresponding CCTs. When we now in-
corporate evidence on node X3, we change its
color in all CCTs as indicated by the ”c” in
Figs. 2(B) and (C). This effects nodes X1 and
X2 differently than X4 respectively X5 and X6

for two reasons: (1) they have different com-
munication patterns as they belong to different
supernodes in the prior network; more impor-
tantly, (2) they have different paths connecting
them to X3 in their CCTs. The shortest path is
the shortest sequence of factor colors connect-
ing two nodes. Since we are not interested in
the paths but whether the paths are identical
or not, these sets might as well be represented
as colors. Note that in Fig. 2 we assume iden-
tical factors for simplicity. Thus in this case
path colors reduce to distances. In the general
case, however, we compare the paths, i.e. the
sequence of factor colors.
We only have to consider the vector d3 of
shortest-paths distances to X3, cf. Fig. 2(D),
and refine the initial supernodes correspond-
ingly. Recall that the prior lifted network can
be encoded as the vector l = (0, 0, 1, 1, 0, 0)
of node colors. This is equivalent to (1)

l ⊕ d3, the element-wise concatenation of
two vectors, and (2) viewing each resulting
number as a new color. (0, 0, 1, 1, 0, 0) ⊕
(1, 1, 0, 1, 2, 2) =(1) (01, 01, 10, 11, 02, 02) =(2)

(0, 0, 1, 2, 3, 3), the lifted network for P (X|x3)
as shown in Fig. 2(C). Thus, we can directly
update the prior lifted network in linear time
without taking the detour through running CP
on the ground network. Now, let us compute
the lifted network for P (X|x4, x3). Essentially,
we proceed as before: compute l ⊕ (d3 ⊕ d4).
However, the resulting network might be sub-
optimal. It assumes x3 6= x4 and, hence, X3

and X4 cannot be in the same supernode. For
x4 = x3, they could be placed in the same
supernode, if they are in the same supernode
in the prior network. This can be checked by
d3�d4, the element-wise sort of two vectors. In
our case, this yields l ⊕ (d3 � d4) = l ⊕ l = l:
the prior lifted network. In general, we compute
l ⊕ (

⊕
s(
⊕

v ds,v)) where ds,v =
⊙

i∈s:xi=v
di , s

and v are the supernodes and the truth value re-
spectively. For an arbitrary network, however,
the shortest paths might be identical although
the nodes have to be split, i.e. they differ in
a longer path, or in other words, the shortest
paths of other nodes to the evidence node are

14 Ahmadi et al.

different. Consequently we iteratively apply the
shortest paths lifting. Let SNS denote the su-
pernodes given the set S as evidence. By ap-
plying the shortest path procedure we compute
SN{X1} from SN∅. This step might cause ini-
tial supernodes to be split into newly formed
supernodes. To incorporate these changes in
the network structure the shortest paths lifting
procedure has to be iteratively applied. Thus
in the next step we compute SN{X1}∪ΓX1

from
SN{X1}, where ΓX1 denotes the changed su-
pernodes of the previous step. This procedure
is iteratively applied until no new supernodes
are created. This essentially sketches the proof
of the following theorem.

Theorem 1. If the shortest-path colors
among all nodes and the prior lifted network
are given, computing the lifted network for
P (X|Xi, . . . , X1), i > 0, takes O(i ·n · s), where
n is the number of nodes, s is the number of
supernodes. Running MBP produces the same
results as running BP on the original model.

Proof. For a Graph G = (V,E), when we set
new evidence for a node X ∈ V then for all
nodes within the network the color of node
X in the CCTs is changed. If two nodes
Y1, Y2 ∈ V were initially clustered together
(denoted as sn0(Y1) = sn0(Y2)), i.e. they be-
long to the same supernode, they have to be
split if the CCTs differ. Now we have to
consider two cases: If the difference in the
CCTs is in the shortest path connecting X
with Y1 and Y2, respectively, then shortest-
path lifting directly provides the new cluster-
ing. If the coloring along the shortest paths
is identical the nodes’ CCTs might change in
a longer path. Since sn0(Y1) = sn0(Y2) there
exists a mapping between the paths of the
respective CCTs. In particular ∃Z1, Z2, s.t.
sn0(Z1) = sn0(Z2) from a different supernode,
i.e. sn0(Zi) 6= sn0(Yi), and Y1, . . . , Z1, . . . , X︸ ︷︷ ︸

∆1

∈

CCT (Y1), Y1, . . . , Z2, . . . , X︸ ︷︷ ︸
∆2

∈ CCT (Y2) and

∆1 ∈ CCT (Z1) 6= ∆2 ∈ CCT (Z2) are the re-
spective shortest paths for Z1 and Z2. Thus, by
iteratively applying shortest-path lifting as ex-

plained above, the evidence propagates through
and we obtain the new clustering.

On Finding a Conditioning Order:
Clearly, CLBP will be most efficient for esti-
mating the probability of a joint state when it
produces the smallest lifted networks. This calls
for the task of finding the most efficient3 condi-
tioning order. Here, we provide a generically ap-
plicable strategy based on the nodes’ shortest-
path colors to all other nodes. That is, in each
conditioning iteration, we add that node having
the smallest number of unique paths to all other
nodes and, if possible, is a member of a supern-
ode of one of the already clamped nodes. Intu-
itively, we select nodes that are expected to cre-
ate the smallest number of splits of existing su-
pernodes in each iteration. Therefore, we call it
min-split. Although this increases the running
time — each conditioning iteration now has an
additional O(n2) step — our experiments show
that there are important cases such as comput-
ing pairwise joint marginals where the efficiency
gains achievable due to a better lifting can com-
pensate this overhead.

4 Experimental Evaluation

Our intention here is to illustrate the per-
formance of CLBP compared to naively run-
ning LBP and BP. We implemented CLBP and
its variants in Python and using libDAI li-
brary (Mooij, 2009) and evaluated the algo-
rithms on a number of Markov logic networks.

In our first experiment, we compared CLBP
to naively running LBP, i.e. lifting the net-
work each time from scratch, and BP for com-
puting pairwise probabilities. We generated
the ”Friends-and-Smokers” Markov logic net-
work (Singla and Domingos, 2008) with 2, 5,
10, 15, 20, and 25 people, resulting in networks
ranging from 8 to 675 nodes. The shortest-path
lifting clearly pays out in terms of the total mes-
sages sent (including CP and shortest-path mes-

3This question is different from the more common
question of finding highly accurate orders. The latter
question is an active research area already for the ground
case see e.g. (Eaton and Ghahramani, 2009), and is also
related to the difficult question of convergent BP vari-
ants, see e.g. (Mooij et al., 2007).

Ahmadi et al. 15

 0

 5

 10

 15

 20

 25

 0 100 200 300 400 500 600

T
o
ta

l
M

e
s
s
a
g
e
s
 (

m
ill

io
n
s
)

Variables

BP
LBP

CLBP

 0

 1e-05

 2e-05

 3e-05

 4e-05

 5e-05

 6e-05

 7e-05

 8e-05

 9e-05

 0.0001

 0 50 100 150 200 250

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n

Variables

BP

LBP

CLBP

Figure 3: Pairwise Probability Estimates: (Left) Comparison of the total number of messages
sent for BP, Lifted BP and ”min-split” order CLBP for ”Friends-and-Smokers” MLNs (including
clustering messages for LBP and CLBP). (Right) The Standard Deviation of the error compared
to the exact solution computed using the Junction Tree Algorithm.

sages) as shown in Fig. 3 (left). Moreover, the
accuracy estimates are surprisingly good and
confirm Welling and Teh (2003); Fig. 3 (right)
shows the Standard Deviation of the difference
compared to the exact solution computed us-
ing the Junction Tree (JT). The maximal error
we got was below 10−4. Note, however, that
running JT with more than 20 persons was im-
possible due to memory and time restrictions.
In our second experiment we investigated
CLBP for computing joint marginals. For the
”Friends-and-Smokers” MLN with 20 people
we randomly chose 1, 2, . . ., 10 ”cancer” and
”friends” nodes as query nodes. The joint state
was randomly chosen. The results are averaged
over 10 runs. Fig. 4 shows the cumulative num-
ber of messages (including CP messages). ”Min-
split” is indeed better. By chosing the order
following our heuristic the cumulative number
of supernodes and in turn messages is reduced
compared to a random elimination order.

Finally, we learnt paramters for the ”Friends-
and-Smokers” MLN with 10 perople, maxi-
mizing the conditional marginal log-likelihood
(CMLL). Therefore we sampled 5 data cases
from the joint distribution. We compared con-
jugate gradient (CG) optimization using Polak-
Ribiere with Newton conjugate gradient (NCG)
optimization using the covariance matrix of
MLN clauses computed using CLBP. The gra-

dient was computed as described in (Richard-
son and Domingos, 2006) but normalized by
the number of groundings of each clause. The
results summarized in Fig. 5 confirm that in-
formation about dependencies among clauses is
indeed useful: the second order method exhibits
faster convergence.

5 Conclusion

We presented conditioned lifted BP, the first ap-
proach for computing arbitrary joint marginals
using lifted BP. It relates conditioning to com-
puting shortest-paths. Exploiting this link in
order to establish runtime bounds is an inter-
esting avenue for future work. By combining
lifted BP and variable conditioning, it can read-
ily be applied to models of realistic domain
size. As our results show significant efficiency
gains are obtainable, sometimes order of mag-
nitude, compared to naively running (lifted) BP
in each iteration. An interesting avenue for
future work is to apply CLBP within impor-
tant AI tasks such as finding the MAP assign-
ment, sequential forward sampling, and struc-
ture learning. Furthermore, our results suggest
to develop lifted cutset conditioning algorithms,
see e.g. (Bidyuk and Dechter, 2007), and to lift
Eaton and Ghahrmani’s (2009) fast heuristic
for selecting nodes to be clamped to improve
CLBP’s accuracy.

16 Ahmadi et al.

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7 8 9 10

M

es
sa

ge
s

(t
ho

us
an

ds
)

Query Variables

BP
random

min-split

Figure 4: Number messages sent for comput-
ing joint marginals of varying size for BP,
”random” and ”min-split” order CLBP.

-320

-300

-280

-260

-240

-220

-200

-180

-160

 0 5 10 15 20 25 30 35 40

C
M

LL

Iteration

CG
NCG

Figure 5: Learning curves for ”Friends-and-
Smokers” MLN. Optimization using clause
covariances shows faster convergence.

Acknowledgements. This work was sup-
ported by the Fraunhofer ATTRACT fellowship
STREAM and by the European Commission
under contract number FP7-248258-First-MM.

References

U. Acar, A. Ihler, R. Mettu, and O. Sumer. 2008.
Adaptive inference on general graphical models.
In Proc. of the Twenty-Fourth Conference Annual
Conference on Uncertainty in Artificial Intelli-
gence (UAI-08), Corvallis, Oregon. AUAI Press.

B. Bidyuk and R. Dechter. 2007. Cutset sampling
for bayesian networks. JAIR, 28.

A. L. Delcher, A. J. Grove, S. Kasif, and J. Pearl.
1996. Logarithmic-time updates and queries in
probabilistic networks. JAIR, 4:37–59.

F. Eaton and Z. Ghahramani. 2009. Choosing a
variable to clamp: Approximate inference using
conditioned belief propagation. In Proc. of the
12th International Conference on Artificial Intel-
ligence and Statistics (AIStats-09).

A.T. Ihler, J.W. Fisher III, and A.S. Willsky. 2005.
Loopy belief propagation: Convergence and ef-
fects of message errors. Journal of Machine
Learning Research, 6:905–936.

K. Kersting, B. Ahmadi, and S. Natarajan. 2009.
Counting belief propagation. In J. Bilmes A. Ng,
editor, Proceedings of the 25th Conference on
Uncertainty in Artificial Intelligence (UAI–09),
Montreal, Canada, June 18–21.

B. Milch, L. Zettlemoyer, K. Kersting, M. Haimes,
and L. Pack Kaelbling. 2008. Lifted Probabilis-
tic Inference with Counting Formulas. In Proc.

of the 23rd AAAI Conf. on Artificial Intelligence
(AAAI-08), July 13-17.

J. Mooij, B. Wemmenhove, H. Kappen, and
T. Rizzo. 2007. Loop corrected belief propa-
gation. In Proc. of the 11th International Con-
ference on Artificial Intelligence and Statistics
(AIStats-09).

Joris M. Mooij. 2009. libDAI 0.2.3: A free/open
source C++ library for Discrete Approximate In-
ference. http://www.libdai.org/.

A. Nath and P. Domingos. 2010. Efficient lifting for
online probabilistic inference. In Proceedings of
the Twenty-Fourth AAAI Conference on Artificial
Intelligence (AAAI-10).

J. Pearl. 1991. Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kauf-
mann, 2. edition.

M. Richardson and P. Domingos. 2006. Markov
Logic Networks. MLJ, 62:107–136.

P. Sen, A. Deshpande, and L. Getoor. 2009.
Bisimulation-based approximate lifted inference.
In J. Bilmes A. Ng, editor, Proc. of the 25th Con-
ference on Uncertainty in Artificial Intelligence
(UAI–09), Montreal, Canada, June 18–21.

P. Singla and P. Domingos. 2008. Lifted First-Order
Belief Propagation. In Proc. of the 23rd AAAI
Conf. on Artificial Intelligence (AAAI-08), pages
1094–1099, July 13-17.

M. Welling and Y.W. Teh. 2003. Linear response
for approximate inference. In Proc. of NIPS-03,
pages 191–199.

Pp. 17–25 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Sub-quadratic Markov tree mixture learning based on
randomizations of the Chow-Liu algorithm

Sourour Ammar and Philippe Leray
Knowledge and Decision Team

Laboratoire d’Informatique de Nantes Atlantique (LINA) UMR 6241
Ecole Polytechnique de l’Université de Nantes, France

sourour.ammar@univ-nantes.fr, philippe.leray@univ-nantes.fr

François Schnitzler and Louis Wehenkel
Department of EECS & GIGA-Research,

Grande Traverse, 10 - B-4000 Liège - Belgium
fschnitzler@ulg.ac.be, L.Wehenkel@ulg.ac.be

Abstract

The present work analyzes different randomized methods to learn Markov tree mixtures
for density estimation in very high-dimensional discrete spaces (very large number n of
discrete variables) when the sample size (N) is very small compared to n. Several sub-
quadratic relaxations of the Chow-Liu algorithm are proposed, weakening its search proce-
dure. We first study näıve randomizations and then gradually increase the deterministic
behavior of the algorithms by trying to focus on the most interesting edges, either by
retaining the best edges between models, or by inferring promising relationships between
variables. We compare these methods to totally random tree generation and randomiza-
tion based on bootstrap-resampling (bagging), of respectively linear and quadratic com-
plexity. Our results show that randomization becomes increasingly more interesting for
smaller N/n ratios, and that methods based on simultaneously discovering and exploiting
the problem structure are promising in this context.

1 Introduction

Directed probabilistic graphical models encode
a joint distribution over a set of variables by
a product of conditional probability distribu-
tions, one for each variable conditionally to its
parents in the directed graph. These models
may be learned from data and used to perform
probabilistic inferences over the encoded distri-
bution (Pearl, 1986). However, exact inference
and learning with such models are both NP-
hard, unless the skeleton of the graph is con-
strained (Cooper, 1990). Existing learning al-
gorithms are not scalable to high dimensional
spaces because of their excessive computational
complexity (Auvray and Wehenkel, 2002).

Markov Trees are an interesting subclass of
directed graphical models, whose skeletons are

acyclic and for which each node of the graph
has (at most) one parent. With Markov trees,
the computational complexity of probabilistic
inference and parameter learning are linear in
the number of variables (Pearl, 1986). Fur-
ther, Markov tree structures may be learned
efficiently by the Chow-Liu algorithm (Section
3.1), quadratic in the number of variables.

While Markov trees impose strong modeling
restrictions, mixtures of Markov trees can rep-
resent a much wider (actually unlimited) class
of probability densities than single Markov trees
while retaining their interesting computational
properties in terms of inference (Meila and Jor-
dan, 2000), making these models attractive for
scaling graphical models to high-dimensional
problems. As a matter of fact, these simple
graphical models were used for these reasons,

18 Ammar et al.

in order to build optimized mixtures of mod-
els for probability density estimation (Meila
and Jordan, 2000) by using an expectation-
minimization algorithm.

In supervised learning, a generic framework
which has led to many fruitful innovations is
called “Perturb and Combine”. Its main idea
is to on the one hand perturb in different ways
the optimization algorithm used to derive a pre-
dictor from a dataset and on the other hand to
combine in some appropriate fashion an ensem-
ble of predictors obtained by multiple iterations
of the so perturbed search algorithm. This ap-
proach may in particular lead to a strong re-
duction in variance (Breiman, 1996). It was
first explored for probability density estimation
in (Ammar et al., 2008) by comparing vari-
ous kinds of large ensembles of simple graphical
models in the form of Markov Trees.

The above mentioned algorithms for learn-
ing mixtures of Markov trees use the Chow-
Liu algorithm (Chow and Liu, 1968). However,
since this algorithm is quadratic in the num-
ber of variables, these methods do not scale
well to very high-dimensional problems, with
thousands or even millions of variables. Thus,
(Schnitzler et al., 2010; Ammar et al., 2010)
tried to investigate mixtures of models learned
by using various randomized versions of the
Chow-Liu algorithm, with the aim of reduc-
ing the computational complexity below the
quadratic level, and simultaneously improving
accuracy in small (i.e. realistic) sample size con-
ditions by variance reduction. The aim of the
present paper is to analyse these methods and
compare their results in the same framework.

The rest of the paper is organized as follows.
We describe tree models and models of mixtures
of trees more formally in section 2, and state in
section 3 the different tree mixture learning al-
gorithms that we want to analyse. We explain
and discuss our empirical evaluation of these al-
gorithms in section 4, before concluding.

2 Mixtures of Markov trees

Let X = {X1, . . . , Xn} be a finite set of dis-
crete random variables, and D = (x1, · · · , xN)

be a sample (we will use the term “dataset”
to denote it) of joint observations xi =
{xi1, · · · , xin} independently drawn from some
data-generating density PG(X1, . . . , Xn).

A mixture distribution PT̂ (X1, . . . , Xn) in-
duced by a multiset T̂ = {T1, . . . , Tm} of m
Markov trees is defined as a convex combina-
tion of elementary Markov tree densities, i.e.

PT̂ (X) =
m∑
i=1

µiPTi(X),

where µi ∈ [0, 1],
∑m

i=1 µi = 1, and PTi(X) is
the probability density over X encoded by the
graphical model composed of the Markov tree
structure Si and its parameter set θ̃i :

PTi(X) = PSi,θ̃i
(X) =

n∏
p=1

Pθ̃i
(Xp|PaSi(Xp)),

where PaSi(Xp) is the parent variable of Xp in
the tree structure Si.

Several versions of Markov tree mixtures were
studied in (Ammar et al., 2009; Ammar et al.,
2008) as an alternative to classical methods
of density estimation in the context of high-
dimensional spaces and small datasets: mix-
tures of tree structures generated in a totally
randomized fashion with linear complexity in
the number of variables and ensembles of opti-
mal trees derived from bootstrap replicas of the
dataset by the Chow and Liu algorithm (Chow
and Liu, 1968) (i.e. bagging of Markov trees).

Other studies tried to relax the Chow-Liu al-
gorithm to reduce its computational complexity
while maintaining its accuracy (Schnitzler et al.,
2010; Ammar et al., 2010). In the present work
we analyze these methods in terms of computa-
tional complexity, accuracy, and running time,
within a same framework.

3 Panel of learning algorithms

Algorithm 1 describes our general methodology
to learn a mixture of m Markov trees from a
dataset D.

It may be declined by using different variants
of the three subroutines it uses, namely Build-
MarkovTreeStructure, LearnPars, and Comp-

Ammar et al. 19

Weights. In this paper we focus on the ef-
fect of varying only the first one, used to in-
fer the structures Si of the mixture terms.
Next, we describe the different versions of Build-
MarkovTreeStructure that we have considered
in our study. We start by describing the origi-
nal Chow-Liu method.

Algorithm 1 (Learning a Markov tree mixture).
1. Repeat for i = 1, · · · ,m:

(a) Si = BuildMarkovTreeStructure(D)

(b) θ̃i = LearnPars(Si, D)

2. (µ)m
i=1 = CompWeights((Si, θ̃i)

m
i=1, D)

3. Return
(
µi, Si, θ̃i

)m

i=1

3.1 Chow-Liu algorithm

This algorithm learns a Markov tree structure
maximizing the likelihood of the training set
(Chow and Liu, 1968). Its principle is described
by Algorithm 2. It can be decomposed in two
steps : Step 1. computes from the dataset the
maximum likelihood estimates of the mutual in-
formations between each pair of variables to fill
an n × n symmetrical matrix (MI); Step 2.
searches for a maximum weight spanning tree
(MWST) in this matrix (e.g. Kruskal’s algo-
rithm (Cormen et al., 2001), used here).

Algorithm 2 (Chow-Liu algorithm).
1. MI = [0]n×n; Repeat for k = 1, · · · , n:

Repeat for j = k + 1, · · · , n:
i. MI[k, j] = CompMI(Xk, Xj , D);
ii. MI[j, k] = MI[k, j].

2. S = CompKruskal(MI); Return S.

The first step requires O(n2N) computations,
while the second has a complexity of E log(E)
with E the number of considered edges. In the
Chow-Liu algorithm E = n(n − 1)/2, so this
second complexity becomes O(n2 log(n2)).

3.2 Randomized edge sampling

To reduce the complexity of the Chow-Liu al-
gorithm, we propose to apply the Perturb and
Combine principle by learning each model from
an incomplete matrix MI.

The random edge sampling algorithm per-
forms this by randomly selecting a subset of a
priori fixed size K of different pairs of variables

according to a uniform distribution. These
terms are used to partially fill the matrix MI
used as input to the MWST algorithm. Algo-
rithm 3 describes this procedure.

Algorithm 3 (randomized edge sampling).
1. MI = [0]n×n ; Repeat for k = 1, · · · ,K:

(a) Draw new random pair (i1, i2) ∈ {1, . . . , n}2;
(b) MI[i1, i2] = CompMI(Xi1 , Xi2 , D);

(c) MI[i2, i1] = MI[i1, i2].

2. S = CompKruskal(MI); Return S.

The complexity of Algorithm 3 is loglinear
in the number K of edges drawn. Notice that
the tree structure that it infers may be discon-
nected, and that its dependence on the dataset
is increasing with the value of K. We will re-
port in this paper simulations and results for
two values of the parameter : K = n log(n)
considered in (Ammar et al., 2010), and K =
0.33n(n − 1)/2. The first value allows a to-
tal complexity of n log(n) log(n log(n)), which is
sub-quadratic and very close to the quasi-linear.
The second corresponds approximately to the
edges sampled by the method described in the
next section.

3.3 Randomized vertex clustering

Another idea to weaken the Chow and Liu pro-
cedure was proposed by (Schnitzler et al., 2010).
This method is a less näıve approach to sam-
pling the matrix MI, which targets potentially
interesting (i.e. of large weight) edges. Algo-
rithm 4 details this two-step process, that first
builds a local structure of the problem, and then
focuses on pairs of variables located close to
each other in that structure.

The first step consists in an approximate on-
line clustering of the variables based on their
mutual information, inspired by leader cluster-
ing (a cluster Cp is represented by its leader
Lp). As illustrated in figure 1, a sequence C of
clusters is created until all variables belong to
one. The construction of a cluster Cp is based
on two thresholds on mutual information: one
cluster-threshold (MIC) and one neighborhood-
threshold (MIN). The cluster is built by com-
paring the mutual information of each remain-
ing unclustered variable to the new leader (Lp,

20 Ammar et al.

(a) First a leader (here X5)
is chosen at random and
compared to all 12 other
variables.

(b) Next, the 1st cluster
is built. Here it is made
of 5 members and has one
neighbor.

(c) The 2nd leader (X13,
the farthest from X5) is
compared only to 7 vari-
ables.

(d) Final result, after 4 it-
erations. All edges con-
sidered are kept for the
MWST inference.

Figure 1: Illustration of the vertex clustering algorithm.

chosen first at random, then among unclustered
variables by minimizing

∑
q<pMI(Lp, Lq)). An

unclustered variable X is identified as:

1. member of Cp, if MI(X,Lp) > MIC ,
2. neighbor of Cp, if
MIC > MI(X,Lp) > MIN ,

3. not related to Cp, otherwise.

Setting those thresholds can be seen as ex-
cluding potentially independent variables. This
exclusion rate can be controlled, since the maxi-
mum likelihood estimate of the mutual informa-
tion for two independent variables asymptoti-
cally follows a χ2 law. In this work, its per-
centile 0.5 (respectively 5) was used for MIC
(MIN).

Algorithm 4 (Vertex Clustering).
1. V = X ; C = ∅; MI = [0]n×n; Repeat until V = ∅:

(a) L = GetNewLeader(V, C);

(b) C,MI += MakeCluster(L,V,MIN ,MIC).

2. nbClusters = size(C);
Repeat for p = 1, · · · , nbClusters:
(a) Repeat for i1, i2 : Xi1 , Xi2 ∈ Cp:

i. MI[i1, i2] = CompMI(Xi1 , Xi2 , D);
ii. MI[i2, i1] = MI[i1, i2].

(b) Repeat ∀q < p : Cq ∈ Neibhors(Cp):

Repeat for i1, i2 : Xi1 ∈ Cp, Xi2 ∈ Cq:
A. MI[i1, i2] = CompMI(Xi1 , Xi2 , D);
B. MI[i2, i1] = MI[i1, i2].

3. S = CompKruskal(MI); Return S.

In the second step of the algorithm, the mu-
tual information of all potentially interesting
pairs (Xi, Xj) are computed and used as edge-
weights for the MWST algorithm. Interesting
pairs (a) are in the same cluster or (b) span
two neighboring clusters, i.e one variable of one

cluster is a neighbor of the other cluster. In ad-
dition, all edges evaluated during the clustering
process are used as candidate edges.

The complexity of this algorithm is between
linear and quadratic in the number of variables,
depending on the numerical values of MIC and
MIN and the problem structure.

3.4 Inertial search heuristic

This algorithm (Ammar et al., 2010) for com-
puting a sequence of sub-optimal MWST was
designed to improve the base method from sec-
tion 3.2. In this work we also apply it to the
vertex clustering algorithm (section 3.3).

The inertial method takes advantage of the
Markov tree structure Si−1 built in the previ-
ous iteration to partially fill the new MIi ma-
trix. The weights (recomputed in case boot-
strap copies of the dataset are used) of the edges
of the Markov tree built at the previous itera-
tion i− 1 are first written in the MIi matrix of
the current iteration i, and a new set of edges
generated by the base method (either at random
or by vertex clustering) is inserted afterwards.
This is described by Algorithm 5.

The complexity of this method is similar to
the base method.
Algorithm 5 (Inertial research procedure).

1. MIi = [0]n×n ;
Repeat for k = 1, · · · , nbEdges(Si−1):

(a) (i1, i2) = GetIndices(GetEdge(Si−1, k));
(b) MIi[i1, i2] = CompMI(Xi1 , Xi2 , D);
(c) MIi[i2, i1] = MIi[i1, i2].

2. Repeat for k = 1, · · · , nbEdges(BaseMethod):

(a) (i1, i2) = indices of edge k from BaseMethod;
(b) MIi[i1, i2] = CompMI(Xi1 , Xi2 , D);
(c) MIi[i2, i1] = MIi[i1, i2].

3. Si = CompKruskal(MIi); Return Si.

Ammar et al. 21

3.5 Other variants

Two other variants (baselines) were also consid-
ered, namely random trees and bagging.

The first one draws a tree structure totally at
random (i.e. independently from the dataset)
through the use of Prüfer lists. Complexity is
linear in n (Ammar et al., 2008).

Bagging can also be used to increase random-
ization in a given method, by supplying a boot-
strap replica of the original dataset to any tree-
structure learning algorithm. This may actually
be quite productive in order to randomize tree
structures (see the results below). However, as
far as accuracy is concerned, it turns out to be
preferable to use the full dataset for parame-
ter estimation of each Markov tree generated
by this method (Schnitzler et al., 2010).

4 Empirical simulations

We apply the algorithm variants described in
Section 3 to synthetic problems to assess their
performance. We carried out repetitive exper-
iments for different data-generating (or target)
densities as described in Section 4.1; our results
are reported in Section 4.2.

4.1 Experimental protocol

We present here results obtained on 10 differ-
ent target distributions over n = 1000 binary
variables, and we report them for mixtures and
datasets of various sizes.

Target density generation Target densities
are synthetic distribution factorizing according
to a general directed acyclic graph structure.
These models (structure and parameters) are
generated by the algorithm described in (Am-
mar et al., 2008).

Datasets We focus our analysis on rather
small datasets (N = 100, 250, 1000) with re-
spect to the number n = 1000 of variables.
This replicates the usual situation in high-
dimensional problems, which are the motivation
of this work. For each considered sample size
and for each target distribution, we generate 5
different datasets.

Mixture learning For a given dataset, and
for a given tree structure learning algorithm,
we apply the mixture learning algorithm (Algo
1) by generating ensemble models of growing
sizes (m = 1,m = 10, . . . ,m = 150) in order to
appraise the effect of the ensemble size on the
quality of the resulting model.

In all our simulations, the parameters of
the Markov tree models are learned from the
dataset by maximum a posteriori estimation us-
ing uniform Dirichlet priors.

In our empirical tests we have always
weighted the individual terms uniformly (i.e.
µ = 1/m in Algorithm 1).

Accuracy evaluation We assess the qual-
ity of each generated mixture by the Kullback-
Leibler divergence (Kullback and Leibler, 1951),
an asymmetric measure of similarity of a given
distribution PT̂ to a target distribution PG, de-
fined by

DKL(PG || PT̂) =
∑
X∈X

PG(X) log2

(
PG(X)
PT̂ (X)

)
.

Since screening all 21000 configurations of X
is not possible, we estimate this quantity by
Monte Carlo using a random sample of config-
urations generated according to PG:

D̂KL(PG || PT̂) =
∑
X∼PG

log2

(
PG(X)
PT̂ (X)

)
.

In this work, we generated for each data-
generating distribution and each learning algo-
rithm a fixed set of 50000 samples, which is then
used for the Monte Carlo estimation of DKL of
the models produced by the algorithm applied
to the datasets issued from this distribution and
with a growing number of mixture terms m.

4.2 Results and discussion

Table 1 describes the algorithm variants that
we have evaluated, recalls their computational
complexities, and also gives indications of their
relative computing times in our implementa-
tion. The performances of these algorithms in
terms of accuracy (DKL estimates) are reported
in Figures 2 and 3. As reference method we use
the Chow and Liu single tree method (denoted
by CL in the table and figures).

22 Ammar et al.

Table 1: In the names of the algorithms we study, D means no alteration to the dataset and B
the use of bootstrap replica. m,n,K stand for the number of terms in the mixture, of variables
and of sampled pairs of variables. U emphasizes the fact that we are using uniform weights in the
mixture. (CPU times are given for n = 1000 variables)

Name Tree generation Dataset Complexity running time (one tree)

MTU random D mn 0.0017

ESBU rand. Edge Samp. B mK log(K) 0.02
ESDU rand. Edge Samp. D mK log(K) 0.02
IESBU Inertial Edge Samp. B mK log(K) 0.02
IESDU Inertial Edge Samp. D mK log(K) 0.02

IESDU% Inertial Edge Samp. D (K = 165000) 0.72
VCDU Vert. Clust D up to mn2 log(n) 0.92
IVCDU Inertial Vert. Clust D up to mn2 log(n) 0.92

CL Chow-Liu D n2 log(n) 1
CLBU Chow-Liu B mn2 log(n) 1

0 50 100 150
5

10

15

20

25

30

35

40

45

50

55

Number of mixture components

K
L

 d
iv

er
ge

nc
e

(a) 1000 samples.

0 50 100 150
15

20

25

30

35

40

45

50

55

60

Number of mixture components

K
L

 d
iv

er
ge

nc
e

(b) 250 samples.

0 50 100 150
40

45

50

55

60

65

70

75

Number of mixture components

K
L

 d
iv

er
ge

nc
e

MTU
ESBU
ESDU
IESBU
IESDU
VCDU
IVCDU
CL
CLBU

(c) 100 samples.

Figure 2: Average performance of the algorithms described in Table 1 on 5 target distributions of
1000 variables times 10 datasets, with sample sizes decreasing.

Figures 2(a) and 3 display the resulting D̂KL

values for growing mixture sizes m on datasets
of 1000 samples. From Fig. 2(a) we observe
that vertex clustering (VCDU) seems far better
than random edge sampling (ESDU).

The comparison is however not fair, because
VCDU samples approximately 33% of all edges
at each iteration, and ESDU only 1.4%. To pro-
vide a more accurate comparison, the latter was
modified (ESDU%, in Figure 3 and Table 1) to
use the same number of edges than VCDU. The
results exposed in Figure 3 with this setting con-
firm that VCDU is also superior to ESDU%.

The inertial heuristic can be used to enhance
both methods (IESDU, IVCDU) with nearly no
additional complexity cost (see Table 1), leading
to an increase in the improvement rate with the
size of the model. Figures 2(a) and 2(b) show

that IVCDU converges to a model slightly bet-
ter than the CL tree (the best edges have been
found, so the optimal tree is always learned),
while the inertial randomized methods (IRB
and IRS) with a complexity close to quasi-linear
tend to approach CL when the number of mix-
ture components grows and surpasses IVCDU
which complexity is higher.

The same convergence can be observed for
IESDU% (IESDU on 33% of edges instead of
1.4%) in Fig. 3, which also converges to the CL
tree, albeit slower than IVCDU.

ESDU is degraded by the use of bagging
(ESBU), and both methods yield performance
only slightly better than random structures
(MTU). We therefore conjecture that the low
quality (as opposed to the low number) of edges
used in ESDU introduces too much randomiza-

Ammar et al. 23

0 50 100 150
0

10

20

30

40

50

60

Number of mixture components

K
L

 d
iv

er
ge

nc
e

ESBU
IESDU
IESBU
VCDU
IVCDU
ESBU%
IESDU%
IESBU%

Figure 3: A comparison between vertex cluster-
ing and random edge sampling methods, where
the latter are modified to use the same number
of edges than the first, shows that vertex clus-
tering is still clearly superior. (1000 samples)

tion to benefit from bagging. Indeed, when the
quality of the edges considered increases over
time (IESDU) bagging actually ameliorates the
method. This hints towards that considering
the use of bagging methods with CL trees or
with the inertial vertex clustering could proba-
bly be improved by computing the best edges
(i.e. significant on the original dataset) only
once instead of repeating it for every new tree.

Experiments performed on sample sets of size
250 and 100 are reported in Fig. 2(b) and 2(c).
Decreasing the number of samples from 1000 to
250 does not modify the results very much, as
illustrated in Fig. 2(b). The main difference lies
in the relative performance of all methods com-
pared to CL algorithm, which seem to improve
faster as m increases. This tends to indicate
that randomization is increasingly more benefi-
cial as the number of samples decreases.

The observation of the behavior of the bag-
ging methods in Figure 2 further confirms this
analysis. The gap between pairs of methods us-
ing the same algorithm on the original dataset
or on bootstrap replicas (CL - CLBU, ESDU
- ESBU, IESDU - IESBU) is widening when
the number of samples is decreasing. Bagging
of Chow-Liu trees (CLBU) is actually the best
method on all dataset sizes. However, using
bagging with inertial procedures and edge sam-

pling yields also impressive results: the curve
IESBU converges to CLBU in Fig. 2(c), while
the IESBU algorithm has a much lower com-
plexity than CLBU.

An alternative way to understand these re-
sults is in terms of over-fitting. From Fig. 2(c)
we can see that IVCDU first surpasses CL after
a few iterations, but the addition of subsequent
terms worsens the mixture, which converges to
the CL curve. Actually, at that point the model
has fully learned the optimal tree, and it is re-
peatedly added to the model. The rise of the
curve at that point signals the over-fitting. In
addition, we can notice that MTU, the method
using structures drawn independently from the
dataset behaves better than most other meth-
ods in this context.

Observing the first tree of each model in the
same figure, we can observe over-fitting again.
IESBU (and ESBU) is better than IESDU (and
ESDU). Likewise, the first term of CLBU is bet-
ter than CL. A tree structure learned on a per-
turbed dataset leads to a graphical model that
is more general.

This behavior is still present at 250 samples,
but is no longer noticeable at 1000 : IESBU
and IESDU start at the same point, and the
first bagged tree is worse than the optimal.

The application of BDeu weights (not re-
ported in this paper) to the methods presented
here leads to similar conclusions. But we found
out that many methods actually display worse
performances in terms of accuracy when com-
bined with such Bayesian weights. This is un-
derstandable, since weighting each structure by
its posterior probability makes sense for MTU
only, since asymptotically only in this con-
text the mixture will converge to a canonical
Bayesian method. The methods that benefit the
most from those ‘Bayesian’ weighting scheme
are IRSBU and IRSDU. The first terms (built
with few information) are gradually eliminated
in favor of those identified later on (where the
inertial procedure has iteratively improved the
quality of the edges).

24 Ammar et al.

5 Conclusions and future works

In this paper, we have compared several ran-
domization methods aiming to approximate the
Chow-Liu algorithm, with the objective of re-
ducing its computational complexity in the con-
text of learning mixtures of trees, and moti-
vated by the variance reduction potential of ran-
domization in the context of learning in high-
dimensional problems.

Based on our results on synthetic experi-
ments, we claim that, in real conditions, i.e.
when the number of samples is much smaller
than the number of variables, randomization is
interesting for probability density estimation in
the form of mixtures of Markov Trees. That
interest actually increases when the number of
samples goes down, or when the dimensionality
of the space is increasing.

In addition, we have shown that exploiting
the structure of the problem by focussing on
strong edges leads to methods able to com-
pete in terms of performance with more time-
consuming procedures like bagging.

We therefore plan to keep investigating this
approach. In particular, a candidate area for
improvement is the transmission of knowledge
between terms. Increasing the number of reused
edges might speed up the convergence. Another
direction of research would be the consideration
of continuous variables, and the consideration
of a priori known dependency/independency
structures for the given problem.

Acknowledgments

This work was supported by FRIA/FNRS Bel-
gium, Wallonie Bruxelles International, the
French ministry of foreign and European affairs,
the MESR in the framework of Hubert Curien
partnerships, the BioMaGNet IUAP network of
the Belgian Science Policy Office and the Pas-
cal2 NOE of the EC-FP7. The scientific respon-
sibility rests with the authors.

References

S. Ammar, Ph. Leray, B. Defourny, and L. We-
henkel. 2008. High-dimensional probability den-
sity estimation with randomized ensembles of
tree structured Bayesian networks. In Proceed-
ings of the fourth European Workshop on Proba-

bilistic Graphical Models (PGM’08), pages 9–16,
Hirtshals, Denmark.

S. Ammar, Ph. Leray, B. Defourny, and L. We-
henkel. 2009. Probability density estimation by
perturbing and combining tree structured Markov
networks. In Proceedings of the 10th Euro-
pean Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty (EC-
SQARU 2009), pages 156–167, Verona, Italy.

S. Ammar, Ph. Leray, and L. Wehenkel. 2010. Sub-
quadratic Markov tree mixture models for prob-
ability density estimation. In 19th International
Conference on Computational Statistics (COMP-
STAT 2010), pages 673–680, Paris, France.

V. Auvray and L. Wehenkel. 2002. On the con-
struction of the inclusion boundary neighbour-
hood for Markov equivalence classes of Bayesian
network structures. In Adnan Darwiche and Nir
Friedman, editors, Proceedings of the 18th Con-
ference on Uncertainty in Artificial Intelligence
(UAI-02), pages 26–35, S.F., Cal. Morgan Kauf-
mann Publishers.

L. Breiman. 1996. Arcing classifiers. Technical re-
port, Dept. of Statistics, University of California.

C.K. Chow and C. N. Liu. 1968. Approximating dis-
crete probability distributions with dependence
trees. IEEE Transactions on Information The-
ory, 14(3):462–467.

G.F. Cooper. 1990. The computational complex-
ity of probabilistic inference using bayesian belief
networks. Artificial Intelligence, 42(2-3):393–405,
March.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. 2001. Introduction to Algorithms, Sec-
ond Edition. MIT Press and McGraw-Hill.

S. Kullback and R. Leibler. 1951. On information
and sufficiency. Annals of Mathematical Statis-
tics, 22(1):79–86.

M. Meila and M. I. Jordan. 2000. Learning with
mixtures of trees. Journal of Machine Learning
Research, 1:1–48.

J. Pearl. 1986. Fusion, propagation, and structuring
in belief networks. Artificial Intelligence, 29:241–
288.

F. Schnitzler, Ph. Leray, and L. Wehenkel. 2010. To-
wards sub-quadratic learning of probability den-
sity models in the form of mixtures of trees. In
18th European Symposium on Artificial Neural
Networks, Computational Intelligence and Ma-
chine Learning (ESANN 2010), pages 219–224,
Bruges, Belgium.

Pp. 25–33 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

���������
	�����������
������������� �"!
#$�&%('
#*)+	,���-	��.�/��0	$����"#
�1��2����0	$�"�435�6)87����+9:�;#$��� �0	=<-���+�

>�?A@CBD@FEHGAI�J�KL?A@LMON PHGQ@LJ�KL?-ERMSBDTSUD?
?A@LV�WXBDVCI$GZY[?\I$I�?^]@L?_Q?
`�Bba^?\Ic?Ad
BD@ec=G�VCBgf*@ec=BDThMS_ABD@LJbMh?
i�IcMkj JbMh?ATONClL?AJbmLTSc$?AVFVCBgf*@CnoGAI�dqp?\c$MhJb?

r�@LMSsABbI�t$MhVL?AVuWXGQThMSc�pBDJb@LMhJb?-VCBwvx?AVCI�MhV+NCEHGQ?AVLMhThTh?VCBDT�vFGQ@ec=BAN0yAzA{A{\|8N0vx?AVCI�MhV+N^}�a^?AMh@+~
KL?A@CBD@+~ �0GAI�J�KL?A@LMo��mCa^d�~ BDtbN^��d-J��^MSBDTSUD?8NCa0BDVCI$GC~ Th?\I$I�?A@L?_Q?��\��j[~ mCa^d�~ BDt

���X�b�����L�A�
vxmLTSc$Mk��VLMhd
BD@Lt$MSGQ@L?AT ER?D�ABDt$Mh?A@x@CBbc��HGAI$��JbTh?At$t$Mkj^BbI�t���vxE"PRt���KL?DsABw�0BbBD@�I$BDJ�BD@ec$TS��Mh@ec=I$G8VLmLJ�BDVuc=G
VCBD?AT[��MSc$KFd�mLTSc$Mk��VLMhd
BD@Lt$MSGQ@L?AT+JbTh?At$t$Mkj Jb?\c$MSGQ@�aLI$GA�^TSBDd-t"��KCBbI$B�Mh@Lt=c$?A@LJ�BDt�?\I$B?AttMS_Q@CBDVFc=Gud�mLTk�
c$MSa^TSB-JbTh?At$t=BDtb~�vxE"PRt�KL?DsABu?�I$BDt=c=I�MhJ�c=BDV�c=GAa0GQTSGA_A��a^?\IcMSc$MSGQ@LMh@C_�c$KCBZt=Bbc�GAn�JbTh?At$t�?A@LV�noBD?\c$mCI$B
s\?\I�Mh?\�^TSBDtuMh@ec=G�cKCIBbB�VLMk�0BbI$BD@ec�t$mC�L_AI�?\a^KLtb��JbTh?At$t�t$mC�L_AI�?\a^K+N�noBD?\cmCIB�t$mC�L_AI�?\a^K�?A@LV��LI�MhVC_AB
t$mC�L_AI�?\a^K+~ f*@qc$KLMht-a^?\a0BbIDNH�HBFaLI$GAa0GQt=BF?¡@CG�sABDT�TSBD?\I�@LMh@C_�?ATS_AGAI�MSc$KLd¢noGAI�JbTh?At$t*�£�LI�MhVC_AB¡�£PRE"�
VCBDJ�GQd
a0GQt$?\�^TSBZvxE"PRt�Mh@ec=GFd-?�¤CMhd-?AT/J�GQ@L@CBDJ�c=BDV¥J�GQd
a0GQ@CBD@ec$tb~�ER?At$MhJb?AThTS�ANX�^?At=BDV�GQ@¥?��"I�?\aC�
a0BbIR_AI$BbBDVC�ZnoGAI$�R?\I�V�t=BDTSBDJ�c$MSGQ@�?\aLaLI$GQ?AJ�K+N8c$KCB�?ATS_AGAI�MSc$KLd¦j^I�t=c$TS�-TSBD?\I�@LtHc$KCBg�LI�MhVC_AB�?A@LVunoBD?\cmCIB
t$mC�L_AI�?\a^KLtb~u§"KCBD@+N[��KLMhTSB
c$KCB�@�mLdw�0BbI�GAn"J�GQd
a0GQ@CBD@ec$t�Mht�_AI$BD?\c=BbIc$KL?A@�GQ@CB�?A@LV¡c$KCBbI$BZMhtw?A@
?AJbJbmCI�?AJ���Mhd
aLI$G�sABDd
BD@ecbN/MScMSc=BbI�?\c$MSsABDTS�¡?A@LV�t=BD¨�mCBD@ec$Mh?AThTS�¡d
BbI$_ABDtc=GA_ABbc$KCBbI-c$KCB�J�GQd
a0GQ@CBD@ec$tbN
?A@LV�mCa+VL?\c=BDt/c$KCB��LI�MhVC_AB�?A@LVZnoBD?\cmCIB�t$mC�L_AI�?\a^KLtb~�EH�ZTSBD?\I�@LMh@C_PRE/��VCBDJ�GQd
a0GQt$?\�^TSB�vxE"PRtbN8c$KCB
J�GQd
a^mCc$?\c$MSGQ@LtRGAn6vxW/© ?\I$B�?AThTSBbs8Mh?\c=BDV�J�GQd
a^?\I�Mh@C_c=G
_ABD@CBbI�?AT�vxE"PRtb~/©�¤8a0BbI�Mhd
BD@ec$?AT0J�GQd
a^?\I=�
Mht=GQ@x��MSc$Kxt=c$?\c=B��£GAnª�£c$KCB���?\I$c�?ATS_AGAI�MSc$KLd-t�?\I$B
Jb?\I$I�MSBDVxGQmCcgmLt$Mh@C_�t=�8@ec$KCBbc$MhJ?A@LVxI$BD?ATk�£�HGAI�ThVxVL?\c$?
t=Bbc$tb~/§"KCBgGA�Lc$?AMh@CBDV�IBDtmLTSc$t�t$KCG��1c$KCBwd
BbI�MSc$tRGAn6GQmCI�aLI$GAa0GQt=BDV�?ATS_AGAI�MSc$KLd�~

« ¬�[®A¯Q°�±/²/³�®Q´£°[

vxmLTSc$Mk��VLMhd
BD@Lt$MSGQ@L?AT6JbTh?At$t$Mkj Jb?\c$MSGQ@ �os\?A@¡VCBbI
µ�?A?_
?A@LVFVCBw¶�?A?ATON�y\|A|Q{Q��Mht�?A@FB�¤8c=BD@Lt$MSGQ@�GAn�c$KCB�JbTh?At*�
t$MhJb?ATRGQ@CB���VLMhd
BD@Lt$MSGQ@L?ATHJbTh?At$t$Mkj Jb?\c$MSGQ@���KCBbI$BuBD?AJ�K
Mh@Lt=c$?A@LJ�B�_QMSsABD@q����?�sABDJ�c=GAI�GAn�·4noBD?\cmCIBDt-¸º¹
�o»�¼D½b¾S¾S¾S½=»^¿���Mht-?At$t=G8JbMh?\c=BDV+NH��MSc$K�@CGAc-GQ@LTS�¥?�t$Mh@8�
_QTSB
JbTh?At$t�s\?AThmCBAN+�^mCc���MSc$Kx?ut=Bbc�GAnHÀ�JbTh?At$t�s\?AThmCBDt
� ¹º��Á�¼D½b¾S¾S¾S½$Á�Â\��~RvxmLTSc$Mk��VLMhd
BD@Lt$MSGQ@L?AT JbTh?At$t$Mkj Jb?\c$MSGQ@
KL?At�0BbBD@�d
GAc$MSs\?\c=BDV����¡t=BbsABbI�?AT"?\aLa^ThMhJb?\c$MSGQ@¥VCG\�
d-?AMh@Ltb~�lCGAI�Mh@Lt=c$?A@LJ�BANHMh@�c=B�¤8cZJb?\c=Bb_AGAI�MSUD?\c$MSGQ@+N"?
c=B�¤8cZVCG8JbmLd
BD@ec
d-?D���0B�?AttMS_Q@CBDV�c=G�d
GAI$B�c$KL?A@
GQ@CB�c=GAa^MhJ\Ã Mh@�t$J�BD@CB�JbTh?At$t$Mkj Jb?\c$MSGQ@+NCBD?AJ�KÄt=BDd-?A@ec$MhJ
t$J�BD@CB�d-?D�¡�0B�?At$t$MS_Q@CBDV¥c=G�t=BbsABbI�?AT�JbTh?At$t=BDtbN�t$mLJ�K
?At6�0BD?AJ�K+NQt$mL@Lt=Bbc�?A@LVd
GQmL@ec$?AMh@+ÃQMh@�d
BDVLMhJb?AT8VLMh?_\�
@CGQt$MhtbN ?-a^?\c$MSBD@ec�d-?D���0Bwt$m8�0BbI�Mh@C_-noI$GQd&d�mLTSc$MSa^TSB
VLMht=BD?At=BDtbNCBbc$J\~
f*@(I$BDJ�BD@ec¢�ABD?\I�tbNÅc$KCB4J�GQ@LJ�BbaLc�GAnÆd�mLTSc$Mk�

VLMhd
BD@Lt$MSGQ@L?AThMSc���KL?At��0BbBD@ZMh@ec=I$G8VLmLJ�BDV-Mh@-ER?D�ABDt$Mh?A@
@CBbc��HGAI$��JbTh?At$t$Mkj^BbI�t��os\?A@FVCBbI�µ�?A?_u?A@LV�VCB�¶�?A?ATON
y\|A|Q{�ÃÇVCBÈ¶�?A?ATÉ?A@LV:s\?A@ÊVCBbIÆµ�?A?_CNËy\|A|eÌeÃ
Í"G8VCI�pÎ _QmCBbUÏ?A@LVÆY�GAUD?A@CGCN�y\|A|Qz�Ã;ERMSBDTSUD?ÐBbc;?ATO~SN
y\|CÑb|e��~
f*@Äc$KCBDt=B
aLI$GA�^?\�^MhThMht=c$MhJ�_AI�?\a^KLMhJb?AT6d
G8VCBDThtbN

�8@CG���@q?At-d�mLTSc$Mk��VLMhd
BD@Lt$MSGQ@L?AT/ER?D�ABDt$Mh?A@ @CBbc��HGAI$�
JbTh?AttMkj^BbI�tg��vxE"PRt���NLc$KCBg_AI�?\a^KLMhJb?AT0t=c=I�mLJ�cmCIB�a^?\I=�
cMScMSGQ@Lt�c$KCB�t=Bbc�GAn+JbTh?At$t�?A@LV
noBD?\cmCIB�s\?\I�Mh?\�^TSBDt�Mh@ec=G
cKCIBbB�VLMk�0BbI$BD@ecwt$mC�L_AI�?\a^KLtb��JbTh?At$t�t$mC�L_AI�?\a^K+N[noBD?��
cmCIBRt$mC�L_AI�?\a^K�?A@LV��LI�MhVC_ABHt$mC�L_AI�?\a^K+NA?A@LV�c$KCBRa^?��
I�?Ad
Bbc=BbI
t=BbcVCB�j @CBDt�c$KCBuJ�GQ@LVLMSc$MSGQ@L?AT�aLI$GA�^?\�^MhThMSc��
VLMht=c=I�MS�^mCc$MSGQ@ZGAnXBD?AJ�KFs\?\I�Mh?\�^TSB�_QMSsABD@�MSc$t�a^?\I$BD@ec$tb~
Ò @CBFGAngc$KCBxd
GQt=cuJ�KL?AThTSBD@C_QMh@C_�aLI$GA�^TSBDd-t
��MSc$K

vxE"P�d
G8VCBDThtRMh@esAGQTSsABDtHc$KCB�d
GQt=cRaLI$GA�^?\�^TSB�B�¤8a^Th?��
@L?\c$MSGQ@¥��vxW/©R�"J�GQd
a^mCc$?\c$MSGQ@+N^��KLMhJ�K�Mht"�8@CG���@�c=G
�0B�Ó�W���KL?\I�V�Mh@¥_ABD@CBbI�?ATONH?A@LV�aLI$BDt=BD@ec$t
?�t$MS_Q@LMkjL�
Jb?A@ec�J�GQd
a^TSB�¤CMSc��ÄBDt=a0BDJbMh?AThTS�F��KCBD@�c$KCB�vxE"PÔKL?At
?-Th?\I$_AB�@�mLdw�0BbI�GAn�JbTh?At$t�s\?\I�Mh?\�^TSBDtb~
f*@Äc$KLMht�a^?\a0BbIDN+Mh@xGAI�VCBbIgc=G�?AThTSBbs8Mh?\c=Bc$KCB-vxW/©

J�GQd
a^mCc$?\c$MSGQ@L?ATR�^mCI�VCBD@+N��HB�J�GQ@Lt$MhVCBbI
c$KCB�n�?Ad-MhTS�
GAn[JbTh?At$t*�£�LI�MhVC_AB�VCBDJ�GQd
a0GQt$?\�^TSB�d�mLTSc$Mk��VLMhd
BD@Lt$MSGQ@L?AT
ER?D�ABDt$Mh?A@Ä@CBbc��HGAI$��JbTh?AttMkj^BbI�tw�£PRE/��VCBDJ�GQd
a0GQt$?\�^TSB
vxE"PRt��
Mh@ec=I$G8VLmLJ�BDV�����ERMSBDTSUD?Bbc�?ATO~��Oy\|CÑb|8��~�f*@
n�?AJ�cbN����ÕVCBDJ�GQd
a0GQt$Mh@C_ÐJbTh?At$t�?A@LV&�LI�MhVC_ABÏt$mC�C�
_AI�?\a^KLt�GAn¥?A@ÆvxE"PÊ_AI�?\a^KLMhJb?ATÄt=c=I�mLJ�cmCIBÖMh@ec=G
× d-?�¤CMhd-?ATJ�GQ@L@CBDJ�c=BDVºJ�GQd
a0GQ@CBD@ec$tbNc$KCB�d-?�¤CMk�
d-MSUD?\c$MSGQ@ºaLI$GA�^TSBDdØnoGAI¥vxW/©ÅJ�GQd
a^mCc$?\c$MSGQ@ÐJb?A@

26 Borchani et al.

�0B�c=I�?A@Lt=noGAI�d
BDV Mh@ec=G × d-?�¤CMhd-MSUD?\c$MSGQ@qaLI$GA�^TSBDd-t
GAa0BbI�?\c$Mh@C_�Mh@qTSG��HBbIuVLMhd
BD@Lt$MSGQ@L?ATRt=a^?AJ�BDtb~�vFGAI$B��
G�sABbIDN/mLt$Mh@C_�PRE/��VCBDJ�GQd
a0GQt$?\�^TSBuvxE"PRtd-?D��aLI$G\�
s8MhVCBgd
GAI$BwMh@Lt$MS_QKec�?\�0GQmCc�c$KCBwVCGQd-?AMh@�?A@LV��0Bbc=c=BbI
Mh@ec=BbIaLIBbc$?\�^MhThMSc��
GAnXTSBD?\I�@CBDVut=c=I�mLJ�cmCIBDtRc$KL?A@�Th?\I$_AB
?A@LVuJ�GQd
a^TSB�¤uvxE"PRtR��KLMhJ�K�KL?DsAB�@CGB�¤8a^ThMhJbMSc/I$BbaC�
I$BDt=BD@ec$?\c$MSGQ@�noGAI�VCGQd-?AMh@�VCBDJ�GQd
a0GQt$?\�^MhThMSc��A~
>�G��HBbsABbIDNËPRE/��VCBDJ�GQd
a0GQt$?\�^TSBÈvxE"PRt5d
BbI�MSc$t

KL?DsABx�0BbBD@ GQ@LTS��VLMht$JbmLt$t=BDVq?A@LVqaLI$G�sABDV�c$KCBbGAI$Bbc*�
MhJb?AThTS��Mh@;��ERMSBDTSUD?xBbc
?ATO~SNHy\|CÑb|e��NR?A@LV�@CG�TSBD?\I�@LMh@C_
?\aLaLI$GQ?AJ�Kx@CGAI�?A@FB�¤8a0BbI�Mhd
BD@ec$?AT�t=c$mLVC��KL?DsAB��0BbBD@
aLI$BDt=BD@ec=BDVqc=G¡BDd
a^MSI�MhJb?AThTS�¥VCBDd
GQ@Lt=c=I�?\c=B�c$KCBxmLt=B��
n�mLTh@CBDt$tHGAn6c$KLMht�@CBb�1n�?Ad-MhTS�ZGAn6vxE"PRtb~
f*@ÐGAI�VCBbI�c=GÖc$?AJ$�8TSB;c$KCBDt=B;t$KCGAIcJ�GQd-Mh@C_QtbNu�HB

aLI$GAa0GQt=BZMh@�c$KCB-aLI$BDt=BD@ecw�HGAI$��?F@CG�sABDTH?ATS_AGAI�MSc$KLd
noGAI�TSBD?\I�@LMh@C_�PRE/��VCBDJ�GQd
a0GQt$?\�^TSB
vxE"PRt��^?At=BDVÄGQ@
?¡�"I�?\aLa0BbIZ_AI$BbBDVC�qnoGAI$�R?\I�V�t=BDTSBDJ�c$MSGQ@�?\aLaLI$GQ?AJ�K+~
EHI$GQ?AVLTS��t=a0BD?\�8Mh@C_CNQMh@
?�j^I�t=c6a^KL?At=B�GQmCI�?ATS_AGAI�MSc$KLd
TSBD?\I�@Lt-?�PRE/��VCBDJ�GQd
a0GQt$?\�^TSBFvxE"P5��MSc$Kq?�@�mLd�
�0BbI�GAnXd-?�¤CMhd-?AT+J�GQ@L@CBDJ�c=BDV�J�GQd
a0GQ@CBD@ec$t�BD¨�mL?AT0c=G
c$KCB�@�mLdw�0BbI
GAn�JbTh?At$t
s\?\I�Mh?\�^TSBDtb~�§"KLMhtMht
Jb?\I$I�MSBDV
GQmCcw����TSBD?\I�@LMh@C_�?Ft=BDTSBDJ�c$MSsAB�@L?AMSsAB�ER?D�ABDt���Y[?A@C_\�
TSBb�¥?A@LV }8?_ABAN�ÑDÙAÙ�Ú���noGAI
BD?AJ�K JbTh?At$ts\?\I�Mh?\�^TSB�ÛN
c$KCBD@+N I$BDd
G�s8Mh@C_Zc$KCBDMSI�a0GQt$t$MS�^TSB�J�GQd-d
GQ@xJ�KLMhThVCI$BD@
c=G�KL?DsAB?A@FMh@LMSc$Mh?AT �LI�MhVC_AB�t$mC�L_AI�?\a^K�?A@LV�c$KCBwJ�GAI=�
I$BDt=a0GQ@LVLMh@C_�PRE/��VCBDJ�GQd
a0GQt$?\�^TSB�vxE"P�~�f*@�?�t=BDJ��
GQ@LV�a^KL?At=BAN6?�noBD?\cmCIBZt$mC�L_AI�?\a^K�VCB�j @LMh@C_�VCBba0BD@8�
VCBD@LJ�B�I$BDTh?\c$MSGQ@Lt$KLMSa^t��0Bbc��HBbBD@qc$KCBFt=BbcZGAn�noBD?\cmCIB
s\?\I�Mh?\�^TSBDtwMht�TSBD?\I�@CBDV+~xl6Mh@L?AThTS�AN6Mh@¥?Fc$KLMSI�V�a^KL?At=BAN
��KLMhTSB/c$KCB�@�mLdw�0BbIXGAn d-?�¤CMhd-?AT8J�GQ@L@CBDJ�c=BDV-J�GQd
a0G\�
@CBD@ec$t�Mht�_AI$BD?\c=BbIgc$KL?A@FGQ@CB?A@LVFc$KCBbI$BMht�?A@Ä?AJbJbm8�
I�?AJ��gMhd
aLI$G�sABDd
BD@ecbN\c$KCB/?ATS_AGAI�MSc$KLd1MSc=BbI�?\c$MSsABDTS�g?A@LV
t=BD¨�mCBD@ec$Mh?AThTS��d
BbI$_ABDt�c=GA_ABbc$KCBbIxc$KCB¥J�GQd
a0GQ@CBD@ec$tbN
c$KCBD@�mCa+VL?\c=BDt/c$KCB��LI�MhVC_AB�?A@LVZnoBD?\cmCIB�t$mC�L_AI�?\a^KLtb~
§"KCBZI$BDd-?AMh@LVCBbIwGAn�c$KLMhtwa^?\a0BbI�Mht�GAI$_Q?A@LMSUbBDV�?At

noGQThTSG���tb~-f*@¥}�BDJ�c$MSGQ@¡yu�HBZI$Bbs8MSBb�ºc$KCB-VCB�j @LMSc$MSGQ@Lt
GAn[vxE"PRtR?A@LV�PRE/��VCBDJ�GQd
a0GQt$?\�^TSB�vxE"PRtb~�f*@�}�BDJ��
c$MSGQ@;Ü¡�HB�VCBDt$J�I�MS�0BFGQmCI�?ATS_AGAI�MSc$KLdÝnoGAI�TSBD?\I�@LMh@C_
PRE/��VCBDJ�GQd
a0GQt$?\�^TSB�vxE"PRt�noI$GQd5VL?\c$?8~�f*@F}�BDJ�c$MSGQ@
Ú��HB�aLI$BDt=BD@ec-B�¤8a0BbI�Mhd
BD@ec$?AT�t=BbcZmCa ?A@LV�I$BDt$mLTSc$tb~
l6Mh@L?AThTS�ANC�HBwI$GQmL@LV�G\��c$KCBwa^?\a0BbI"��MSc$K�t=GQd
B�J�GQ@8�
JbThmLt$MSGQ@LtRMh@F}�BDJ�c$MSGQ@xÞ�~

ß àÕ²/áO®Q´�âb±/´�ã�ä^/å\´£°[�æ+á�çuæCè[ä^å\´£æ+
é äC®Dêu°�¯QëÖìuá£æ+å\å\´OíHäL¯eå

iÐER?D�ABDt$Mh?A@¥@CBbc��HGAI$�xG�sABbI?�t=Bbc�GAnRVLMht$J�I$Bbc=B
I�?A@8�
VCGQdÏs\?\I�Mh?\�^TSBDt6îï¹É�Dðu¼D½b¾S¾S¾S½=ð
ñ �Q½=ò�óÉÑ\NeMht6?�a^?AMSI

ô ¹:�Oõ/Nkö���~Öõ5¹:�£÷�½$øg�-MhtZ?¡VLMSI$BDJ�c=BDV�?AJ��8JbThMhJ
_AI�?\a^KÏ��`"i�µ��-��KCGQt=BFsABbIcMhJ�BDt�÷ÅJ�GAIIBDt=a0GQ@LV�c=G
s\?\I�Mh?\�^TSBDt�îÄN ?A@LV���KCGQt=B�?\I�Jbt�øÖI$BbaLI$BDt=BD@ec�VLMSI$BDJ�c
VCBba0BD@LVCBD@LJbMSBDtX�0Bbc��HBbBD@-c$KCB�sABbI$c$MhJ�BDtb~RöÐMht�?gt=Bbc�GAn
J�GQ@LVLMSc$MSGQ@L?ATHaLI$GA�^?\�^MhThMSc���VLMht=c=I�MS�^mCc$MSGQ@Ltwt$mLJ�K�c$KL?\c
ù�úDû£ü ý � þ úDûoÿ ¹��6�o»���� ý � �o»����=�ZVCB�j @CBDt�c$KCB�J�GQ@LVLMk�
c$MSGQ@L?AT�aLI$GA�^?\�^MhThMSc��¡GAn�BD?AJ�K�a0GQttMS�^TSBus\?AThmCBF»���GAn
ð���_QMSsABD@q?�t=Bbc
s\?AThmCB ý � �o»��£�wGAn�� � �oð�����N/��KCBbI$B� � �oð����RVCBD@CGAc=BDt"c$KCB�t=Bbc"GAn6a^?\I$BD@ec$t�GAn6ð��6Mh@Fõ/~
i�ER?D�ABDt$Mh?A@@CBbc��HGAI$� ô I$BbaLI$BDt=BD@ec$tX?
	=GQMh@ec[aLI$GA�C�

?\�^MhThMSc��ZVLMht=c=I�MS�^mCc$MSGQ@-G�sABbI�îÆn�?AJ�c=GAI�MSUbBDV�?AJbJ�GAI�VLMh@C_
c=GZt=c=I�mLJ�cmCIBwõ�?At�noGQThTSG���tb�

�6�oðu¼D½b¾S¾S¾S½=ð
ñ^��¹ ñ���[¼ �6�oð������ � �oð����=��� �*Ñ��

�������
� � ������� �Zi"!$#&%('*)�+-,�)�!/.10324)65�0�7�%98:7�;�.424)67�00<.='*>?5�@�A$B=%C7D2�24) EF.1@-��vxE"P"�6Mht�?�ER?D�ABDt$Mh?A@Z@CBbc��HGAI$�
ô ¹Ô�Oõ/Nkö��[��KCBbIBHcKCB�t=c=I�mLJ�cmCIB�õ�¹Ô�£÷�½$øg�XKL?At�?
I$BDt=c=I�MhJ�c=BDV�c=GAa0GQTSGA_A�A~�§"KCBRt=Bbc6GAnLsABbIcMhJ�BDtH÷�MhtXa^?\I=�
cMScMSGQ@CBDV�Mh@ec=Gc��HGZt=Bbc$tb�R÷�G�¹É�\Û"¼D½b¾S¾S¾S½�ÛHÂA�Q½$ÀZóÉÑ\N
GAnRJbTh?At$tgs\?\I�Mh?\�^TSBDtg?A@LV¡÷3HË¹5�Dðu¼D½b¾S¾S¾S½=ð
¿w�Q½=· ó
Ñ\N+GAnHnoBD?\cmCIBs\?\I�Mh?\�^TSBDt
��À9I�·Ç¹ÖòX��~�vFGAI$BbG�sABbIDN
c$KCB�t=Bbc�GAn"?\I�Jbtø5Mht�a^?\IcMSc$MSGQ@CBDV¡Mh@ec=GFc$KCI$BbBut=Bbc$t
ø�G/N^øJHÖ?A@LV�ø�G�HwN^t$mLJ�K�c$KL?\cb�K ø�GML:÷�GON�÷�G5Mht�J�GQd
a0GQt=BDV1GAnc$KCB¥?\I�Jbt

�0Bbc��HBbBD@qc$KCB�JbTh?At$t
s\?\I�Mh?\�^TSBDt
KL?Ds8Mh@C_�?�t$mC�C�
_AI�?\a^KÄõ PZ¹Ë�£÷�G/½$ø�G��R�4B=%C7D2�2924#�QSRT@-7�U�V��"GAnHõ
Mh@LVLmLJ�BDV�����÷�GH~K øJHWL�÷3HXN�÷3H1MhtHJ�GQd
a0GQt=BDVZGAn�c$KCB�?\I�JbtH�0B��
c��HBbBD@qc$KCB�noBD?\c$mCI$B�s\?\I�Mh?\�^TSBDt
KL?Ds8Mh@C_�?�t$mC�C�
_AI�?\a^Kuõ<Yq¹Ô�£÷3Hw½$øJH����Z[.\7T'*#&@\.�24#�QSRT@-7�U�V��/GAn
õ�Mh@LVLmLJ�BDV�����÷3H�~K ø�G�H]Lï÷�G^N¥÷3H&MhtJ�GQd
a0GQt=BDV�GAn�c$KCB�?\I�Jbt
noI$GQd¦c$KCB�JbTh?At$t/s\?\I�Mh?\�^TSBDt�c=G�c$KCB�noBD?\c$mCI$B�s\?\I�Mk�
?\�^TSBDtKL?Ds8Mh@C_Ä?�t$mC�L_AI�?\a^K�õ P�YË¹Ç�£÷�½$ø�G�Hw�
�1Q1@4)6,[R_.:24#�QSRT@-7�U�V���GAn[õ�J�GQ@L@CBDJ�c$Mh@C_�JbTh?At$tH?A@LV
noBD?\cmCIB�s\?\I�Mh?\�^TSBDtb~

PRTh?AttMkj Jb?\c$MSGQ@F��MSc$Kx?A@�vxE"PÏmL@LVCBbI�?u|���Ñ
TSGQt$t
n�mL@LJ�c$MSGQ@F?Ad
GQmL@ec$t�c=Gut=GQTSs8Mh@C_-c$KCBd
GQt=c�aLI$GA�^?\�^TSB
B�¤8a^Th?A@L?\c$MSGQ@º��vxW/©R�ZaLI$GA�^TSBDd�N�MO~ BA~ÐnoGAI�?�_QMSsABD@
Bbs8MhVCBD@LJ�Bg¸Ä¹Ô�o»�¼b½b¾S¾S¾S½=»^¿��H�HBwKL?DsAB�c=GZ_ABbcb�

��` ¹Ô��Á ` ¼ ½b¾S¾S¾S½$Á `Â �
¹^a ×Db d-?�¤cedef g g g f c6h �6�£Û"¼R¹�Á�¼D½b¾S¾S¾S½�ÛHÂ�¹�Á�Âi��¸6���Z�OyQ�

Borchani et al. 27

j ¸ ��k ýml �n� ��l6MS_QmCI$B ÑÇt$KCG���tÆ?A@ B�¤C?Ad
a^TSB
GAnÕ?A@ vxE"P t=c=I�mLJ�cmCIBÝõ ¹ õ PpoÈõ<Yqo
õ P�YÝ��KCBbI$B1c$KCBÉt=BbcqGAn�JbTh?At$t�s\?\I�Mh?\�^TSBDt�÷�G ¹
�\Û"¼D½�Ûsr\½�Ûst�½�Û?u\�g?A@LVZc$KCB�t=BbcHGAn�noBD?\c$mCI$B�s\?\I�Mh?\�^TSBDt
÷3H1¹É�Dðu¼D½=ðvr\½=ðvt\½=ð�uA½=ðvw\½=ðvx\�Q~�¶�BwKL?DsABA�

d-?�¤cedef g g g f cSy �6�£Û"¼R¹�Á�¼D½b¾S¾S¾S½�Û?u�¹�Á4ui��¸X�z d-?�¤cedef g g g f cSy �6��Á�¼���6��Á1ri��Á�¼���6��Á1t���6��Á4u���T�6�o»�¼���Á�¼D½=»�r���6�o»�r9��Á�¼D½$Á1r���6�o»�t9�\Á1t�����6�o»�ui��Á1t���6�o»�w9�\Á4u\½=»�¼D½=»�x���6�o»�x9�\Á1t�½=»�t�� �

X1

C1

X2

C2

X3 X4

C3

X5 X6

C4

l6MS_QmCI$B-Ñ\�/i�@�B�¤C?Ad
a^TSBgGAn6?A@FvxE"P�t=c=I�mLJ�cmCIBA~

Ó�GAc=B-c$KL?\c�VCBba0BD@LVLMh@C_ZGQ@�c$KCB
_AI�?\a^KLMhJb?AT6t=c=I�mLJ��
cmCIBDtÇGAn&c$KCB:JbTh?At$tÇ?A@LV noBD?\cmCIB4t$mC�L_AI�?\a^KLt
�HB�Jb?A@ØVLMk�0BbI$BD@ec$Mh?\c=BÇ�0Bbc��HBbBD@ t=BbsABbI�?ATÏn�?Ad-Mk�
ThMSBDt¦GAn1vxE"PRtb~ }8mLJ�K n�?Ad-MhThMSBDt¦Jb?A@Ý�0BïVCB��
@CGAc=BDVF?At|{�}�~ �_���[�_� ���3~��_���D�_���<{����3�3�A���&�_~����3�3��[�_� ���3~��_�p�D�_���<{����3�3�ZvxE"PÉ��KCBbIBwcKCB�a0GQttMS�^TSB
t=c=I�mLJ�cmCIBDtxGAn-BD?AJ�Kºt$mC�L_AI�?\a^KÉd-?D�É�0BA�1BDd
aLc��AN
c=I$BbBAN�a0GQTS��c=I$BbBAN�GAI
`"i�µ�~/vxE"Pºn�?Ad-MhThMSBDt�mLt=BDV¥Mh@
c$KCB�ThMSc=BbI�?\c$mCI$B�Mh@LJbThmLVCBF�_�3�_�&�T�_�3�_�gvxE"P1�os\?A@-VCBbI
µ�?A?_Z?A@LV�VCB�¶�?A?ATON y\|A|Q{Q��N ���&}T�_�_�3�_�&�D���&}T�_�_�3�_�
vxE"P ��VCBÐ¶�?A?AT�?A@LV�s\?A@ÇVCBbIºµ�?A?_CN;y\|A|eÌA��N�3�_� ���D�&�3�_��vxE"P �S��?\UDM�Bbc5?ATO~SNÔy\|A|eÌA��N¦?A@LV�3�_� � �3�_� vxE"Pï��Í"G8VCI�pÎ _QmCBbU�?A@LV�Y�GAUD?A@CGCNHy\|A|QzQ��~
f*@�c$KLMhta^?\a0BbIDN��HB�VCG�@CGAc-J�GQ@Lt$MhVCBbI
?A@e�¥I$BDt=c=I�MhJ��
c$MSGQ@Lt�GQ@¡c$KCBZTSBD?\I�@CBDV¡vxE"Pºt=c=I�mLJ�cmCIBDtbN6MO~ BA~�?A@e�
a0GQttMS�^TSB�t=c=I�mLJ�cmCIB/c���a0BHMhtX?AThTSG��HBDVwnoGAIXBDMSc$KCBbI6JbTh?At$t
GAI"noBD?\cmCIBwt$mC�L_AI�?\a^KLtb~�������
� � �������<��i�B=%C7D2�24+\Q1@4)6,[R_.M,�.\B�5�!JU35D2=7�Q1%.!$#&%('*)�+-,�)�!/.10324)65�0�7�%i8:7�;�.424)67�0�0<.='*>?5�@�A�B=%C7D2�24) EF.1@
�£PRE/��VCBDJ�GQd
a0GQt$?\�^TSB¦vxE"P"��Mht1?A@.vxE"P ô ¹
�Oõ/Nkö�����KCBbIBcKCB
JbTh?AttgtmC�L_AI�?\a^KÄõ PF?A@LVx�LI�MhVC_AB
t$mC�L_AI�?\a^K�õ P�YÖ?\I$BZVCBDJ�GQd
a0GQt=BDV�Mh@ec=G × d-?�¤CMhd-?AT
J�GQ@L@CBDJ�c=BDVFJ�GQd
a0GQ@CBD@ectbN^tmLJ�K�c$KL?\c

Ñ\~Rõ<G�o¥õ þ G�H ÿ ¹q�����[¼ �Oõ<G û o¥õ þ G�H ÿhû ��N���KCBbI$B
õ<G û o"õ þ G�H ÿhû NA��MSc$K9��¹ÖÑ\½b¾S¾S¾S½ × Ne?\I$B�MSc$t × !v7[�T+)�!v7�%
B�5�0 0<.\B['�.\,�B�5�!JU35�0<.10�'�2�N+?A@LV

y�~�Û¡ [�£÷�G û �£¢FÛ¡ [�£÷�GT¤��R¹W¥�N ��MSc$K¦�$½�§Z¹¦Ñ\½b¾S¾S¾S½ ×
?A@LV¨��©¹ª§CNC��KCBbI$B�Û¡ [�£÷�G û �/VCBD@CGAc=BDtRc$KCBgJ�KLMhTk�
VCI$BD@gGAnC?AThTAc$KCB�s\?\I�Mh?\�^TSBDt�Mh@�÷�G û N�cKCB/tmC�^t=Bbc�GAn
JbTh?At$tgs\?\I�Mh?\�^TSBDt�Mh@�õ<G û �«0�5�0 +�2�V&7�@\.\,¬B1V�)�%C,�@\.10U�@-5�U .1@1'*;C��~

ERMSBDTSUD?Bbc�?ATO~��Oy\|CÑb|8�;aLI$G�sABDVÇc$KL?\cÖc$KCBËvxW/©
J�GQd
a^mCc$?\c$MSGQ@�Jb?A@Ä�0B
?AThTSBbs8Mh?\c=BDVxc$KL?A@C�8t�c=G�vxE"P
JbTh?At$t*�£�LI�MhVC_ABgVCBDJ�GQd
a0GQt$?\�^MhThMSc��A~�f*@�n�?AJ�cbN d-?�¤CMhd-MSU��
Mh@C_ÄG�sABbIZc$KCB�t=Bbc
GAn�?AThT�JbTh?At$ts\?\I�Mh?\�^TSBDt
?Ad
GQmL@ec$t
c=G�d-?�¤CMhd-MSUDMh@C_�G�sABbIRBD?AJ�K�JbTh?At$t�s\?\I�Mh?\�^TSB"t$mC�^t=Bbc�GAn
c$KCBuMhVCBD@ec$Mkj^BDV¥d-?�¤CMhd-?ATHJ�GQ@L@CBDJ�c=BDV�J�GQd
a0GQ@CBD@ec$tbN
MO~ BA~Ýd-?�¤CMhd-MSUDMh@C_ G�sABbI¡TSG��HBbI¡VLMhd
BD@Lt$MSGQ@L?ATwt$mC�C�
t=a^?AJ�BDt"c$KL?A@�GAI�MS_QMh@L?AThTS�A~i® �_� � � k � �°¯F)�±T.10X7³²´8�+-,�.\B�5�!JU35D2=7�Q1%.�µ°8i²>mV3.1@\.?¶·�¸@\.�U�@\.42[.10�'�2i'�V3.¡2=7�!JU�%.92SU37�B4.$7D2�2=5[B=)67T'�.\,>�)*'�V�÷�G ûe¹ '�V3.10
d-?�¤cedef g g g f c6h �6�£Û"¼H¹�Á�¼D½b¾S¾S¾S½�ÛHÂ�¹�Á�Âi��ºC�
z ����[¼ d-?�¤»D¼«½\¾ û�¿=À û Á �G ¿TÂ ¾ û �6��Á¡�DÃ´Ä ��ÁD�=�� �H ¿ G<Å þ Â ¾ û ÿ �6�o»Æ�DÃ´Ä Â ¾ �o»+��½-Ã´Ä Â1Ç �o»+�=��Èw½ �OÜQ�

>mV3.1@\. »=É Â ¾ û @\.�U�@\.42[.10�'�2J'�V3.�U�@-5eÊ[.\B['*)65�0¦5eZ¸±T.\B['S5�@ »'S5¦'�V3.vB�5[5�@-,�)�0�7T'�.42�Z=5�#&0�,�)�0Ä÷�G û�Ë�Ì Ä Â ¾ �oð���7�0�,Ì Ä Â1Ç �oð��¡,�.10�5T'�. ¹ @\.42SU .\B['*)�±T.1% ; ¹ '�V3.¡B=%C7D2�2?U37�@\.10�'�27�0�,$Z[.\7T'*#&@\.9U37�@\.10�'�2°5eZwðÍ)�0¡õ Ë�Î Q1±Ï)65�#_24% ; ¹ Z=5�@7�0 ;ªB=%C7D2�2°±�7�@4)67�Q1%.�Û ¹ >s.¦V&7�±T. Ì Ä Â1Ç �£Ûw�u¹ÑÐ7�0�, Ì Ä Â ¾ �£Ûw��¹ Ì Ä �£Ûw� Ë
µ�MSsABD@�¸�NLBD?AJ�K�B�¤8aLIBDtt$MSGQ@uc=GZ�0Bgd-?�¤CMhd-MSUbBDV�Mh@

©/¨�mL?\c$MSGQ@��OÜQ����MhThT+�0BwVCBD@CGAc=BDVx?At|Ò ¸� � � É Â ¾ û ��N<�/¹
Ñ\½b¾S¾S¾S½ × N MO~ BA~Ò ¸� � � É Â ¾ û ��¹ �G ¿TÂ ¾ û �6��Á9� ý � ��ÁD�=�� �H ¿ G<Å þ Â ¾ û ÿ �6�o»Æ� ý � Â ¾ �o»+��½ ý � Â1Ç �o»+�=�m� �oÚ��

f,c"KCGQThVLtRc$KL?\c:Ò ¸� � � É Â ¾ û � z �6��Ó É Â ¾ û ¹ � É Â ¾ û ��¸6��~j ¸ ��k ýml �¨�<�HY�Bbc�mLt�I$BDJ�GQ@Lt$MhVCBbI�c$KCB�vxE"P�t$KCG���@
Mh@Él6MS_QmCI$B�Ñ\~�f,cxMhtx?;PRE/��VCBDJ�GQd
a0GQt$?\�^TSB¥vxE"P
��MSc$K × ¹ÔÜ�~�f,c$t�cKCIBbB
d-?�¤CMhd-?AT6J�GQ@L@CBDJ�c=BDV�J�GQd�
a0GQ@CBD@ec$t�?\I$BqVCBba^MhJ�c=BDVÔMh@Öl6MS_QmCI$Bqy�~:§"KCB¥j^I�t=c
GQ@CB�Mht-õ<G d o�õ þ G�H ÿ d ��MSc$K ÷�G d ¹��\Û"¼D½�Ûsr��F?A@LV

28 Borchani et al.

Û¡ [�£÷�G d ��¹É�Dðu¼D½=ðvr��QNQc$KCB�t=BDJ�GQ@LV
Mht�õ<G3Ô�o�õ þ G�H ÿ Ô
��MSc$KF÷�G3Ô"¹Ï�\Ûst���?A@LVxÛ¡ [�£÷�G3Ôb��¹Ï�Dðvt\½=ð�uA½=ðvx��QN
?A@LV�c$KCBwc$KLMSI�VFMht�õ<G&Õ?o�õ þ G�H ÿ Õ ��MSc$Kx÷�G&Õ�¹Ô�\Û?u\�
?A@LV1Û¡ [�£÷�G&Õ��x¹ �Dðvw��Q~ÐÓ�GAc=B�c$KL?\cxÛ¡ [�£÷�G d �F¢Û¡ [�£÷�G3Ôb��¹¢Û¡ [�£÷�G d �F¢�Û¡ [�£÷�G&ÕD��¹¢Û¡ [�£÷�G3Ôb�s¢
Û¡ [�£÷�G&ÕD��¹Ö¥�N�?AtwI$BD¨�mLMSI$BDV+~�i�tw?Fd-?�¤CMhd-MSUD?\c$MSGQ@
aLI$GA�^TSBDdË�HB�_ABbcb�

d-?�¤cedef g g g f cSy �6�£Û"¼R¹�Á�¼D½b¾S¾S¾S½�Û?u�¹�Á4ui��¸X�
¹�d-?�¤cedef c Ô �6��Á�¼���6��Á1ri��Á�¼���6�o»�¼���Á�¼D½=»�r���6�o»�r9�\Á�¼b½$Á1r���$d-?�¤c Õ �6��Á1t���6�o»�t9��Á1t���6�o»�ui�\Á1t���6�o»�x9��Á1t\½=»�t���$d-?�¤cSy �6��Á4u���6�o»�w9��Á4uA½=»�¼D½=»�x��
¹�d-?�¤cedef c Ô Ò ¸ ¼ ��Á�¼D½$Á1r��
�Dd-?�¤c Õ Ò ¸ r ��Á1t��
�Dd-?�¤cSy Ò ¸ t ��Á4u��
�

X1

C1 C2

X2 X6X3

C3

X4 X5

C4

l6MS_QmCI$B�y��6§"KCB�c$KCI$BbB"d-?�¤CMhd-?ATCJ�GQ@L@CBDJ�c=BDV�J�GQd
a0G\�
@CBD@ec$t�GAn6c$KCBwvxE"P�B�¤C?Ad
a^TSBgGAn�l6MS_QmCI$B-Ñ\~

× Ø"äLæ0¯e/´��ÙÉìuçZâb±�ä^³8°[ãXÚ�°[å�æ<ÛHá£ä�àÕçFìuåÜ ¯Q°[ãÞÝ�æ ®Aæ
¶�BqVCBDt$J�I�MS�0B¥Mh@Ïc$KLMhtÄt=BDJ�c$MSGQ@ÖGQmCIÄaLI$GAa0GQt=BDVÖ?ATk�
_AGAI�MSc$KLdÝnoGAI�TSBD?\I�@LMh@C_qPRE/��VCBDJ�GQd
a0GQt$?\�^TSB�vxE"PRt
noI$GQdÅVL?\c$?��^?At=BDV¡GQ@¥?F�"I�?\aLa0BbI�_AI$BbBDVC��noGAI$�R?\I�V
t=BDTSBDJ�c$MSGQ@¥?\aLaLI$GQ?AJ�K+~ÄY�BbcißÈ�0BZ?xVL?\c$?xt=Bbc�GAnJà
GA�^t=BbI$s\?\c$MSGQ@Lt�J�GQ@ec$?AMh@LMh@C_�?�s\?AThmCB-?AttMS_Q@Ld
BD@ecgnoGAI
BD?AJ�KÏs\?\I�Mh?\�^TSB�ðu¼D½b¾S¾S¾S½=ð
¿�½�Û"¼D½b¾S¾S¾S½�ÛHÂQNwMO~ BA~áß ¹
���o¸ þ ¼ ÿ ½ � þ ¼ ÿ ��½b¾S¾S¾S½��o¸ þCâ ÿ ½ � þCâ ÿ �$�Q~Êi�t�a0BbI$noGAI�d-?A@LJ�B
d
Bbc=I�MhJbtbNC�HBwmLt=BA�

Ñ\~H§"KCB�!/.\7�0�7�B�B=#&@-7�B=;¥G�sABbIZc$KCB�À¡JbTh?At$ts\?\I�Mk�
?\�^TSBDtb�

ø�Á�Á�¿1¹ Ñ
À

Âã��[¼ Ñà âã ä �[¼�å ��Á4æä � ½$Á ä � ��½ �OÞQ�

��KCBbI$B å ��Á æ ä � ½$Á ä � �"¹5Ñ
MSn/Á æ ä � ¹ÔÁ
ä � N�?A@LVÄ|�GAc$K8�

BbI$��Mht=BA~uÓ�GAc=B�c$KL?\cÁ æ ä � VCBD@CGAc=BDtwc$KCBuÛ?�"JbTh?At$t
s\?AThmCB"GQmCc=a^mCc=c=BDV-���
c$KCB�vxE"P�noGAIHJb?At=B�ç�?A@LV
Á
ä � Mht"MSc$t"J�GAI$I$BDt=a0GQ@LVLMh@C_�c=I�mCBgs\?AThmCBA~

y�~H§"KCBJRT%C5�Q\7�%·7�B�B=#&@-7�B=;G�sABbIHc$KCB�ÀA��VLMhd
BD@Lt$MSGQ@L?AT
JbTh?At$t�s\?\I�Mh?\�^TSBA�

ø�Á�Á4è�¹ Ñà âã ä �[¼ å � ��æä ½ � ä ��½ �O{Q�

��KCBbI$B å � � æ ä ½ � ä �"¹ËÑ�MSn � æ ä ¹ �
ä
N+?A@LVÄ|ZGAc$KCBbI=�

��Mht=BA~�§"KL?\cHMhtbNe�HB�Jb?AThT^noGAIR?wJ�GQd
a^TSBbc=B�BD¨�mL?ATk�
MSc��u�0Bbc��HBbBD@x?AThT+c$KCBwJ�GQd
a0GQ@CBD@ec$t�GAn6c$KCB�sABDJ��
c=GAIZGAn�aLI$BDVLMhJ�c=BDVqJbTh?At$t=BDtZ?A@LVqc$KCB�sABDJ�c=GAIuGAn
I$BD?AT�JbTh?At$t=BDtb~

Ò mCI�TSBD?\I�@LMh@C_�?ATS_AGAI�MSc$KLdÔJ�GQ@Lt$Mht=c$t6GAn c$KCI$BbB"d-?AMh@
a^KL?At=BDtbN\GQmCc$ThMh@CBDVg����i�TS_AGAI�MSc$KLdÐÑ\NA?A@LV�VCBbc$?AMhTSBDVwMh@
��KL?\c�noGQThTSG���tb~6Ó�GAc=B"c$KL?\cbN�Mh@c$KCB"VLMk�0BbI$BD@ec6a^KL?At=BDtbN
c$KCBJbTh?At$t$Mkj^BbI�?AJbJbmCI�?AJ��xMht�VCBD@CGAc=BDVÄø�Á�Á�N0��KLMhJ�KxMht
BD¨�mL?ATXc=G�ø�Á�Á�¿ºGAIgø�Á�Á4è-VCBba0BD@LVLMh@C_-GQ@ÄmLt$Mh@C_Zc$KCB
d
BD?A@�GAI�c$KCBg_QTSGA�^?AT�?AJbJbmCI�?AJ��A~é �6� � ® �L� �ëê�ì�ís� �L� � �X� ��î
ï�� �Ïð[� ï ��� ý ®
}�c$?\I$c$Mh@C_�noI$GQdÔ?A@
BDd
aLc���_AI�?\a^KLMhJb?AT8t=c=I�mLJ�cmCIBANQc$KCB
j^I�t=c�t=c=BbaÉMh@�c$KLMht�a^KL?At=B�MhtuTSBD?\I�@LMh@C_�?�t=BDTSBDJ�c$MSsAB
@L?AMSsAB
ER?D�ABDt���Y[?A@C_QTSBb�x?A@LV�}8?_ABAN/ÑDÙAÙ�Ú���noGAIgBD?AJ�K
JbTh?At$t�s\?\I�Mh?\�^TSBwÛ?�,N ��¹ÖÑ\½b¾S¾S¾S½$ÀL~
§"KCB�ÀqIBDtmLTSc$Mh@C_¥t=BDTSBDJ�c$MSsAB�@L?AMSsAB�ER?D�ABDtFd
G8V8�

BDTht�I$BbaLI$BDt=BD@ec × ¹ÏÀ�d-?�¤CMhd-?ATXJ�GQ@L@CBDJ�c=BDV�J�GQd
a0G\�
@CBD@ec$t�c$KL?\c
d-?D�¡KL?DsAB�J�GQd-d
GQ@�J�KLMhThVCI$BD@+~x§"K�mLtbN
c$KCBF@CB�¤8cZt=c=Bba�Mhtc=G¥J�KCBDJ$��c$KCBF@CGQ@8��t$KL?\I$BDVqJ�KLMhTk�
VCI$BD@�aLI$GAa0BbI$c��uMh@�GAI�VCBbI"c=GZMh@LVLmLJ�B�?A@FMh@LMSc$Mh?AT�PRE/�
VCBDJ�GQd
a0GQt$?\�^TSB�vxE"P�~�§"KLMht�Mht�?AJbJ�GQd
a^ThMht$KCBDV����
I$BDd
G�s8Mh@C_CNuMSn�@CBDJ�BDtt?\I$�AN�?AThTZJ�GQd-d
GQ@ËJ�KLMhThVCI$BD@+N
�^?At=BDVqGQ@ c��HG¥J�I�MSc=BbI�Mh?8N�@L?Ad
BDTS�ANRc$KCBFnoBD?\c$mCI$BxMh@8�
t=BbIcMSGQ@�I�?A@C�u?A@LVuc$KCBw?AJbJbmCI�?AJ��A~
Y�Bbc × aeò£ñ �ò VCBD@CGAc=BDtwc$KCBZMh@Lt=BbI$c$MSGQ@�I�?A@C�ÄGAn�noBD?��

cmCIBÄð ò Mh@�c$KCB�t=BDTSBDJ�c$MSsAB�@L?AMSsAB�ER?D�ABDtÆó:8|�wnoGAI
Û?�,N�?A@LV × aeò£ñ&ôò VCBD@CGAc=BDt�c$KCB"Mh@Lt=BbI$c$MSGQ@I�?A@C��GAn0noBD?��cmCIBxð ò Mh@ c$KCBÄt=BDTSBDJ�c$MSsABÄ@L?AMSsABÄER?D�ABDtëó:8 ô noGAI
Û ô ~ × aeò£ñ �ò|õ × aeò£ñ&ôò d
BD?A@Lt�c$KL?\c�ð ò MhtRj^I�t=c$TS��t=B��
TSBDJ�c=BDV����Æó:8|�,~>�BD@LJ�BANXMh@xc$KLMhtgJb?At=BAN�ð ò ��MhThT[�0B
�ABbaLcXMh@9ó:8|�C?A@LV�I$BDd
G�sABDV�noI$GQdOó:8 ô ~ Ò c$KCBbI$��Mht=BAN?A@LV�Mh@�Jb?At=Bwc$KL?\c × aeò£ñ �ò ¹ × aeò£ñ&ôò NL�HB�aLI$G8J�BbBDV�c=G
J�GQd
a^?\I$B�c$KCBu?AJbJbmCI�?AJbMSBDtø�Á�Á � ?A@LV¡ø�Á�Á1ô�N�VCBD@CGAc*�
Mh@C_uI$BDt=a0BDJ�c$MSsABDTS�Fc$KCB-?AJbJbmCI�?AJ��ÄGAn�ó:8|�R?A@LVöó:8 ô��KCBD@xð ò �R?AtgMh@LJbThmLVCBDVxMh@+N0c$KCBD@Ä�ABbBba�ð ò Mh@xc$KCBó:8�aLI$BDt=BD@ec$Mh@C_�c$KCB�KLMS_QKCBDt=c�?AJbJbmCI�?AJ��?A@LV�I$BDd
G�sAB
MSc�noI$GQd5c$KCBgGAc$KCBbID~
§"KCB;IBDtmLTSc�GAnxc$KLMht�a^KL?At=B1Mhtq?Ôt$Mhd
a^TSBÉPRE/�

VCBDJ�GQd
a0GQt$?\�^TSB¦vxE"P�NxVCBD@CGAc=BDV�?At÷²´8�+Sµ°8i²Jø� N��KCBbI$BGQ@LTS�xc$KCB
�LI�MhVC_ABt$mC�L_AI�?\a^K�MhtgVCB�j @CBDV�?A@LV
c$KCB�JbTh?At$t"?A@LV�noBD?\cmCIB�t$mC�L_AI�?\a^KLtR?\I$Bwt=c$MhThT BDd
aLc��A~

Borchani et al. 29

� l ï�� � � � ® k �ù«ú_û3ü_ý4þ�ÿ����� ü_ýeû3ü_ý4þ����
	������������� ¾������ � ¾ Ç ����� � Ç ��������� �"!
$�%'&"(�) ù+*-,)�&�. ú0/ .2143'5")6(ü'/ 5".+& û %8798:<;+=?>@A:�B :�CED?F GH:�>";2F GH:JIK;�LM:�@ONP� û ��Q �SRUT<V V V T?��!WYX .�Z ;2C\[NP� û ��NP�J]�[";<G�F >�^J;�C�_U`�`�_U>ba4:<;+D?cd=?:Pe ¤ 3 X1 W �2f�g8h

û¤Ji �2f�g8h]¤ ý %') újP:�`�_+GH:�e ¤ a =?_U`kNP�J] !)dl4(�) 1 W �2f�g8h
û¤ �S�2f�g8h]¤ ý %') ú1 WbmPnEn û-o mPnEn] ý %') újP:�`�_+GH:�e ¤ a =?_U`pNP�J] !)dl4(�) jP:�`�_+GH:�e ¤ a =?_U`pNP� û !) ú 3q1 W) ú 3r1 WjP:�`�_+GH:�e ¤ a =?_U`kNP� û !) ú 3r1 W) ú 3 WYX .s�t D\;2F > � ¾ Ç � � �û u d<v NP� ûYw �dD?[";+D
F @��x���
	�������� !

$�%'&"(�) ù-ù+*y,)�&�. ú W)�& ý-ü .+)z(ü'/ 5".+& û %87WYX . � � Q fd{4|~}"�~���<���SR þU� 3 X����� =\;2> � _U`�B L�_U>�:J;+=?COD?_ � Ç !1 WJ� _�;2C�C�cd=\;2CEL~F `��d=?_+GH:�`�:�>MD<ý %') ú�OF @AC<;+= � D?[�:�;+=?C�;2> �q� _>�_2D�C�_U>�@AF � :E=bF DbF >@Ac t @A:<�Mc�:�>MD�F D?:E=\;+D?F _U>�@ !) ú 3r1 W) ú 3 WYX .s�t D\;2F >����
	���������� !
$�%'&"(�) ù-ù-ù+*
�)�.+5")r�6&��'1��6&"l
� X ú&ú)d� ý)d3�� X � û X��ú) ú�ý (E7���
	����� ���������� ���
	����� ���� !� D?_U� ��� ;2B @A: !� %�14l) �

o
R ;2> � g��+�P�'���\� 3 XWYX .PZ ;2C\[�C�B ;2@A@-GU;+=?F ; t B :�@y� û �M��]�� :E=AD\;2F >�F >�^PD?_PD�¡K_� F ¢�:E=?:�>MD
`�;+£dF `�;2B C�_U>�>�:�CED?: � C�_U`�� _U>�:�>MD?@ 3 XZ GU;2B c";+D?:�D?[�:J;+=?C�F >�@A:E=AD?F _U>~a =?_U`p� û D?_���] !) ú 3 WYX .� :�B :�CED
D?[�:�;+=?CO¡
F D?[~D?[�: t :�@�D�;2C�C�cd=\;2CEL mPnEn ��¤ d !1 W�mPnEn ��¤ d o mPnEn � ý %') ú¥�� � ;+D?: � ¾x!mPnEn � � mPnEn ��¤ d !���
	����� ������ ��� ���
	����� �������¤ d !��� � � RU!� %�14l) � C�C�cd=\;2CEL�F `��d=?_+GH:�`�:�>MD 3 X¥�� � ;+D?: � ¾ Ç þ¦; ��� ;2>�;+=?C
a =?_U`§;�C�B ;2@A@D?_�;¨a4:<;+D?cd=?:�_2ayD?[�:J>�:E¡�`�:E=?^U: � C�_U`¨©� _U>�:�>MD !) ú 3 � %�14l)� %�14l) � C�C�cd=\;2CEL�F `��d=?_+GH:�`�:�>MD 3 X¥�� � ;+D?: � Ç þx; ��� ;2>ª;+=?C t :ED�¡K:�:�>~a4:<;+©D?cd=?:�GU;+=?F ; t B :�@ !) ú 3 � %�14l))dl4(�) � D?_U� ��« =?c�: !) ú 3r1 W) ú 3 � %�14l).+) ý-ü . ú¬���
	������������ !

é � � � ® �L� ��êDê�ìmís� �L� �®�� �C�Dð[� � �Ïð[� ï ��� ý ®
§"KLMhtHa^KL?At=B�J�GQ@Lt$Mht=c$tRGAn�TSBD?\I�@LMh@C_�c$KCBgnoBD?\c$mCIBwtmC�C�
_AI�?\a^K�����Mh@ec=I$G8VLmLJbMh@C_uc$KCBZVCBba0BD@LVCBD@LJ�B
I$BDTh?\c$MSGQ@8�
t$KLMSa^tu�0Bbc��HBbBD@1c$KCB�noBD?\cmCIB�s\?\I�Mh?\�^TSBDtb~Æ}8Mh@LJ�B�MSc
d-?D�F�0B
Mhd
aLI�?AJ�c$MhJb?AT[c=G�J�GQ@Lt$MhVCBbI�?AThTXa0GQttMS�^TSB�?\I�J
?AVLVLMSc$MSGQ@Lt-�0Bbc��HBbBD@�c$KCBxnoBD?\cmCIBxs\?\I�Mh?\�^TSBDtbN�BDt=a0B��
JbMh?AThTS��MSn�c$KCB�@�mLdw�0BbIwGAn"noBD?\cmCIBDt�·ÝMht�Th?\I$_ABAN6�HB
��MhThT6jL¤�?Fa^?\I�?Ad
Bbc=BbI�¯5?At�?xd-?�¤CMhd�mLd�@�mLdw�0BbI
GAn�MSc=BbI�?\c$MSGQ@Ltb~
f*@�BD?AJ�K-MSc=BbI�?\c$MSGQ@+NQ?A@
?\I�JRMht6t=BDTSBDJ�c=BDV
?\c�I�?A@LVCGQd

�0Bbc��HBbBD@¡?�a^?AMSIgGAnRnoBD?\cmCIBZs\?\I�Mh?\�^TSBDtb~
f,nRc$KCBbI$BZMht
?A@�?AJbJbmCI�?AJ��¡Mhd
aLI$G�sABDd
BD@ecbN�c$KCB�?\I�J�Mht�?AVLVCBDV¡c=G
õ�HwN�GAc$KCBbI$��Mht=BxMSc�Mht�VLMht$Jb?\I�VCBDV ?A@LV ��MhThT�@CGAc��0B
J�GQ@Lt$MhVCBbI$BDVZMh@�t$mC�^t=BD¨�mCBD@ec/MSc=BbI�?\c$MSGQ@Ltb~�§"KLMht�a^KL?At=B
BD@LVLt���KCBD@0¯ÏMht�I$BD?AJ�KCBDV+N^?A@LV�c$KCBwMh@LVLmLJ�BDV�vxE"P
Mht�VCBD@CGAc=BDVF?At/²´8�+Sµ°8i²Jø?°� ~
Ó�GAc=B�c$KL?\cbN�c$KL?A@C�8t�c=GÄvxE"PºVCBDJ�GQd
a0GQt$?\�^MhThMSc��AN

c$KCB�JbTh?At$t$Mkj Jb?\c$MSGQ@�?AJbJbmCI�?AJ���?At$t=G8JbMh?\c=BDV���MSc$K¥c$KCB
?\I�J�?AVLVLMSc$MSGQ@xMh@�BD?AJ�K�MSc=BbI�?\c$MSGQ@ÄJb?A@x�0B�Bbs\?AThmL?\c=BDV
Mh@Ï?�t=c=I�?AMS_QKec=noGAI$�R?\I�VÖ?A@LVÖTSG8Jb?ATw�R?D�A~¢f*@Ïn�?AJ�cbN
?\noc=BbIF?AVLVLMh@C_�?A@1?\I�JÄnoI$GQd ð���c=G�ð ò N�GQ@LTS� c$KCB
c=BbI�dÏJ�GAIIBDt=a0GQ@LVLMh@C_�c=G�s\?\I�Mh?\�^TSB�ð ò J�KL?A@C_ABDtbN\c$KL?\c
MhtbN
GQ@LTS�Öc$KCB vxW/©ÅJ�GQd
a^mCc$?\c$MSGQ@ºGAnuc$KCB d-?�¤CMk�
d-?ATeJ�GQ@L@CBDJ�c=BDVJ�GQd
a0GQ@CBD@ec[c=G���KLMhJ�K�ð ò a0BbIc?AMh@LtbN
J�KL?A@C_ABDt/?A@LV-@CBbBDVLt�c=Gg�0B�I$BbBbs\?AThmL?\c=BDV+~�§"KCB"vxW/©
J�GQd
a^mCc$?\c$MSGQ@�G�sABbI�?AThT"I$BDd-?AMh@LMh@C_¡d-?�¤CMhd-?AT�J�GQ@8�
@CBDJ�c=BDVqJ�GQd
a0GQ@CBD@ec$t
I$BDd-?AMh@Lt
mL@LJ�KL?A@C_ABDV+N/��KLMhJ�K
J�GQ@Lt$MhVCBbI�?\�^TS��I$BDVLmLJ�BDt[c$KCBHJ�GQd
a^mCc$?\c$MSGQ@L?ATe�^mCI�VCBD@+~é � é � ® �L� ��êDêDê�ìO±W� � ï�� k¡� ¸£� k¡� l

� ���
�£� �A� �_î � � k ý ���£�&� ���
§X?\�8Mh@C_Ï?At¥Mh@Ca^mCc�c$KCB1PRE/��VCBDJ�GQd
a0GQt$?\�^TSB�vxE"P
noGQmL@LV�Mh@�c$KCBwaLI$Bbs8MSGQmLt�a^KL?At=BAN KL?Ds8Mh@C_ × d-?�¤CMhd-?AT
J�GQ@L@CBDJ�c=BDVFJ�GQd
a0GQ@CBD@ec$t"?A@LV�?
J�GAIIBDt=a0GQ@LVLMh@C_?AJ��
JbmCI�?AJ���VCBD@CGAc=BDVqø�Á�Á � N/c$KCB�c$KLMSI�V¥a^KL?At=B�J�GQ@Lt$Mht=c$t
GAn�TSBD?\I�@LMh@C_xc$KCB�JbTh?At$t-t$mC�L_AI�?\a^K+N���KLMhJ�K�TSBD?AVLt�c=G
d
BbI$_QMh@C_
c$KCBwd-?�¤CMhd-?AT+J�GQ@L@CBDJ�c=BDVFJ�GQd
a0GQ@CBD@ec$t"GAn
c$KCBxJbmCI$I$BD@ecuPRE/��VCBDJ�GQd
a0GQt$?\�^TSBFvxE"P�N/c$KCBD@�mCaC�
VL?\c$Mh@C_
c$KCBg�LI�MhVC_ABg?A@LV�noBD?\cmCIBwt$mC�L_AI�?\a^KLtb~
i�tg?Zj^I�t=cgt=c=Bba�N�?AThTXa0GQttMS�^TSB�?\I�J?AVLVLMSc$MSGQ@Lt��0B��

c��HBbBD@1c$KCB�JbTh?At$t�s\?\I�Mh?\�^TSBDtua0BbIc?AMh@LMh@C_¡c=G VLMk�0BbI=�
BD@ec
d-?�¤CMhd-?ATHJ�GQ@L@CBDJ�c=BDV�J�GQd
a0GQ@CBD@ec$t?\I$B�Bbs\?AThm8�
?\c=BDV+~wf,n�c$KCBbI$B-Mht�?A@Ä?AJbJbmCI�?AJ��ÄMhd
aLI$G�sABDd
BD@ecbN[MO~ BA~
ø�Á�Á �U² ¼®³ ø�Á�Á � N�c$KCB�t$mC�L_AI�?\a^K1õ<GÐMht�mCa+VL?\c=BDV
���¡?AVLVLMh@C_Fc$KCBu?\I�J�Mhd
aLI$G�s8Mh@C_�c$KCB�?AJbJbmCI�?AJ��¡c$KCB
d
GQt=cbN�?A@LV × MhtwI$BDVLmLJ�BDV�c=G ×r´ Ñ�d-?�¤CMhd-?AT/J�GQ@8�
@CBDJ�c=BDVFJ�GQd
a0GQ@CBD@ec$tb~

30 Borchani et al.

}8mC�^t=BD¨�mCBD@ec$TS�ANw?��LI�MhVC_AB¡mCa+VL?\c=B�t=c=BbaÔMhtFa0BbI=�
noGAI�d
BDV1Mh@Lt$MhVCBxc$KCB¡@CBb��Mh@LVLmLJ�BDV;d-?�¤CMhd-?ATgJ�GQ@8�
@CBDJ�c=BDVÏJ�GQd
a0GQ@CBD@ecb~È`�Bba0BD@LVCBD@LJ�B�I$BDTh?\c$MSGQ@Lt$KLMSa^t
c$KL?\c
d-?D�¡�0Bu?AVLVCBDV¥noI$GQdÇJbTh?At$t�c=GÄnoBD?\cmCIBus\?\I�Mk�
?\�^TSBDt+GAnCc$KCB/J�GAI$I$BDt=a0GQ@LVLMh@C_�J�GQd
a0GQ@CBD@ec[?\I$B�_AI$BbBDV8�
MhTS�FBbs\?AThmL?\c=BDV+NX?A@LV�GQ@LTS�x��KCBD@�c$KCBbI$BZMhtg?A@¡?AJbJbm8�
I�?AJ���Mhd
aLI$G�sABDd
BD@ecbNLc$KCBg�0BDt=c�GQ@CBwMht�?AVLVCBDV+~
Ó�GAc=Buc$KL?\cbN�GQ@LJ�B�?_Q?AMh@+N�c$KCBuvxE"PÐVCBDJ�GQd
a0GQt*�

?\�^MhThMSc��xa^Th?D�8t�?��ABb��I$GQTSB-Mh@�?AThTSBbs8Mh?\c$Mh@C_�c$KCBZJ�GQd�
a^TSB�¤CMSc���GAn�vxW/©ºJ�GQd
a^mCc$?\c$MSGQ@�t$Mh@LJ�B�BD?AJ�K�a0GQt$t$Mk�
�^TSB�?\I�J�?AVLVLMSc$MSGQ@-�0Bbc��HBbBD@uJbTh?At$t/s\?\I�Mh?\�^TSBDt/GAIHnoI$GQd
JbTh?At$t�c=G noBD?\c$mCI$B�s\?\I�Mh?\�^TSBDt�Mht�Bbs\?AThmL?\c=BDVÏTSG8Jb?AThTS�A~
vFGAI$BbG�sABbIDN�noGAIZ�LI�MhVC_AB�mCa+VL?\c$Mh@C_Ät=c=Bba�NHc$KCBFvxW/©
MhtRGQ@LTS�ZI$BDJ�GQd
a^mCc=BDV�noGAI"c$KCB�@CBb�Éd
BbI$_ABDV�J�GQd
a0G\�
@CBD@ecbNL��KLMhJ�K�?AThTSBbs8Mh?\c=BDt"d
GAIBgcKCBwJ�GQd
a^TSB�¤CMSc��A~
§"KCBgTh?At=c�t=c=BbaFMh@�c$KLMhtHa^KL?At=BgJ�GQ@Lt$Mht=c$tRGAn6mCa+VL?\c*�

Mh@C_�c$KCBFnoBD?\c$mCIBFtmC�L_AI�?\a^K�����Mh@Lt=BbIcMh@C_CNHGQ@CB����
GQ@CBAN�?AVLVLMSc$MSGQ@L?AT"?\I�Jbt��0Bbc��HBbBD@�noBD?\cmCIBFs\?\I�Mh?\�^TSBDt
��KLMhTSB�c$KLMht"Mhd
aLI$G�sABDt�c$KCB�?AJbJbmCI�?AJ��A~
§"KLMht+a^KL?At=B/MSc=BbI�?\c=BDt[G�sABbI6c$KCBDt=B�c$KCI$BbBHt=c=Bba^tbNA?A@LV

c=BbI�d-Mh@L?\c=BDt
��KCBD@q@CG�d
GAI$BFJ�GQd
a0GQ@CBD@ecZd
BbI$_QMh@C_
Jb?A@�Mhd
aLI$G�sAB�c$KCB�?AJbJbmCI�?AJ��-GAIRmL@ec$MhTLc$KCB�J�GQ@LVLMSc$MSGQ@
× ¹ ÑxMhtZI$BD?AJ�KCBDV+~Öi�PRE/��VCBDJ�GQd
a0GQt$?\�^TSBÄvxE"P
VCBD@CGAc=BDV�?At¨²´8�+Sµ°8i²Jø?° c� MhtRIBbcmCI�@CBDV+~

µ ¶Ää^á£æ ®Aä^±¸·ï°�¯Që
f*@�c$KLMht
t=BDJ�c$MSGQ@+NH�HB��LI�MSBH¹^�¡I$Bbs8MSBb�5c$KCBFt=c$?\c=B��£GAnª�
c$KCB���?\I$c"GQ@FvxE"PRt"TSBD?\I�@LMh@C_
?ATS_AGAI�MSc$KLd-tb~
º�?A@-VCBbIRµ�?A?_w?A@LV-VCBR¶�?A?ATX�Oy\|A|Q{Q��VCBDJ�GQd
a0GQt=B

c$KCB
TSBD?\I�@LMh@C_ZaLI$GA�^TSBDd&GAn��_�3�_�&�T�_�3�_��vxE"PRtgMh@ec=G
c��HGwt=Bba^?\I�?\c=B�GAaLc$Mhd-MSUD?\c$MSGQ@aLI$GA�^TSBDd-tb�+j^I�t=c6TSBD?\I�@8�
Mh@C_¥c$KCB�JbTh?At$t�t$mC�L_AI�?\a^K�mLt$Mh@C_�PRKCG��.?A@LV�Y[Mhm�» t
?ATS_AGAI�MSc$KLd �*ÑDÙA{AzQ��N�c$KCBD@+NZ_QMSsABD@Ð?;jL¤8BDVº�LI�MhVC_AB
t$mC�L_AI�?\a^K+N�TSBD?\I�@LMh@C_Fc$KCB�noBD?\c$mCI$B�t$mC�L_AI�?\a^K¡mLt$Mh@C_
?ATht=GÉPRKCG�� ?A@LVÖY[Mhm�» tÄ?ATS_AGAI�MSc$KLd�~Ý§"KCB��LI�MhVC_AB
t$mC�L_AI�?\a^KxMht�t=BDTSBDJ�c=BDV�mLt$Mh@C_�?��"I�?\aLa0BbI�?\aLaLI$GQ?AJ�K
Q?\I�?A@ec=BbBDMh@C�?
KLMS_QK�JbTh?AttMkj^BbI"?AJbJbmCI�?AJ��A~
`�B ¶�?A?AT ?A@LV s\?A@ VCBbI µ�?A?_ �Oy\|A|eÌA�

aLI$BDt=BD@ecÐ?�c$KCBbGAIBbcMhJb?AT�?\aLaLI$GQ?AJ�KÝnoGAIËTSBD?\I�@LMh@C_���&}T�_�_�3�_�&�D���&}T�_�_�3�_�5vxE"PRtÖ��KCBbI$BËJbTh?At$tÖ?A@LV
noBD?\cmCIB�t$mC�L_AI�?\a^KLtu?\I$B�t=Bba^?\I�?\c=BDTS��TSBD?\I�@ecu�^?At=BDV
GQ@�Í"Bb�^?A@CB
?A@LV�WXBD?\I�TA» tg?ATS_AGAI�MSc$KLd��*ÑDÙAzAÙQ��~-Ó�Bbse�
BbIcKCBDTSBDt$tbN0c$KCBMh@LVLmLJ�c$MSGQ@�GAn/c$KCB��LI�MhVC_AB�t$mC�L_AI�?\a^K
�R?At�@CGAc"t=a0BDJbMkj^BDV+~
vFGAI$BbG�sABbIDN ��?\UDM+Bbc�?ATO~��Oy\|A|eÌe� TSBD?\I�@�3�_� ���D�&�3�_�5vxE"PRt���KCBbI$BÉc$KCBÔJbTh?At$t�t$mC�L_AI�?\a^K

Mht&Mh@LVLmLJ�BDV:���:t=c$?A@LVL?\I�VÊER?D�ABDt$Mh?A@Ø@CBbc��HGAI$�8t

aLI$G8J�BDVLmCI$BDtbNwc$KCB��LI�MhVC_AB�t$mC�L_AI�?\a^KÏMhtxTSBD?\I�@ecÄ���
?AVLVLMh@C_ VCBba0BD@LVCBD@LJ�B�I$BDTh?\c$MSGQ@Lt$KLMSa^t5noGAI�d BD?AJ�K
JbTh?At$t-s\?\I�Mh?\�^TSB�c=G¥?¡t$mC�^t=Bbc
GAn�t=BDTSBDJ�c=BDVqnoBD?\cmCIBDtbN
?A@LV�c$KCBgnoBD?\c$mCIBwtmC�L_AI�?\a^K�MhtR�ABbaLc"BDd
aLc��A~
Í"G8VCI�pÎ _QmCBbUg?A@LV�Y�GAUD?A@CGx�Oy\|A|Qz8�ÏmLt=BÕ?Èd�mLTSc$Mk�

GA�&	=BDJ�c$MSsAB BbsAGQThmCc$MSGQ@L?\I$� ?\aLaLI$GQ?AJ�K c=G TSBD?\I�@�3�_� � �3�_� vxE"PRtb~;©/?AJ�K a0BbI�d-MSc=c=BDV�vxE"PÕt=c=I�mLJ��
cmCIBïMht¦J�G8VCBDVÝ?AtÐ?A@ÝMh@LVLMSs8MhVLmL?AT¥��MSc$K¢c$KCI$BbB
t$mC�^t=c=I�Mh@C_QtbN�GQ@CB¡a0BbIxt$mC�L_AI�?\a^K+~ÆER?At=BDVÉGQ@ÏVLMSnª�
noBbI$BD@ecFJbTh?At$t$Mkj Jb?\c$MSGQ@;I�mLTSBDtbN�	=GQMh@ec�?A@LV1d-?\I$_QMh@L?ATON
c$KCBb�¦VCB�j @CB c$KCB�GA�&	=BDJ�c$MSsAB�n�mL@LJ�c$MSGQ@Lt¥?At¥�e�£noGQThV
J�IGQtt*�£s\?AThMhVL?\c=BDVFBDt=c$Mhd-?\c=GAI�t�GAn�BD?AJ�KÄJbTh?At$t�JbTh?At$t$MkjL�
Jb?\c$MSGQ@�BbI$I$GAID~�§"KCB�?AMhdÕMhtRc=G
j @LV�@CGQ@8��VCGQd-Mh@L?\c=BDV
t=c=I�mLJ�cmCIBDt"?AJbJ�GAI�VLMh@C_
c=G-c$KCBgGA�&	=BDJ�c$MSsAB�n�mL@LJ�c$MSGQ@Ltb~
vFGAI$BÉI$BDJ�BD@ec$TS�AN�ERMSBDTSUD?Bbc�?ATO~��Oy\|CÑb|8��aLI$GAa0GQt=B

VLMk�0BbI$BD@ecTSBD?\I�@LMh@C_x?ATS_AGAI�MSc$KLd-tbN�@L?Ad
BDTS�AN�a^mCI$BZj Tk�
c=BbI��o_QmLMhVCBDV���c$KCB�¼wyg?ATS_AGAI�MSc$KLd���NQa^mCI$B��"I�?\aLa0BbI
�o_QmLMhVCBDVF����c$KCB
JbTh?AttMkj Jb?\c$MSGQ@x?AJbJbmCI�?AJ��L��?A@LVÄKe�e�
�LI�MhV?ATS_AGAI�MSc$KLd&��?�J�GQdw�^Mh@L?\c$MSGQ@GAn0a^mCI$BHj TSc=BbI/?A@LV
a^mCI$B�"I�?\aLa0BbI���N[?AThTSG���Mh@C_�?A@e��ER?D�ABDt$Mh?A@¡@CBbc��HGAI$�
t=c=I�mLJ�cmCIB�Mh@uc$KCB�c$KCI$BbB�vxE"P;t$mC�L_AI�?\a^KLtb~
}8Mhd-MhTh?\I�TS��?At�ERMSBDTSUD?
Bbc�?ATO~��Oy\|CÑb|C��N��HBZKL?DsABZ@CG

J�GQ@Lt=c=I�?AMh@ec$t[?\�0GQmCc�c$KCB/t$mC�L_AI�?\a^K�t=c=I�mLJ�cmCIBDt+GAnCc$KCB
_ABD@CBbI�?\c=BDV;vxE"PRtb~Ô>�G��HBbsABbIDN�J�GQ@ec=I�?\I$� c=G�c$KCBDMSI
TSBD?A@LMh@C_-?ATS_AGAI�MSc$KLd-t�?A@LVFJ�GQ@ec=I�?\I$��c=GZGAc$KCBbI�B�¤CMht=c*�
Mh@C_g�HGAI$�8tbNeGQmCI�aLI$GAa0GQt$?ATCMht�c=GwTSBD?\I�@
c$KCB�@CBb�qn�?Ad�
MhTS��GAnXPRE/��VCBDJ�GQd
a0GQt$?\�^TSB�vxE"PRtHMh@Lt=c=BD?AV-GAn�TSBD?\I�@8�
Mh@C_
_ABD@CBbI�?AT�vxE"PRtb~

½ ¾�¿�Ú�äL¯e´�ã�ä^[®Qå

f*@¦GAI�VCBbI�c=GÖBbs\?AThmL?\c=B�GQmCI�TSBD?\I�@LMh@C_Ï?ATS_AGAI�MSc$KLd�N
�HB�j^I�t=c$TS�a0BbI$noGAI�d¦B�¤8a0BbI�Mhd
BD@ec$t/��MSc$KZ?t=�8@ec$KCBbc$MhJ
VL?\c$?-t=Bbcb~/¶�BwI�?A@LVCGQd-TS�Z_ABD@CBbI�?\c=B�?A@�vxE"P�N^J�GQ@8�
c$?AMh@LMh@C_�{�JbTh?At$t�?A@LV¥Ñb|�noBD?\cmCIB��^Mh@L?\I$�us\?\I�Mh?\�^TSBDtbN
VCBDJ�GQd
a0GQt=BDV�Mh@ec=GFÜud-?�¤CMhd-?AT6J�GQ@L@CBDJ�c=BDV¡J�GQd
a0G\�
@CBD@ec$tb~�§"KCBD@+N8�HB�I�?A@LVCGQd-TS�Zt$?Ad
a^TSB�?
VL?\c$?-t=Bbc�GAn
t$MSUbB�Ñb|A|A|�mLt$Mh@C_-c$KCBwaLI$GA�^?\�^MhThMht=c$MhJ�TSGA_QMhJwt$?Ad
a^ThMh@C_
d
Bbc$KCG8VÏ��>�BD@CI�MSGQ@+NgÑDÙAzAzQ��~É¶�BÄ?\aLa^TS��GQmCI�?ATS_AG\�
I�MSc$KLdÆVCBD@CGAc=BDV�?AtzÀ�Á �"Â�Á¦ÀLN0?A@LVÄGAc$KCBbI�noGQmCI�?ATS_AG\�
I�MSc$KLd-tbN0@L?Ad
BDTS�AN�Ã_�3�_�&� Ã_�3�_�Ä�os\?A@�VCBbIwµ�?A?_F?A@LV
VCB¶�?A?ATON6y\|A|Q{Q��N�Ä3�&}T�_�_�3�_�&� Ä3�&}T�_�_�3�_�x��VCB
¶�?A?AT
?A@LV�s\?A@FVCBbIgµ�?A?_CN+y\|A|eÌA��NKÄ��3�3�ÆÅyÇ�}T�3���Ä��ERMSBDTSUD?
Bbc
?ATO~SN/y\|CÑb|e��?A@LVÈÄ��3�3�®É&�3~��_�����q��ERMSBDTSUD?xBbc
?ATO~SN
y\|CÑb|e��N0?AThT+t=c$?\I$c$Mh@C_
noI$GQdÕ?A@�BDd
aLc���t=c=I�mLJ�cmCIBA~
¶�B�J�GQ@Lt$MhVCBbI��0GAc$K�c$KCBÄd
BD?A@�?A@LV c$KCBÄ_QTSGA�^?AT

?AJbJbmCI�?AJ��uc=G-TSBD?\I�@�?A@LVuc$KCBD@�Bbs\?AThmL?\c=Bgc$KCBga0BbI$noGAI=�
d-?A@LJ�BGAnHc$KCB
JbTh?AttMkj^BbI�tb~�lLmCIcKCBbI�d
GAI$BAN�Mh@FGAI�VCBbI

Borchani et al. 31

c=G�c=BDt=c�c$KCBR?\�^MhThMSc��gGAn^c$KCBRJbTh?AttMkj^BbI�t[c=GgI$BDJ�G�sABbI�c$KCB
Mh@LMSc$Mh?ATevxE"P�t=c=I�mLJ�c$mCI$BANA�HB�J�GQd
a^?\I$B�BD?AJ�K-TSBD?\I�@CBDV
t=c=I�mLJ�cmCIB���Y6}L�"c=G�c$KCB-Mh@LMSc$Mh?AT�GQ@CBF�of$}L��mLt$Mh@C_�c$KCB
noGQThTSG���Mh@C_
t=c=I�mLJ�c$mCI�?AT0Bbs\?AThmL?\c$MSGQ@�d
Bbc=I�MhJbtb�K v¥Ñ\�Æa0BbI�J�BD@ec$?_AB1GAnx?\I�Jbt�Mh@ËY6}¦c$KL?\cq?\I$B

aLI$BDt=BD@ec�Mh@Äf$} N�MO~ BA~-a0BbI�J�BD@ec$?_ABZGAnRJ�GAI$I$BDJ�c$TS�e�
noGQmL@LV�?\I�Jbtb~K vÄy���a0BbI�J�BD@ec$?_AB
GAnR?\I�JbtgMh@ÄY6}�c$KL?\c�?\I$B-?\�C�
t=BD@ecuMh@qf$} N/MO~ BA~Éa0BbI�J�BD@ec$?_ABxGAnwt$mCa0BbI<¹ mCGQmLt
?\I�Jbtb~K vÄÜ��wa0BbI�J�BD@ec$?_ABZGAn�?\I�JbtwMh@Äf$}xc$KL?\cw?\I$B-GAI�Mk�
BD@ec=BDV;Mh@�?A@�GAaLa0GQt$MSc=BxVLMSI$BDJ�c$MSGQ@�Mh@�Y6} NRMO~ BA~
a0BbI�J�BD@ec$?_ABwGAnX�^?AVLTS�e�£GAI�MSBD@ec=BDV�?\I�Jbtb~K vFÚC�[a0BbI�J�BD@ec$?_AB/GAnC?\I�Jbt[Mh@gf$}�c$KL?\c[?\I$B/?\�^t=BD@ec
Mh@�Y6} NLMO~ BA~�a0BbI�J�BD@ec$?_ABwGAn�d-Mht$t$Mh@C_?\I�Jbtb~

l6MSsAB��£noGQThV�J�IGQtt*�£s\?AThMhVL?\c$MSGQ@gB�¤8a0BbI�Mhd
BD@ec$t�?\I$B�I�mL@
noGAI�BD?AJ�K�TSBD?\I�@LMh@C_Z?ATS_AGAI�MSc$KLd�~�§X?\�^TSB�Ñ�t$KCG���t�c$KCB
?DsABbI�?_AB�IBDtmLTSc$tRG�sABbI�c$KCBDt=B�I�mL@Ltb~

§X?\�^TSB�Ñ\�[©�¤8a0BbI�Mhd
BD@ec$?ATAI$BDt$mLTSc$t+G�sABbIXc$KCBHt=�8@ec$KCBbc$MhJ
VL?\c$?-t=Bbcb~ Ê :<;2>ª;2C�C�cd=\;2CELË B ;2@A@AF Ì":E= mPnEn�Í Ê

R
ÊªÎ ÊÏ Ê~Ð

Ñ2ÒdÓ+ÔHÒ�Ñ Õ ! ÖMR<×
Î Î2Ø

!
ØUØ Ï
ÖM! ÙUÙ RURU! ×U×

Ø
RU!
ÐUÐ

ÚHÛMÜHÜ Ó ÚHÛMÜHÜ Õ ! ÖMR
Î2Ý Ï Õ ! ÙUÙ

ÐHÝ
!
ÐUÐ
ÙM! ÙUÙ

ØUÏ
! ×
Ý

ÞdßHà2áHâHÛMÜHÜ Ó ÞdßHà2áHâHÛMÜHÜ Õ !
ØUÏUÏ Õ Ï Õ ! R Õ R+ÙM! R Õ

Ø
!
Î
R
ØUÏ
!
ØUØ

ÞHãMÛMÜ0ädåUà2âMÜUÛ Õ ! Ù
Ï
ÙMR ÖM! ÙUÙ R

Ð
!
ØUØ
×�! ×U× ×

Ï
! ÙUÙÞHãMÛMÜ�æMÛ�ç+èHè�ÜUÛ Õ ! Ö Õ

Ý
×
ÎUÎ
!
ÎUÎ ÐMÎ

! ×U× R+ÖM! ÖUÖ
Ø Õ ! ÕUÕé B _ t ;2B�;2C�C�cd=\;2CELË B ;2@A@AF Ì":E= mPnEnEê Ê

R
ÊªÎ ÊÏ Ê~Ð

Ñ2ÒdÓ+ÔHÒ�Ñ Õ !
Î
×HÖUÖ RURU! ÙUÙ R

Ð
!
ØUØ
RU!
ÏUÏ
×HÖM! R ÕÚHÛMÜHÜ Ó ÚHÛMÜHÜ Õ !

Î
×
Ï
×
Î
ÙM! ÕUÕ Ù

Ï
! ×U× ×�!

ÏUÏ ØUØ
!
ØUØ

ÞdßHà2áHâHÛMÜHÜ Ó ÞdßHà2áHâHÛMÜHÜ Õ !
Î
×
Ð
Ù
Î
×�!
ÝUÝ
R+ÙM! R Õ ÙM!

ÐUÐ Ø
ÙM! ÙUÙÞHãMÛMÜ0ädåUà2âMÜUÛ Õ !

Î
R
Ø Õ ÖM!

ÝUÝ
R+ÙM! ÙUÙ ÖM! Ù

Ð
×
Ð
!
ÐUÐ

ÞHãMÛMÜ�æMÛ�ç+èHè�ÜUÛ Õ !
Î
× ÕUÕ R

Ø
! ÕUÕ
Ð
×�!
ÐUÐ
R
Ð
!
ÎUÎ ØUÝ

! ÖUÖ
Ò mCI?ATS_AGAI�MSc$KLd�GQmCc=a0BbI$noGAI�d-t�c$KCBut=c$?\c=B��£GAnª�£c$KCB��

?\I$c[?ATS_AGAI�MSc$KLd-t+Mh@�c=BbI�d-t�GAnCd
BD?A@�?A@LVg_QTSGA�^?ATQ?AJbJbm8�
I�?AJ��A~/lCGAI�t=c=I�mLJ�c$mCI�?AT Bbs\?AThmL?\c$MSGQ@+N¦Ã_�3�_�&� Ã_�3�_�?A@LV
Ä3�&}T�_�_�3�_�&� Ä3�&}T�_�_�3�_�FaLI$BDt=BD@ec-c$KCB��0BDt=c-a0BbI�J�BD@ec*�
?_ABDtxGAn
J�GAIIBDJ�c$TS�e�£noGQmL@LVÉ?\I�Jbt���v¥Ñ�����KLMhTSB�Ä��3�3�
ÅyÇ�}T�3����KL?At+c$KCB�TSG��HBDt=c[GQ@CBA~PÃ_�3�_�&� Ã_�3�_��?A@LVªÄ��3�3�
É&�3~��_�����ÄMh@LVLmLJ�B-c$KCBuKLMS_QKCBDt=c�a0BbI�J�BD@ec$?_ABDtGAn"t$m8�
a0BbI<¹ mCGQmLt6?\I�Jbt���vÄyQ��N8?A@LVqÄ��3�3�ÆÉ&�3~��_�����w?ATht=GwMh@8�
VLmLJ�BDt�?FKLMS_QKÄa0BbI�J�BD@ec$?_ABZGAnR�^?AVLTS�e�£GAI�MSBD@ec=BDV�?\I�Jbt
��vÄÜQ�wJ�GQd
a^?\I�Mh@C_Fc=Gxc$KCB�I$BDt=cwGAn"c$KCBu?ATS_AGAI�MSc$KLd-tb~

vFGAI$BbG�sABbIDNL�HB�d-?D�-GA�^t=BbI$sAB�c$KL?\cbN8��MSc$KZ_QTSGA�^?AT ?AJ��
JbmCI�?AJ��ANCc$KCB�TSBD?\I�@CBDV�t=c=I�mLJ�cmCIBDtR?\I$B�t=a^?\I�t=BbIDN8TSBD?AV8�
Mh@C_�c=G¥d
GAI$BxMhd
a0GAIc?A@ec
a0BbI�J�BD@ec$?_ABDt�GAn�d-Mht$t$Mh@C_
?\I�Jbt���vFÚ��HnoGAI�?AThT+TSBD?\I�@LMh@C_
?ATS_AGAI�MSc$KLd-tb~
i�t�?AVLVLMSc$MSGQ@L?AT�B�¤8a0BbI�Mhd
BD@ec$tbN��HB�J�GQ@Lt$MhVCBbIuc$KCB

I$BD?ATHVL?\c$?xt=Bbc©/d
GAc$MSGQ@Ltu��§[I$GQKLMhVLMhtgBbc?ATO~SN/y\|A|QzQ��~
f,c�Mht"?\�0GQmCc�?Zd�mLTSc$Mk��VLMhd
BD@Lt$MSGQ@L?AT JbTh?At$t$Mkj Jb?\c$MSGQ@�GAn
d�mLt$MhJMh@ec=G�BDd
GAc$MSGQ@Ltb~f,c�J�GQ@ec$?AMh@LtwÌ\y�d�mLt$MhJ�noBD?��
cmCIBDt�noGAIRÞAÙAÜ�t=GQ@C_Qt/Jb?\c=Bb_AGAI�MSUbBDV�Mh@ec=G�GQ@CB"GAIHd
GAI$B
GQmCc�GAn�{-JbTh?At$t=BDt�GAn6BDd
GAc$MSGQ@Ltb�R?Ad-?\UbBDV8��tmCIaLI�Mht=BDV+N
KL?\aLa��e�£a^TSBD?At=BDV+N
I$BDTh?�¤CMh@C_\��Jb?AThd�N
¨�mLMSBbc*��t=c$MhThTON
t$?AV8�
TSGQ@CBDTS�ANL?A@LV�?A@C_AI$�e��?_A_AI$BDttMSsABA~
i�tZaLI$Bbs8MSGQmLt$TS�ANHc$KCBx?AJbJbmCI�?AJbMSBDt�GAngc$KCBxJ�GQ@Lt$MhV8�

BbI$BDV�TSBD?\I�@LMh@C_?ATS_AGAI�MSc$KLd-tR?\I$B�J�GQd
a^mCc=BDV�mLt$Mh@C_
Þ��
noGQThVqJ�IGQtt*�£s\?AThMhVL?\c$MSGQ@+~ §"KCB�I$BDt$mLTSc$t-?\IBFtmLd-d-?��
I�MSUbBDV�Mh@�§X?\�^TSB�y�~HÓ�GAc=B�c$KL?\cbNL��MSc$K�c$KLMht�I$BD?AT�VL?\c$?
t=BbcbNQ�HB"VCGg@CGAc�KL?DsAB"?A@
Mh@LMSc$Mh?AT�vxE"P¥t=c=I�mLJ�c$mCI$BANet=G
c$KCBZt=c=I�mLJ�c$mCI�?AT6Bbs\?AThmL?\c$MSGQ@�MhtgGQd-MSc=c=BDV¡Mh@Äc$KLMhtgt=Bbc
GAn6B�¤8a0BbI�Mhd
BD@ec$tb~
§X?\�^TSB¡y�� ©�¤8a0BbI�Mhd
BD@ec$?AT�I$BDt$mLTSc$tuG�sABbIx©/d
GAc$MSGQ@Lt
VL?\c$?-t=Bbcb~ Ë B ;2@A@AF Ì":E= mPnEn�Í mPnEnEê

Ñ2ÒdÓ+ÔHÒ�Ñ Õ ! ×
ÏHÎ2Ø Õ !

ÏUØUÏUÝ
ÚHÛMÜHÜ Ó ÚHÛMÜHÜ Õ ! ×�R

Ï
Ù Õ !
Î2Ý
ÖUÖÞdßHà2áHâHÛMÜHÜ Ó ÞdßHà2áHâHÛMÜHÜ Õ ! × Õ Ù

Î Õ !
Ï2ÐMÎUÎ

ÞHãMÛMÜ0ädåUà2âMÜUÛ Õ !
Ø
Ö
ÏUÏ Õ !

Î2ØUÝ ÕÞHãMÛMÜ�æMÛ�ç+èHè�ÜUÛ Õ ! ×
Î2ÝUÏ Õ !

ÏUØ
Ù Õ

lCI$GQdÖ§X?\�^TSBRy�NA�HBRd-?D�wJ�GQ@LJbThmLVCB/c$KL?\cXGQmCI6?ATS_AG\�
I�MSc$KLdºa0BbI$noGAI�d-t/�HBDThTO~Xf*@�n�?AJ�cbN8��MScKZcKCB�d
BD?A@u?AJ��
JbmCI�?AJ��AN À�Á �"Â�Á¦À�aLI$BDt=BD@ec$t�c$KCB��0BDt=c[?AJbJbmCI�?AJ��AN\��KLMhTSB
��MScKgcKCB/_QTSGA�^?ATe?AJbJbmCI�?AJ��AN Ä��3�3�ÆÉ&�3~��_������t$ThMS_QKec$TS�
GQmCc=a0BbI$noGAI�d-t�À�Á �"Â�Á¦ÀL~
l6Mh@L?AThTS�AN�Mh@�l6MS_QmCI$BgÜ�N8�HB�a^TSGAcHc$KCB�J�GQd
a^mCc$?\c$MSGQ@

TSBD?\I�@LMh@C_"c$Mhd
B/GAnLc$KCBHs\?\I�MSGQmLtXTSBD?\I�@LMh@C_�?ATS_AGAI�MSc$KLd-tbN
mLt$Mh@C_Äc$KCBFd
BD?A@ ?A@LVq_QTSGA�^?AT"?AJbJbmCI�?AJ��AN�noGAIZ�0GAc$K
t=�8@ec$KCBbc$MhJg?A@LV�©/d
GAc$MSGQ@Lt"VL?\c$?-t=Bbc$tb~
PRTSBD?\I�TS�AN�c$KCBH?ATS_AGAI�MSc$KLd-t[mLt$Mh@C_"?"j TSc=BbIX?\aLaLI$GQ?AJ�K

I$BD¨�mLMSI$B�TSBDt$t�J�GQd
a^mCc$?\c$MSGQ@Ðc$KL?A@Ðc$KCGQt=B;mLt$Mh@C_Ï?
�"I�?\aLa0BbI�?\aLaLI$GQ?AJ�K+~�vFGAI$BbG�sABbIDN+c$KCB�J�GQd
a^mCc$?\c$MSGQ@
c$Mhd
B�GAn�GQmCI�?ATS_AGAI�MSc$KLd�Mht-TSG��HBbIZc$KL?A@qc$KCB�GAc$KCBbI
�"I�?\aLa0BbI�?\aLaLI$GQ?AJ�KCBDtbN�d-?AMh@LTS�uG�sABbI�c$KCBt=�8@ec$KCBbc$MhJ
VL?\c$?qt=BbcbNg��KLMhJ�K;Mht��^?At$MhJb?AThTS��VLmCB�c=Gqc$KCB¡vxE"P
PRE/��VCBDJ�GQd
a0GQt$?\�^MhThMSc��g?A@LV�c$KCBR?AThTSBbs8Mh?\c$MSGQ@�GAnLvxW/©
J�GQd
a^mCc$?\c$MSGQ@+~�Ó�GAc=B�?ATht=Gxc$KL?\cc$KCBuJ�GQd
a^mCc$?\c$MSGQ@
c$Mhd
B���MSc$K�_QTSGA�^?AT�?AJbJbmCI�?AJ��qMht-TSG��HBbIDN�t$Mh@LJ�B�MScZMht
d
GAI$B�VLM4ë�JbmLTSc6c=GwMhd
aLI$G�sAB"c$KCB�TSBD?\I�@CBDV-d
G8VCBDThtbNet=G
c$KL?\c"c$KCBw?ATS_AGAI�MSc$KLdËBD@LVLt"Mh@uBD?\I�ThMSBbI"MSc=BbI�?\c$MSGQ@Ltb~

32 Borchani et al.

0

10

20

30

40

50

60

70

80

90

Le
ar

nin
g t

im
e i

n m
inu

tes

 CB-MBC

 Tree-Tree

Polytree-Polytree

 P
ure Filter

 P
ure Wrapper

(a) Synthetic data set

0

5

10

15

20

25

30

35

Le
ar

nin
g t

im
e i

n m
inu

tes

 CB-MBC

 Tree-Tree

Polytree-Polytree

 P
ure Filter

 P
ure Wrapper

(b) Emotions data set

Mean
Global

Mean
Global

l6MS_QmCI$B�Ü���PHGQd
a^mCc$?\c$MSGQ@�TSBD?\I�@LMh@C_c$Mhd
BDt�G�sABbI
��?e�Rt=�8@ec$KCBbc$MhJgVL?\c$?-t=Bbc�?A@LV¡�o�0�R©/d
GAc$MSGQ@Lt�VL?\c$?Zt=Bbcb~

ì ì�°[/³Cá�²/å\´£°[
f*@ c$KLMht-a^?\a0BbIDN��HBxaLI$GAa0GQt=BDV ?¥@CG�sABDT�?ATS_AGAI�MSc$KLd
noGAI/TSBD?\I�@LMh@C_�PRE/��VCBDJ�GQd
a0GQt$?\�^TSB"vxE"PRt�noI$GQdºVL?\c$?
�^?At=BDV-GQ@Z?g�"I�?\aLa0BbI�noGAI$�R?\I�VZt=BDTSBDJ�c$MSGQ@-?\aLaLI$GQ?AJ�K+~
f*@LVCBbBDV+N�PRE/��VCBDJ�GQd
a0GQt$?\�^MhThMSc���?AThTSG���t�c$KCB
?AThTSBbs8Mh?��
c$MSGQ@qGAngvxW/©ÐJ�GQd
a^mCc$?\c$MSGQ@Ltb~�©�¤8a0BbI�Mhd
BD@ec$?AT�I$B��
t$mLTSc$t-��MSc$Kq�0GAc$K t=�8@ec$KCBbc$MhJF?A@LVqI$BD?ATk�£�HGAI�ThV VL?\c$?
t=Bbc$t�t$KCG��;c$KL?\cRGQmCI�?ATS_AGAI�MSc$KLdÐa0BbI$noGAI�d-t/�HBDThT0?A@LV
I$BD¨�mLMSI$BDt�TSBDt$twJ�GQd
a^mCc$?\c$MSGQ@�c$Mhd
B-c$KL?A@¡c$KCBZt=c$?\c=B��
GAnª�£c$KCB���?\I$c��"I�?\aLa0BbI�TSBD?\I�@LMh@C_
?ATS_AGAI�MSc$KLd-tb~
f*@qc$KCBFn�mCc$mCI$BANR�HBxMh@ec=BD@LVqc=G¥Jb?\II��GQmCc�?AVLVLMk�

c$MSGQ@L?AT�B�¤8a0BbI�Mhd
BD@ec$t�?A@LVFMh@esABDt=c$MS_Q?\c=Bwa0GQttMS�^TSB�Mhd�
aLI$G�sABDd
BD@ec$t�GAn/GQmCI�?ATS_AGAI�MSc$KLd�~�lCGAIwMh@Lt=c$?A@LJ�BAN+�HB
Mh@ec=BD@LVÄc=GFc=BDt=c�c$KCB-?ATSc=BbI�@L?\c$MSGQ@��0Bbc��HBbBD@�noGAI$�R?\I�V
?A@LV��^?AJ$���R?\I�V�t=BDTSBDJ�c$MSGQ@�c=BDJ�KL@LMh¨�mCBDtbN�?A@LVqt=c$mLVC�
c$KCBumLt=BZGAn�?�j TSc=BbI�?\aLaLI$GQ?AJ�K�d-?AMh@LTS�ÄnoGAI�noBD?\cmCIB
t$mC�L_AI�?\a^KÉTSBD?\I�@LMh@C_qMh@1GAI�VCBbIxc=G�?DsAGQMhVÏc$KCB¡I�?A@8�
VCGQd¢?\I�J�?AVLVLMSc$MSGQ@Lt�0Bbc��HBbBD@�noBD?\cmCIBDtb~ lLmCIcKCBbI=�
d
GAI$BAN�MSc��HGQmLThVF�0BMh@ec=BbI$BDt=c$Mh@C_Zc=G�B�¤8c=BD@LVxGQmCIg?ATk�
_AGAI�MSc$KLdËc=G-VCBD?AT0��MSc$K�Mh@LJ�I$BDd
BD@ec$?AT0TSBD?\I�@LMh@C_�noI$GQd
@CBb�&Mh@LJ�GQd-Mh@C_�VL?\c$?8NRMO~ BA~qmCa+VL?\c$Mh@C_Äc$KCB�JbmCI$I$BD@ec
PRE/��VCBDJ�GQd
a0GQt$?\�^TSB vxE"P�G�sABbI�c$Mhd
B ��MSc$KCGQmCc¡?
@CBbBDV�c=GZI$BDTSBD?\I�@�MSc"noI$GQd&t$J�I�?\c$J�K+~Rf*@FJb?At=BwGAn�@CGQ@8�
t=c$?\c$MSGQ@L?\I$�uVCGQd-?AMh@LtbNCc$KLMht�d-?D�u?ATht=G
I$BD¨�mLMSI$Bg?-VCB��
c=BDJ�c$MSGQ@
d
BDJ�KL?A@LMht$dÏc=G�d
GQ@LMSc=GAI6c$KCB�J�GQ@LJ�BbaLc�VCI�MSnocb~
í ³Që��°^êxá£ä^±�Ù�ä^ã�ä^[®Qå
¶�GAI$�.t$mCaLa0GAI$c=BDVÆ���ÆaLI$GD	=BDJ�c$tÏ§�f*Ó�y\|A|eÌD�,{AyA{AyA{
?A@LVFPR?Ï	$?AT�ERThmCBgEHI�?AMh@��£}�a^?A@LMht$KuvxMh@LMht=c=I$�-GAn/}8JbMk�
BD@LJ�BF?A@LV�f*@L@CG�s\?\c$MSGQ@ ��?A@LV����¥aLI$GD	=BDJ�cZ`��8@L?Ad
G
��l Ò ÓgPHf$P�îg§gN^©/mCI$GAa0BD?A@�r�@LMSGQ@�?A@LV�vFB�¤CMhJ�G���~

¶Ää Ü äL¯Qä^/³8ä^å
Ë ! IxF :�B ï<;�� é ! 98F�;2> �ñð ! 9';+=A=\;�ò>";2^H; !

Î Õ R Õ !
Ê c�B D?F ©� F `�:�>�@AF _U>";2BzC�B ;2@A@AF Ì"C<;+D?F _U>k¡
F D?[óIK;�LM:�@AF ;2>k>�:ED�¡K_2=?ô�@ !

« :�C\[�>�F C<;2BõjP:�� _2=ADö¥ ð
Ê © ��÷Aø � ÷ � ø

Î Õ R Õ © R �ù�O:��";+=A©D\;2`�:�>MD?_ � : ÷ >MD?:�B F ^U:�>�C�F ; � =AD?F Ì"C�F ;2B��ú¥�>�F GH:E=?@AF � ; �ð _UB F Ddû:�C�>�F C<; � : Ê ; � =?F � !Ë ! Ë [�_<¡ü;2> � Ë ! 98F c !R
ÝUØ
×�! � ���d=?_<£dF `�;+D?F >�^ � F @ACE=?:ED?:�d=?_ t ; t F B F D�L � F @�DA=?F t cdD?F _U>�@8¡
F D?[� :�� :�> � :�>�C�:-DA=?:�:�@ !Hý�þyþyþÿ����������	��
���������� ý �����������
������ÿ���������2� R

Ð
v
Ï w þ ÐHØHÎ © ÐHØ ÖM!ð ! j ! � :��q;U;2BP;2> � 9 ! Ë ! GU;2> � :E= é ;U;2^ !

Î ÕUÕ ÖM!K÷ >da4:E=?:�>�C�:;2> � B :<;+=?>�F >�^6F >q`bc�B D?F © � F `�:�>�@AF _U>";2BKIK;�LM:�@AF ;2>�>�:ED�¡K_2=?ôC�B ;2@A@AF Ì":E=?@ ! ý ���������������� �"!��#$�%
 ���
N&� ��
 � þ�' ���(������r�)��"	
���������*������,+�����-�/. �������*�10 ' ����
��
2��
�� 3/��45((6����	�������7
2
8%���������� �"! ' �*�9���;:<�*������
2��� ��
���=�>?����
 ' ���bN#�
@���A� �B4%��
���	
C �����/. ý ��
@��. . � !9���*����=)+/(6��� �"!9���\� Ð Ö

Î+Ð þ Ù Õ R�DdÙMRURU!Ê
!FE :�>d=?F _U> !�R

Ý
×U×�! ð =?_U�";2^H;+D?F >�^�c�>�C�:E=AD\;2F >MD�LF >6IK;�LM:�@AF ;2>>�:ED�¡K_2=?ô�@ t L�d=?_ t ; t F B F @�D?F CbB _U^UF Cb@?;2`���B F >�^ !'ý �B������������U	

� �"!���$�G
 ���AH� ' ��
 � �)������������*���I��1
 ���1:<�*������
2��� ��
��B� �
4%��
�� C �����/. ý ��
@��. . � !9���*���\�"�";2^U:�@ R

ÐHÝ
D"R
ØUÏ
!ð ! 9';2>�^UB :EL§;2> � � ! � ;2^U: !�R

ÝUÝ2Ð
!�÷ > � c�CED?F _U> _2a~@A:�B :�CED?F GH:IK;�LM:�@AF ;2>~C�B ;2@A@AF Ì":E=?@ !8ý �7�������������� �"!��A$�&
 ����ÿF����
 �6�)��"	

���������*���J��K:<�*������
2��� ��
��L� ��4%��
�� C �����/. ý ��
@��. . � !9���*���\�U�";2^U:�@ÏUÝUÝ
D
Ð Õ Ø !Ê

!�M ;2ï�F�� é !x� c�>�^d� � !)N =?F @A[�>";2>8�xj ! jP_U@?;2B :�@�� E�! � D?:�C\ô �j ! I ! j�;2_d��� ! ð _UB � :E=?`�;2>�@ª;2> � � ! Ë [";2> � =\;2@A:�ôU;+=\;2> !Î ÕUÕ ÖM! � cdD?_U`�;+D?: � [�:<;+=AD�¡�;2B Bx`�_2D?F _U>�; t >�_2=?`�;2B F D�L � :E©D?:�CED?F _U>�a =?_U` c�B DA=\;2@A_Uc�> � F `�;2^U:�@�c�@AF >�^rIK;�LM:�@AF ;2> >�:EDA©¡K_2=?ô�@ !dý � ý ��
@�����*��
�����*�/.*O"�� ��
K�)������������*���P��74%��
�� C �����/.
ý ��
@��. . � !9���*���\���";2^U:�@ ÙMR

Ý
DdÙ
Î
ÙM!é ! jP: t ;2>�:ª;2> �RQ ! ð :<;+=?B !PR
Ý
×
Ý
!�« [�:~=?:�C�_+GH:E=AL _2a�C<;2c�@?;2B� _UB L�DA=?:�:�@Oa =?_U`k@�D\;+D?F @�D?F C<;2B � ;+D\; !¦ý �;�������������� �"!��7$��
 ���ÿ��9� ����)������������*������S:<�*������
2��� ��
��7� �T4%��
�� C �����/. ý ��
@��. . ��	

!9���*���\�"�";2^U:�@ ÎUÎUÎ D
ÎUÎ
×�!

Q ! � ! jP_ � =<ûU ^Uc�:�ï�;2> �VQ ! � ! 98_Uï<;2>�_ !
Î ÕUÕ ×�!

Ê c�B D?F ©Y_ t"W :�CED?F GH:B :<;+=?>�F >�^_2a�`bc�B D?F © � F `�:�>�@AF _U>";2B-IK;�LM:�@AF ;2>rC�B ;2@A@AF Ì":E=?@ !yý ��������������� �"!��&$��
 ��� þ � !X�9
 � ý ��
@�����*��
�����*�/.'�)������������*���&��
Y&�	-������ ý ��
@��. . � !9����
5+�����
@�����?�"�";2^U:�@ Ù Õ R�DdÙ Õ

Ø
!

N¨!�« =?_U[�F � F @�� é !�« @A_Uc�`�;2ôU;2@�� é !ZN ;2B B F =?F @�;2> � ÷\!"[B ;2[";<GU;2@ !Î ÕUÕ ×�!
Ê c�B D?F B ; t :�B C�B ;2@A@AF Ì"C<;+D?F _U>~_2a'`bc�@AF C
F >MD?_�:�`�_2D?F _U>�@ !ý �T�������������� �"!���$�#
 ��� ý ��
@�����*��
�����*�/.�+*����2��
��P����O� ' �����

ý �����������
�����T8%��
����2��3��/.x�)������������*���\�"�";2^U:�@ ÏHÎ Ù�D
ÏUÏ Õ !9 ! Ë ! GU;2> � :E= é ;U;2^§;2> �®ð ! j ! � :S�q;U;2B !

Î ÕUÕ Ø !
Ê cdD?F ©� F `�:�>�@AF _U>";2B¦IK;�LM:�@AF ;2>6>�:ED�¡K_2=?ô~C�B ;2@A@AF Ì":E=?@ !¦ý �B������������U	

� �"!��#$�P
 ����ÿ��9� ��� þ�' ���(��������)������������*�����������	-��	-���. � �\	

����7\�����(��9�����/.��;��9��. �?�"�";2^U:�@ R Õ Ö�D"RUR

Ð
!

Pp. 33–41 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Bayesian Networks on Dirichlet Distributed Vectors

Wray Buntine and Lan Du
NICTA and Australian National University
{wray.buntine, lan.du}@nicta.com.au

Petteri Nurmi
University of Helsinki
ptnurmi@cs.helsinki.fi

Abstract

Exact Bayesian network inference exists for Gaussian and multinomial distributions. For
other kinds of distributions, approximations or restrictions on the kind of inference done
are needed. In this paper we present generalized networks of Dirichlet distributions, and
show how, using the two-parameter Poisson-Dirichlet distribution and Gibbs sampling,
one can do approximate inference over them. This involves integrating out the proba-
bility vectors but leaving auxiliary discrete count vectors in their place. We illustrate
the technique by extending standard topic models to “structured” documents, where the
document structure is given by a Bayesian network of Dirichlets.

1 Introduction

The Gaussian and the multinomial distributions
are the only ones allowing exact Bayesian infer-
ence over arbitrary Bayesian networks. Other
distributions can be included as long as they
stay at particular nodes and restrictions are
placed on the direction of inference. For in-
stance, mixing multinomial and Gaussian works
as long as in all cases of inference the multino-
mials are strictly non-descendents of the Gaus-
sian variables (Lauritzen, 1989). Extending in-
ference to Monte Carlo or Gibbs sampling, and
allowing general purpose samplers dramatically
broadens the range of distributions one can al-
low (Thomas et al., 1992).

In this paper we show how to perform ap-
proximate inference over networks of probabil-
ity vectors related via (approximate) Dirichlet
distributions. So for instance, one could have a
hidden Markov model where the hidden states
are probabilities vectors pi related in a chain
by:

pi−1 ∼ Dirichlet (βpi) , pi ∼ Dirichlet
(
βpi+1

)
.

Nested Dirichlet distributions like this would
make an ideal tool for Bayesian modelling of

μ w
L

z

I

K

φγ

α

Figure 1: Standard Latent Dirichlet Allocation (LDA)
Model. α and γ are Dirichlet priors, µ is a distribution
over topics, φ is a distribution over words, and z is a
topic associated with a word w. I indicates the number
of documents, and L denotes the number of words in
document i. K is the number of topics.

hierarchical clustering, for instance, where pre-
vious methods have hierarchically partitioned
the features (Hanson et al., 1991). They can
also have a significant role in various places in
extending standard topic models (Buntine and
Jakulin, 2006; Blei et al., 2003), for instance,
making documents, topics or components hier-
archical. The standard model is in Figure 1.
Both the links α → µ and γ → φ are Dirich-
let but α and γ are really unknown so should
be modelled by Dirichlets themselves, yielding
a nested Dirichlet.

While MAP solutions for nested Dirichlets do
exist, and an MCMC sampler on the real-valued
probability vectors could also be applied, the

34 Buntine et al.

nested Dirichlets are often used as latent vari-
ables, so these solutions are inaccurate and inef-
ficient respectively. This paper develops a more
efficient and exact Gibbs sampler exists that in-
tegrates out the real-valued probability vectors
by introducing small-valued integer vectors in-
stead.

Bayesian hierarchical methods often use
the two-parameter Poisson-Dirichlet process
(PDP), also known as the Pitman-Yor process
(Ishwaran and James, 2001). In Section 2, we
discuss these models from our perspective and
how they can be used in nested Dirichlet mod-
elling. The basic theory comes from (Buntine
and Hutter, 2010), some borrowed from (Teh,
2006a). Using these tools, in Section 3 networks
of probability vectors distributed as Dirichlet
and using PDPs, first presented in (Wood and
Teh, 2009), are shown along with techniques for
their statistical analysis. Their analysis is the
main contribution of this paper. Some examples
of these networks are embedded in new versions
of topic models. These are presented, and some
empirical results given in Section 4.

2 The Two-parameter
Poisson-Dirichlet Process

The major tool used here is the two-parameter
Poisson-Dirichlet process (PDP), also known as
the Pitman-Yor process, which is an extension
of the Dirichlet process (DP). The PDP is de-
fined as: ν ∼ PDP (µ, a, b), where a is a dis-
count parameter, b is a strength parameter,
and µ is a base distribution for ν. These are
used as tools for non-parametric and hierarchi-
cal Bayesian modelling.

The general theory of PDPs applies them
to arbitrary measurable spaces (Ishwaran and
James, 2001), for instance real valued spaces,
but in many recent applications, such as lan-
guage and vision applications, the domain is
countable (e.g., “English words”) and standard
theory requires some modifications. In language
domains, PDPs and DPs are proving useful for
full probability modelling of various phenom-
ena including n-gram modelling and smoothing
(Teh, 2006b; Goldwater et al., 2006; Mochi-

hashi and Sumita, 2008), dependency models
for grammar (Johnson et al., 2007; Wallach et
al., 2008), and for data compression (Wood et
al., 2009). The PDP-based n-gram models cor-
respond well to versions of Kneser-Ney smooth-
ing (Teh, 2006b), the state of the art method
in applications. These models are intriguing
from the probability perspective, as well as
sometimes being competitive with performance
based approaches. More generally, PDPs have
been applied to clustering (Rasmussen, 2000)
and image segmentation (Sudderth and Jordan,
2009).

For our purposes, knowledge of the details of
the PDP and DP are not required. The two key
results needed, however, follow. The Dirichlet
Approximation Lemma is adapted from (Bun-
tine and Hutter, 2010):

Lemma 1 (Dirichlet Approximation Lemma).
Given a K-dimensional probability vector µ, the
following approximations on distributions hold
(as a→ 0)

PDP(0, b, discreteK(µ)) ≈ DirichletK(bµ) ,
PDP(a, 0, discreteK(µ)) ≈ DirichletK(aµ) .

The first approximation is justified because the
means and the first two central moments (orders
2 and 3) of the LHS and RHS distributions are
equal. The second approximation is justified be-
cause the mean and first two central moments
(orders 2 and 3) agree with error O(a2).

Using this, we can see that one can replace the
K-dimensional distribution DirichletK(bµ) by
its approximation PDP(0, b,discreteK(µ)), and
this greatly simplifies reasoning because PDPs
turn out to be conjugate to multinomials. This
result follows from the Marginalisation Lemma
adapted from (Buntine and Hutter, 2010) and
originally proven in a different format in a hier-
archical context by Teh (Teh, 2006a).

Lemma 2 (Marginalisation Lemma). Given a
probability vector µ of dimension K, and the
following set of priors and likelihoods for j =
1, ..., J

νj ∼ PDP(a, b, discreteK(µ))
nj ∼ multinomialK(νj , Nj)

Buntine et al. 35

where Nj =
∑

k nj,k. Introduce auxiliary latent
variables tj such that tj,k ≤ nj,k and tj,k = 0
if and only if nj,k = 0, then the following pos-
terior distribution holds which marginalises out
the ν1:J but introduces auxillary variables t1:J :

p(n1:J , t1:J |a, b,µ) = (1)∏
j

C
Nj
nj

(b|a)∑
k tj,k

(b)Nj

∏
j,k

S
nj,k

tj,k,a

∏
k

µ
∑

j tj,k

k .

The functions introduced in the lemma are
as follows: CNj

nj is the multi-dimensional choose
function of a multinomial; (x)N is given by
(x|1)N , (x|y)N denotes the Pochhammer sym-
bol with increment y, it is defined as

(x|y)N = x(x+ y)... (x+ (N − 1)y)

=

{
xN if y = 0,
yN × Γ(x/y+N)

Γ(x/y) if y > 0,

where Γ(·) denotes the standard gamma func-
tion; and SNM,a is a generalised Stirling number
given by the linear recursion (Buntine and Hut-
ter, 2010; Teh, 2006a)

SN+1
M,a = SNM−1,a + (N−Ma)SNM,a

for M ≤ N . It is 0 otherwise and SN0,a = δN,0.
These rapidly become very large so computation
needs to be done in log space using a logarithmic
addition.

In summary, we replace the Dirichlet by an
approximation, a PDP, and then since thus
is conjugate to a multinomial (with introduc-
tion of suitable auxiliary variables), it allows
ready processing in nested contexts. The nest-
ing is proven in the next section. We can apply
Lemma 2 without having any clear interpreta-
tion of the auxiliary variables tj,k, which would
require a more extensive presentation of PDPs1.

3 Networks of Dirichlet Distributed
Vectors

Assume a directed graph G composed of nodes
indexed by integers 1, ..., J with probability vec-
tors νj for j = 1, ..., J and directed edges (i, j)

1In the Chinese Restaurant Process of the sampling
of νj , tj,k represents the number of tables that have the
same dish k. For non-atomic distributions tj,k would
almost surely be 1, so no sampling required.

for i ∈ Ej where Ej is the set of parents of the
node j. Parameters in the model are as follows:

νj: the vector of probabilities at the j-th node.

ρj: the vector of mixing probabilities at each
node, gives how parent probability vectors
are mixed. Only used when |Ej | > 1.

Hyperparameters in the model are:

a, b: parameters for the PDP.

αj: Dirichlet prior parameters for root node j
which has no parents.

γj: Dirichlet prior parameters for mixing prob-
abilities ρj when |Ej | > 1.

Denote this set of hyperparameters as H.
We consider models of the form:

νj ∼ DirichletK (αj) for Ej = ∅

νj ∼ PDP

a, b,discreteK

∑
i∈Ej

ρi,jνi

for Ej 6= ∅ .

Note, when |Ej | = 1, then the single hyperpa-
rameter ρi,j for i ∈ Ej is equal to 1, so the sum
degenerates to νi. The mixing parameters ρj
can be modelled as ρj ∼ DirichletEj

(
γj
)
, only

needed when |Ej | > 1. Also, data is in the form
nj ∼ multinomialK(νj , Nj).

These models may be embedded in larger
networks, for instance they may be the “topic
structure” for a topic model.

3.1 Marginalising Parameters

Applying the Marginalisation Lemma at any
leaf node j marginalises out the parameter νj
and introduces auxiliary variables tj :

C
Nj
nj

(b|a)∑
k tj,k

(b)Nj

∏
k

S
nj,k

tj,k,a

∏
k

∑
i∈Ej

ρi,jνi,k

tj,k

.

So expand the sum using the multinomial iden-
tity. This implies decomposing tj,k into parts
coming from each of its parents, and call this

36 Buntine et al.

total now tpj,k, and introduce a complementary
sum from their children, called tcj,k

tpj,k =
∑
i∈Ej

si,j,k , tcj,k =
∑
l:j∈El

sj,l,k ,

and let sj,k = (si,j,k : i ∈ Ej). Then integrating
out ρj , one gets

C
Nj
nj

(b|a)∑
k t

p
j,k

(b)Nj

∏
i∈Ej

Γ (γi,j +
∑

k si,j,k)

Γ
(∑

i γi,j +
∑

k t
p
j,k

)
∏
k

Snj,k

tpj,k,a
C
tpj,k
sj,k

∏
i∈Ej

ν
si,j,k

i,k

 ,

and to this we must add the constraints for the
given j and all k

tpj,k ≤ nj,k , tpj,k = 0 if and only if nj,k = 0 .

Due to the terms νsi,j,k

i,k occurring in this, the
counts si,j,k can be added to the data for the
node for νi, ni,k, and the procedure applied re-
cursively. One has therefore proven the nested
version of the Marginalisation Lemma,

Lemma 3 (Marginalising a Network of Dirich-
lets). Given the network of Dirichlets described
in this section, introduce counts si,j,k ≥ 0 for
i ∈ Ej and all k when Ej 6= ∅. These have par-
ent and child totals tpj,k and tcj,k as above. These
must satisfy constraints at each node j on the k-
th value of

tpj,k ≤ nj,k + tcj,k , (2)

tpj,k = 0 iff nj,k + tcj,k = 0 . (3)

Then marginalising out all parameters νj and
ρj yields the posterior (H is hyperparameters)

p(n1:J , s1:J,1:K |H) = (4)

∏
j:Ej=∅

∏
k Γ
(
αj,k + nj,k + tcj,k

)
Γ
(∑

k αj,k +
∑

k nj,k +
∑

k t
c
j,k

)
∏

j:Ej 6=∅

(b|a)∑
k t

p
j,k

(b)Nj+
∑

k t
c
j,k

∏
i∈Ej

Γ (γi,j +
∑

k si,j,k)

Γ
(∑

i γi,j +
∑

k t
p
j,k

)
∏

j:Ej 6=∅
C
Nj
nj

∏
k

(
S
nj,k+tcj,k

tpj,k,a
C
tpj,k
sj,k

)
,

The key challenge in working with these
models is now handling the auxiliary variables
s1:J,1:K . When Gibbs sampling is done, for in-
stance, the constraints need to be maintained,
and in our experience this turns out to be the
major complexity.

3.2 Gibbs Sampling

We consider a single discrete item related
to the j-th node, so its distribution is over
{1, ...,K} and has the probability vector νj .
The previous theory dealt with multinomials, so
nj ∼ multinomialK(νj , Nj), however, in prac-
tice, we may also consider Nj discrete variables
with distribution discreteK(νj). Their sufficient
statistics are also nj , and the difference in the
posterior is that the choose term C

Nj
nj is re-

moved.
In Gibbs sampling, suppose we are sampling

the probability of this item related the j-th
node. Then nj,k will be decreased by 1 for some
k, and increased by one for another. Given the
form of the posterior in Equation (4), it is easy
to consider the change in the posterior when one
nj,k is increased, lets denote this as

p(increment nj,k |n1:J , s1:J,1:K ,H) =
p(increment nj,k,n1:J , s1:J,1:K |H)

p(n1:J , s1:J,1:K |H)

Many of the terms simplify due to ratios of
Gamma functions. However, the problem arises
that either increasing or decreasing nj,k may vi-
olate the constraints for node j when Ej 6= ∅.
3.2.1 Increasing a count

If nj,k is increased by one, then Constraint (3)
may be violated for node j. To fix this, we need
to increase one of the si,j,k for i ∈ Ej . If |Ej | > 1
then we have a choice and sampling needs to
be done. Once the i is chosen, then si,j,k is in-
creased by one, and subsequently Constraint (3)
may now be violated for node i so the process it-
erates up the network. When considering this,
we need to consider the set of ancestors of j
reachable along paths where every element j′

has equality for the Constraint (3) on the k-th
value.

Buntine et al. 37

Suppose one is incrementing nj,k and one’s
choice is to increment the set of counts
si2,i1,k, ..., siu,iu−1,k where for convenience i1 =
j. Along this path, the equality of Con-
straint (3) must hold for i1 = j, i2, ..., iu−1.
Then the probability of incrementing nj,k us-
ing this path to balance equality constraints,
denoted

p(incr ni1,k, si2,i1,k, ..., siu,iu−1,k |n1:J , s1:J,1:K ,H)

is given by(
αiu,k + niu,k + tciu,k∑

k αiu,k +
∑

k niu,k +
∑

k t
c
iu,k

)δEiu=∅

 1
b+Niu +

∑
k t
c
iu,k

S
niu,k+tciu,k+1

tpiu,k,a

S
niu,k+tciu,k

tpiu,k,a

δEiu 6=∅

u−1∏
n=1

b+ a
∑

k t
p
in,k

b+Nu +
∑

k t
c
in,k

γin+1,in +
∑

k sin+1,in,k∑
l γl,in +

∑
k t
p
in,k

.

We need to sum this over all possible paths
i1, i2, ..., iu−1 starting at i1 = j in order to com-
pute p(incr nj,k |n1:J , s1:J,1:K ,H). The follow-
ing recursive computation does this summation
for a given j, k. Z+

i is evaluated recursively
when Ei 6= ∅ and Constraint (3) for node i at
value k has equality. The recursive computation
for Z+

i is

∑
l∈Ei

Z+
l

b+ a
∑

k t
p
i,k

b+Ni +
∑

k t
c
i,k

γl,i +
∑

k sl,i,k∑
n γn,i +

∑
k t
p
i,k

.

Otherwise, Z+
i is evaluated as

1
b+Ni+

∑
k t

c
i,k

S
ni,k+tci,k+1

t
p
i,k

,a

S
ni,k+tc

i,k

t
p
i,k

,a

when Ei 6= ∅ ,

αi,k+ni,k+tci,k∑
k αi,k+

∑
k ni,k+

∑
k t

c
i,k

when Ei = ∅ .

We evaluate p(incr nj,k |n1:J , s1:J,1:K ,H) =
Z+
j , and this gives the proportionality for sam-

pling which k to choose when incrementing a
count in nj . Once k is sampled, then a path
i1, i2, ..., iu−1 in the constraint set should be
sampled. This can be done using a similar func-
tion to the one just covered.

3.2.2 Decreasing a count
If nj,k is decreased by one, then Constraint (2)

may be violated if the equality holds initially.
This process is similar to the previous, except
that now the si,j,k are decreased and one needs
to consider the set of ancestors of j reachable
along paths where every element j′ has equality
for the Constraint (2) on the k-th value. Using a
similar argument to previous, one gets a related
recursive computation.
Z−i is evaluated recursively when Ei 6= ∅ and

Constraint (2) for node i at value k has equality.
The recursive computation for Z−i is

∑
l∈Ei

Z−l
b+Ni +

∑
k t
c
i,k − 1

b+ a
∑

k t
p
i,k − 1

S
ni,k+tci,k−1

tpi,k−1,a

S
ni,k+tci,k
tpi,k,a∑

n γn,i +
∑

k t
p
i,k − 1

γl,i +
∑

k sl,i,k − 1
sl,i,k
tpi,k

.

Otherwise, Z−i is evaluated as

(b+Ni+
∑

k t
c
i,k−1)S

ni,k+tci,k−1

t
p
i,k

,a

S
ni,k+tc

i,k

t
p
i,k

,a

when Ei 6= ∅ ,
∑

k αi,k+
∑

k ni,k+
∑

k t
c
i,k−1

αi,k+ni,k+tci,k−1 when Ei = ∅ .

As before, p(decr nj,k |n1:J , s1:J,1:K ,H) = Z−j .
and this gives the proportionality for sampling
which k to choose when wanting to decrement
a count in nj . The path to choose when decre-
menting is chosen similarly.

3.2.3 Sampling Auxiliary Counts
The auxiliary counts s1:J,1:K also need to be

sampled. For correct Gibbs sampling, the space
of moves must allow complete access to the state
space of values s1:J,1:K legal for a given n1:J . We
introduce two move operators for sampling.

The first operator changes a single si,j,k and
possibly its ancestor counts. If Constraint (3)
for node j at value k has equality, then si,j,k
must be zero and will not change. Allow sam-
pling at node j for value k only when nj,k+tcj,k >
0. By Constraint (2) for node j at value k, si,j,k
will be sampled keeping si,j,k ≤ nj,k + tcj,k −∑

l∈Ej−{i} sl,j,k and keeping tpj,k > 0. Decreas-
ing si,j,k according to these constraints becomes

38 Buntine et al.

the same task as given in Section 3.2.2. Increas-
ing si,j,k within the constraints has no flow on
affects so is the same as the standard increment-
ing formula in Section 3.2.1 where u = 1.

The second operator moves a count from one
si,j,k to another si′,j,k. This can be put to-
gether by first doing a decrease as per Sec-
tion 3.2.2 followed by an increase as per Sec-
tion 3.2.1. The constraints at node j at value
k will be unaffected by the combined move so
no descendent auxiliary counts will change. A
recursive argument shows these two operators
make Gibbs sampling correct for the space of
auxiliary counts s1:J,1:K .

3.3 Sampling the Variance Parameter b

In using these models for topic modelling,
we have found performance is quite sensi-
tive to the parameter b which controls the
variance. For instance, for the distribution
PDP (a, b,discreteK(µ)) the hyperparameter b
can thus roughly be thought of as the prior data
count since variance is O(1/(b+ 1)).

We perform Gibbs sampling over b using aux-
iliary variables. First, consider the case where
a = 0, discussed in (Teh et al., 2006). Consider
the posterior for b, p(n1:J , s1:J,1:K |H, a = 0),
proportional to

∏
j:Ej 6=∅

b
∑

i,k si,j,kΓ(b)

Γ
(
b+Nj +

∑
i,k sj,i,k

)
Introduce qj ∼ Beta

(
b,Nj +

∑
i,k sj,i,k

)
as

auxiliary variables. Then the joint posterior dis-
tribution for qj and b is proportional to

b
∑

i,j,k si,j,k
∏

j:Ej 6=∅
qb−1
j (1− qj)Nj+

∑
i,k sj,i,k−1 .

The auxiliary sampling scheme then becomes:

qj ∼ Beta

b,Nj +
∑
i,k

sj,i,k

 for each j,

b ∼ Gamma

∑
i,j,k

si,j,k + 1,
∑
j

log 1/qj

 .

For the case when a > 0 things become a bit
more elaborate. Now the posterior is propor-
tional to

∏
j:Ej 6=∅

Γ(b)Γ
(
b/a+

∑
i,k si,j,k

)
Γ
(
b+Nj +

∑
i,k sj,i,k

)
Γ(b/a)

Introducing the same auxiliary variables as be-
fore yields a joint posterior distribution for qj
and b that is easily shown to be log concave,
so the second step in the previous case (a = 0)
is now replaced by an adaptive regression sam-
pling step in b (Gilks and Wild, 1992).

4 Experiments

We extended standard LDA, shown in Fig-
ure 1 in two directions, which have been more
fully developed and experimented with else-
where (Du et al., 2010a; Du et al., 2010b). Here
we cover basic results to demonstrate the ef-
fectiveness of the theory developed. The first
model, the Segmented Topic Model (STM) (Du
et al., 2010a) is shown in Figure 2, and al-
lows a document to be broken into J segments.
Each segment has its own topic proportions
νi,j which are related by our scheme using a
PDP to the general proportions for the whole
documents proportions µi. The second model,
called the Sequential LDA (SeqLDA) (Du et al.,
2010b), models the progressive topical depen-
dencies among segments with a hidden Markov
model of topic proportions νi,1, ...,νi,J , shown
in Figure 3.

w
L

z

I

K

J

γ φ

α μ ν

Figure 2: Segmented Topic Model.

A patent dataset was randomly selected from
5000 U.S. patents2 granted between Jan. and

2All patents are from Cambia, http://www.cambia.
org/daisy/cambia/home.html

Buntine et al. 39

w

L

z

I

K

α μ ν

γ

φ

1
ν

2

1

w

L

z

2

。。。

ν
J

w

L

z

J

。。。

Figure 3: Sequential LDA.

Table 1: Perplexity on datasets.
K STM LDA D LDA S

G06-
1000

100 1270 1712 1508
150 1178 1595 1393

NIPS
100 1632 1991 2182
150 1516 1881 2186

Mar. 2009 under the class “computing; cal-
culating; counting” with international patent
classification (IPC) code G06. Patents in this
dataset called G06-1000 are split into para-
graphs according to the original structure. All
stop-words, extremely common words (e.g. top
40), and less common words (i.e. words ap-
pear less than 5 documents) have been removed.
This leads to a vocabulary size of 10385 unique
words segmented as 60,564 paragraphs, and
2,513,087 words. We also processed the NIPS
dataset3 removing bibliography material (every-
thing after “References”) and header material
(everything before “Abstract”) yielding 1,629
documents segmented as 174,474 sentences with
1,773,365 words total.

To evaluate the generalization capability of
these models to unseen data, we compute per-
plexity, a standard measure in language mod-
elling. The perplexity of a collection D of I
documents is defined as exp

{
−

∑I
i=1 ln p(wi)∑I

i=1Ni

}
where wi indicates all words in document i, and
Ni indicates the total number of words in i. A
lower perplexity over unseen documents means
better generalization capability. In our exper-
iments, it is computed based on the held-out
method introduced in (Rosen-Zvi et al., 2004)
with 80% for training and 20% for testing.

3It is available at http://nips.djvuzone.org/txt.
html

Perplexity results appear in the table where
LDA has been run twice, once on the full doc-
uments (LDA D) and once on the segments
within documents (LDA S). Clearly, the STM
model works well. The SeqLDA model was also
run and not only gives better results than the
LDA, but also reveals a strong sequential struc-
ture from segment to segment. To illustrate
the sequential bahaviour of topics for SeqLDA,
Figures 4 and 5 compare topic proportions for
aligned topics for each segment (i.e. chapter) of
the book The Prince by Machiavelli. SeqLDA is
clearly seen to have topics flow better from one
chapter to another than LDA. Refer to (Du et
al., 2010a; Du et al., 2010b) for more detailed
experimental results.

Figure 4: LDA topics in The Prince.

Figure 5: SeqLDA topics in The Prince.

40 Buntine et al.

5 Conclusion

We have shown how to perform inference on
Bayesian networks of Dirichlet distributed prob-
ability vectors using Gibbs sampling over dis-
crete auxiliary variables. Experiments demon-
strate the general approach.

Acknowledgments

NICTA is funded by the Australian Govern-
ment as represented by the Department of
Broadband, Communications and the Digital
Economy and the Australian Research Council
through the ICT Centre of Excellence program.
This work was supported in part by the IST
Programme of the European Community, un-
der the PASCAL2 Network of Excellence, IST-
2007-216886. This publication only reflects the
authors’ views.

References

D.M. Blei, A.Y. Ng, and M.I. Jordan. 2003. Latent
Dirichlet allocation. J. Mach. Learn. Res., 3:993–
1022.

W. Buntine and M. Hutter. 2010. A Bayesian inter-
pretation of the Poisson-Dirichlet process. Avail-
able at: http://arxiv.org/abs/1007.0296v1.

W.L. Buntine and A. Jakulin. 2006. Discrete
components analysis. In Subspace, Latent Struc-
ture and Feature Selection Techniques. Springer-
Verlag.

L. Du, W. Buntine, and H. Jin. 2010a. A segmented
topic model based on the two-parameter Poisson-
Dirichlet process. Machine Learning (in press).

L. Du, W. Buntine, and H. Jin. 2010b. Sequen-
tial latent Dirichlet allocation: Discover underly-
ing topic structures within a document. Technical
report, NICTA. In submission.

W.R. Gilks and P. Wild. 1992. Adaptive rejection
sampling for Gibbs sampling. Applied Statistics,
41:337–348.

S. Goldwater, T. Griffiths, and M. Johnson. 2006.
Interpolating between types and tokens by esti-
mating power-law generators. In NIPS 18, pages
459–466. MIT Press.

R. Hanson, J. Stutz, and P. Cheeseman. 1991.
Bayesian classification with correlation and inher-
itance. In Proc. of the 12th IJCAI, pages 692–698.

H. Ishwaran and L.F. James. 2001. Gibbs sam-
pling methods for stick-breaking priors. J. ASA,
96(453):161–173.

M. Johnson, T.L. Griffiths, and S. Goldwater. 2007.
Adaptor grammars: A framework for specify-
ing compositional nonparametric Bayesian mod-
els. In NIPS 19, pages 641–648. MIT Press.

S.L. Lauritzen. 1989. Mixed graphical association
models. Scand. Jnl. of Statistics, 16(4):273–306.

D. Mochihashi and E. Sumita. 2008. The infinite
Markov model. In NIPS 20, pages 1017–1024.
MIT Press.

C.E. Rasmussen. 2000. The infinite Gaussian mix-
ture model. In NIPS 12, pages 554–560. MIT
Press.

M. Rosen-Zvi, T. Griffiths, M. Steyvers, and P.
Smyth. 2004. The author-topic model for au-
thors and documents. In Proc. of the 20th UAI,
pages 487–49.

E.B. Sudderth and M. Jordan. 2009. Shared
segmentation of natural scenes using dependent
Pitman-Yor processes. In NIPS 21. MIT Press.

Y.W. Teh, M.I. Jordan, M.J. Beal, and D.M. Blei.
2006. Hierarchical Dirichlet processes. J. ASA,
101.

Y.W. Teh. 2006a. A Bayesian interpretation
of interpolated Kneser-Ney. Technical Report
TRA2/06, School of Computing, National Uni-
versity of Singapore.

Y.W. Teh. 2006b. A hierarchical Bayesian language
model based on Pitman-Yor processes. In Proc. of
the 21st ICCL and the 44th ACL, pages 985–992.

A. Thomas, D.J. Spiegelhalter, and W.R. Gilks.
1992. BUGS: A program to perform Bayesian in-
ference using Gibbs sampling. In Bayesian Statis-
tics 4, pages 837–42. Clarendon Press.

H. Wallach, C. Sutton, and A. McCallum. 2008.
Bayesian modeling of dependency trees using hier-
archical Pitman-Yor priors. In Proc. of the Work-
shop on Prior Knowledge for Text and Language
(with ICML/UAI/COLT), pages 15–20.

F. Wood and Y. W. Teh. 2009. A hierarchical non-
parametric Bayesian approach to statistical lan-
guage model domain adaptation. In Proc. of the
Int. Conf. on Artificial Intelligence and Statistics,
volume 12.

F. Wood, C. Archambeau, J. Gasthaus, L.F. James,
and Y.W. Teh. 2009. A stochastic memoizer for
sequence data. In Proc. of ICML’09.

Pp. 41–49 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

The Semantics of Intermediate CPTs in Variable Elimination

Cory J. Butz
University of Regina, Canada

butz@cs.uregina.ca

Wen Yan
University of Regina, Canada

yanwe111@cs.uregina.ca

Abstract

Variable elimination (VE), a central component of Bayesian network inference, starts
and ends with clear structure and semantics, yet all intermediate distributions, whether
normalized or unnormalized, are denoted as potentials. In this paper, a condition is given
stating when intermediate distributions are defined with respect to the joint distribution.
Theoretical and practical advantages of these new semantics are given.

1 Introduction

A Bayesian network (BN) (Pearl, 1988; Cowell
et al., 1999; Jensen and Nielsen, 2007; Kjaerulff
and Madsen, 2008) consists of a directed acyclic
graph (DAG) and a corresponding set of condi-
tional probability tables (CPTs). The indepen-
dencies encoded in a DAG on variable set U in-
dicate that the product of CPTs is a joint prob-
ability distribution p(U). BN reasoning centres
around eliminating variables. Variable elimina-
tion (VE) (Zhang and Poole, 1996), an inference
algorithm for answering a query p(X|E = e),
repeatedly calls the sum-out (SO) algorithm to
remove variables. SO removes a variable v as
a two-step process. First, the product of all
distributions involving v is taken. Second, v is
marginalized out from the obtained product.

Koller and Friedman (2009) state that it is
interesting to consider the semantics of the dis-
tribution output by SO when evidence is not
considered. They mention that SO outputs
a CPT φ(X|Y), but not necessarily with re-
spect to p(U). Butz et al. (2010) have shown a
stronger result, namely, that every multiplica-
tion and every addition operation during VE’s
execution yields a CPT, albeit perhaps not with
respect to p(U).

In this paper, we address the semantics of

VE’s intermediate CPTs by providing a con-
dition stipulating when they are defined with
respect to p(U). Roughly speaking, φ(X|Y) is
p(X|Y) provided there exists a topological or-
dering of all variables in the BN in which those
variables used to build φ(X|Y) appear consec-
utively. In such cases, we say an intermedi-
ate CPT φ(X|Y) has a “p-label” and denote
φ(X|Y) as p(X|Y). It is important to observe
that φ(X|Y) can be normalized or unnormal-
ized, as well as involve evidence variables or not.
It is noted that there are two kinds of paths
that violate our condition, which, respectively,
have temporary and permanent influences on
SO. This work helps reveal structure and se-
mantics in probabilistic reasoning with BNs,
a worthy goal according to Pearl (1988) and
Shafer (1996). We will also mention a practical
advantage of this new semantic knowledge us-
ing the latest optimization techniques that are
being applied in join tree propagation.

This paper is organized as follows. Section
2 contains background knowledge. The CPT
structure of SO is discussed in Section 3. In
Section 4, we establish semantics of VE’s CPT
structure. We extend the semantics to involve
evidence in Section 5. Section 6 contains the-
oretical and practical advantages. Conclusions
are given in Section 7.

42 Butz & Yan

2 Background Knowledge

The following discussion draws mainly from
Shafer (1996) and Olmsted (1983). Let U =
{v1, v2, . . . , vn} be a finite set of variables. Each
vi has a finite domain, denoted dom(vi). For
a subset X = {vi, . . . , vj} of U , dom(X) de-
notes the Cartesian product of the domains of
the individual variables in X. Each element
x ∈ dom(X) is called a configuration of X.

A potential on dom(X) is a function ψ such
that ψ(x) ≥ 0 for each x ∈ dom(X), and at least
one ψ(x) is positive. A joint probability distri-
bution on dom(U) is a potential p on dom(U)
that sums to 1. A potential that sums to 1 is
normalized ; otherwise, it is unnormalized. We
may write a set {v1, v2, . . . , vk} as v1v2 · · · vk and
use XY to denote X ∪ Y . A conditional prob-
ability table (CPT) for X given disjoint Y , de-
noted φ(X|Y), is a potential on XY , satisfying
the following condition: for each configuration
y ∈ dom(Y),

∑
x∈dom(X) φ(X = x | Y = y) = 1.

In writing φ(X|Y) with X and Y not disjoint,
we always means φ(X|Y −X), and only config-
urations with non-zero probability are stored.

A discrete Bayesian network (BN) (Pearl,
1988) on U = {v1, v2, . . . , vn} is a pair (B,C).
B is a DAG with vertex set U . C is a set of
CPTs {p(vi|Pi) | i = 1, 2, . . . , n}, where Pi de-
notes the parents (see below) of variable vi ∈ B.

A path from v1 to vn is a sequence
v1, v2, . . . , vn with arcs (vi, vi+1), i = 1, . . . , n−1
in B. With respect to a variable vi, we define
four sets: (i) the ancestors of vi, denoted A(vi),
are those variables having a path to vi; (ii) the
parents of vi are those variables vj such that
arc (vj , vi) is in B; (iii) the descendants of vi,
denoted D(vi), are those variables to which vi
has a path; and, (iv) the children of vi are those
variables vj such that arc (vi, vj) is in B. The
ancestors of a set X of variables are defined as
A(X) = (∪vi∈XA(vi)) − X. D(X) is similarly
defined. A topological ordering is an ordering
≺ of the variables in a BN B so that for every
arc (vi, vj) in B, vi ≺ vj . Initial segments of
the ordering produce marginals of p(U). A set
W of variables in a DAG is an initial segment
if the parents of each vi in W are also in W .

Algorithm 1, called sum-out (SO), eliminates
a single variable v from a set Φ of potentials,
and returns the resulting set of potentials. The
algorithm collect-relevant simply returns those
potentials in Φ involving variable v.

Algorithm 1 sum-out(v,Φ)
begin
Ψ = collect-relevant(v,Φ)
ψ = the product of all potentials in Ψ
τ =

∑
v ψ

Return (Φ−Ψ) ∪ {τ}
end

Algorithm 2, called variable elimination
(VE), computes p(X | E = e) from a BN on
U . VE calls SO to eliminate variables one by
one. More specifically, in Algorithm 2, Φ is
the set of CPTs in a BN, X is a list of query
variables, E is a list of observed variables, e is
the corresponding list of observed values, and σ
is an elimination ordering for variables U−XE.

Algorithm 2 VE(Φ, X, E, e, σ)
begin
Set E = e in all appropriate CPTs of Φ
While σ is not empty

Remove the first variable v from σ
Φ = sum-out(v,Φ)

p(X,E = e) = the product of all φ ∈ Φ
p(E = e) =

∑
X p(X,E = e)

Return p(X,E = e)/p(E = e)
end

3 The CPT Structure of sum-out

Observe that VE starts and ends with clear
structure and semantics, yet all intermediate
distributions, whether normalized or unnormal-
ized, are denoted as potentials. In their very
comprehensive discussion, Koller and Fried-
man (2009) state that it is interesting to con-
sider the semantics of the distribution con-
structed by summing out a variable from a BN
not involving observed evidence. They point
out that SO’s marginalization step produces a
CPT, but not necessarily with respect to the
joint probability distribution p(U).

Butz & Yan 43

Example 1. SO eliminates variable b from the
BN in Figure 1 as:

φ(c, e|a, d) =
∑
b

p(b|a) · p(c|b) · p(e|b, d). (1)

Thus, after marginalization, SO outputs a CPT.

a

b

c

d

e

f

g

h

i

j

k l

Figure 1: A Bayesian network.

Butz et al. (2010) have shown a stronger re-
sult, namely, every multiplication and every ad-
dition operation during VE’s execution yields a
CPT, albeit perhaps not with respect to p(U).
Example 2. Each operation of (1) gives a CPT:∑

b

p(b|a) · p(c|b) · p(e|b, d)

=
∑
b

φ(b, c|a) · p(e|b, d) (2)

=
∑
b

φ(b, c, e|a, d) (3)

= φ(c, e|a, d).

Note that Shafer (1996) gives a condition un-
der which each successive product of a sequence
of CPTs always yields another CPT. In particu-
lar, for the case when multiplying just two CPTs
φ(X1|Y1) and φ(X2|Y2), it is stated that

φ(X1X2|Y1Y2) = φ(X1|Y1) · φ(X2|Y2), (4)

provided that X2 is disjoint from X1Y1. The
next example demonstrates, however, that (4)
does not cover all possible cases encountered
when applying SO on a BN.
Example 3. Consider eliminating variable c
from the following BN:

p(a) · p(b) · p(c) · p(d|a, b, c) · p(e|c, d).

By Algorithm 1, we obtain∑
c

p(c) · p(d|a, b, c) · p(e|c, d).

The optimal multiplication ordering, assuming
binary variables and positive probabilities, is∑

c

(p(c) · p(e|c, d)) · p(d|a, b, c).

By (4), p(c) · p(e|c, d) is φ(c, e|d), giving∑
c

φ(c, e|d) · p(d|a, b, c). (5)

As (4) no longer applies, the product of the two
CPTs in (5) must be denoted as a potential:∑

c

ψ(a, b, c, d, e).

While (Butz et al., 2010) reveals the CPT
structure of ψ(a, b, c, d, e) as φ(c, d, e|a, b), the
remaining unanswered question is semantic. Is
φ(c, d, e|a, b) equal to p(c, d, e|a, b)?
4 Semantics Without Evidence

We first consider eliminating variables without
observed evidence. It can easily be shown that
SO’s marginalization operation will always yield
a CPT with the same kind of label as the CPT
being marginalized. Thus, we focus on the se-
mantics of multiplication.

Theorem 1. Given a BN B on U and X ⊆ U .
Then

p(X|Y) =
∏
vi∈X

p(vi|Pi),

if there is a topological ordering ≺ of B in which
the variables in X appear consecutively, where
Y = (∪vi∈XPi)−X.

Proof. Suppose there exists a topological order-
ing≺ of the variables in B in which the variables
in X appear consecutively. Let W be the set of
all variables appearing in ≺ before any variable
in X. By (Shafer, 1996), the variables in W and
WX are both initial segments, meaning that

p(W) =
∏

vw∈W
p(vw|Pw) (6)

44 Butz & Yan

and

p(WX) =
∏

vw∈W
p(vw|Pw) ·

∏
vx∈X

p(vx|Px). (7)

By substitution of (6) into (7),

p(WX) = p(W) ·
∏
vx∈X

p(vx|Px).

By (Butz et al., 2010),

p(WX) = p(W) · φ(X|Y). (8)

According to ≺, the variables Y must be con-
tained in W , by (Shafer, 1996). Let V = W−Y ,
so W = V Y . Then (8) can be rewritten as

p(V Y X) = p(V Y) · φ(X|Y).

Marginalizing away V yields

p(Y X) = p(Y) · φ(X|Y).

By rearrangement, we obtain our desired result

p(X|Y) = φ(X|Y).

Example 4. By Theorem 1, φ(b, c|a) in (2) is
p(b, c|a), since b and c can appear consecutively
in a topological order ≺ of B in Figure 1. How-
ever, φ(b, c, e|a, d) in (3) is not guaranteed to
be p(b, c, e|a, d), since every topological order ≺
has d between c and e, i.e., c ≺ d ≺ e.

Our topological condition is sufficient but not
necessary to ensure CPTs with p-labels.

Example 5. Consider eliminating b from the
BN in Figure 1. Suppose the CPTs for a, . . . , e
are defined such that their marginal has only
one configuration with a non-zero probability,
say, p(a = 0, b = 0, c = 0, d = 0, e = 0) is 1. In
this extreme case, it can be verified that

p(b, c, e|a, d) = p(b|a) · p(c|b) · p(e|b, d).

To ensure p-label CPTs for any BN instance
B, we extend SO as sum-out-as-p (SOP), which
calls collect-topological (CT) to collect any CPT
needed to satisfy our topological ordering re-
quirement in B.

Algorithm 3 sum-out-as-p(v,Φ)
begin
Ψ = collect-relevant(v,Φ)
Θ = collect-topological(Ψ,Φ)
p(X|Y) is the product of all CPTs in Ψ and Θ
p(X − v|Y) =

∑
v p(X|Y)

Return (Φ−Ψ−Θ) ∪ {p(X − v|Y)}
end

Algorithm 4 collect-topological(Ψ,Φ)
begin
X is the union of all Xi where p(Xi|Yi) ∈ Ψ
Let Z be A(X) ∩D(X)
Let Ω be those p(Xi|Yi) in Φ with Xi ∩ Z 6= ∅
Return Ω
end

Example 6. Consider how SOP eliminates h,
b and f from Figure 1. For h, Ψ = {p(h|d, g),
p(i|h), p(j|h)}. CT returns Ω = ∅, as X = hij,
Z = A(hij) ∩D(hij) = ∅. In SOP, Θ = ∅, so

p(i, j|d, g) =
∑
h

p(h|d, g) · p(i|h) · p(j|h).

For b, Ψ = {p(b|a), p(c|b), p(e|b, d)} and, as
Z = A(bce) ∩D(bce) = d, Θ = {p(d|c)}. Thus,

p(c, d, e|a) =
∑
b

p(b|a) · p(c|b) · p(d|c) · p(e|b, d).

For f , Ψ = {p(f), p(g|e, f), p(l|f, k, i, j)} and,
since Z = A(fgl) ∩ D(fgl) = hijk, we have
Θ = {p(i, j|d, g), p(k|g)}. Therefore,∑
f

p(f) p(g|e, f) p(i, j|d, g) p(k|g) p(l|f, k, i, j)

= p(g, i, j, k, l |d, e).

Observe that every elimination in Example 6
yielded a p-label CPT. Also note that Z in the
collect-topological algorithm can be quickly ob-
tained from the transitive closure of a DAG,
which can be found in O(n3) time (Cormen et
al., 2009). It must be made clear that we are
not advocating that SOP be considered as a new
approach to inference. Instead, SOP can shed
insight into the semantics of SO’s intermediate
CPTs. SO is ensured to yield a CPT with a p-
label, if it collects the same CPTs as SOP does.

Butz & Yan 45

Example 7. Recall Example 6. When elimi-
nating variable h, SO will yield a p-label, since
SO and SOP collect the same CPTs. On the
contrary, to eliminate variable b, SO can com-
pute the following φ-label:

φ(b, c, e|a, d) = p(b|a) · p(c|b) · p(e|b, d).

A p-label is not necessarily obtained here due to
the fact that SOP also collects Θ = {p(d|c)}.

More generally, every product taken in SO
of two CPTs φ(X1|Y1) and φ(X2|Y2) will be
p(X1X2|Y1Y2), provided the topological require-
ment is met. Let us focus on eliminating a sin-
gle variable from a BN. There are two kinds of
paths warranting attention. The first only in-
volves children of the variable being eliminated.
When eliminating a variable v from a BN, the
CPTs of v’s children must be multiplied in an
order consistent with some topological order-
ing of the DAG. The following example illus-
trates how this condition has a temporary in-
fluence within SO, meaning that intermediate
CPTs can alternate between φ- and p-labels.

Example 8. Consider the elimination of vari-
able b from the BN in Figure 2:∑

b

p(b) · p(e|b, d) · p(d|a, b) · · · (9)

=
∑
b

φ(b, e|d) · p(d|a, b) · p(g|b, f) · · · (10)

=
∑
b

p(b, d, e|a) · p(g|b, f) · p(f |b, c, e) · · ·(11)

=
∑
b

φ(b, d, e, g|a, f) · p(f |b, c, e) · · · (12)

=
∑
b

p(b, d, e, f, g|a, c) · p(i|b, g, h) · · · (13)

=
∑
b

φ(b, d, e, f, g, i|a, c, h) · p(j|b, i) (14)

=
∑
b

φ(b, d, e, f, g, i, j|a, c, h) (15)

= φ(d, e, f, g, i, j|a, c, h). (16)

Example 8 demonstrates how the intermedi-
ate CPTs can alternate between having and not
having p-labels. A φ-label can be obtained when
multiplying the CPTs for b and e in (10), since

a b c

d e f g

h

i j

Figure 2: Illustrating the alternating pattern of
intermediate CPTs with p-labels in Example 8.

there is a path from b to e going through d (so
b ≺ d ≺ e). Since the CPT p(d|a, b) for d has
been collected by SO, a p-label can be subse-
quently re-obtained, as shown in (11). Similar
remarks hold for multiplying this product with
the CPT for g before that for f , as shown in
(12) - (13).

The second kind of path, however, has a per-
manent influence on the semantics of SO’s in-
termediate CPTs; it involves variables that are
not children of the variable being eliminated.
Recall Example 8 where variable b is being elim-
inated and consider (13) - (14). Once the CPT
p(i|b, g, h) is multiplied, all CPTs subsequently
constructed by SO during the elimination of b
can have a φ-label as in (14) - (16). The reason
is that there is a path from b to i going through
h (so b ≺ g ≺ h ≺ i). However, the CPT p(h|g)
is not collected by SO as p(h|g) does not involve
b. Hence, the only way to ensure a subsequent
p-label is to wait for p(h|g) to be multiplied dur-
ing a different call to SO, say to eliminate h.

Theorem 2. Given a BN B on U , let φ(X|Y)
be any CPT that VE computes by multiplica-
tion. Then φ(X|Y) is p(X|Y), if there is a
topological ordering ≺ of B in which the vari-
ables in DX appear consecutively, where D are
those variables that were eliminated by SO in
building φ(X|Y).

The proof of Theorem 2 is similar to that
of Theorem 1 and will be shown in a separate
manuscript.

46 Butz & Yan

Example 9. Continuing from Example 8, con-
sider the elimination of variable h.∑

h

p(h|g) · φ(d, e, f, g, i, j|a, c, h)

=
∑
h

p(d, e, f, g, h, i, j|a, c) (17)

= p(d, e, f, g, i, j|a, c).

In Example 9, a p-label is obtained in (17)
as there exists a topological ordering ≺ of
the BN in Figure 2 where the variables in
b, d, e, f, g, h, i, j appear consecutively.

5 Semantics With Evidence

Suppose we observe the values e of a set E of
variables contained in U . Before a disjoint set D
also contained in U is eliminated from the BN,
those CPTs containing evidence variables are
modified by multiplying them with evidence po-
tentials. An evidence potential, denoted 1(E),
assigns probability 1 to the single configuration
e of E and probability 0 to all other configu-
rations of E. If a BN CPT p(vi|Pi) contains at
least one evidence variable, then 1i denotes 1(E)
restricted to those evidence variables appearing
in p(vi|Pi). Hence, the product p(vi|Pi)·1i keeps
the configurations agreeing with E = e while
deleting the rest. By 1(∅), we denote 1.

Intermediate potentials, constructed during
inference by VE, can always have their condi-
tional probabilities (Theorem 3) and semantics
(Corollary 1) identified.

Theorem 3. Given a BN B and evidence E =
e, every VE distribution constructed by multi-
plication can be expressed as the product of a
CPT and an evidence potential.

Proof. Let the constructed distribution be φ1 ·
φ2. We can always equivalently rewrite φ1 as
the marginalization of the product of the CPTs
and evidence potentials used to build φ1:

φ1 =
∑
D1

j∏
i=1

(p(vi|Pi) · 1i) ·
k∏

i=j+1

p(vi|Pi),

where D1 is the set of variables marginalized
away by SO from the product of k CPTs in

B, and where j evidence potentials were used.
Since E ∩D1 = ∅, we have

φ1 =
j∏
i=1

1i ·
∑
D1

j∏
i=1

p(vi|Pi) ·
k∏

i=j+1

p(vi|Pi)

=
j∏
i=1

1i ·
∑
D1

k∏
i=1

p(vi|Pi).

Similarly, for φ2,

φ2 =
∑
D2

l∏
i=k+1

(p(vi|Pi) · 1i) ·
m∏

i=l+1

p(vi|Pi)

=
l∏

i=k+1

1i ·
∑
D2

l∏
i=k+1

p(vi|Pi) ·
m∏

i=l+1

p(vi|Pi)

=
l∏

i=k+1

1i ·
∑
D2

m∏
i=k+1

p(vi|Pi).

Thus, the product φ1 · φ2 is
j∏
i=1

1i ·
∑
D1

k∏
i=1

p(vi|Pi) ·
l∏

i=k+1

1i ·
∑
D2

m∏
i=k+1

p(vi|Pi).

By SO, D2 and D1 have no common variables
with the CPTs p(vi|Pi), i = 1, . . . , k and i =
k + 1, . . . ,m, respectively. Therefore, we have:
j∏
i=1

1i ·
l∏

i=k+1

1i ·
∑
D1D2

k∏
i=1

p(vi|Pi) ·
m∏

i=k+1

p(vi|Pi).

Rearranging yields
j∏
i=1

1i ·
l∏

i=k+1

1i ·
∑
D1D2

m∏
i=1

p(vi|Pi).

Let φ(X|Z) =
∏m
i=1 p(vi|Pi). Then we have

j∏
i=1

1i ·
l∏

i=k+1

1i ·
∑
D1D2

φ(X|Z).

As D1D2 ⊆ X (Butz et al., 2010), let W =
X −D1D2. Thus, the multiplication φ1 · φ2 is

1(E ∩WZ) · φ(W |Z),

where the product of the evidence potentials is
1(E ∩WZ).

Corollary 1. In the proof of Theorem 3,
φ(W |Z) is p(W |Z), provided there is a topo-
logical ordering ≺ of B in which the variables
in DW appear consecutively, where D are those
variables that were eliminated to build φ(W |Z).

Butz & Yan 47

6 Advantages

We stress the improvement in clarity and sug-
gest a direction of practical investigation.

Kjaerulff and Madsen (2008) suggest that in
working with probabilistic networks it is conve-
nient to denote distributions as potentials. Sim-
ilarly, Koller and Friedman (2009) would denote
the start of Example 8 as∑

b

ψ2(b) · ψ5(e, b, d) · ψ4(d, a, b) · · · .

Observe that both the p-labels and the CPT
structure have been destroyed even before the
distributions in memory have been modified. It
is then more meaningful to keep the CPT struc-
ture and semantics highlighted in (9) - (16).

Consider evidence i = 1 and h = 0 in the BN
in Figure 3, which Koller and Friedman (2009)
call non-trivial. All intermediate distributions
are denoted as potentials in the computation of
p(j | i = 1, h = 0). However, it follows from
Theorem 3 and Corollary 1 that structure and
semantics can still be identified.

c

d i

g s

j
l

h

Figure 3: The DAG of a non-trivial BN.

Example 10. Computing p(j | i = 1, h = 0) in
the BN of Figure 3 involves, in part,∑
c,d,g,s,l

p(c) · p(d|c) · p(i) · p(s|i) · p(g|d, i) · p(l|g)

·p(j|l, s) · p(h|g, j) · 1(i = 1) · 1(h = 0).

Eliminating variables c and d requires∑
d

p(g|d, i) · 1(i = 1) ·
∑
c

p(c) · p(d|c) (18)

=
∑
d

p(g|d, i = 1) ·
∑
c

p(c, d) (19)

=
∑
d

p(g|d, i = 1) · p(d) (20)

=
∑
d

p(d, g|i = 1)

= p(g|i = 1).

Variable g can be eliminated as:∑
g

p(g|i = 1) · p(l|g) · p(h|g, j) · 1(h = 0)

∑
g

p(g|i = 1) · p(l|g) · p(h = 0|g, j)

=
∑
g

p(g, l|i = 1) · p(h = 0|g, j) (21)

=
∑
g

φ(g, l, h = 0|i = 1, j) (22)

= φ(l, h = 0|i = 1, j). (23)

The remainder of the example is omitted.
Example 10 shows that all intermediate dis-

tributions have structure and semantics, regard-
less of: the involvement of evidence potentials
(18); the side or sides of the bar on which evi-
dence appears (21), (22); marginalization oper-
ations (19); and p-labels (20) or φ-labels (23).
Now let us turn to efficiency issues.

All previous join tree propagation algo-
rithms either exclusively apply VE or arc re-
versal (AR) (Olmsted, 1983) at all join tree
nodes (Madsen, 2010), or pick whether to apply
VE or AR at each node (Butz et al., 2009a).
A practical advantage of our new semantics is
the ability to construct messages using both VE
and AR at the same join tree node.
Example 11. Consider a join tree with
three nodes abcdefgh, fgij and fik.
The CPTs assigned to abcdefgh are p(a),
p(b|a), p(c|b), p(d|c), p(e|b, d), p(f |e), p(g|e),
p(h|a, b, c, d, e, f, g), while fgij is provided
p(i|g) and p(j|f, g, i), and fik is given p(k|f, i).
Butz et al.’s (2009b) message identification
process indicates that abcdefgh will pass p(f)
and p(g|f) to node fgij, which, in turn, will
pass p(f) and p(i|f) to fik. Madsen (2010) and
Butz et al. (2009a) would apply AR at node
abcdefgh, i.e., with some abuse of notation:

p(f) · p(g|f) =
AR∑

a,b,c,d,e

p(a) · · · p(f |e) · p(g|e),

48 Butz & Yan

where h is removed as a barren variable. AR
must be applied to remove the last variable e.
However, by examining the semantics of VE, it
can be verified that the elimination of variables
a, b, c and d gives p(e). Thus, apply VE to
eliminate variables a, b, c and d, and then apply
AR to eliminate variable e:

AR∑
e

V E∑
a,b,c,d

p(a) · p(b|a) · p(c|b) · p(d|c) · · · p(g|e)

=
AR∑
e

V E∑
b,c,d

p(b) · p(c|b) · p(d|c) · p(e|b, d) · · · p(g|e)

=
AR∑
e

V E∑
c,d

φ(c, e|d) · p(d|c) · p(f |e) · p(g|e)

=
AR∑
e

V E∑
d

p(d, e) · p(f |e) · p(g|e)

=
AR∑
e

p(e) · p(f |e) · p(g|e).

It can be verified that applying AR at abcdefgh
requires more computation than applying the
combination of VE and AR as shown above.

Empirical results will be reported separately.

7 Conclusions

Pearl (1988) emphasizes that probabilistic rea-
soning is not about numbers and is instead
about the structure of reasoning. Our work here
ascribes semantics to the intermediate CPTs of
VE. This is the primary contribution of this
paper. A practical advantage of these seman-
tics was illustrated using the latest optimiza-
tion techniques employed in join tree propaga-
tion and requires further study.

Intermediate CPTs constructed by VE could
be labeled solely with p-labels, provided the la-
bel of each distribution is an expression rather
than a single term. That is, label each CPT out-
put by SO as a fraction, where the numerator is
the p-label CPT output by SOP and the denom-
inator is the factorization of “missing” CPTs in
Θ. Thus, whereas SO can eliminate variable b
in Example 7 as φ(c, e|a, d), it may be semanti-
cally more meaningful to take another step and
label it p(c, d, e|a)/p(d|c).

Acknowledgments

This research is supported by NSERC Discovery
Grant 238880. The authors thank K. Williams
for useful comments.

References

C.J. Butz, K. Konkel and P. Lingras. 2009a. Join
tree propagation utilizing both arc reversal and
variable elimination. In Twenty Second Interna-
tional Florida Artificial Intelligence Research So-
ciety Conference, pages 523–528.

C.J. Butz, H. Yao and S. Hua. 2009b. A join tree
probability propagation architecture for semantic
modeling, Journal of Intelligent Information Sys-
tems, 33(2):145-178.

C.J. Butz, W. Yan, P. Lingras and Y.Y. Yao. 2010.
The CPT structure of variable elimination in dis-
crete Bayesian networks. Advances in Intelligent
Information Systems. SCI 265. Z.W. Ras and L.S.
Tsay (Eds.). Springer, pages 245-257.

T.H. Cormen, C.E. Leiserson, R.L. Rivest and
C. Stein. 2009. Introduction to Algorithms. MIT
Press.

R.G. Cowell, A.P. Dawid, S.L. Lauritzen and D.J.
Spiegelhalter. 1999. Probabilistic Networks and
Expert Systems. Springer.

F.V. Jensen and T.D. Nielsen. 2007. Bayesian Net-
works and Decision Graphs. Springer.

U.B. Kjaerulff and A.L. Madsen. 2008. Bayesian
Networks and Influence Diagrams. Springer.

D. Koller and N. Friedman. 2009. Probabilistic
Graphical Models: Principles And Techniques.
MIT Press.

A.L. Madsen. 2010. Improvements to message com-
putation in Lazy propagation. Int. J. Approx.
Reason, 51(5):499-514.

S. Olmsted. 1983. On representing and solving deci-
sion problems, Ph.D. Thesis, Department of En-
gineering Economic Systems, Stanford University,
Stanford, California.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann.

G. Shafer. 1996. Probabilistic Expert Systems. SIAM.

N.L. Zhang and D. Poole. 1996. Exploiting causal
independence in Bayesian network inference, J.
Artif. Intell. Res., (5):301-328.

Pp. 49–57 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Learning Recursive Probability Trees from Probabilistic
Potentials

Andrés Cano, Manuel Gómez-Olmedo, Seraf́ın Moral, Cora B. Pérez-Ariza
Department of Computer Science and Artificial Intelligence

University of Granada, Spain
{acu,mgomez,smc,cora}@decsai.ugr.es

Antonio Salmerón
Department of Statistics and Applied Mathematics

University of Almeŕıa, Spain
antonio.salmeron@ual.es

Abstract

A recursive probability tree (RPT) is an incipient data structure for representing the dis-
tributions in a probabilistic graphical model. RPTs capture most of the types of indepen-
dencies found in a probability distribution. The explicit representation of these features
using RPTs simplifies computations during inference. This paper describes a learning
algorithm that builds a RPT from a probability distribution. Experiments prove that
this algorithm generates a good approximation of the original distribution, thus making
available all the advantages provided by RPTs.

1 Introduction

The required size for representing probability
distributions in a probabilistic graphical model
(like a Bayesian network) is exponential in the
number of variables. A Bayesian network is
an efficient representation of a joint probabil-
ity distribution, since it exploits independencies
among the variables, but it cannot directly rep-
resent context-specific independencies (Boutilier
et al., 1996) within the distributions. Probabil-
ity trees have been previously used to represent
this kind of independencies within probability
potentials (Cano et al., 2000). Moreover, some-
times a probability distribution can be obtained
through the multiplication (factorization) of a
list of smaller distributions by detecting pro-
portionalities within it (Mart́ınez et al., 2002;
Mart́ınez et al., 2005; Mart́ınez et al., 2006).
Recently, a new data structure for representing
potentials was introduced (Cano et al., 2009):
Recursive Probability Trees (RPTs). This kind
of tree is a generalization of a probability tree.
It allows to represent context-specific indepen-

dencies within distributions, while keeping po-
tentials factorized.

Like probabilistic decision graphs (Jaeger,
2004) and chain event graphs (Smith and An-
derson, 2008), RPTs can be used as a stand-
alone representation of joint probability dis-
tributions, and probabilistic inference can be
fully carried out using this single structure,
as the necessary operations, namely product,
marginalization and restriction, are well defined
over this data structure (Cano et al., 2009).

This paper presents a learning algorithm
able to decompose a probability distribution
into smaller pieces, by detecting context-specific
independencies and multiplicative decomposi-
tions. This decomposition will be represented
as a RPT. The rest of the paper is organized as
follows: Section 2 defines RPTs and describes
their features; Section 3 presents the algorithm
used for constructing a RPT from a probabilis-
tic potential; Section 4 shows the experiments
performed for testing the performance of the al-
gorithm; and finally Section 5 presents conclu-
sions as well as future research directions.

50 Cano et al.

2 Recursive Probability Trees

A Recursive Probability Tree (Cano et al., 2009)
(hereafter referred to as RPT) is a directed tree
with two different kinds of inner nodes (Split
nodes and List nodes), and two types of leaf
nodes (Value nodes and Potential nodes). A
Split node represents a discrete variable. A List
node represents a multiplicative factorization by
listing all the factors to which a potential is de-
composed. It contains one outgoing arc for ev-
ery factor in the decomposition. A Value node
represents a non-negative real number. Finally,
a Potential node stores a full potential inter-
nally using an arbitrary representation. Fig. 1
shows a RPT (left part) and the Bayesian net-
work whose joint probability distribution is en-
coded in the tree (right part). Note how the
potentials are enclosed in Potential nodes, and
how the List node represents a multiplicative
factorization. Using this structure, it is possi-
ble to represent context-specific independencies
within a probability distribution, as shown in
Fig. 2, as well as factorizations (involving the
whole potential or parts of it). Proportionali-
ties within the probability distribution are also
easily represented using this structure (see Fig.
2).

In (Cano et al., 2009) we give a formal def-
inition of a RPT and a method to obtain the
value of the potential for each configuration of
its variables.

Figure 1: RPT (left) encoding of a Bayesian
network distribution (right)

3 Constructing a RPT from a
probabilistic potential

In this section we shall describe our proposal
for transforming any given probabilistic poten-

Figure 2: Distribution with context specific in-
dependencies and proportional values (right),
and the corresponding RPT (left)

tial (for instance, a probability table) into a
RPT. Our proposal is aimed at detecting con-
text specific independencies and multiplicative
factorizations present in a probabilistic poten-
tial. In order to detect context specific inde-
pendencies, we follow an approach similar to
the procedure used for constructing probabil-
ity trees (Salmerón et al., 2000), which is based
on selecting variables for Split nodes according
to their information gain, in a similar way as
variables are selected when constructing deci-
sion trees (Quinlan, 1986). Regarding the mul-
tiplicative decomposition, the basic idea is to
make groups of variables using their mutual in-
formation as a selection criterion. The groups
are later used to obtain the potentials that make
up the multiplicative decomposition.

The starting point is a potential f defined
over a set of variables X, and the aim of the
algorithm is therefore to find a representation of
f as a RPT. We denote S =

∑
x f(x) as the sum

of all the values in f and S(Y = y) =
∑

z f(z, y)
(sum of values consistent with Y = y). The
procedure we propose operates over an auxiliary
graph structure Gf with vertex set X where two
variables Y, Z ∈ X will be linked if there is a
probabilistic dependence between them. More
precisely, a link Y − Z is present in Gf if the
dependence between Y and Z exceeds a given
threshold ε > 0. We use the mutual information
as a measure of dependence, and hence, a link
Y − Z will be included only if

I(Y,Z) =
∑
y,z

p(y, z) log
p(y, z)
p(z)p(y)

> ε, (1)

where p(y, z) = f↓Y Z(y,z)
S and f↓Y Z is the

marginal of f over variables Y and Z. Each

Cano et al. 51

link Y −Z is weighted with I(Y, Z). After con-
structing graph Gf , a first factorization of f is
readily obtained if Gf is disconnected in n con-
nected components X1 ∪ · · · ∪ Xn = X. The
factorization is given by

f(x) = f1(x1) · · · fn(xn)Sn, (2)

where fi = f↓Xi , i = 1, . . . , n, and Sn is a
normalization factor required to keep the sum
of f1(x1) · · · fn(xn) equal to the sum of f(x):

Sn =
∑

x f(x)∑
x (f1(x1) · · · fn(xn)) . (3)

Hence, potential f can be represented as a
RPT where the root node would be a List node
containing the factors in Eq. (2). On the con-
trary, if graph Gf remains as a single connected
component, it means that the potential is not
decomposable as a list of factors with disjoint
variables. However, conditional decompositions
are possible. In order to seek for such context
specific factorizations we must compute for each
variable Y ∈ X the following value

V (Y) =
∑

Z neighbour of Y

I(Y,Z). (4)

Next, we choose Y0 such that Y0 =
arg maxY ∈X V (Y). This heuristic removes the
variable more dependent on the remaining vari-
ables in the graph. This way we can split the
graph into several connected components repre-
senting independent parts within the potential
analyzed.

The procedure described above is repeated,
but restricted to variable Y0. That is, we con-
struct a graph GY0

f by removing Y0 and its links
from Gf and re-weighting each remaining link
Z − U in GY0

f with

I(Z,U |Y0)=
∑
z,u,y0

p(z, u, y0) log
p(z, u|y0)

p(z|y0)p(u|y0)
,

where

p(z, u, y0) =
f↓ZUY0(z, u, y0)∑

z,u,y0
f↓ZUY0(z, u, y0)

and the conditional distributions p(z, u|y0),
p(z|y0) and p(u|y0) are computed from
p(z, u, y0). If the value of the marginal for
some configuration of the conditioning variable
is equal to zero, then the conditional mutual
information reduces to a summation of terms
of the form 0log0, and assumed to be zero.
Again, we consider a threshold ε > 0 so that
only those links Z − U where I(Z,U | Y0) > ε
will be added to the graph, and weighted as
I(Z,U | Y0).

As a previous step to the creation of GYi
f ,

we must sort Yi into set Y1 if the variable was
connected to all the other variables in the con-
nected component before being removed; other-
wise, the variable will be appended to set Y2.
These two sets will help us to discern between
scenarios with context-specific independencies
and factorizations.

In general, if Y0, . . . , Ym have been cho-
sen, everything must be turned conditional on
Y1, . . . , Ym before selecting Ym+1. The process
stops when a division of the graph is found or
when there is no variable left to choose, i.e. the
graph has two variables and both are connected.

In the second case (the graph has only two
connected variables) there is no further possible
decomposition. In the first case, suppose that
after choosing Y = {Y0, ..., Ym} the graph is
decomposed into n connected components Z =
Z1 ∪ · · · ∪ Zn, with Z = X \Y.

Next, a RPT is built with the variables in Y1

(containing Split nodes). For each leaf h of this
tree, suppose that Y1 = y1 is the assignment
compatible with h, then potential fh is stored
in leaf h, where fh is defined as fh = fR(Y1=y1),
and fR(Y1=y1) denotes the potential f restricted
to assignment (Y1 = y1). Potential fh is de-
composed as

fh(z1, . . . , zn,y2) := Sh
n∏
i=1

fh(zi,y2),

Sh =

∑
z,y2

fh(z1, . . . , zn,y2)∑
z,y2

n∏
i=1

fh(zi,y2)

(5)

52 Cano et al.

with z = (z1, . . . , zn). This scenario is explained
in Fig. 3. Once a decomposition is performed,
the algorithm is recursively applied to each and
every potential obtained successively, until no
further decomposition can be computed.

Y1={ X }1

Y ={ X }
32

Z1={ X , X }5 6

Z2={ X , X , X }2 4 7

X1

R(X =0)1

f (X , X , X)5 6 3

R(X =0)1

f (X , X , X , X)2 4 7 3

R(X =1)1

f (X , X , X)5 6 3

R(X =1)1

f (X , X , X , X)2 4 7 3

S
(X =0) S

(X =1)

0 1

Figure 3: Example where a division of the graph
has been found.

3.1 Computing the threshold ε

The value of ε should not be kept constant
throughout the entire algorithm, as the range
of possible values of the mutual information
varies depending on the variables over which
it is computed, and also on the computation
of the mutual information conditioned to other
variables. Thus, we propose assigning a rate δ,
with 0 ≤ δ ≤ 1, and then compute ε as the frac-
tion of the maximum mutual information deter-
mined by δ. In the case of unconditional mu-
tual information between two variables X and
Y , notice that

I(X,Y) = H(X)−H(X|Y)
= H(X)− (H(X,Y)−H(Y))
= H(X) +H(Y)−H(X,Y) (6)

where H(·) denotes Shannon’s entropy. There-
fore, as H(X) ≤ log |X|, where |X| is the num-
ber of possible values of X, it follows that
I(X,Y) ≤ log |X|+ log |Y |,
and thus, we compute ε as

ε := δ × (log |X|+ log |Y |). (7)

In the case of conditional mutual informa-
tion, if we have X,Y and Z, it follows that
I(X,Y |Z) = H(X|Z) − H(X,Y,Z). Since
H(X|Z) = H(X,Z) − H(Z) and H(X|Y,Z) =
H(X,Y,Z)−H(Y,Z), it holds that

I(X,Y |Z) = H(X,Z)−H(Z)−H(X,Y,Z)+
H(Y,Z) ≤ log |X ∪ Z|+ log |Y ∪ Z| (8)

So, ε can be computed as:

ε := δ × (log |X ∪ Z|+ log |Y ∪ Z|). (9)

3.2 Detecting context specific
independencies

Besides factorizations, RPTs can efficiently rep-
resent context specific independencies, in a sim-
ilar way as they are represented by probability
trees (Boutilier et al., 1996). A possible im-
provement of the described algorithm would be
to widen the search by choosing at some point
a variable Yj connected to the rest of the vari-
ables and splitting the tree by it. In this case,
the tree would grow with a Split node for such
variable, and the process would continue for ev-
ery branch, but now with the distributions re-
stricted to the branch configuration. This way,
the algorithm may follow different paths dur-
ing factorization for each branch. In (Salmerón
et al., 2000), a methodology of variable selec-
tion for labeling the internal nodes of proba-
bility trees is proposed. This methodology in-
volves the calculation of the information gain of
a given variable Yj according to Eq. 9. Here we
propose a similar approach to discern if split-
ting by a certain variable increases the quality
of the learned model.

Let’s assume that we are working with a po-
tential f defined for a set of variables X =
{X1, . . . , Xn}. Let’s consider any variable Y ∈
X and define Z = X \ {Y }. The information
gain resulting of splitting potential f by vari-
able Y is computed as

I(Y, f) = S · (log |Y | − logS)+∑
y

S(Y = y) logS(Y = y). (10)

The maximum possible value for I(Y, f) can
be obtained using the properties of Shannon’s
entropy. We define NY =

∑
y S(Y = y). Then,

it holds that

−1
NY

∑
y∈ΩY

S(Y = y) logS(Y = y) ≥ 0,

Cano et al. 53

and, therefore

−
∑
y∈ΩY

S(Y = y) logS(Y = y) ≥ 0⇒
∑
y∈ΩY

S(Y = y) logS(Y = y) ≤ 0. (11)

Hence, replacing (11) in (10), we obtain
I(Y, f) ≤ S · (log |Y | − logS). Using this re-
sult, the criterion for choosing a variable to split
from a parameter 0 ≤ δ ≤ 1 would be to select
a variable Y if I(Y, f) ≥ δ · S · (log |Y | − logS).

3.3 The algorithm

This section describes the pseudocode of the
algorithm outlined above. The algorithm has
been decomposed into different modules for the
sake of readability. Algorithm 1 is the main
body of the procedure, and the others are di-
vided according to the different scenarios that
can appear during the learning process. Algo-
rithm 2 describes the required steps if the graph
representing a potential is disconnected. In ad-
dition, Algorithm 3, gives the details of the pro-
cess followed by a connected graph. Algorithm 3
is divided into several parts: Algorithm 4 shows
what to do in case an Information Gain is de-
tected for a variable. Algorithms 5 and 6 cover
the case in which the resulting graph is discon-
nected within Algorithm 3.

Input: A potential f
Output: An RPT , recTree
begin

Let Gf be the graph built for f
if Gf is connected then

if there are more than two variables in Gf then
recTree = dealWithConnectedGraph()

else
Set recTree = PotentialTreeNode(f)

end

else
recTree = dealWithDisconnectedGraph()

end

end

Algorithm 1: Body of potential factoriza-
tion algorithm

Example 1. We shall illustrate the algorithm
with a simple example consisting of decompos-
ing a potential f defined over four binary vari-
ables X,Y, Z, and W with values f(x, y, z, w) =
{0.03, 0.04, 0.07, 0.06, 0.18, 0.24, 0.42, 0.36,
0.27, 0.36, 0.63, 0.54, 0.12, 0.16, 0.27, 0.24}. It
can be seen that potential f is decomposable as

f(x, y, z, w) = f1(x, y)f2(z, w) with f(x, y) =
{0.1, 0.6, 0.9, 0.4} and f2(z, w) = {0.3, 0.4,
0.7, 0.6}. Alg. 1 is called with potential f
as argument. The first step is the construc-
tion of graph Gf . This is achieved by com-
puting the entropy between each pair of vari-
ables and inserting the links for which the mu-
tual information is greater than a given thresh-
old. Let’s assume we consider a threshold ε =
1E − 6, that is, approximately equal to 0. We
do this because independent variables can have
a slightly positive mutual information due to
rounding errors. The mutual information be-
tween each pair of variables, computed accord-
ing to Eq. (1) is I(X,Y) = 0.1484, I(X,Z) =
5.607E-17, I(X,W) = 3.886E-17, I(Y, Z) =
7.772E-17, I(Y,W) = 0, and I(W,Z) = 0.0055.
Therefore, graph Gf has only two arcs, X − Y
and W − Z. Since the graph is disconnected,
Alg.2 is called. As the two connected com-
ponents of Gf only have two variables each,
a list node is returned, in which the first fac-
tor is the marginal of f over (X,Y), the sec-
ond is the marginal of f over (Z,W), and the
third is a normalizing constant. More pre-
cisely, the three factors are: g1(x, y) = {0.2,
1.2, 1.8, 0.8}, g2(z, w) = {0.6, 0.8, 1.4, 1.2},
and g3(x, y, z, w) = 0.25. It can be proved that
f(x, y, z, w) = g1(x, y)g2(z, w)g3(x, y, z, w).

Input: A list C, which is the list of connected components
of Gf , the potential f

Output: A List Tree Node, L
begin

Let L be a List Tree Node;
for each Ci in C do

Let XC be the variables in Ci;
if Ci contains only 1 or 2 variables then

Set recTree = f
↓XCi ;

else

recTree = PotentialFactorization(f
↓XCi)

(Alg.1);
end

end
Add recTree to L;
Let factor be a ValueTreeNode, computed as in
Eq. (3);
Add factor to L;

end

Algorithm 2: DealWithDisconnected-
Graph()

Example 2. Now consider a potential f de-
fined for three binary variables X,Y , and Z,
with values f(x, y, z) = {0.3, 0.3, 0.3, 0.3, 0.1,
0.2, 0.75, 0.25}. Let’s assume we consider a

54 Cano et al.

threshold ε = 0.001. Then, Alg. 1 generates
a complete graph Gf , as the mutual informa-
tion values are I(X,Y) = 0.0398, I(X,Z) =
0.0122, and I(Y, Z) = 0.0212. Next, Alg. 3 is
called with Gf as an argument. This algorithm
selects a variable according to the connectiv-
ity values defined in Eq.(4). These values are
V (X) = 0.052, V (Y) = 0.061, and V (Z) =
0.0334. Therefore, the chosen variable is Y .
Since Y is connected to the rest of the vari-
ables, it is inserted into Y1 and GYf , consist-
ing of a graph with variables X and Z, and a
link between them, is generated. In the next
step, the information gain is computed accord-
ing to Eq.(10) and, since it is equal to 0.0993,
Alg.4 is called. This last procedure constructs a
split node with variable Y and two children, one
for each possible value of Y . The two children
are g1(x, z) = fR(Y=0) and g2(x, z) = fR(Y=1).
Their values are g1(x, z) = {0.3, 0.3, 0.1, 0.2}
and g2(x, z) = {0.3, 0.3, 0.75, 0.25}.

Input: The potential f , graph G
Output: A Tree Node, recTree
begin

Let Y1 and Y2 be empty vectors of variables;
while G remains connected and f has more than 2
variables and there is no information gain do

Choose variable to remove, Y (Eq.4);
if Y was connected to all other variables in Gf

then
Add Y to Y1;

else
Add Y to Y2;

end

Build GY
f ;

if GY
f is connected then
if There is Information Gain then

treeNode =
dealWithIndependentSplit()

end

else
if Y1 is empty then

treeNode = dealWithoutSplitChain
else

treeNode = dealWithSplitChain
end

end

end

end

Algorithm 3: DealWithConnectedGraph()

4 Experiments

4.1 Learning from a probability table

The first experiment consisted of 30 runs of the
algorithm over randomly generated probability
tables, defined over 6 binary variables. For each

Input: The potential f , Vector Y1
Output: A Split Tree Node, recTree
begin

Let recTree be a Split Chain of variables from Y1;
for each possible value y1 of Y1 do

treeNode = potentialFactorization(fR(Y1=y1));

Update recTree’s current leaf with fR(Y1=y1);
end

end

Algorithm 4: DealWithIndepen-
dentSplit()

Input: A list C which is the list of connected components
of Gf , the potential f

Output: A Tree Node, recTree
begin

if C has more than one element then
Let recTree be a List Tree Node;
for each Ci of C do

Set f1 = potentialFactorization(f
↓XCi);

Add f1 as children of recTree;
end
Let factor be a ValueTreeNode, computed as in
Eq. (3);
Add factor to recTree;

else
Set recTree = PotentialTreeNode(f);

end

end

Algorithm 5: DealWithoutSplitChain()

Input: The potential f , Vector Y1, Vector Y2, A list C
which is the list of connected components of Gf

Output: A Tree Node, recTree
begin

Let recTree be a Split Chain of variables from Y1;
for each possible value y1 of Y1 do

Let f1 be fR(Y1=y1);
if C has more than one element then

Let recTree be a List Tree Node;
for each element Ci of C do

Set fR = f
↓XCi∪Y2 ;

Set f1 = potentialFactorization(fR);
Add f1 as children of recTree;

end
Let factor be a ValueTreeNode, computed
as in Eq. (3);

else
Set treeNode = potentialFactorization(f1)

end
Update recTree’s current leaf with treeNode;

end

end

Algorithm 6: DealWithSplitChain()

run, ε was set between 0 and 0.01 at intervals of
0.001, and the root mean squared error (MSE)
between the original probability table and the
learned RPT was computed. The results are
shown in Fig. 4, where it can be seen that for
higher values of ε, the approximations obtained
are worse. But there is a point where the er-
ror suddenly increases, fact that can be used as
a stopping criterion when searching for a solu-

Cano et al. 55

tion. It was also observed that for higher values
of ε, the decompositions obtained are more fac-
torized and we get close to a model with a list
node containing one factor per variable, which
is not accurate and gives high error rates.

0 0.001 0.003 0.005 0.007 0.009

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

MSE variation

epsilon

M
S

E

Figure 4: Results for the first experiment

4.2 Capturing repeated values

The second experiment consisted of 30 runs of
the algorithm over probability tables for 6 bi-
nary variables generated from pruned probabil-
ity trees, in the first case with a prune value
(Salmerón et al., 2000) of 0.001 (light pruning)
and in the second case, of 0.01 (severe prun-
ing). Pruning the tree consists of replacing sub-
trees with the average value in the leaves, which
means that the value for every configuration of
variables in the pruned sub-tree becomes con-
stant. Therefore, if we construct a table from
such a tree, as a result all the cells in the ta-
ble corresponding to the configurations in the
pruned sub-tree will contain the same value.
Thus, a severe pruning will generate more re-
peated values in the equivalent probability table
than a light pruning. For each probability table
generated, the algorithm is applied ten times,
corresponding to ε values ranging from 0.0 to
0.01 at intervals of 0.001. Fig. 5 shows the MSE
variation for each case. The upper panel of Fig.
5, which corresponds to light prune, shows that
higher error values are reached in this case. So,
it seems likely that the algorithm is able to de-
tect this kind of regularity within a potential.

0 0.001 0.003 0.005 0.007 0.009

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8
0.

01
0

MSE variation

epsilon

M
S

E

0 0.001 0.003 0.005 0.007 0.009

0.
00

0
0.

00
2

0.
00

4
0.

00
6

0.
00

8

MSE variation

epsilon

M
S

E

Figure 5: MSE variation learning from the same
tree with light and severe prune

Other experiments have been performed to
check the relation between accuracy and size
of the learned model. The results show that
the less accurate representations are those with
smaller size. This reflects mainly the fact that
smaller representations are expected to be a list
of small factors (most likely, one per variable in
the distribution), which is a not very accurate
representation.

4.3 Learning from the same model

Due to the nature of the algorithm and the
RPTs themselves, it is possible to obtain differ-
ent RPTs representing the same distribution.
The aim of this experiment was to check if
those representations, while different, were ac-
curate. A probability table was generated from
a pruned probability tree. The algorithm was
applied to it, with an ε value of 0.002, in order
to get a slightly different distribution. The re-
sulting RPT was called RPT1. The algorithm

56 Cano et al.

used the probability table represented by RPT1

as an argument, this time with an ε value of 0,
and returned a new RPT called RPT2. This
procedure was repeated 30 times, and then we
calculated the mean and the standard deviation
of both the difference in sizes of the resultant
trees, and the Kullback-Leibler divergence rel-
ative to the original distribution. For the tree
size differences, we got a mean of 0.73333, and a
standard deviation of 1.311312. For the KL di-
vergence, the mean downs to 0.021955 and the
standard deviation to 0.040008. These results
seem to confirm that under these circumstances,
RPT1 and RPT2 are similar representations of
the same distribution. In other words, this ex-
periment illustrates the ability of the algorithm
to find a RPT representation of a probability
distribution, close to the original distribution.

5 Conclusions

In this paper we have proposed an algorithm
for transforming a probabilistic potential into
a RPT. The experiments performed suggest
that the proposed algorithm is able to capture
most of the details of the original distribution.
This proposal can be used as the basis for de-
signing approximate algorithms for inference in
Bayesian networks, using RPT-based represen-
tations of the potentials involved in the infer-
ence process. The applicability of this method
is limited, in practice, by the size of the po-
tential that is going to be transformed into a
RPT. It can be seen in Eq. (1), where the dis-
tributions used are obtained by marginalizing
the original potential f . Therefore, the avail-
ability of a representation of f that allows an
efficient computation of marginals would bene-
fit the performance of the algorithm.

We are currently considering the possibility
of extending the algorithm in order to learn di-
rectly from a database. Also, we are studying
a way to detect a different kind of regularity,
namely, the proportionality between different
parts of the potential.

Acknowledgments

This research was jointly supported by the
Spanish Ministry of Education and Science un-

der projects TIN2007-67418-C03-03,02, the Eu-
ropean Regional Development Fund (FEDER),
the FPI scholarship programme (BES-2008-
002049) and the Andalusian Research Program
under project P08-TIC-03717.

References

C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller. 1996. Context-specific independence
in Bayesian networks. In E. Horvitz and F.V.
Jensen, editors, Proceedings of the 12th Con-
ference on Uncertainty in Artificial Intelligence,
pages 115–123. Morgan & Kaufmann.

A. Cano, S. Moral, and A. Salmerón. 2000. Penni-
less propagation in join trees. International Jour-
nal of Intelligent Systems, 15:1027–1059.

A. Cano, M. Gómez-Olmedo, S. Moral, and C.B.
Pérez-Ariza. 2009. Recursive probability trees for
Bayesian networks. CAEPIA 2009. Lecture Notes
in Artificial Intelligence., 5988:242–251.

M. Jaeger. 2004. Probabilistic decision graphs. com-
bining verification and AI techniques for proba-
bilistic inference. International Journal of Uncer-
tainty, Fuzziness and Knowledge Based Systems,
12:19–42.

I. Mart́ınez, S. Moral, C. Rodŕıguez, and
A. Salmerón. 2002. Factorisation of probability
trees and its application to inference in Bayesian
networks. In J.A. Gámez and A. Salmerón, edi-
tors, Proceedings of the First European Workshop
on Probabilistic Graphical Models, pages 127–134.

I. Mart́ınez, S. Moral, C. Rodŕıguez, and
A. Salmerón. 2005. Approximate factorisation of
probability trees. ECSQARU’05. Lecture Notes
in Artificial Intelligence, 3571:51–62.

I. Mart́ınez, C. Rodŕıguez, and A. Salmerón. 2006.
Dynamic importance sampling in Bayesian net-
works using factorisation of probability trees. In
Proceedings of the Third European Workshop on
Probabilistic Graphical Models (PGM’06), pages
187–194.

J.R. Quinlan. 1986. Induction of decision trees. Ma-
chine Learning, 1:81–106.

A. Salmerón, A. Cano, and S. Moral. 2000. Impor-
tance sampling in Bayesian networks using prob-
ability trees. Computational Statistics and Data
Analysis, 34:387–413.

J.Q. Smith and P.E. Anderson. 2008. Conditional
independence and chain event graphs. Artificial
Intelligence, 172:42–68.

Pp. 57–65 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Likelihood-based inference for probabilistic graphical models:
Some preliminary results

Marco E. G. V. Cattaneo
Department of Statistics, LMU Munich, Germany

cattaneo@stat.uni-muenchen.de

Abstract

A method for calculating some profile likelihood inferences in probabilistic graphical mod-
els is presented and applied to the problem of classification. It can also be interpreted as
a method for obtaining inferences from hierarchical networks, a kind of imprecise proba-
bilistic graphical models.

1 Introduction

The main result of the present paper is a
method for calculating profile likelihood func-
tions for an important class of probabilistic in-
ferences, when the probabilities of a Bayesian
network are learned from data. This result can
also be interpreted as a method for obtaining
inferences from hierarchical networks, which are
networks with imprecisely known probabilities.

Likelihood-based inference is briefly outlined
in the next section, while Section 3 contains the
main result, stated in Theorem 1 (whose proof
will be given in an extended version of the pa-
per). Section 4 presents an application of this
result to the problem of classification.

2 Likelihood

Let Pθ be a parametric probabilistic model for
some discrete random variables X,Y, . . ., where
θ P Θ is the parameter (vector) and Θ is the
parameter space. The observation of a realiza-
tion X � x induces the (normalized) likelihood
function lik on Θ defined by

likpθq �
PθpX � xq

supθ1PΘ Pθ1pX � xq

for all θ P Θ. Moreover, when X � x is ob-
served, the model Pθ is updated into the condi-
tional model Pθp � |X � xq.

The inference about the value gpθq of a func-
tion g : Θ Ñ G (where G can be any set) can

be based on the (normalized) profile likelihood
function likg on G defined by

likgpγq � sup
θPΘ : gpθq�γ

likpθq

for all γ P G, where sup ∅ is interpreted as 0.
In particular, if there is a unique γ P G such
that likgpγq � 1, then γ is the maximum like-
lihood estimate of gpθq. More generally, the
likelihood-based confidence region for gpθq with
cutoff point β P r0, 1r is the set

tγ P G : likgpγq ¡ βu ,

whose confidence level can often be approxi-
mated thanks to the result of (Wilks, 1938).
These are the usual likelihood-based point es-
timates and set estimates; more general ways of
basing inferences and decisions directly on the
likelihood function are discussed in (Cattaneo,
2007).

Example 1. Let X1, . . . , X10 be 10 categorical
variables taking values in the set ta, b, cu. The
assumption that X1, . . . , X10 are independent
and identically distributed leads to a parametric
probabilistic model Pθ with PθpXi � ωq � θω,
where the parameter θ � pθa, θb, θcq is an ele-
ment of the standard 2-dimensional simplex

Θ �

pθa, θb, θcq P r0, 1s3 : θa � θb � θc � 1q

(
.

Assume that the realizations of X1, . . . , X9 are
observed, and the values a, b, and c appear 2,
4, and 3 times, respectively. This observation

58 Cattaneo

induces the (normalized) multinomial likelihood
function lik on Θ defined by

likpθq � 14348907
1024 θ2

a θ
4
b θ

3
c

for all θ P Θ. The inference about the probabil-
ity that the realization of X10 will be either a or
b can be based on the profile likelihood function
likg on r0, 1s, with g : Θ Ñ r0, 1s defined by

gpθq � Pθ pX10 P ta, buq � θa � θb

for all θ P Θ (note that conditioning Pθ on the
observed realizations of X1, . . . , X9 has no in-
fluence on the probability distribution of X10).
Since the (normalized) profile likelihood func-
tion likg on r0, 1s satisfies

likgpγq �
19683

64 γ6 p1� γq3

for all γ P r0, 1s, the maximum likelihood esti-
mate of Pθ pX10 P ta, buq is pγ � 2

3 , while for in-
stance r0.35, 0.90s is an approximate 95% confi-
dence interval for Pθ pX10 P ta, buq, since it cor-
responds approximately to the likelihood-based
confidence region with cutoff point β � 0.15.

2.1 Hierarchical model

The parametric probabilistic model and the
likelihood function can be considered as the two
levels of a hierarchical model, in which the likeli-
hood function describes the relative plausibility
of the parameter values. As noted above, when
X � x is observed, the set tPθ : θ P Θu is up-
dated by conditioning each element Pθ on the
observed event: this corresponds to the updat-
ing of the imprecise Bayesian model studied in
(Walley, 1991). Hence, the hierarchical model
generalizes the imprecise Bayesian model, in the
sense that the second level (that is, the likeli-
hood function) describes additional information
about the relative plausibility of the elements of
tPθ : θ P Θu.

This additional information allows fundamen-
tal advantages of the hierarchical model over the
imprecise Bayesian model, such as the possibil-
ity of starting without prior information and the
increased robustness of the conclusions: see for
example (Cattaneo, 2009). Moreover, since the

membership functions of fuzzy sets are often in-
terpreted as likelihood functions (the extension
principle of possibility theory corresponds then
to the use of profile likelihood functions), the
hierarchical model can handle fuzzy data and
possibilistic information or variables in a unified
and well-founded way: see for instance (Catta-
neo, 2008).

3 Networks

When X is a categorical variable, let ΩX de-
note the set of all possible realizations of X.
Moreover, let FX denote the set of all possible
real functions on ΩX , and let SX denote the
set of all possible probability distributions on
ΩX . Hence, SX � FX , and SX can be iden-
tified with the standard simplex of dimension
|ΩX | � 1, where |ΩX | denotes the cardinality of
ΩX . Moreover, let 0X denote the function on
ΩX with constant value 0 (therefore, 0X P FX ,
but 0X R SX). Finally, if f P FX with fpxq ¥ 0
for all x P ΩX , then let xfy denote the probabil-
ity distribution on ΩX proportional to f when
f � 0X , and the uniform probability distribu-
tion on ΩX when f � 0X . That is, xfy P SX ,
and for all x P ΩX ,

xfypxq �

#
fpxq°

x1PΩX
fpx1q if

°
x1PΩX

fpx1q ¡ 0,
1

|ΩX | if
°
x1PΩX

fpx1q � 0.

LetX1, . . . , Xk be k categorical variables such
that |ΩXi | ¥ 2 for all i P t1, . . . , ku. Assump-
tions about conditional independencies among
the variables X1, . . . , Xk can be encoded in a di-
rected acyclic graph G with nodes X1, . . . , Xk:
see for example (Jensen and Nielsen, 2007). Let
Πi denote the joint variable composed of all
parents of Xi according to G, where Πi is as-
sumed to be constant when Xi has no parents.
The other component of a Bayesian network,
besides the graph G, are the probability distri-
butions of Xi conditional on Πi � πi, for each
i P t1, . . . , ku and each πi P ΩΠi . Altogether,
these conditional probability distributions can
be described by the parameter θ P ΘG, where

ΘG �
k¡
i�1

¡
πiPΩΠi

SXi

Cattaneo 59

is a Cartesian product of the simplexes SXi . For
each θ P ΘG, let θXi|πi

denote the correspond-
ing probability distribution of Xi conditional on
Πi � πi (hence, θXi|πi

P SXi). The Bayesian
network described by the graph G and the pa-
rameter θ P ΘG determines the joint probability
distribution Pθ on ΩX1 � � � � � ΩXk

defined by

Pθpx1, . . . , xkq �
k¹
i�1

θXi|πi
pxiq

for all px1, . . . , xkq P ΩX1 � � � � � ΩXk
, where πi

are the corresponding realizations of the joint
variables Πi.

To allow uncertainty about the involved prob-
ability values, Bayesian networks have been gen-
eralized to credal networks, which can be de-
scribed by a directed acyclic graph G and a
set Θ � ΘG of parameters: see for instance
(Antonucci and Zaffalon, 2008). A credal net-
work determines an imprecise Bayesian model
tPθ : θ P Θu, instead of a single probability
distribution Pθ. That is, a credal network cor-
responds mathematically to a set of Bayesian
networks with the same graph G. A credal net-
work is said to be separately specified if

Θ �
k¡
i�1

¡
πiPΩΠi

ΘXi|πi
(1)

is the Cartesian product of the sets ΘXi|πi
, with

ΘXi|πi
� SXi for all i P t1, . . . , ku and all

πi P ΩΠi . That is, a separately specified credal
network consists of all Bayesian networks with
graph G and probability distributions ofXi con-
ditional on Πi � πi freely selected from the sets
ΘXi|πi

(note that only the so-called strong ex-
tension of a separately specified credal network
is considered in the present paper).

To allow additional information about the rel-
ative plausibility of the involved probability val-
ues, credal networks have been generalized to
hierarchical networks, which can be described
by a directed acyclic graph G, a set Θ � ΘG

of parameters, and a (normalized) likelihood
function lik on Θ: see for example (Cattaneo,
2009). A hierarchical network determines a hi-
erarchical model with as first level the impre-
cise Bayesian model tPθ : θ P Θu, and as second

level the likelihood function lik on Θ, describ-
ing the relative plausibility of the elements of
tPθ : θ P Θu. That is, a hierarchical network
corresponds mathematically to a set of Bayesian
networks with the same graph G but in general
with different degrees of plausibility. A hierar-
chical network is said to be separately specified
if Θ satisfies (1), and lik is the product of the
local likelihood functions likXi|πi

on ΘXi|πi
, in

the sense that

likpθq �
k¹
i�1

¹
πiPΩΠi

likXi|πi
pθXi|πi

q

for all θ P Θ, with ΘXi|πi
� SXi and likXi|πi

:
ΘXi|πi

Ñ r0, 1s for all i P t1, . . . , ku and all
πi P ΩΠi . That is, the separately specified
hierarchical networks generalize the separately
specified credal networks by adding information
about the relative plausibility of the elements of
the sets ΘXi|πi

.

3.1 Learning probabilities from data

Learning networks from data is a fundamental
problem. In the present paper, only the simplest
case is considered: the directed acyclic graph G
is assumed known, and the dataset is complete.
That is, the dataset consists of n realizations
of the joint variable X � pX1, . . . , Xkq. For
each i P t1, . . . , ku and each πi P ΩΠi , let nXi|πi

denote the function on ΩXi assigning to each
xi P ΩXi the number of realizations of the joint
variable X such that Xi � xi and Πi � πi.
Hence, nXi|πi

P FXi , and for all i P t1, . . . , ku,¸
πiPΩΠi

¸
xiPΩXi

nXi|πi
pxiq � n. (2)

When the n realizations of the joint variable
X are considered independent and identically
distributed according to the joint probability
distribution Pθ with θ P ΘG, they induce the
(normalized) likelihood function lik on ΘG de-
fined by

likpθq �
k¹
i�1

¹
πiPΩΠi

¹
xiPΩXi

�
θXi|πi

pxiq
�nXi|πi

pxiq�
xnXi|πi

ypxiq
�nXi|πi

pxiq

60 Cattaneo

for all θ P ΘG, where 00 is interpreted as
1. The denominators of the fractions normal-
ize the likelihood function, since lik is max-
imized by the parameter pθ P ΘG such thatpθXi|πi

� xnXi|πi
y for all i P t1, . . . , ku and all

πi P ΩΠi . However, pθ is the unique parame-
ter maximizing lik only if nXi|πi

� 0Xi for all
i P t1, . . . , ku and all πi P ΩΠi (that is, only if
all possible realizations Πi � πi appear at least
once in the dataset).

Hence, the likelihood function lik on ΘG fac-
torizes in the local likelihood functions likXi|πi

on SXi defined by

likXi|πi
pθXi|πi

q �
¹

xiPΩXi

�
θXi|πi

pxiq
�nXi|πi

pxiq�
xnXi|πi

ypxiq
�nXi|πi

pxiq

for all θXi|πi
P SXi . Estimates of the conditional

probability distributions θXi|πi
can easily be

based on the multinomial likelihood functions
likXi|πi

: if nXi|πi
� 0, then pθXi|πi

� xnXi|πi
y is

the maximum likelihood estimate; alternatively,
likXi|πi

can be combined with a prior proba-
bility distribution on SXi (usually a Dirichlet
distribution) to obtain a Bayesian estimate of
θXi|πi

. However, the Bayesian network corre-
sponding to the estimated conditional probabil-
ity distributions does not contain any informa-
tion about the uncertainty of those estimates,
and consequently it does not contain any infor-
mation about the uncertainty of the resulting
probabilistic inferences.

To include some information about the un-
certainty of the conditional probability distri-
butions and of the resulting probabilistic infer-
ences, set estimates ΘXi|πi

� SXi of the con-
ditional probability distributions θXi|πi

can be
based on the local likelihood functions likXi|πi

(instead of point estimates θXi|πi
P SXi). The

set estimates ΘXi|πi
determine a separately

specified credal network, and inferences can
then be based on the corresponding imprecise
Bayesian model. The usual way of obtaining an
imprecise probability distribution ΘXi|πi

from
a multinomial likelihood function likXi|πi

is by
combining it with a set of prior Dirichlet distri-
butions, called imprecise Dirichlet model: see
for example (Walley, 1996). But the confidence

level of the set estimates ΘXi|πi
obtained from

the imprecise Dirichlet model can be arbitrar-
ily low (for sufficiently large n: compare with
Example 2): see for instance Wilson’s comment
in the discussion of (Walley, 1996). To avoid
this problem, the sets ΘXi|πi

� SXi could be es-
timated as likelihood-based confidence regions
for θXi|πi

, according to the multinomial likeli-
hood functions likXi|πi

, but in general the clo-
sure of the resulting set estimates ΘXi|πi

would
be convex with infinitely many extreme points
when |ΩXi | ¥ 3, and this would lead to compu-
tational difficulties.

Instead of reducing them to likelihood-based
confidence regions ΘXi|πi

, it is better to main-
tain the whole likelihood functions likXi|πi

as
descriptions of the uncertainty about the con-
ditional probability distributions θXi|πi

. The
likelihood function lik on ΘG describes then
the uncertainty about the whole Bayesian net-
work (given the graph G), and corresponds to
a separately specified hierarchical network with
Θ � ΘG. Learning hierarchical networks from
data is straightforward (when the graph G is
assumed known), and no estimates or prior dis-
tributions are necessary, but in general the cal-
culation of profile likelihood functions (on which
inferences and decisions are based) is not so
simple. However, the following theorem shows
that for particular classes of functions g on Θ,
obtaining the profile likelihood function likg is
straightforward too.

Theorem 1. For each i P t1, . . . , ku and
each πi P ΩΠi, let dXi|πi

, qXi|πi
P FXi with

dXi|πi
pxiq ¥ 0 for all xi P ΩXi. Moreover, let

lik : ΘG Ñ r0, 1s and g : ΘG Ñ r0,�8s be
defined by

likpθq �
k¹
i�1

¹
πiPΩΠi

¹
xiPΩXi

�
θXi|πi

pxiq
�dXi|πi

pxiq�
xdXi|πi

ypxiq
�dXi|πi

pxiq

and

gpθq �
k¹
i�1

¹
πiPΩΠi

¹
xiPΩXi

�
θXi|πi

pxiq
�qXi|πi

pxiq ,

respectively, for all θ P ΘG, where 00 is inter-
preted as 1, and 0x is interpreted as �8 for all

Cattaneo 61

negative x (but gpθq is undefined when both 0
and �8 appear in the same product). Finally,
let α and α be the infimum and the supremum,
respectively, of the set
α P R : pdXi|πi

� α qXi|πi
qpxiq ¥ 0 @ i, πi, xi

(
(linear combinations of functions are to be in-
terpreted pointwise).

• If α � α � 0, then likgpγq � 1 for all
γ P r0,�8s.

• Otherwise, define θ, θrαs, θ P ΘG as fol-
lows:

θXi|πi
�

$''''''''''''''&''''''''''''''%

xdXi|πi
� α qXi|πi

y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

xqXi|πi
y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

x�qXi|πi
y if α � �8

and qXi|πi
� 0Xi,

xdXi|πi
y if α � �8

and qXi|πi
� 0Xi,

θrαsXi|πi
� xdXi|πi

� α qXi|πi
y,

θXi|πi
�

$''''''''''''''&''''''''''''''%

xdXi|πi
� α qXi|πi

y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

x�qXi|πi
y if α � �8

and dXi|πi
� α qXi|πi

� 0Xi,

xqXi|πi
y if α � �8

and qXi|πi
� 0Xi,

xdXi|πi
y if α � �8

and qXi|πi
� 0Xi,

respectively, for all α P sα, αr , all i P
t1, . . . , ku, and all πi P ΩΠi.

Then likgpgpθqq � likpθq and likgpgpθqq �
likpθq.

If gpθq ¡ 0, then for all γ P r0, gpθqr ,

likgpγq �

�
γ
gpθq

	�α
likpθq if α � �8,

0 if α � �8.

If gpθq gpθq, then the graph of the restric-
tion of likg to sgpθq, gpθqr is the set

tpgpθrαsq, likpθrαsqq : α P sα, αr u ,

and gpθrαsq is a continuous, strictly in-
creasing function of α P sα, αr .

If gpθq �8, then for all γ P sgpθq,�8s,

likgpγq �

�
γ

gpθq

	�α
likpθq if α � �8,

0 if α � �8.

The likelihood function lik of Theorem 1 gen-
eralizes the likelihood function on ΘG induced
by a complete dataset, for which the functions
dXi|πi

� nXi|πi
can take only integer values

and must satisfy conditions such as (2). The
function g of Theorem 1 can for example de-
scribe the probability of a particular realization
px1, . . . , xkq P ΩX1 � � � � �ΩXk

of the joint vari-
able X � pX1, . . . , Xkq; that is,

gpθq � PθpX1 � x1, . . . , Xk � xkq

for all θ P ΘG. In this case, qXi|πi
� nXi|πi

for the particular dataset consisting of the sin-
gle realization px1, . . . , xkq of the joint vari-
able X. If the functions n1Xi|πi

describe a sec-
ond dataset consisting of the single realization
px11, x2, . . . , xkq of the joint variable X, then the
function g with qXi|πi

� nXi|πi
� n1Xi|πi

satisfies

gpθq �
PθpX1 � x1 |X2 � x2, . . . , Xk � xkq

PθpX1 � x11 |X2 � x2, . . . , Xk � xkq

for all θ P ΘG such that the right-hand side
is well-defined. That is, g describes the proba-
bility ratio of the possible realizations x1 and
x11 of X1 conditional on the realizations of
X2, . . . , Xk. In the next section, Theorem 1
with this kind of function g is used in the prob-
lem of classification: the goal is to determine
the realization of X1 given the realizations of
X2, . . . , Xk.

The formulation of Theorem 1 is rather com-
plex, because several special cases must be con-
sidered, but the central part of the theorem is
pretty simple: it is the parametric expression
for the graph of the profile likelihood function
likg restricted to the interval sgpθq, gpθqr . For
example, in the problem of classification stud-
ied in the next section, it suffices to consider
this central part, since sgpθq, gpθqr� s0,�8r .

62 Cattaneo

The idea behind the parametric expression of
the graph of likg is the following: if θrαs maxi-
mizes pgpθqqα likpθq over all θ P ΘG for some
α P R, then θrαs maximizes likpθq over all
θ P ΘG such that gpθq � gpθrαsq, and there-
fore likgpgpθrαsqq � likpθrαsq. For the partic-
ular classes of functions lik and g considered
in Theorem 1, finding the parameter θrαs max-
imizing pgpθqqα likpθq over all θ P ΘG is ex-
tremely simple. For more general classes of
functions lik and g, the above idea can be com-
bined with approximation algorithms for maxi-
mizing pgpθqqα likpθq, such as the EM algorithm
of (Dempster et al., 1977), but this goes beyond
the scope of the present paper.

4 Naive classifiers

Let C,F1, . . . , Fk�1 be k categorical variables.
The variables F1, . . . , Fk�1 describe k � 1 fea-
tures of an object, while C is the variable of
interest: it describes the object’s class. Hav-
ing observed m features of an object, say F1 �
f1, . . . , Fm � fm, with m P t0, . . . , k � 1u, the
goal is to classify it; that is, to predict the real-
ization of C. The problem is particularly sim-
ple if the features F1, . . . , Fk�1 are assumed to
be conditionally independent given the class C.
This assumption can be encoded in the directed
acyclic graph GN with nodes C,F1, . . . , Fk�1

such that C has no parents and is the only par-
ent of F1, . . . , Fk�1.

The Bayesian network described by the graph
GN and a parameter θ P ΘGN

is called naive
Bayes classifier (NBC): such classifiers were pro-
posed in (Duda and Hart, 1973). For each pair
of different classes a, b P ΩC , let ga,b : ΘGN

Ñ
r0,�8s be defined by

ga,bpθq �
PθpC � a, F1 � f1, . . . , Fm � fmq

PθpC � b, F1 � f1, . . . , Fm � fmq

for all θ P ΘG, where x
0 is interpreted as �8 for

all positive x, and as 1 when x � 0. A strict
partial preference order ¡ on ΩC is obtained by
considering the values ga,bpθq, for the parameter
θ of the Bayesian network and all pairs of differ-
ent classes a, b P ΩC : if ga,bpθq ¡ 1, then a ¡ b
(that is, a is preferred to b), while if ga,bpθq 1,

then b ¡ a; finally, if ga,bpθq � 1, then there is
no preference between a and b. The NBC re-
turns as prediction of C the maximal elements
of ΩC according to ¡ (that is, the c P ΩC such
that there is no c1 P ΩC with c1 ¡ c). Usu-
ally the prediction consists of a single class, but
sometimes it can consist of several classes (with
no preference among them). The parameter θ
of the Bayesian network can be estimated from
training data (for example by maximum like-
lihood estimation: see Subsection 3.1), but the
resulting NBC does not contain any information
about the uncertainty of the estimate θ and of
the inferred values ga,bpθq.

The credal network described by the graph
GN and a set Θ � ΘGN

of parameters is called
naive credal classifier (NCC): such classifiers
were proposed in (Zaffalon, 2002). A strict par-
tial preference order ¡ on ΩC (called credal
dominance) is obtained by considering the val-
ues ga,bpθq, for all parameters θ P Θ and all pairs
of different classes a, b P ΩC : there is a prefer-
ence between a and b only if either ga,bpθq ¡ 1
for all θ P Θ (in which case a ¡ b), or ga,bpθq 1
for all θ P Θ (in which case b ¡ a). The NCC
returns as prediction of C the maximal elements
of ΩC according to ¡; hence, the prediction of-
ten consists of more than one class. The set Θ
of parameters can be estimated from training
data (for example on the basis of the imprecise
Dirichlet model: see Subsection 3.1): the result-
ing NCC contains some information about the
uncertainty of the inferred values ga,bpθq, and
the number of classes returned as prediction of
C depends on the amount of uncertainty (the
more uncertainty, the more classes).

The hierarchical network described by the
graph GN and a (normalized) likelihood func-
tion lik on ΘGN

can be called naive hierarchical
classifier (NHC). For each β P r0, 1r , a strict
partial preference order ¡β on ΩC is obtained
by considering the profile likelihood functions
likga,b

on r0,�8s, for all pairs of different classes
a, b P ΩC : there is a preference between a and
b only if either likga,b

pγq ¤ β for all γ P r0, 1s
(in which case a ¡β b), or likga,b

pγq ¤ β for all
γ P r1,�8s (in which case b ¡β a). The NHC
returns as prediction of C with cutoff point β

Cattaneo 63

the maximal elements of ΩC according to ¡β.
Hence, the prediction can consist of one or more
classes, and the number of classes increases as
β decreases, in the sense that additional classes
can be included in the prediction as β decreases.
The likelihood function lik on ΘGN

can be in-
duced by training data, and when lik satisfies
the condition of Theorem 1, the profile likeli-
hood functions likga,b

are easily obtained. In
order to satisfy that condition, it is not neces-
sary for the training dataset to be complete (the
features of the objects in the dataset need not be
observed), but when it is complete, Theorem 1
implies the following simple result.

Corollary 1. Let a, b P ΩC be two differ-
ent classes, and for both c P ta, bu and each
i P t1, . . . ,mu, let nc and nc,i be the numbers
of objects in the complete training dataset with
C � c, and with C � c and Fi � fi, respectively.
Moreover, define

α � �mintna, na,1, . . . , na,mu

and
α � mintnb, nb,1, . . . , nb,mu.

• If α � α � 0, then likga,b
pγq � 1 for all

γ P r0,�8s.

• Otherwise, let xa,b, ya, yb : rα, αs Ñ r0,�8s
be defined by

xa,bpαq �
na � α

nb � α

m¹
i�1

�
na,i � α

na � α

nb � α

nb,i � α

,

yapαq �
pna � αqna

nana

m¹
i�1

na
na pna,i � αqna,i

na,ina,i pna � αqna
,

ybpαq �
pnb � αqnb

nbnb

m¹
i�1

nb
nb pnb,i � αqnb,i

nb,i
nb,i pnb � αqnb

,

respectively, for all α P rα, αs, where 00 is
interpreted as 1, and x

0 is interpreted as
�8 for all positive x, and as 1 when x � 0.

Then xa,b is an increasing bijection, and
the graph of likga,b

is the set

tpxa,bpαq, yapαq ybpαqq : α P rα, αsu .

If the NHC is learned from training data, then
for sufficiently large β P r0, 1r , the predictions
with cutoff point β correspond to the ones re-
turned by the NBC based on maximum likeli-
hood estimation (if this is well-defined). But as
β decreases, more and more classes are included
in the predictions with cutoff point β; and for
sufficiently small β, the predictions are vacu-
ous, in the sense that they consist of all possi-
ble classes. Hence, the NHC learned from train-
ing data can be interpreted as a description of
the uncertainty about the NBC based on max-
imum likelihood estimation: when the cutoff
point β P s0, 1r is fixed, the numbers of classes in
the predictions depend on the amount of uncer-
tainty (the more uncertainty, the more classes).
In particular, if c is the prediction of C returned
by the NBC, then βc � maxc1PCztcu likgc,c1

p1q is
the minimum value of β P s0, 1r such that the
prediction of C with cutoff point β returned by
the NHC is c as well. Therefore, βc is an in-
dex of the uncertainty about the prediction c:
the larger βc, the more uncertainty; in fact, βc
is the likelihood ratio test statistic for the set
of all parameters θ P ΘGN

such that the corre-
sponding NBC does not return c as prediction
of C: see for instance (Wilks, 1938).

The strict partial preference order ¡β for the
NHC with likelihood function lik on ΘGN

cor-
responds to credal dominance for the NCC with
as set Θ of parameters the likelihood-based con-
fidence region tθ P ΘGN

: likpθq ¡ βu. When
the NCC is learned from training data, the set Θ
of parameters is usually estimated on the basis
of the imprecise Dirichlet model: this model de-
pends on a hyperparameter s P s0,�8r , and the
behavior of the resulting predictions as s varies
from 0 to �8 is similar to the behavior as β
varies from 1 to 0 of the predictions with cut-
off point β returned by the NHC learned from
the same training data. Besides the theoreti-
cal advantages of not needing prior distributions
and of having the whole information encoded in
the model (whereas to each s P s0,�8r corre-
sponds a different NCC), the main practical ad-
vantage of the NHC over the NCC when they
are learned from training data is that, unlike
the hyperparameter s, the cutoff point β has a

64 Cattaneo

frequentist interpretation in terms of (approxi-
mate) confidence levels, thanks to the result of
(Wilks, 1938), as shown in the next example. A
much more thorough comparison of these naive
classifiers will be presented in (Antonucci et al.,
2011).

Example 2. The simplest nontrivial classifica-
tion problem corresponds to the case with ΩC �
ta, bu and m � 0. Assume that P pC � aq � 1

2 ;
in this case, the vacuous prediction of C can be
considered as the theoretically correct classifica-
tion, since there is no reason for preferring either
of the two possible classes to the other. Con-
sider the NHC learned from a complete training
dataset consisting of n objects, and consider the
NCC learned from the same training data on the
basis of the imprecise Dirichlet model with the
standard choice s � 2 for the hyperparameter.
The probability that the prediction of C with
cutoff point β � 0.15 returned by the NHC is
vacuous is approximately 94.3% when n � 100
and 94.6% when n � 1000, while the proba-
bility that the prediction of C returned by the
NCC is vacuous is approximately 23.6% when
n � 100 and 7.6% when n � 1000. Hence, in
this perfectly symmetric situation the probabil-
ity that the NCC returns the vacuous prediction
(that is, the theoretically correct classification)
decreases as the number of objects in the train-
ing dataset increases.

5 Conclusion

When the likelihood function for the probabil-
ities of a Bayesian network factorizes in multi-
nomial likelihood functions, Theorem 1 gives a
method for calculating profile likelihood func-
tions for a particular class of probabilistic in-
ferences. In the future, this method will be
generalized to non-factorizing likelihood func-
tions and more general classes of probabilistic
inferences, by combining it with approximation
algorithms (such as the EM algorithm) and ex-
ploiting the algebraic structure of the likelihood
functions. Another interesting research topic
is the combination of these methods with the
learning of the graph of the Bayesian network.

Acknowledgments

The author wishes to thank Alessandro An-
tonucci for stimulating discussions on imprecise
probabilistic graphical models, and the anony-
mous referees for their helpful comments.

References

Alessandro Antonucci and Marco Zaffalon. 2008.
Decision-theoretic specification of credal net-
works: A unified language for uncertain modeling
with sets of Bayesian networks. Int. J. Approx.
Reasoning, 49(2):345–361.

Alessandro Antonucci, Marco E. G. V. Cattaneo,
and Giorgio Corani. 2011. The naive hierarchical
classifier. In preparation.

Marco E. G. V. Cattaneo. 2007. Statistical Deci-
sions Based Directly on the Likelihood Function.
Ph.D. thesis, ETH Zurich.

Marco E. G. V. Cattaneo. 2008. Fuzzy probabilities
based on the likelihood function. In Soft Methods
for Handling Variability and Imprecision, pages
43–50. Springer.

Marco E. G. V. Cattaneo. 2009. A generalization
of credal networks. In ISIPTA ’09, pages 79–88.
SIPTA.

Arthur P. Dempster, Nan M. Laird, and Donald B.
Rubin. 1977. Maximum likelihood from incom-
plete data via the EM algorithm. J. R. Stat. Soc.,
Ser. B, 39(1):1–38.

Richard O. Duda and Peter E. Hart. 1973. Pattern
Classification and Scene Analysis. Wiley.

Finn V. Jensen and Thomas D. Nielsen. 2007.
Bayesian Networks and Decision Graphs. Sprin-
ger, second edition.

Peter Walley. 1991. Statistical Reasoning with Im-
precise Probabilities. Chapman & Hall.

Peter Walley. 1996. Inferences from multinomial
data: Learning about a bag of marbles. J. R.
Stat. Soc., Ser. B, 58(1):3–57.

Samuel S. Wilks. 1938. The large-sample distribu-
tion of the likelihood ratio for testing composite
hypotheses. Ann. Math. Stat., 9(1):60–62.

Marco Zaffalon. 2002. The naive credal classifier. J.
Stat. Plann. Inference, 105(1):5–21.

Pp. 65–73 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

On a Discrete Dirichlet Model

Arthur Choi and Adnan Darwiche
University of California, Los Angeles
{aychoi, darwiche}@cs.ucla.edu

Abstract

The Dirichlet distribution is a statistical model that is deeply entrenched in the theory
and practice of learning and reasoning in Bayesian networks. While it is mathematically
convenient in certain situations, it imposes computational challenges in others, such as
in Bayesian parameter learning under incomplete data. We consider in this paper a
discretized variant of the continuous Dirichlet distribution. We show first how one can
model such a distribution compactly as a Bayesian network, which can be used as a sub-
model in other Bayesian networks. We analyze some of its theoretical properties, relating
the discrete variant to the original continous density. We further show how to represent
and perform exact inference efficiently in this model. We finally discuss some implications
that a discrete Dirichlet model may have in enabling the design of more sophisticated
models, and in enabling new ways to reason about them.

1 Introduction

Bayesian networks are prevalent in the artificial
intelligence and computer science communities,
and in these domains, the natural model is of-
ten the one over discrete variables. Driven by
the need to reason in these models, a significant
body of research has developed, giving rise to ef-
fective and powerful algorithms for both exact
and approximate inference in discrete Bayesian
networks (Darwiche, 2009).

In contrast, for the task of learning Bayesian
networks, one typically requires continuous vari-
ables representing, for example, possible net-
work parametrizations. The Dirichlet is a pop-
ular model for such distributions, and has cer-
tainly been the most influential distribution in
Bayesian learning (DeGroot, 1970; Heckerman,
1998). While they can be mathematically con-
venient in certain cases, the use of the Dirichlet
distributions can pose a computational barrier
in other situations. In particular, the Dirich-
let distribution is the conjugate prior for the
parameters of a multinomial distribution, and
in the task of Bayesian parameter learning, a
Dirichlet prior leads to a Dirichlet posterior,
given complete data. However, in the case of in-

complete data, the posteriors are in general no
longer Dirichlet. To compute these posteriors,
we must marginalize over the hidden variables,
leading to a mixture of Dirichlets, which is both
analytically and computationally prohibitive.1

In such cases, we may appeal to variational ap-
proximations or Gibbs sampling, or otherwise
settle for maximum a Posteriori (MAP) param-
eter estimates (Heckerman, 1998).

Considering the vast body of research on rea-
soning in discrete models, and considering fur-
ther the increasing availability of computational
resources (in the form of many-core and mas-
sively parallel architectures, distributed com-
puting, cloud computing, etc.), posing such
problems in fully-discrete approximations may
become a compelling alternative. Towards this
end, we consider in this paper a discretized vari-
ant of the Dirichlet distribution. A naive dis-
cretization of this domain would enumerate a
set of candidate distributions, which may be
coming from a high-dimensional space. In con-

1Drawing samples from a Dirichlet distribution is an-
other difficulty, where in practice, approaches based on
rejection sampling are often used. This is another case
where a discrete Dirichlet has been considered as an al-
ternative to the continuous one (Matsui et al., 2010).

66 Choi & Darwiche

trast, we propose a natural but compact repre-
sentation of this domain that can be encoded
directly as a Bayesian network, allowing it to
be embedded naturally in other Bayesian net-
work models. We further show that this dis-
crete Dirichlet sub-model is further amenable
to exact inference, via a specialized belief prop-
agation procedure which we describe.

We also analyze the theoretical properties of
this discrete Dirichlet model, relating it to the
original continuous distribution. We conclude
by discussing some of the advantages, in terms
of both modeling and reasoning, that present
themselves by assuming a discrete representa-
tion of Dirichlet priors.

2 Preliminaries

Let X be a random variable taking on k pos-
sible values xi. Let the distribution over X be
parametrized by a vector θX = (θx1 , . . . , θxk

),
where each θxi is a probability and

∑
i θxi = 1.

We shall refer to θX as a parameter set and
each θxi as a parameter. Given a specific pa-
rameter set θX we thus have the probability
Pr(X=xi | θX =(θx1 , . . . , θxk

)) = θxi . Note
that when the symbol θxi appears in the con-
text of θX , it refers to the i-th component of
the parameter set θX .

The Dirichlet distribution is the one typically
used to specify a prior probability density over
parameter sets θX :

ρ(θX =(θx1 , . . . , θxk
)) = η

k∏
i=1

[θxi]
ψxi−1 (1)

where the exponents ψxi are hyper-parameters
of the Dirichlet, and η is a normalizing constant:

η = 1/
∫ k∏

i=1

[θxi]
ψxi−1 dθX =

Γ(
∑k

i=1 ψxi)∏k
i=1 Γ(ψxi)

where Γ is the gamma function.
We next present a discrete approximation of

the Dirichlet distribution and discuss some of
its properties and advantages in later sections.

3 A Discretized Dirichlet

Suppose we discretize the space of a parameter
set θX = (θx1 , . . . , θxk

) so that each parameter

X X ∈ {x1, x2, x3, x4,⊥}

θx1 θx2 θx3 θx4 θxi ∈ {0.1, . . . , .1.0}

S S = >

Figure 1: A Bayesian network model for a dis-
crete Dirichlet distribution.

θxi takes a value from a finite set Ωxi of proba-
bilities. Let ΩX be the values of parameter set
θX = (θx1 , . . . , θxk

) such that each θxi ∈ Ωxi

and θx1 + . . . + θxk
= 1. We can now define a

discrete analogue of the Dirichlet distribution:

Pr(θX =(θx1 , . . . , θxk
)) = β

k∏
i=1

[θxi]
ψxi−1 (2)

for θX ∈ ΩX where β is a normalizing constant.
The exponents ψxi are the hyper-parameters of
the now discrete Dirichlet distribution.2

3.1 A Bayesian Network Micro-Model

We present now a Bayesian network micro-
model of the discrete analogue of the Dirichlet
we just described. This network fragment can
be embedded in any other discrete Bayesian net-
work model, and may be augmented further as
dictated by any prior knowledge available.

Let X be a variable with k values x1, . . . , xk,
and that we want to specify a prior over its dis-
tribution. Figure 1 illustrates an example of our
model. We model each parameter θxi of the pa-
rameter set θX = (θx1 , . . . , θxk

) as marginally
independent root variables. These parameter
variables serve as the prior for the CPT parame-
ters of variable X. We include another observed
variable S that enforces a constraint that the
parameter set θX normalizes to sum to one.

2Note that others have also investigated discretiza-
tions of the Dirichlet for other purposes, such as (Mat-
sui et al., 2010), who were interested in drawing samples
from a discrete Dirichlet. In contrast, we propose next
an explicit Bayesian network representation, and in Sec-
tion 5 we provide an exact inference algorithm for it.

Choi & Darwiche 67

First, each root variable θxi has values in Ωxi ,
having the following CPT:

Pr(θxi) = αxi [θxi]
ψxi−1,

where αxi is a normalizing constant:

αxi = 1/
∑

θxi∈Ωxi

[θxi]
ψxi−1

Next, variable X has values in {x1, . . . , xk,⊥},
where ⊥ is a new distinguished state capturing
invalid distributions that do not sum to one. Its
CPT is as follows:

• If θx1 + . . .+ θxk
= 1, then

Pr(X=xi | θx1 , . . . , θxk
) = θxi for all xi

Pr(X=⊥ | θx1 , . . . , θxk
) = 0

• If otherwise θx1 + . . .+ θxk
6= 1, then

Pr(X=xi | θx1 , . . . , θxk
) = 0 for all xi

Pr(X=⊥ | θx1 , . . . , θxk
) = 1

Finally, variable S has two values: > represent-
ing valid parameter sets, and ⊥ representing in-
valid parameter sets. Its CPT is as follows:

Pr(S=> | X=xi) = 1
Pr(S=⊥ | X=xi) = 0

for all xi, and

Pr(S=> | X=⊥) = 0
Pr(S=⊥ | X=⊥) = 1

The observation S=> represents a constraint
that parameter sets θX must be valid, forcing
invalid parameter sets to have probability zero.

In the extended paper, we prove the following
key property of our proposed micro-model:

Pr(θx1 , . . . , θxk
| S=>) = β

k∏
i=1

[θxi]
ψxi−1 (3)

which is precisely the distribution given in
Equation 2. This basically shows that once

we condition our micro-model on the observa-
tion S=>, the model induces a discrete Dirich-
let distribution on parameter sets. We exam-
ine the properties of this distribution further in
Section 4, where we show how it resembles the
continuous Dirichlet distribution in key aspects.

Before we proceed, we make some observa-
tions. First, observe that a naive discretiza-
tion would enumerate a finite set of parameter
sets θX = {θx1 , . . . , θxk

}, which require an in-
tractably large selection to achieve a reasonable
coverage of the domain ΩX . Although our vari-
able X has k parents, one for each parameter
θxi , and the CPT has a number of entries that
is exponential in k, our representation remains
compact as we may leave the CPT of X defined
implicitly. Moreover, as our micro-model has a
polytree structure, we can in fact perform infer-
ence efficiently in this implicit representation,
as we show in Section 5.

3.2 An Example

Consider again our example from Figure 1. We
have assumed a random variable X with four
states x1, . . . , x4, and a distribution over X has
four parameters in its parameter set: θX =
(θx1 , . . . , θx4). Suppose then that each param-
eter can take on one of the n = 10 values in
θxi = {0.1, 0.2, . . . , 1.0}. Indeed, we can think
of 1

n as a discretization granularity, and define
parameter domains such as Ωxi = { an | a ∈
{1, 2, . . . , n}}. Using an exponent ψxi = 1, we
have the prior distribution over parameter val-
ues Pr(θxi =p) = 0.1 for all p ∈ Ωxi . Using an
exponent ψxi = 2, we have the prior distribution
Pr(θxi =p) = α · p where α =

∑10
a=1

a
10 = 5.5.

4 Properties of the Discrete
Dirichlet

In this section, we examine the properties of
the discrete Dirichlet distribution of Equation 3,
comparing it to the original continuous distri-
bution of Equation 1. In particular, one of our
goals here is to confirm that the discrete Dirich-
let distribution behaves in a natural way, as
compared to the continuous version that it is
based on. When we make use of the original
continuous Dirichlet, we refer to a density ρ,

68 Choi & Darwiche

and when we make use of the discrete version,
we refer to a distribution Pr .

Expected Value. The first property of our
micro-model is its ability to explicitly represent
the expected value of each parameter θxj , which
is known as the Bayesian estimate (Heckerman,
1998). In particular, we prove the following in
the extended paper:

Ex[θxj] = Pr(X=xj | S=>)

=
∑

θX∈ΩX

θxj · Pr(θX | S=>)

which shows that we can recover the Bayesian
estimates of our parameter set θX directly from
the distribution of variable X conditioned on
observation S=>.

Expected Value: An Exact Case. In gen-
eral, the expected value of a parameter θxj from
the discrete Dirichlet is only an approximation
for that of the continuous Dirichlet. However,
in the special case that the Dirichlet exponents
are all the same exponent ψ, the expected value
is the same under both distributions:

Ex[θxj] =
ψxj∑k
i=1 ψxi

=
ψ

k · ψ =
1
k

which yields a parameter set θX that is uni-
form.3 Note that this holds even in the case the
discretization does not admit a uniform param-
eter set (i.e., 1

k /∈ Ωxj); we will see an example
of this in Section 5.1.

Observed Data. Suppose now that we have
a data set D where we have observed N cases,
with Ni cases observed for each value xi of vari-
able X. In the continuous case, we have the
posterior Dirichlet:

ρ(θX | D) ∝
k∏
i=1

[θxi]
Ni+ψxi−1

which is a Dirichlet with exponents Ni+ψxi . In
the discretized case, assume that we have repli-
cated instances of the X variable, each shar-
ing the same parents in parent set θX . In the

3To sketch the proof, we note that if ψxi = ψxj , then
θxi and θxj are not otherwise distinguishable, so it must
be that the distribution Pr(θxi | S=>) is equivalent
to the distribution Pr(θxj | S=>). By Equation 7, it
follows that Ex[θxi] = Ex[θxj] for all xi, xj .

extended paper, we show the following for the
discrete case

Pr(θX | D) ∝
k∏
i=1

[θxi]
Ni+ψxi−1

which is a discrete Dirichlet with exponents
Ni + ψxi , therefore, resembling the continuous
distribution in this case.

Remember at this point that if we were us-
ing the Dirichlet for Bayesian parameter learn-
ing under incomplete data, the posterior is in
general not Dirichlet. Analogously, if we had
used a discrete Dirichlet. On the other hand,
the posterior in this latter case is still a discrete
distribution, which leaves us with more options
in terms of performing exact and approximate
inference, as we shall discuss in the next section.

5 Inference in a Discrete Dirichlet

In Section 3, we proposed an efficient represen-
tation for a discrete Dirichlet distribution, as-
suming that the CPT of variable X is implic-
itly defined. Taking advantage of the fact that
the network fragment is a polytree, and that we
can leave the CPT of X implicit, we propose
a belief propagation (BP) algorithm for exact
inference in our sub-model. The corresponding
message update equations can then be used in
a general belief propagation procedure for per-
forming (possibly approximate) inference in a
Bayesian network with discrete Dirichlet sub-
models. The inference procedure we describe
may also be used in other inference frameworks,
which we will discuss later in this section.

Our presentation will be similar in spirit to
inference using noisy-or CPTs. The noisy-or
model also has a compact representation that
is linear in the number of parents, and has an
efficient belief propagation procedure for per-
forming inference (Pearl, 1988, Section 4.3.2).

First, consider the following forms for the
message updates required for performing belief
propagation (BP) (Pearl, 1988):

πX(θxj) = Pr(θxj) (4)

λX(θxj) =
∑

(θx1 ,...,θxj ,...,θxk
)∈ΩX

∏
i 6=j

πX(θxi) (5)

Choi & Darwiche 69

Here, πX(θxj) is the message passed from pa-
rameter node θxj to its child X, and λX(θxj)
is the message that X passes to its parent θxj .
Using these messages, we can compute the pos-
terior marginals:

Pr(θxj |S=>) ∝ πX(θxj)λX(θxj) (6)

Pr(X=xj |S=>) =
∑

θxj∈Ωxj

θxj Pr(θxj |S=>) (7)

The key computational component in this pro-
cedure is for the message λX(θxj), which re-
quires an efficient evaluation of terms of the fol-
lowing form:

f(I, p) =
∑

θXI
∈Ωp

XI

∏
i∈I

πX(θxi) (8)

Here, I is an index set I ⊆ {1, . . . , k} that se-
lects a subset of the states xi of variable X.
Moreover, parameter set θXI

contains the se-
lection of parameters θxi for each index i ∈ I.
Finally, Ωp

XI
denotes the domain of parame-

ter sets θXI
that sum to p, i.e., θXI

∈ Ωp
XI

iff
∑

i∈I θxi = p. For the case of Equation 5,
I = {1, . . . , k} \ j and p = 1− θxj .

We sketch in Appendix A how to compute
these summations efficiently. More specifically,
suppose that we have k parameters θxk

, and we
have n possible parameter values, i.e., |Ωxi | = n.
We sketch in the Appendix how all messages
λX(θxj) can be computed in time O(k · n2),
which is polynomial and avoids the exponential
(in k) computation required by standard belief
propagation. In an extended version of the pa-
per, we show how one can compute BP mes-
sages when this model is embedded in a network
where X has parents and children. The compu-
tation of these messages are similar in spirit,
and also rely primarily on Equation 8.

To conclude this section, we remark that the
inference equations we have identified in this
section (together with more general ones in an
extended version) can be used to perform in-
ference in a general Bayesian network that has
discrete Dirichlet sub-models embedded in it.
If this Bayesian network is also a polytree, the
equations can be used to perform exact infer-
ence using belief propagation, where we apply

updates according to Equations 4 and 5 for mes-
sages passed along edges in our discrete Dirich-
let sub-model. Analogously, we can perform
approximate inference in a network that is not
a polytree, by using loopy belief propagation
(Yedidia et al., 2003). These exact computa-
tions may also be used in approximate inference
frameworks based on performing exact inference
in approximate networks, such as variational
approximations (Jaakkola, 2001), and general-
izations of belief propagation based on struc-
tural relaxations (Choi and Darwiche, 2006;
Choi and Darwiche, 2009). The latter approach,
in particular, could assume a structural relax-
ation where discrete Dirichlet sub-models are
independent (where the relaxation is later com-
pensated for). In such an approach, one needs
only to perform exact inference independently
in each discrete Dirichlet sub-model.

5.1 Examples

Consider again our example from Figure 1 and
Section 3.2, where we are now interested in
the distribution Pr(θX | S=>) over parameter
sets, and the expected parameter values Ex[θX]
implied by it. Assuming we have Dirichlet ex-
ponents ψxi = 1 for all four xi, we have the
following distribution over parameter values:
θxi Pr(θxi | S=>)
0.1 33.33%
0.2 25.00%
0.3 17.86%
0.4 11.90%
0.5 7.14%

θxi Pr(θxi | S=>)
0.6 3.57%
0.7 1.19%
0.8 0.00%
0.9 0.00%
1.0 0.00%

for all four xi. Note that since each parameter
θxi must be at least 0.1, and there are four pa-
rameters θxi , it is not possible for a parameter
to have a value of 0.8, 0.9 or 1.0. The expected
parameter values (the Bayesian estimates) are:

Ex[θxi] =
∑

θX∈ΩX

θxi · Pr(θX | S=>) = 0.25

for all xi, which is the uniform distribution, and
also the expected parameter values given by the
original continuous Dirichlet.

As another example, if we have Dirichlet ex-
ponents ψxi = 2, we have the following distri-
bution over parameter values:

70 Choi & Darwiche

θxi Pr(θxi | S=>)
0.1 26.92%
0.2 29.37%
0.3 22.03%
0.4 13.05%
0.5 6.12%

θxi Pr(θxi | S=>)
0.6 2.10%
0.7 0.41%
0.8 0.00%
0.9 0.00%
1.0 0.00%

and again we have the parameter estimates
Ex[θX] = (25%, 25%, 25%, 25%), as would be
given by the continuous Dirichlet. Since this
is a small example, we can also compute the
MAP estimates argmaxθX

Pr(θX | S=>), us-
ing a generic MAP algorithm, such as (Park and
Darwiche, 2004). For the continuous Dirich-
let, the expected value Ex[θX] with respect to
density ρ(θX) is equivalent to the MAP esti-
mates argmaxθX

ρ(θX), in this case. The dis-
crete Dirichlet’s MAP estimates are not unique
here: there are

(
4
2

)
= 6 MAP estimates for the

discrete Dirichlet, each having two parameters
θxi = 20.0% and two parameters θxj = 30.0%.
This is due, however, to the particular dis-
cretization we used which cannot represent a
uniform distribution. If we use, e.g., 20 discrete
states, the discrete Dirichlet has a unique and
uniform MAP estimate.

Suppose now we have exponents (1, 2, 3, 4).
The continuous Dirichlet yields expected pa-
rameter values Ex[θX] = (10%, 20%, 30%, 40%).
Varying the number of discrete states n used
in our discretization, we arrive at the following,
increasingly accurate parameter estimates from
the discrete Dirichlet (compared to the contin-
uous ones):

n=10 (15.05%, 20.11%, 27.86%, 36.98%)
n=20 (12.38%, 19.77%, 29.08%, 38.77%)
n=50 (10.92%, 19.84%, 29.67%, 39.56%)

n=100 (10.46%, 19.91%, 29.84%, 39.79%)
n=1000 (10.05%, 19.99%, 29.98%, 39.98%)

Note that by n = 47 (not shown), the maximum
absolute error is less than 1%.

Consider now a network θX → X → Z where
θX is a continuous Dirichlet, and where we have
observed Z=z. Note that if X is unobserved,
the posterior ρ(θX | Z=z) is in general only a
mixture of Dirichlet’s, which are generally un-
wieldy, both analytically and computationally
(Heckerman, 1998). In contrast, if we represent

1 2 3 4 5 6 7 8
discrete states 2x

3

2

1

0

1

2

3

lo
g
 B

a
y
e
s

fa
ct

o
r
y

0.1

0.
1

0.05

0.
05

0.01

0.
01

0.005

0.005

0.001

0.001

00

θX →X→Z

Figure 2: The error introduced by discretiza-
tion. On the x-axis, we vary the number of dis-
crete states (in powers of 2), and on the y-axis
we vary the strength of the link X → Z.

this network using our discrete Dirichlet, each
variable θxi in our parameter set is just another
discrete variable in a discrete Bayesian network,
which we can approach using many of the tools
and algorithms available to us, such as belief
propagation, as we described earlier. In this
sense, the discrete Dirichlet yields an approxi-
mation to the above mixture of Dirichlet’s.

We evaluate the quality of this approxima-
tion in Figure 2, which depicts the absolute
maximum error seen in the discrete Dirichlet’s
parameter estimates as compared to those ob-
tained from the mixture of continuous Dirich-
lets. We assume here that variable X has two
states and that we have observed only Z=z.
We vary: (1) on the horizontal axis, the num-
ber of discrete states n used for the parameter
domains Ωxi = { an | a ∈ {1, 2, . . . , n}}; and (2)
on the vertical axis, the strength of link X → Z:

log
Pr(Z=z|X=x1)
Pr(Z=z|X=x2)

which is the log Bayes factor for the event
X=x1 and observation Z=z. Note that for the
continuous Dirichlet, we have only one hidden
variable X, so it is still tractable to enumerate
over all cases X=xi to compute ρ(θX | Z=z).

In Figure 2, we plot the contours where the
number of discrete states n and the log Bayes

Choi & Darwiche 71

factor yield a maximum absolute error of E, for
different errors E. We used Dirichlet exponents
ψx1 = 1 and ψx2 = 1. We observe a few gen-
eral trends. First, as we increase the number of
discrete states n, we find the error decreases, as
expected. Second, as we increase the strength of
the link X → Z, we find that the error tends to
increase. Third, if the link X → Z is vacuous,
the discrete Dirichlet’s parameter estimates are
exact (they recover the uniform distribution).
We note also that using only 25 = 32 discrete
states, the errors E for the range of y considered
are below 1%.

6 Discussion

Continuous distributions (such as Dirichlet and
logistic normal distributions) have been an in-
tegral part of learning Bayesian networks. The
use of continuous distributions, however, can
limit both the scalability and representational
power of these models. On scalability, these
distributions constrain the class of algorithms
one can use to perform learning and inference
with the models. On the representational side,
they provide restrictions on what can be mod-
eled as the result must fit into one of the known
distributions (such as Dirichlet).

A sound and principled procedure for design-
ing purely, or more, discrete models could po-
tentially broaden the use and scope of learn-
ing. Topics models are a particularly relevant
example (Blei and Lafferty, 2009), where there
is significant interest in augmenting and design-
ing new models, to enable new analysis and
queries. One of the challenges, however, is that
one generally needs to design new algorithms
for learning and inference when one is dealing
with a new or augmented model. In contrast,
consider two points: (1) practitioners are al-
ready in general well-versed in discrete model-
ing, and would more easily be able to incor-
porate prior knowledge for their particular ap-
plications (Niculescu, 2005), and (2) there is a
great body of research devoted to reasoning in
discrete Bayesian networks that we can imme-
diately take advantage of.

In this paper, we have laid some of the

sx1 sx2 sx3 sx4

θx1 θx2 θx3 θx4 θxi ∈ {0.1, . . . , 1.0}

sxi ∈ {0.1, . . . , 1.0,⊥}

Figure 3: Another micro-model, enforcing the
constraint that parameters θxi sum to one. We
maintain the cumulative sum of the parameters
θxi in the variables sxi . We clamp the end of
the chain sxk

to 1 as evidence. The state ⊥ now
indicates a sum that has surpassed the value 1.

groundwork for a discrete model of the Dirich-
let distribution, targeting the longer-term goals
of developing compelling alternatives for learn-
ing and modeling Bayesian networks. Given the
Bayesian network micro-model for the Bayesian
network, and the exact and efficient algorithm
for reasoning in it, we are now in a position to
start developing new learning algorithms, for-
mulated in terms of performing (approximate)
inference in a meta-network for Bayesian pa-
rameter learning (Darwiche, 2009), as we dis-
cussed in Section 5.

A Inference: Proof Sketch

We sketch here how to efficiently compute the
messages λX(θxj) of Equation 5, which is the
central computational component for perform-
ing exact inference in the discrete Dirichlet sub-
model. Our approach is based on message pass-
ing in an augmented network where every node
has at most two parents. Consider first a net-
work where we marginalize out variable X:

Pr(S=> | θX) =
∑
X

Pr(S=> | X)Pr(X | θX)

=
∑
X 6=⊥

Pr(X | θX)

since Pr(S=> | X=⊥) = 0, and 1 otherwise
for all X=xi. If θX ∈ ΩX (it sums to one), then

k∑
i=1

Pr(X=xi | θX) =
k∑
i=1

θxi = 1

72 Choi & Darwiche

and zero otherwise (when θX /∈ ΩX). Variable
S now has parameter nodes θxi as direct par-
ents. We now augment the variable S, which
enforces the sum-to-one constraint, into a chain
that enforces this constraint by accumulating
the sum of the parameters θxi ; see Figure 3.
Here, Pr(sxi | sxi−1 , θxi) = 1 iff sxi = sxi−1+θxi ,
and Pr(sx1 | θx1) = 1 iff sx1 = θx1 .

Consider now a message passed from sxi to
sxi+1 , for some 1 < i ≤ k:

πsxi+1
(sxi)

=
∑
sxi−1

∑
θxi

Pr(sxi |sxi−1 , θxi)πsxi
(sxi−1)πsxi

(θxi)

=
∑

sxi−1+θxi=sxi

πsxi
(sxi−1)πsxi

(θxi) (9)

since Pr(sxi | sxi−1 , θxi) = 0 if sxi−1 + θxi 6=
sxi . By recursively substituting this equation
for messages πsxi

(sxi−1), we find that:

πsxi+1
(sxi) =

∑
θx1+···+θxi=sxi

i∏
j=1

πsxj
(θxj)

which is a summation of the form in Equation 8.
We can then compute Equation 8 for a given I
and p by permuting the variables in our net-
work so that indices I appear at the head of the
chain. To compute all of the messages of Equa-
tion 5, however, we need only perform message-
passing once in the network of Figure 3, since
one can show that the messages λsxi

(θxi) will
be the messages λX(θxi) that we desire.

Computing a message takes (at most) O(n)
time for each of its O(n) entries (as in Equa-
tion 9). There are 2k − 1 edges in this model,
so to compute all messages of Equation 8, we
require only O(k · n2) time.

References

David M. Blei and John D. Lafferty. 2009. Topic
models. In Ashok Srivastava and Mehran Sahami,
editors, Text Mining: Classification, Clustering,
and Applications, chapter 4, pages 71–93. Chap-
man and Hall/CRC.

Arthur Choi and Adnan Darwiche. 2006. An edge
deletion semantics for belief propagation and its

practical impact on approximation quality. In
Proceedings of the 21st National Conference on
Artificial Intelligence (AAAI), pages 1107–1114.

Arthur Choi and Adnan Darwiche. 2009. Relax then
compensate: On max-product belief propagation
and more. In Proceedings of the Twenty-Third
Annual Conference on Neural Information Pro-
cessing Systems (NIPS), pages 351–359.

Adnan Darwiche. 2009. Modeling and Reasoning
with Bayesian Networks. Cambridge University
Press.

Morris H. DeGroot. 1970. Optimal Statistical Deci-
sions. McGraw-Hill.

David Heckerman. 1998. A tutorial on learning
with Bayesian networks. In Michael I. Jordan,
editor, Learning in Graphical Models, pages 301–
354. MIT Press.

Tommi Jaakkola. 2001. Tutorial on variational ap-
proximation methods. In D. Saad and M. Op-
per, editors, Advanced Mean Field Methods, chap-
ter 10, pages 129–160. MIT Press.

Tomomi Matsui, Mitsuo Motoki, Naoyuki Kama-
tani, and Shuji Kijima. 2010. Polynomial time
approximate or perfect samplers for discretized
Dirichlet distribution. Japan Journal of Indus-
trial and Applied Mathematics. To appear (cur-
rently published online).

Radu Stefan Niculescu. 2005. Exploiting Parame-
ter Domain Knowledge for Learning in Bayesian
Networks. Ph.D. thesis, Carnegie Mellon Univer-
sity.

James Park and Adnan Darwiche. 2004. A differ-
ential semantics for jointree algorithms. Artificial
Intelligence, 156:197–216.

Judea Pearl. 1988. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufmann Publishers, Inc., San Mateo,
California.

Jonathan S. Yedidia, William T. Freeman, and Yair
Weiss. 2003. Understanding belief propagation
and its generalizations. In Gerhard Lakemeyer
and Bernhard Nebel, editors, Exploring Artificial
Intelligence in the New Millennium, chapter 8,
pages 239–269. Morgan Kaufmann.

Pp. 73–81 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Optimizing the triangulation of Dynamic Bayesian Networks

Morgan Chopin and Pierre-Henri Wuillemin
LIP6

University of Paris 6
75016, Paris, France

Abstract

In this paper, we address the problem of finding good quality elimination orders for trian-
gulating dynamic Bayesian networks. In Bilmes and Bartels (2003), the authors proposed
a model and an algorithm to compute such orders, but in exponential time. We show that
this can be done in polynomial time by casting the problem to the problem of finding a
minimum s–t cut in a graph. In this approach, we propose a formal definition of an inter-
face (a set of nodes which makes the past independent from the future), we link the notion
of an interface with the notion of a graph cut-set. We also propose an algorithm which
computes the minimum interface of a dBN in polynomial time. Given this interface, we
show how to get an elimination order which guarantees, theoretically and experimentally,
the triangulation quality.

1 Introduction

Many domains deal with monitoring the evolu-
tion of complex system over time: localization
of a robot in a dynamic environment (Fox et al.,
1999), fault diagnostics analysis (Weber, 2002),
monitoring physicochemical reactions (Baudrit
et al., 2009). Many formal tools have been de-
veloped for describing such systems, including
hidden Markov models, Kalman filters, and dy-
namic Bayesian networks (dBNs) (Dean and
Kanazawa, 1990). All of these models share the
same idea of representing the state of a system
and its changes over time according to a prob-
abilistic transition model and a prior distribu-
tion. Moreover, they assume the system to be
first-order Markovian (the state at time t only
depends on the state at time t−1) and homoge-
neous (the parameters do not vary with time).
DBNs are graphical models that generalize hid-
den Markov models and Kalman filters by fac-
toring the state as a Bayesian network (Pearl,
1988), hence providing an easy way to model
and specify the parameters of a complex sys-
tem. A dBN is then used to answer some query
we may ask by making an inference (i.e. com-
pute the probability of a state given some ob-

servations). Numerous types of queries lead to
numerous types of inference. In this paper, we
study the offline inference problem: computing
the probability of a state at time t ∈ [0, T] given
the evidences we have during the simulation.

Exact inference in Bayesian networks is com-
putationally hard (Cooper, 1990). This is even
more difficult in the case of a dBN because it
monitors variables over time and thus can be
arbitrarily large, depending of the duration of
the process. Among all the methods that per-
form inference in dBNs (Murphy, 2002), some
are based on triangulation such as the junction
tree inference (Jensen et al., 1990). Finding a
good triangulation, i.e. finding an elimination
order such that the resulting triangulated graph
has the smallest maximum clique, is crucial for
tractable inference but is a NP-complete prob-
lem (Arnborg et al., 1987). Hence, we must
resort on heuristic approach to find good elimi-
nation orders.

In the case of dBNs the most promising work
of finding good quality elimination orders uses a
constrained elimination scheme (Kjærulff, 1994;
Murphy, 2002; Darwiche, 2001; Bilmes and Bar-
tels, 2003). In this approach, the use of con-
straints reduce the amount of elimination orders

74 Chopin & Wuillemin

to consider. Furthermore, these constraints do
not reduce the triangulation quality (Darwiche,
2001). In this paper, we propose a method that
follows the same idea by computing such elimi-
nation orders in an efficient1 way. We also give
some theoretical and experimental results.

Section 2 gives the basic background and de-
fines the notion of interface. In section 3, we
present the state of the art inference methods
in a dBN and their complexity. In section 4, we
present our method. Experimental results are
given in section 5 and we conclude in section
6. Throughout this paper, we assume that the
reader has some knowledge in graphical models
(Pearl, 1988).

2 Dynamic Bayesian networks

We begin by defining some notations. Discrete
random variables will be denoted by X1, X2,...
and Xi

t will denote the i-th variable at time t.
We will use the notation Xa:b as a shortcut for
Xa, ...,Xb. In a Bayesian network, we will de-
note by pa(X) the parents of a node X in the
graph, i.e. the set of nodes with an arc to X.
A set of random variables will be denoted by
X; its size, denoted size(X), corresponds to the
cardinal product of each variable in X and its
dimension, denoted |X|, is the number of vari-
able in X. Finally, we will use Xt to denote the
set of variables at time t.

Dynamic Bayesian networks (dBNs) can be
viewed as an extension of Bayesian networks for
modeling dynamic systems. Since we assume
that the process is first-order Markovian and
homogeneous, we can write the transition model
as follows:

P (Xt|X0:t−1) = P (Xt|Xt−1) = P (X1|X0)

In addition, a dBN exploits independences
into X1 and X0 to factorize P (X1|X0) and
P (X0). This leads us to the following defini-
tion:

Definition 1. A 2-Time-slice Bayesian Net-
work (2-TBN) is a Bayesian network defined as
follows: the nodes are partitioned into two sets
X0 and X1 called slices. The 2-TBN represents

1By efficient we mean polynomial time.

X1
1 X1

2 X1
3X1

1

X0
1 X0

2 X0
3X0

1 X0
0

X1
0

X0
0

X1
0

t = 0 t = 1 t = 2 t = 3

X2
0 X2

1

X3
1

X2
0 X2

1 X2
2 X2

3

X3
1 X3

2 X3
3

Figure 1: A 2-TBN unrolled three times to get
a dBN of length T = 3. Here I→t = {X0

t ,X2
t }

and I←t = {X0
t ,X1

t ,X2
t }.

the transition model such that:

P (X1|X0) =
n−1∏
i=0

P (Xi
1|pa(Xi

1))

where pa(Xi
1) ⊂ X0 ∪X1 and the prior distri-

bution:

P (X0) =
n−1∏
i=0

P (Xi
0|pa(Xi

0))

where pa(Xi
0) ⊂ X0.

We can then define a dBN (see Figure 1):

Definition 2. A dynamic Bayesian network of
length T (denoted as GT = (X = X0 ∪ ... ∪
XT ,E)) is a Bayesian network resulting by ”un-
rolling” a 2-TBN in T time steps. Each state
Xt of the dBN is called the slice t. We denote
by Gm

T the moralization of the dBN GT .

In the next section, we define the notion of
interface that plays a crucial role in our trian-
gulation method.

2.1 The notion of interface

An interface is a subset of nodes such that if
they were removed, the past would be indepen-
dent from the future2. This notion admits sev-
eral definitions (Kjærulff, 1994; Murphy, 2002;
Darwiche, 2001; Bilmes and Bartels, 2003), we
propose one that allows us to encompass several
definitions found in the literature and makes ex-
plicit the link between an interface and a cut-set
in a graph.

2Note that we use the term interface to be consis-
tent with the literature. Heggernes (2006) uses the term
separator.

Chopin & Wuillemin 75

Definition 3. Let Gm
T = (X,E) a moralized

dBN of length T , a subset I ⊂ X is called inter-
face if every path from a node of X0 to a node
of XT in Gm

T contains at least one node in I. A
minimal interface I is such that for all I

′ ⊂ I,
I
′
is not an interface.

Now we prove that forward and backward in-
terfaces defined in Darwiche (2001) are also in-
terfaces. First, we recall what are backward and
forward interfaces:

Definition 4. Let GT = (X,E) a dBN of length
T , the forward interface I→t is the set of nodes
in slice t < T that have at least one child in slice
t + 1. The backward interface I←t is the set of
all nodes X in slice t > 0 such that X, or one
of its children, has a parent in slice t− 1.

Proposition 1. Let GT = (X,E) a dBN of
length T , then I→t for all t < T and I←

t′ for
all t

′
> 0 are interfaces.

Proof. Let t < T , we will prove the result for
I→t . The proof for the backward interfaces is
similar. Let N→t = Xt − I→t . Suppose there
is a path from a node of X0 to a node of XT

that does not contain any node in I→t in the
moralized dBN. Thus, there must be an edge
(u, v) such that u ∈ N→t and v ∈ Xt+1. If (u, v)
was an arc in the non-moralized version, then u
should be in I→t by definition, but this leads to a
contradiction. If (u, v) is an edge added during
the moralization, then u and v have a common
child in the non-moralized version. This child
is either in Xt or in Xt+1. If it belongs to Xt+1

then u has a child in slice t+1 and should be in
I→t which leads to a contradiction. If it belongs
to Xt then there exists an arc from the future
to the past which is forbidden into a dBN. Thus
the edge (u, v) can not exist and we deduce the
result.

Note that an interface is not necessarily in-
cluded entirely in the same slice, but can span
across several slices. Since the topology of a
slice does not vary over time, the size of the
backward interface, forward interface and a slice
remain constant, so we can write size(I→t) =
i→, size(I←t) = i← and size(Xt) = sslice.

X0
0 X0

1 X0
2

X1
1 X1

2X1
0

X2
0 X2

1 X2
2

Figure 2: Triangulation of a dBN using a
forward slice-by-slice elimination order where
I←t = {X0

t ,X1
t }. The subgraph surrounded

in dashed line can be repeated to avoid re-
triangulated the dBN if its length changes.

3 Exact inference and complexity

In this work, we have studied the fixed interval
smoothing inference (or the offline inference),
since all other inferences are particular cases.
To perform this task, one can use two different
approaches. By considering the dBN either as
a stochastic process or as a Bayesian network
and applying inference algorithms that are de-
voted for the former or the latter. In this paper,
we consider the second approach and methods
based on triangulation. As stated previously,
the NP-hardness of finding optimal triangula-
tion implies the use of heuristic methods. In
the case of dBNs, a particular type of elimina-
tion order, called constrained elimination order,
is distinctively interesting. A constrained elim-
ination order is an elimination order such that
we impose the elimination of a set of nodes be-
fore an other. For example, a forward (resp.
backward) slice-by-slice elimination, denoted f-
ss (resp. b-ss), is a constrained elimination or-
der such that we eliminate a slice after an other
from the past to the future (resp. from the
future to the past) (see Figure 2). This kind
of elimination orders gives a theoretical upper
bound of the maximum clique size which is in-
dependent of the length of the dBN. Besides,
they give good experimental results and pro-
vide a way to avoid re-triangulating the dBN
for different length (Kjærulff, 1994; Bilmes and
Bartels, 2003; Murphy, 2002).

In Figure 2 the backward interfaces belongs
to a clique, this is a direct consequence of the
following theorem:

76 Chopin & Wuillemin

Lemma 1 (Rose et al. (1976)). Let X1, ...,Xn

be an elimination order triangulating an undi-
rected graph G, and let Xi and Xj two non-
neighbors nodes. Then the elimination order
add an edge (Xi,Xj) if and only if there exists a
path with endpoints Xi and Xj such that every
nodes on the path are eliminated before Xi and
Xj.

If we use a slice-by-slice elimination order
then we eliminate each node in slice t−1 before
the nodes in slice t. By definition, a backward
interface is the set of nodes that have neigh-
bors in slice t− 1 and if there is one connected
component per slice then for each pair of nodes
(u, v) in the backward interface there exists a
path with endpoints (u, v) where all nodes in
the path are in the previous slice. Hence, by
Lemma 1, (u, v) will be connected.

One can note that lemma 1 also implies that
the size of the maximum clique is at least as
large as the size of the backward interface. This
is the main drawback of using constrained elim-
ination order. For example, in Figure 2, the
treewidth is 2 whereas the constrained triangu-
lation gives a maximum clique of size 3. How-
ever, in practice, constrained elimination gives
good results and may be superior to uncon-
strained elimination (Darwiche, 2001). More-
over, we have the following upper bound guar-
antee on the maximum clique size:

Theorem 1 (Darwiche (2001)). Let a dBN of
length T , then m(f-ss) ≤ i←.sslice, m(b-ss) ≤
i→.sslice where m(σ) is the size of the maximum
clique obtained using the elimination order σ.

Thus an idea to improve this result is to find a
smaller interface and deduce a constrained elim-
ination order. To illustrate this, consider Fig-
ure 3: since I0 is an interface we can split the
dBN into two parts L0 and R0 that are respec-
tively the nodes in the left of I0 and the nodes
in its right. At each step, we eliminate nodes in
Li and slide Ii one time step further to get an
other interface Ii+1 and we repeat the process.
The final step consists in eliminating nodes in
I2 ∪ R2. This elimination order denoted min-
elim is then L0,L1 −L0,L2 −L1, I2 ∪R2. The
maximum clique dimension is then 2 which is

I2

L2 R2

I0

L0 R0

I1

L1 R1

Figure 3: Finding a constrained elimination or-
der given an interface I0.

better in comparison to the one in Figure 2.
This approach was followed by (Bilmes and

Bartels, 2003), where the authors proposed an
algorithm to find a smaller interface and an
other one to build an elimination order relying
on a more general model than the dBN called
”GMTK-template”. They show that the trian-
gulation quality can be dramatically better than
other constrained elimination.

Unfortunately, the algorithm that finds this
elimination order runs in exponential time and
needs to be parameterized. In the next sections,
we show that finding and building such elimina-
tion order can be done in polynomial time and
does not need any parameterization.

4 Minimum interface triangulation

In this section, we first prove that finding the
smallest possible interface can be done in poly-
nomial time. We then show how to build a
constrained elimination order with a theoretical
guarantee on the upper bound of the maximum
clique size.

4.1 Finding the minimum interface

The problem of finding a minimum interface in
a dBN of length T can be formally stated as:

• Minimum T -Interface

Instance : Moralized dBN Gm
T = (X0 ∪ ... ∪

XT , E) of length T .
Solution : An interface I ⊆ X0 ∪ ... ∪XT .
Measure : size(I)

We recall the both problems Minimum s-t Cut
and Minimum s-t Vertex Cut that are used
in our reduction:

• Minimum s-t Cut

Instance : Directed graph G = ({s, t}∪V,E),
a weight function w : E → R.

Chopin & Wuillemin 77

Solution : A subset E
′ ⊆ E such that every

path from s to t contains an arc in E
′
.

Measure :
∑

e∈E′ w(e).
• Minimum s-t Vertex Cut

Instance : Graph G = ({s, t}∪V,E), a weight
function w : V → N .

Solution : A subset V
′ ⊆ V −{s, t} such that

every path from s to t contains a node in V
′
.

Measure :
∑

v∈V ′ w(e).
We state and prove the following theorem:

Theorem 2. Minimum T -Interface polyno-
mially reduces to Minimum s-t Cut and can be
then solved in polynomial time.

Proof. To prove this theorem, we use a composi-
tion of two polynomial transformations that are
stated and proved in the two following lemma.
We give for both lemma a sketch of proof since
the proof is trivial. We refer to Figure 4 for a
detailed transformation.

Lemma 2. Minimum T -Interface polynomi-
ally reduces to Minimum s-t Vertex Cut.

Proof. It is quite easy to see that an instance
I of Minimum T -Interface can be cast into
an instance I

′
of Minimum s-t Vertex Cut.

Indeed, it consists essentially of adding a source
and a sink to the dBN. Note that solutions of I
and I

′
are of equal size.

Lemma 3. Minimum s-t Vertex Cut poly-
nomially reduce to Minimum s-t Cut.

Proof. The transformation essentially consists
of splitting each node v ∈ V into two nodes
vi (in-node), vo (out-node) with an arc (vi, vo)
(arc-node) and a weight on this arc equal to the
weight of v. An edge (u, v) is replaced by two
arcs (uo, vi) and (vo, ui) with weights equal to
+∞. By construction, a solution of the former
problem is a solution of equal size to the sec-
ond problem by considering the corresponding
arc-node and vice versa.

By Lemma 2 and 3 the result follows.

In Figure 2, when the value of T increases
up to T = 2 the size of the minimum interface
decreases. Hence, it remains open the question

2+∞

+∞
+∞ +∞

+∞

+∞

+∞

+∞

2

2 2

Min T -Interface

X1
1X1

0X1
1X1

0

X0
0 X0

1 X0
0 X0

1

s t

s

+∞
t

+∞
Min s-t-Vertex Cut

Min s-t-Cut

X1
0o

X1
0i

Figure 4: An example of a polynomial transfor-
mation from Minimum T -Interface to Mini-
mum s-t Cut. Variables are all binaries.

for which value of T we find the smallest inter-
face by resolving Minimum T -Interface. We
claim that this value is less or equal to the num-
ber of nodes in a slice. Let I(t) an optimal solu-
tion of Minimum T -Interface with T = t, we
first prove the following lemma:

Lemma 4. For all a, b ≥ 0 such that a ≥ b,

size(I(a)) ≤ size(I(b))

Proof. For a dBN of length a, every path from a
node of X0 to a node of Xb contains, by defini-
tion, a node in I(b). Moreover, every path from
a node of X0 to a node of Xa contains a node
in Xb and then a node in I(b). Hence, I(b) is
also an interface for the dBN of length a which
implies size(I(a)) ≤ size(I(b)).

The following proposition give a first charac-
terization of the optimal value for T :

Proposition 2. Let t∗ be the time such that:

t∗ = min
t
{t ∈ N : size(I(t)) = size(I(t+1))}

Then for all t ≥ 0, we have that:

size(I(t∗)) ≤ size(I(t))

Proof. By theorem 2, finding the minimum in-
terface in a moralized dBN of length T Gm

T

can be viewed as maximizing a flow in the
directed graph Gm

′
T obtained from Gm

T by ap-
plying the polynomial transformation given in
the proof. Let αt the value of the maximum
flow in the graph Gm

′
t , by the max-flow min-

cut theorem and since optimal solution of the
two problems are of the same size, we can write
size(I(t)) = size(I(t+1)) = αt = αt+1. Hence, in

78 Chopin & Wuillemin

the slice t of Gm
′

t+1 the value of the flow is main-
tained to the slice t + 1. Since the topology
of a dBN does not vary over time, if we could
preserve a flow of value αt from slice t to slice
t+1, then we could preserve the flow from slice
t + 1 to slice t + 2. Moreover, the value of the
flow can not increase to a value αt+2 > αt by
lemma 4. By inductively applying these argu-
ments, we have αt ≤ αt′ for all t

′
> 0 and thus

size(I(t)) ≤ size(I(t
′
)) for all t

′
> 0.

We can now give an upper bound of the op-
timal value of T :

Proposition 3. Let a dBN with h nodes per
slices, then for all t ≥ 0, size(I(2h−1)) ≤ I(t).

Proof. By lemma 4, if t ≤ 2h − 1 then
size(I(2h−1)) ≤ size(I(t)). Assume t > 2h − 1
and size(I(2h−1)) > I(t). By proposition 2, we
must have size(X0) = size(I(0)) > size(I(1)) >
... > size(I(2h−1)) > size(I(t)). Hence, let
i ∈ {0, ..., 2h − 1}, either we reduce the size of
I(i) to get I(i+1) by removing a node or by re-
placing a node with another one of lower size.
We can remove at most h nodes, and replac-
ing at most h− 1 nodes, thus size(I(2h−1)) = 0
and size(I(t)) = 0 which leads to a contradic-
tion.

Using propositions 3 and 2, and the theorem
2, we deduce the Min-Interface algorithm (see
Figure 5) that finds the smallest interface in
polynomial time.

4.2 Building the elimination order

Once we have the interface I0 found by
Min-Interface, the next step is to build the
constrained elimination order. To do this, con-
sider the sets Ii = {Xk

t+i : Xk
t ∈ I0} for

i = 1, ..., n of a dBN of length T . Each Ii is
obtained by sliding I0 by i time step. As previ-
ously discussed in section 3, since Ii is straight-
forwardly an interface, we can split the dBN
into two parts Li and Ri where Li is the set of
nodes in the left of Ii and Ri the set of nodes
in its right. We then define the following elimi-
nation order:

min-elim = L0,L1 −L0, ...,Ln −Ln−1, In ∪Rn

Require: A 2-TBN.
Ensure: A minimum interface

prevSize ← +∞
I← X0.
T ← 1
while T < 2h− 1 do

prevSize ← size(I)
GT ← Unroll the 2-TBN T time steps
Gm

T ← moralize(GT)
Solve Min T -Interface with Gm

T to get I
if size(I) = prevSize then

return I
end if
T ← T + 1

end while
return I.

Figure 5: Pseudo-code of the Min-Interface
algorithm. Its polynomial time complexity is
ensure by the O(h) iterations and by the theo-
rem 2.

Note that we do not impose any constraints in
the elimination order of nodes in each Li−Li−1,
L0 and In∪Rn. In our experiments, we used the
min-fill heuristic but other approaches can be
considered. We now give an upper bound of the
maximum clique size if we apply the elimination
sequence min-elim.

Proposition 4. For all i > 0, when elimi-
nating nodes in Li − Li−1, we create a clique
of size at most size(Ii).sslice where size(Ii) ≤
min(i→, i←).

Proof. To get Li from Li−1 it suffices to add
nodes Xk

t such that Xk
t−1 ∈ Li−1 or t = 0.

Then we have Li − Li−1 = {X0
t1 , ...,X

n
tn} and

thus size(Li − Li−1) = size({X0
t1 , ...,X

n
tn}) =

sslice. When eliminating nodes in Li − Li−1,
the set of involved nodes are (Li − Li−1) ∪ Ii

(since Ii is an interface) then the size of the
created clique is less or equal to size(Li −
Li−1).size(Ii) = size(Ii).sslice. Finally, by
proposition 1 and the optimality of Ii, we have
size(Ii) ≤ min(i→, i←).

Remark. The previous proposition is a ”local”
improvement of theorem 1. It is ”local” be-

Chopin & Wuillemin 79

cause when we eliminate nodes in L0 or in
In ∪Rn the created clique could be larger than
size(Ii).sslice, but (1) this concerns a fix frac-
tion of the dBN and thus the average size of
the cliques in the triangulated dBN converge to
size(Ii).sslice when T → +∞ (2) we could use
the b-ss (or the f-ss) elimination order to have
a guarantee on the size of the maximum clique
when eliminating nodes in these sets.

5 Experiments

In this section we present triangulation re-
sults on classical dBNs and random dBNs using
methods based on (Ide and Cozman, 2002). To
perform these tests, we used the C++ aGrUM
library (http://agrum.lip6.fr).

b-ss f-ss Min-Elim
Fig. 3.3 of Mean 3.16 3.03 3.03
Murphy (2002) Bounds 0.69–3.46 0.69–3.46 0.69–3.46
Fig. 3.2 of Mean 5.54 5.54 5.54
Murphy (2002) Bounds 5.54–5.54 5.54–5.54 5.54–5.54
Fig. 3-D of Mean 1.38 3.00 1.38
Bilmes (2003) Bounds 1.39–1.39 1.39–3.46 1.39–1.39
Fig. 2 of Mean 2.07 3.45 2.07
Darwiche (2001) Bounds 1.39–2.08 1.39–3.46 1.39–2.08
Fig. 6 of Mean 3.46 3.23 3.00
Bilmes (2003) Bounds 2.08–4.16 2.08–3.46 2.08–3.46

Figure 6: Results on real dBNs.

Figure 6 shows results for classical dBNs.
Each row represents a dBN and each column
corresponds to an elimination order used for tri-
angulation. Each dBN is unrolled up to T = 500
time steps. We report the mean size of the
cliques in the triangulated dBN and the min-
imum and the maximum clique. We see that
our method always gives triangulated dBN that
have the minimum mean size of cliques and for
the last dBN it is the only one that gives the
best mean size.

Figure 7 shows results for randomly gener-
ated dBN. Each dBN contains 5 ((a) and (b)),
10 ((c) and (d)) or 15 ((e) and (f)) variables per
slices with random variable cardinalities chosen
uniformly between 2 and 8. All dBNs are un-
rolled up to T = 500 time steps. In figure 7 (a),
(c) and (e), for each generated dBN we compute
the mean size of the cliques x, y1 and y2 in the
triangulated dBN using respectively min-elim,
f-ss and b-ss, then we plot the point (x, y1) as
”×” and the point (x, y2) as ”◦”. We report in

Mean clique size

b
-s
s
/
f-
ss

2

4

6

8

10

12

min-elim

2 4 6 8 10 12

 b-ss

 f-ss

(a)

b
-s
s
/
f-
ss

5

10

15

20

min-elim

5 10 15 20

 b-ss

 f-ss

(c)

b
-s
s
/
f-
ss

10

15

20

25

min-elim

10 15 20 25

 b-ss

 f-ss

(e)

Interface size

B
a
c
k
w
a
rd
 /
 F
o
r
w
a
rd
 i
n
te
rf
a
c
e
 s
iz
e

2

4

6

8

10

12

Minimum interface size

2 4 6 8 10 12

 Forward

 Backward

(b)

B
a
c
k
w
a
rd
 /
 F
o
r
w
a
rd
 i
n
te
rf
a
c
e
 s
iz
e

5

10

15

20

Minimum interface size

5 10 15 20

 Forward

 Backward

(d)

B
a
c
k
w
a
rd
 /
 F
o
r
w
a
rd
 i
n
te
rf
a
c
e
 s
iz
e

10

15

20

25

Minimum interface size

10 15 20 25

 Forward

 Backward

(f)

Figure 7: Results on random generated dBNs.

figure 7 (b), (d) and (f) the size of the back-
ward, forward and minimum interface in the
same way. Every points above the first diagonal
shows an improvement thanks to our algorithm.
As we can see, our constrained elimination or-
der improve the triangulation quality for almost
all generated dBNs.

%
 o
f
d
B
N
s

0

10

20

30

40

50

Width of the Interface

0 1 2 3 4 5 6 7 8

Figure 8: Minimum interfaces often span across
many slices.

Figure 8 shows the percent of dBNs given the
width of the minimum interface, i.e. the number
of slices the interface spans across. This shows
that allowing the interface to span across many
slices is a useful approach.

80 Chopin & Wuillemin

6 Conclusion

In this paper, we studied the problem of find-
ing good quality constrained elimination order
for triangulating a dBN. We propose a polyno-
mial algorithm to compute such order using the
concept of interface in a dBN. We first show
that an interface is equivalent to a cut-set in a
graph, which allows us to find the minimum in-
terface in polynomial time and then to construct
a constrained elimination that have a theoreti-
cal guarantee on the maximum clique size in the
triangulated graph. Experimental results show
that our approach of using a polynomial time
pre-treatment allows to increase the quality of
the triangulation.

In future work, we plan to use this ap-
proach with approximate inference algorithms,
e.g. loopy belief propagation, factored frontier
algorithm (Murphy and Weiss, 2001), in which
we could take advantage of using a small inter-
face.

Acknowledgments

This research was supported by the ANR
SKOOB project (http://skoob.lip6.fr).

References

Stefan Arnborg, Derek G. Corneil, and Andrzej
Proskurowski. 1987. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic
and Discrete Methods, 8(2):277–284.

Cédric Baudrit, Mariette Sicard, Pierre-Henri
Wuillemin, and Nathalie Perrot. 2009. Dynamic
bayesian networks for modelling food processing:
Application to the cheese ripening process. In
8th World Congress of Chemichal Engineering 09,
Montréal (Canada).

Jeff Bilmes and Chris Bartels. 2003. On Triangulat-
ing Dynamic Graphical Models. In Uncertainty
in Artificial Intelligence, pages 47–56, Acapulco,
Mexico.

Gregory F. Cooper. 1990. The computational com-
plexity of probabilistic inference using Bayesian
belief networks. Artificial Intelligence, 42(2-
3):393–405.

Adnan Darwiche. 2001. Constant-space reason-
ing in dynamic Bayesian networks. International
Journal of Approximate Reasoning, 26:161–178.

Thomas Dean and Keiji Kanazawa. 1990. A model
for reasoning about persistence and causation.
Computational Intelligence, 5(3):142–150.

Dieter Fox, Wolfram Burgard, and Sebastian Thrun.
1999. Markov Localization for Mobile Robots in
Dynamic Environments. Journal of Artificial In-
telligence Research, 11:391–427.

Pinar Heggernes. 2006. Minimal triangulations
of graphs: A survey. Discrete Mathematics,
306(3):297–317.

Jaime S. Ide and Fabio G. Cozman. 2002. Random
Generation of Bayesian Networks. In Brazilian
Symposium on Artificial Intelligence, pages 366–
375. Springer-Verlag.

Finn V. Jensen, Steffen L. Lauritzen, and Kris-
tian G. Olesen. 1990. Bayesian updating in
causal probabilistic networks by local computa-
tions. Computational Statistics Quaterly, 4:269–
282.

Uffe Kjærulff. 1994. dHugin: A computational sys-
tem for dynamic time-sliced Bayesian networks.
International Journal of Forecasting, 11:89–111.

Kevin Murphy and Yair Weiss. 2001. The Factored
Frontier Algorithm for Approximate Inference in
DBNs. In Uncertainty in Artificial Intelligence,
pages 378–385, Seattle, WA.

Kevin Murphy. 2002. Dynamic Bayesian Networks:
Representation, Inference and Learning. Ph.D.
thesis, University of California.

Judea Pearl. 1988. Probabilistic Reasoning in Intel-
ligent Systems: Networks of Plausible Inference.
Morgan Kaufmann.

Donald J. Rose, Endre Tarjan, and Robert George S.
Lueker. 1976. Algorithmic Aspects of Vertex
Elimination on Graphs. SIAM Journal on Com-
puting, 5(2):266–283.

Philippe Weber. 2002. Dynamic bayesian networks
model to estimate process availability. In 8th In-
ternational Conference Quality, Reliability, Main-
tenance, Sinaia (Romania).

Geoffrey Zweig. 1996. A Forward-Backward Algo-
rithm for Inference in Bayesian Networks and An
Empirical Comparison with HMMs. Master’s the-
sis, University of California.

Pp. 81–89 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Learning causal network structure from multiple (in)dependence
models

Tom Claassen
Radboud University, Nijmegen

tomc@cs.ru.nl

Tom Heskes
Radboud University, Nijmegen

tomh@cs.ru.nl

Abstract

We tackle the problem of how to use information from multiple (in)dependence models,
representing results from different experiments, including background knowledge, in causal
discovery. We introduce the framework of a causal system in an external context to
derive a connection between strict conditional independencies and causal relations between
variables. Constraint-based causal discovery is shown to be decomposable into a candidate
pair identification and a subsequent elimination step that can be applied separately from
different models. The result is the first principled, provably sound method that is able
to infer valid causal relations from different experiments in the large sample limit. We
present a possible implementation that shows what results can be achieved and how it
might be extended to other application areas.

1 Introduction

Discovering causal relations from observational
data is an important, ubiquitous problem in sci-
ence. In many application areas there is data
available from many different but related exper-
iments. Results obtained from one data set are
often used to either corroborate or challenge re-
sults from another. Yet how to reconcile appar-
ently contradictory information from multiple
sources, including background knowledge, into a
single, more informative model remains a long-
standing open problem.

Constraint-based methods like the FCI-
algorithm (Spirtes et al., 2000) are provably
correct in the large sample limit, even in the
presence of latent variables; the same holds for
Bayesian methods like the greedy search al-
gorithm GES (Chickering, 2002) (with addi-
tional post-processing steps to handle hidden
confounders). Both are defined in terms of mod-
eling a single data set and have no principled
means to relate to results from other sources in
the process. Recent developments, like the ION-
algorithm by Tillman et al. (2008), show that it
is possible to integrate multiple, partially over-
lapping data sets, provided they originate from

identical experiments. These are still essentially
single model learners as they assume there is
one underlying structure that can account for
all observed dependencies in the different mod-
els. In practice there are often inconsistencies
between data sets, precisely because the exper-
imental circumstances were not identical. The
way out is to distinguish between causal depen-
dencies internal to the system under investiga-
tion and merely contextual dependencies.

In section 4 we show that causal discovery
can be decomposed into two separate steps: a
conditional independency to identify a pair of
possible causal relations (one of which is true),
and then a conditional dependency to eliminate
one of the candidates, leaving the other. The
two steps are independent and rely only on the
observed (in)dependencies between a subset of
variables. As a result conclusions remain valid,
even when taken from different models.

2 Graphical model preliminaries

First a few familiar notions from graphical
model theory used throughout the article.

A directed graph G is a pair 〈V,E〉, where V is
a set of vertices or nodes and E is a set of edges

82 Claassen & Heskes

between pairs of nodes. Edges are represented
by arrows X → Y , where node X is the parent
of Y and Y is a child of X. Two vertices are
adjacent in G if there is an edge between them.
A path π = 〈V0, . . . , Vn〉 between V0 and Vn in
G is a sequence of distinct vertices such that for
0 ≤ i ≤ n− 1, Vi and Vi+1 are adjacent in G. A
directed path is a path that is traversed entirely
in the direction of the arrows. A directed acyclic
graph (DAG) is a directed graph that does not
contain a directed path from any node to itself.
A vertex X is an ancestor of Y (and Y is a
descendant of X) if there is a directed path from
X to Y in G or if X = Y . A vertex Z is a
collider on a path π = 〈. . . , X, Z, Y, . . .〉 if it
contains the subpath X → Z ← Y , otherwise it
is a noncollider. A trek is a path that does not
contain any collider.

For disjoint sets of vertices X, Y and Z in a
DAG G, X is d-connected to Y conditional on Z
(possibly empty), iff there exists an unblocked
path π = 〈X, . . . , Y 〉 between some X ∈ X and
some Y ∈ Y, i.e. such that every collider on π is
an ancestor of some Z ∈ Z and every noncollider
on π is not in Z. If not, then all such paths are
blocked, and X is said to be d-separated from Y
given Z. Note that in a DAG G, an unblocked
path π between two vertices X and Y cannot be
blocked by conditioning on a node Z that is not
on the path, and that a blocked path can only
be unblocked by conditioning on (descendants
of) all colliders on the path; see (Pearl, 2000;
Spirtes et al., 2000) for more details.

Let p be a probability distribution over a set
of variables V, and let X, Y and Z denote three
disjoint subsets of V, then an (in)dependence
model is a set of (in)dependence statements
that hold in p of the form ‘X is independent of
Y given Z’, denoted X⊥⊥Y |Z, and/or ‘X is de-
pendent of Y given Z’, denoted X⊥⊥�Y |Z, with
set Z possible empty. (In)dependence models
are often compactly and intuitively represented
in the form of a graphical model (directed, undi-
rected or other), in combination with a criterion
to link the structure of the graph to the implied
(in)dependencies, similar to the d -separation for
DAGs. We will pose no restrictions on shape or
type of the (in)dependence models considered in

this article, other than that they are internally
consistent.

3 Modeling the system

This section introduces the framework of a
causal system in an external context to model
experiments, as well as a number of assumptions
adopted throughout the rest of this article.

3.1 Causal DAG

A causal DAG is a graphical model in the
form of a DAG where the arrows represent
direct causal interactions between variables in
a system. A prime characteristic of a causal
structure is the so-called Manipulation Princi-
ple (Spirtes et al., 2000), which boils down to
the fact that changing/manipulating a variable
will affect all and only its descendants in the
causal DAG. In this article we will not con-
cern ourselves with the interpretation of causal-
ity any further; for that the reader is referred
to (Cartwright, 2004; Williamson, 2005). In-
stead, we simply assume that the systems we
consider can be represented by some underlying
causal DAG over a great many observed and
unobserved nodes. In a causal DAG GC there
is a causal relation from variable X to variable
Y iff there is a directed path π from X to Y
in GC , otherwise it is a noncausal relation. A
direct link X ⇒ Y in the graph GC means that
there is a causal path from X to Y that is not
mediated by any other node in GC .

The ubiquitous causal Markov condition
links the structure of a causal graph to its prob-
abilistic concomitant, (Pearl, 2000): two vari-
ables X and Y in a causal DAG GC are de-
pendent given a set of nodes Z, iff they are con-
nected by a path π in GC that is unblocked given
Z. An immediate consequence is that there is a
dependence X ⊥⊥� Y iff there is a trek between
X and Y in the causal DAG.

Another common assumption which we will
adopt throughout the article is the causal
faithfulness condition which implies that all
and only the conditional independence relations
entailed by the causal Markov condition applied
to the true causal DAG will hold in the joint
probability distribution over the variables in GC .

Claassen & Heskes 83

For an in-depth discussion of the justification of
and connection between these assumptions in
causal inference, see (Pearl, 2000; Spirtes et al.,
2000; Zhang and Spirtes, 2008).

3.2 Experimental context

Random variation in a system (a.k.a. ‘error
terms’ in a structural equation model (SEM)),
corresponds to the impact of unknown external
variables (Pearl, 2000). Some external factors
may be actively controlled, as for example in
clinical trials, or passively observed as the nat-
ural embedding of a system in its environment.
We refer to both observational and controlled
studies as experiments. If there are external
factors that affect two or more variables in a
system simultaneously, then this can lead to an
observed dependency that is not part of the sys-
tem (a.k.a. ‘correlated errors’ in SEMs). Both
can be represented by modeling this external
environment explicitly as a set of unknown, hy-
pothetical context nodes that causally affect the
system under scrutiny. We introduce:

Definition 1. The external context of a causal
DAG GC , denoted GE , is an additional set of
mutually independent nodes U in combination
with links from every U ∈ U to one or more
nodes in GC .

The total causal structure of an experiment
on a causal system GC in external context GE is
then denoted by GT = {GE + GC}. The context
only introduces arrows from nodes in GE to GC
which can never result in a cycle if there was
not one in GC already (there are no links be-
tween nodes in GE). Therefore, the structure of
an experiment GT is also a causal DAG. In this
paradigm different experiments become varia-
tions in context of an invariant causal system.

Figure 1 depicts a causal system in two differ-
ent contexts (double lined arrows indicate direct
causal relations; dashed circles represent unob-
served variables). The experiment on the right
hand side will result in an observed dependency
between variables A and B, whereas the one on
the left will not.

Here we only focus on the (in)dependence re-
lations I(V ⊂ GC) that exist in the joint proba-

Figure 1: A causal system GC in different experiments

bility distribution P (V) over the observed sub-
set of variables for a given causal experiment
{GE + GC}. With this we can state the goal
of causal discovery from multiple models as:
“Given experiments with unknown total causal
structures GT = {GE + GC}, G′T = {G′E + GC},
etc., and corresponding (in)dependence models
I(V ⊂ GC), I ′(V′ ⊂ GC), etc., which variables
are connected by a directed path in GC?”. We
assume that in each experiment the large sam-
ple limit distributions are known and have been
used to obtain categorical statements about
probabilistic (in)dependencies between sets of
nodes. As stated, we will also always assume
that the causal Markov and causal faithfulness
condition are satisfied.

4 Conditional (in)dependence in
causal systems

Given the problem statement above, we need
a way to combine (in)dependence statements
from different models in order to identify causal
relations in the underlying causal structure GC
that is assumed to be at the heart of all of them.
Methods like FCI and GES tackle this recon-
struction problem in terms of properties that
are optimal or minimal w.r.t. a model for a given
experiment, but this gives no means to relate re-
sults from different models. Another approach,
taken in the ION algorithm, is to use ancestral
graph theory (Richardson and Spirtes, 2002)
to establish what probabilistic (in)dependencies
will be observed in a causal experiment for dif-
ferent subsets of observed variables, and then
use this to find relations that must be shared
by all. But this still does not allow to combine

84 Claassen & Heskes

results from different experiments, like in fig. 1.
A way out of this predicament comes courtesy

of a remarkable fact that so far (to the best of
our knowledge) has escaped detection in causal
research: there is a fundamental connection be-
tween causality and a certain type of conditional
independence, that applies regardless of the en-
compassing model. This connection will enable
us to bring together results from arbitrary ex-
periments in a method for causal discovery from
multiple (in)dependence models (section 6). To
exclude irrelevant independencies we first intro-
duce the following notion:

Definition 2. Two nodes X and Y are strictly
conditionally (in)dependent given a set of nodes
Z, iff X is conditionally (in)dependent of Y
given a minimal set of nodes Z.

We denote a strict (in)dependence statement
by placing it in square brackets. The minimal
in the definition implies that the relation does
not hold for any proper subset of the (possibly
empty) set Z, e.g. a strict conditional indepen-
dence [X⊥⊥Y |Z] implies both X⊥⊥Y |Z and
∀Z′ (Z : X⊥⊥�Y |Z′. It aims to capture the no-
tion that it is really the entire set Z that makes
X and Y independent. The relevance of this
notion lies in the fact that, in a causal system,
certain causal relations between three variables
X, Y and Z can never result in an observed
strict conditional independence [X⊥⊥Y |Z], no
matter what the context is.

Example 1. For the causal system GC in fig.2a
(two variables X ⇒ Z with no causal links to
or from a variable Y), there is no context GE
that can result in [X⊥⊥Y |Z]: if there are no di-
rected paths from Z to X and Y then X ⊥⊥� Y
implies that X and Y are d -connected by di-
rected paths 〈U, . . . ,X〉 and 〈U, . . . , Y 〉 that do
not contain Z. But then conditioning on Z can-
not block these paths, ergo not X⊥⊥Y |Z. This
does not apply to causal system in fig.2b: for the
indicated context GE the strict conditional inde-
pendence relation [X⊥⊥Y |Z] will be observed.

A quick survey shows that all causal struc-
tures over three nodes that can lead to an ob-
served [X⊥⊥Y |Z] have a direct causal link from
Z to X and/or Y .

Figure 2: Causal systems GC that: (a) cannot, and (b)
depending on the context GE can lead to an observed
strict conditional independence relation [X⊥⊥Y |Z].

We can generalize this result to sets of nodes:

Theorem 1. In an experiment with causal
structure GT = {GE + GC}, a strict conditional
independence [X⊥⊥Y |Z] implies causal links
Z ⇒ X and/or Z ⇒ Y from every Z ∈ Z to
X and/or Y in GC .

Proof. We construct a directed path for an ar-
bitrary Z1 ∈ Z to either X or Y . Z1 must be a
noncollider on some path π1 connecting X and
Y given all the other nodes Z\Z1

. Follow π1 in
the direction of the arrows (choose either branch
if Z1 has two outgoing arrows along π1) until ei-
ther X or Y or a collider that is an ancestor of
one of the remaining nodes in Z\Z1

is encoun-
tered. If X or Y is found first then a directed
path has been found and we are done. If not
then we can go on from the collider along π1 to
its descendant node Z2 ∈ Z\Z1

. This node in
turn must be a noncollider on some other path
π2 that d-connects X and Y given all nodes
Z\Z2

. Again this path can be followed in the
direction of the arrows until either X or Y or a
collider that is ancestor of one of the nodes in
Z\{Z1,Z2} is encountered. (This cannot be one of
the previous nodes since that would imply the
existence of a directed path.) We can continue,
and as long as neither X nor Y is reached we
will find new nodes from Z until all have been
encountered. At that point the final node will
lie on a trek connecting X and Y that can no
longer be blocked by any other node in Z, and
therefore will have a directed path to X or Y .
By construction that means there is also a di-
rected path from Z1 to either X or Y in GC ,
which implies a causal relation Z1 ⇒ X and/or
Z1 ⇒ Y .

Claassen & Heskes 85

This theorem recognizes conditional indepen-
dence as the ‘local signature’ of causality. It is
not difficult to see that for a single Z the causal
link to X or Y is also unconfounded (no hidden
common parent). This plays an important role
in calculating the magnitude of causal effects,
e.g. via the front-door criterion (Pearl, 2000).

A similar result exists for conditional depen-
dence and noncausal relations, something we al-
ready knew for v -structures (unshielded collid-
ers X → Z ← Y) from (Spirtes et al., 2000),
although not in the general form given here:

Theorem 2. Let X, Y , Z and W be disjoint
(sets of) nodes in an experiment with causal
structure GT = {GE + GC}. If there is a condi-
tional independence X⊥⊥Y |W and a minimal
set Z such that X⊥⊥�Y | {W ∪ Z}, then there
are no causal links Z ⇒ X, Z ⇒ Y , and/or
Z ⇒ W from any Z ∈ Z to any X, Y and/or
W ∈W in GC .

Proof. We show it holds for arbitrary Z ∈ Z.
In short: Z must be a (descendant of a) col-
lider on a path connecting X and Y (otherwise
it would not be needed to unblock the path);
any directed path from Z to a W implies that
conditioning on Z is not needed when already
conditioning onW . No directed paths from Z to
W implies that if there existed a directed path
from Z to X or Y then it cannot be blocked
by any W ; neither can it be blocked by any
Z\Z (otherwise Z is not minimal). But then
such a path would make Z a noncollider on an
unblocked path between X and Y given Z\Z ,
contradicting minimality.

With the addition of W the theorem also ap-
plies to unshielded colliders where X and Y are
not independent. We need one more result that
is particularly useful to eliminate direct links
between variables in a causal model:

Theorem 3. In an experiment with causal
structure GT = {GE + GC}, every conditional
independence X⊥⊥Y |Z implies the absence of
causal paths X ⇒ Y or X ⇐ Y in GC between
X and Y that are not mediated by nodes in Z.

Proof. If there did exist causal paths between X
and Y not mediated by Z then conditioning on

Z would not block all directed paths (let alone
treks) between X and Y , so then X⊥⊥�Y |Z.

5 Identifying causal relations

Theorem 1 and 2 together show that causal dis-
covery can be decomposed into two separate
steps: having a means of identifying a pair of
links that harbors a causal relation as well as a
means of eliminating a causal relation as the ori-
gin of an observed link, the obvious consequence
is that this allows the positive identification of
a definite causal relation.

Corollary 1. In an experiment GT = {GE +
GC}, if there exists a strict conditional inde-
pendence [X⊥⊥Y |Z], then if there also exists a
conditional independence X⊥⊥V |W and Z is
a minimal set such that X⊥⊥�V | {W ∪ Z}, then
there are causal links Z ⇒ Y from every Z ∈ Z
to Y in GC .

Proof. By theorem 1 [X⊥⊥Y |Z] implies causal
links from every Z ∈ Z to X and/or Y . The
second condition, X⊥⊥V |W with Z minimal
such that X⊥⊥�V | {W ∪ Z}, applies to theorem
2 and implies that there are no causal links from
any Z ∈ Z to X. With all links from Z to X
eliminated, the only remaining option is causal
links Z ⇒ Y from every Z ∈ Z to Y .

To illustrate how these rules can be applied
to infer causal links directly from observed
(in)dependence relations, we look at two in-
dependence models (represented in figure 3 as
CPAGs, see Appendix A), that are known, e.g.
from the FCI-algorithm (Spirtes et al., 2000), to
contain a definite causal link, and show how this
also follows as a straightforward application of
theorems 1 and 2.

Example 2. The aptly named Y-structure in
the l.h.s. of fig. 3 plays an important role in
causal discovery: every such substructure in
a minimal independence model derived by the
FCI-algorithm allows the identification of causal
link Z ⇒ Y , i.e. a directed path from Z to
Y is present in all possible causal DAGs cor-
responding to the observed distribution over
the variables. Mani et al. (2006) investigated
marginal Y-structures embedded in data sets. It

86 Claassen & Heskes

Figure 3: Two independence models in the form of a
CPAG: the ‘Y-structure’ (left) and a discriminating path
(right), both with a detectable causal link Z ⇒ Y (arrow
in CPAG); see examples for detailed description.

was shown that for any DAG, in the large sam-
ple limit, a consistent Bayesian scoring function
(Heckerman et al., 1999) will assign a higher
score to a structure with a direct link Z → Y ,
when marginalizing over the variables, than to
any structure without. These results are eas-
ily understood in terms of our theorems: any
(embedded) Y-structure satisfies the relations
[X⊥⊥Y |Z] and [X⊥⊥�W |Z]. By theorem 1, the
first implies Z ⇒ X or Z ⇒ Y , the second elim-
inates Z ⇒� X by theorem 2, leaving Z ⇒ Y .

As another example, we look at the following
important, but somewhat awkward, construct
in causal inference: in a graph G, a path π =
〈X, . . . ,W,Z, Y 〉 is a discriminating path for Z
if X is not adjacent to Y and all nodes between
X and Z are colliders on π and parents of Y .

Example 3. The path π = 〈X,V,W,Z, Y 〉 in
the r.h.s. of figure 3 is a discriminating path for
Z. The relevance of such a path for causal dis-
covery lies in the fact that if Z → Y is present
in the graph G, then it is present in all members
of the equivalence class of G, and hence it cor-
responds to a definite causal link (Spirtes et al.,
2000; Zhang, 2008). The causal implication of
this discriminating path can also be understood
in terms of the previous rules: by definition of
π it follows that X and Y are strict condition-
ally independent given some set Z (otherwise
they would be adjacent in G). If there is a link
Z → Y , then Z (and all other nodes between X
and Z on π) is necessarily part of any Z that will
d -separate X and Y . Therefore, figure 3 implies
[X⊥⊥Y |Z ∪ {V,W}] and X⊥⊥�Z |∅, which by
theorems 1 and 3 implies Z ⇒ Y .

6 Causal relations from multiple
models

As all three theorems (rules) in section 4 hold
separately for experiments GT irrespective of the
context GE , it means that (non)causal results
obtained in one experiment should also apply
to another, provided the causal system GC re-
mains invariant. In that case, an algorithm im-
plementing these rules should be able to con-
struct a single, overall model of the causal rela-
tions that is more informative than any of the
(in)dependence models separately.

For that we note that all noncausal infor-
mation (‘X does not cause Y’) from rules (2)
and (3) derives from single models in isolation,
and so can be processed first and collected in
a matrix of (non)causal relations found. Subse-
quent causal relations identified via rule (1) also
imply reverse noncausal information, which in
turn can lead to new causal relations. This sug-
gests a repeated loop until no new information
can be found. As input for the algorithm we
use CPAGs (see Appendix A) as a concise and
intuitive graphical representation of all invari-
ant (in)dependence features in an observed dis-
tribution, e.g. as learned by the extended FCI-
algorithm (Zhang, 2008). To convey all uncov-
ered information about the underlying causal
structure GC we choose a causal PAG G as the
output model: similar in form and interpre-
tation to a CPAG, where a missing edge be-
tween variables corresponds to the absence of a
direct causal path, every detected direct non-
causal link X ⇒� Y has an arrowhead at X in
G, every detected direct causal link X ⇒ Z has
a tail mark at X in G, and circle marks rep-
resent unknown, possibly causal relations. A
straightforward implementation is provided in
algorithm 1.

To illustrate the algorithm, consider the
CPAG models corresponding to two experi-
ments on the l.h.s. of figure 4. Despite the dif-
ferent, even apparently contradictory, observed
(in)dependence relations, the combined causal
model on the r.h.s. is readily derived.
Starting from the fully connected graph, in
the first loop over the models, rule (3) in line

Claassen & Heskes 87

Input : set of CPAGs Pi ∈ P
Output : causal graph G

1: G ← fully connected graph with circle marks
2: MC ← 0 . empty set of (non-)causal relations
3: for all Pi ∈ P do
4: for all (X,Y, Z) ∈ Pi, with no edge X − Y do
5: MC ← X ⇒� Y , Y ⇒� X if X⊥⊥Y |∅ . Rule (3)
6: for all W ∈ {Pi \X,Y, Z} do
7: if X⊥⊥Y |W then
8: G ← eliminate edge X −− Y . Rule (3)
9: if X⊥⊥�Y | {W ∪ Z} then

10: MC ← Z ⇒� {X,Y,W} . Rule (2)
11: end if
12: end if
13: end for
14: end for
15: end for
16: G ← noncausal info in MC . circles to arrowheads
17: repeat
18: for all Pi ∈ P do
19: for all (X,Y) ∈ Pi, with no edge X − Y do
20: for all Z ∈ {Pi \X,Y } do
21: if [X⊥⊥Y |Z] and X ⇒� Z ∈MC then
22: MC ← Z ⇒ Y and Y ⇒� Z . Rule (1)
23: end if
24: end for
25: end for
26: end for
27: G ← (non)causal info in MC . tails/arrowheads
28: until no more new noncausal information found

Algorithm 1: Causal structure inference algorithm

8 eliminates all links except A − C, B − C,
B − F , C − D, C − E and E − F (missing
edges in input model). In the same loop, model
1 has [A⊥⊥�B | {C/D/E/F}] which by rule (3)
in line 5 implies A⇒� B and B ⇒� A, and from
which rule (2) in line 10 derives noncausal links
{C/D/E/F} ⇒� {A,B} (for empty W in the-
orem 2) . In the subsequent repeated loop,
lines 17-28, model 1 has [A⊥⊥F | {B,C}] which
by rule (1) in line 22 with the earlier B ⇒� A,
implies B ⇒ F . Similarly, [C⊥⊥F | {B,E}] al-
lows the conclusion E ⇒ F . Next, model 2
has [A⊥⊥D |C] which, together with C ⇒� A im-
plies C ⇒ D. Finally, from [A⊥⊥E |C] follows
C ⇒ E. After that the algorithm terminates at
line 28 with the causal CPAG on the r.h.s. as
the final output. (Figure 1 shows two contexts
that can account for the observed dependencies
in figure 4).

To the best of our knowledge, this is the
first algorithm ever to perform such a deriva-
tion. The input in the form of CPAGs is con-
venient, but not essential: any (in)dependence

Figure 4: Independence models (in CPAG form) for
two experiments, one resulting causal model (cf. fig.1).

model can be used with only minor alterations
to the implementation. We could even directly
incorporate (non)causal information from back-
ground knowledge in the first loop. In the cur-
rent form the example derivation is almost in-
stantaneous, but soon becomes unfeasible for
larger networks. Also the set of observed vari-
ables can differ between input models, but with
little overlap causal information may be lost if
it cannot be transferred to the output graph
when other information has eliminated that par-
ticular direct link. Nevertheless, all identified
(non)causal relations remain valid. These prob-
lems can be addressed and significant improve-
ments can be made, but that requires additional
results and explication and will be postponed to
another article.

7 Discussion

We have shown the first principled method to
use information from different (in)dependence
models in causal discovery. It is based on the
discovery of a fundamental property that identi-
fies (strict) conditional independence as the lo-
cal signature of causality. All (non)causal re-
lations uncovered this way are sound, provided
the input models are valid. The number and
individual size and origin of the input models
are irrelevant and could include different exper-
iments, specific background knowledge or hypo-
thetical information. An exciting possibility is
to use this approach in combination with recent
developments that employ other properties of
the distribution, e.g. non-Gaussianity (Shimizu
et al., 2006) or nonlinear features (Hoyer et al.,
2009), to detect causal relations.

The proposed algorithm is sound and works
well on small models (. 10 nodes) with a rea-

88 Claassen & Heskes

sonable degree of overlap. In order to apply
the method to larger, more realistic models with
less overlap, further research should concentrate
on the computational complexity of the search
for (new) strict conditional independencies and
ways to handle indirect causal information. If
the input models become less reliable, for ex-
ample when derived from real data sets where
the large sample limit no longer applies, incor-
rect or inconsistent causal conclusions may oc-
cur. In that case, results might be generalized
to quantities like ‘the probability of a causal re-
lation’ based on the strength and reliability of
the required conditional (in)dependencies in the
available data.

Acknowledgments

This research was supported by VICI grant
639.023.604 from the Netherlands Organization
for Scientific Research (NWO).

Appendix A. CPAGs

For a causal DAG the distribution over a sub-
set of observed variables may not be faithfully
representable by a DAG. A complete partial an-
cestral graph (CPAG) P represents the Markov
equivalence class [G] of a DAG G when latent
variables may be present (Zhang, 2008). It
is a graph with either a tail ‘−’ (signifying
ancestorship), arrowhead ‘I’ (signifying non-
ancestorship) or circle mark ‘◦’ at each end of
an edge. There is a tail or arrowhead on an edge
in P iff it is invariant in [G], otherwise it has a
circle mark. Bi-directed edges J−I in a CPAG
indicate the presence of a latent common cause;
arcs −−I indicate a causal relation. The CPAG
is unique and maximally informative for [G]. An
intuitive property of CPAGs is that two nodes
X and Y are not connected by an edge iff there
is some set Z such that X⊥⊥Y |Z; see (Richard-
son and Spirtes, 2002; Zhang, 2008) for more
information on how to read (in)dependencies
directly from a CPAG using the m-separation
criterion.

References

N. Cartwright. 2004. Causation: one word, many
things. Philosophy of Science, (71):805–819.

D. Chickering. 2002. Optimal structure identifi-
cation with greedy search. Journal of Machine
Learning Research, 3(3):507–554.

D. Heckerman, C. Meek, and G. Cooper. 1999. A
Bayesian approach to causal discovery. In Compu-
tation, Causation, and Discovery, pages 141–166.

P. Hoyer, D. Janzing, J. Mooij, J. Peters, and
B. Schölkopf. 2009. Nonlinear causal discovery
with additive noise models. In Advances in Neural
Information Processing Systems 21 (NIPS*2008),
pages 689–696.

S. Mani, G. Cooper, and P. Spirtes. 2006. A theo-
retical study of Y structures for causal discovery.
In Proceedings of the 22nd Conference in Uncer-
tainty in Artificial Intelligence, pages 314–323.

J. Pearl. 2000. Causality: models, reasoning and
inference. Cambridge University Press.

T. Richardson and P. Spirtes. 2002. Ancestral graph
Markov models. Ann. Stat., 30(4):962–1030.

S. Shimizu, P. Hoyer, A. Hyvärinen, and A. Kermi-
nen. 2006. A linear non-Gaussian acyclic model
for causal discovery. Journal of Machine Learning
Research, 7:2003–2030.

P. Spirtes, C. Glymour, and R. Scheines. 2000. Cau-
sation, Prediction, and Search. The MIT Press,
Cambridge, Massachusetts, 2nd edition.

R. Tillman, D. Danks, and C. Glymour. 2008. In-
tegrating locally learned causal structures with
overlapping variables. In Advances in Neural In-
formation Processing Systems, 21.

J. Williamson. 2005. Bayesian nets and causality:
philosophical and computational foundations. Ox-
ford University Press, Oxford.

J. Zhang and P. Spirtes. 2008. Detection of unfaith-
fulness and robust causal inference. Minds and
Machines, 2(18):239–271.

J. Zhang. 2008. On the completeness of orienta-
tion rules for causal discovery in the presence of
latent confounders and selection bias. Artificial
Intelligence, 172(16-17):1873 – 1896.

Pp. 89–97 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

An Influence Diagram Model for Detecting Credit Card Fraud

Barry R. Cobb
Virginia Military Institute

cobbbr@vmi.edu

Abstract

A hybrid influence diagram is a compact graphical and numerical representation of a
decision problem under uncertainty that includes both discrete and continuous chance
variables. These models can be used by businesses to detect online credit card transactions
that may be fraudulent. By creating decision rules based on merchandise value and
additional address and product characteristics, the influence diagram model can be used
to develop policies that help businesses decide when to investigate an order’s legitimacy.
The influence diagram establishes guidelines that minimize the sum of the costs of lost
merchandise and order investigation.

1 Introduction

A major credit card issuer—Visa—encourages
businesses to prevent “card-not-present fraud”
by developing “...in-house fraud detection pro-
grams, such as guidelines for staff on how to
spot and report suspected fraudulent transac-
tions” (“Credit card fraud,” 2008) and lists
the following common characteristics of falsified
credit card orders: 1) first-time orders, 2) larger
than normal orders, 3) orders consisting of sev-
eral of the same item, 4) orders shipped rush
or overnight, and 5) orders shipped to a foreign
address.

Fraud detection methods have been imple-
mented using a number of quantitative tech-
niques in the fields of data mining, statistics,
and artificial intelligence. Cobb (2010) provides
a survey of several of these methods. A large
portion of the previous research that adapts
quantitative techniques to credit card fraud de-
tection has focused on these problems from
the perspective of banks and firms that issue
credit cards. However, businesses that accept
credit cards for purchases—particularly in on-
line transactions—can also benefit from the ap-
plication of such models.

Some credit card fraud can be prevented prior
to the customer completing a purchase. For
instance, when a credit card approval for the

purchase amount is requested, an order being
submitted on a card that has been reported
as stolen is denied. To further prevent fraud,
a business can collect additional information,
such as the three-digit card verification value
on the back of the card. This prevents some-
one who has obtained a stolen credit card num-
ber, but not the actual card, from completing a
fraudulent transaction. However, if a card has
not been discovered as stolen, the fraud will not
be detected at this point.

This paper proposes an influence diagram
(ID) framework that can be employed to de-
velop processes by which businesses can select
transactions for further investigation as poten-
tially falsified. The goal of the model is to ap-
propriately balance the cost of shipping mer-
chandise that will ultimately not be paid for
because of a fraud-related chargeback, versus
the cost of utilizing employee time and sys-
tem resources to confirm and investigate poten-
tially fraudulent orders. An ID is a probabilistic
model that is a simultaneous graphical and nu-
merical representation of a decision problem un-
der uncertainty (Howard and Matheson, 1984).
Recent innovations in IDs permit models with
non-Gaussian continuous chance variables and
discrete decision variables (Cobb and Shenoy,
2008). In this paper, a model that allows a
business to develop an optimal decision rule for

90 Cobb

whether or not to investigate a transaction for
fraud based on the observation of both discrete
and continuous variables is suggested.

The remainder of this paper is organized as
follows. Section 2 provides notation and defini-
tions. Section 3 describes the ID model. Sec-
tion 4 illustrates the solution of the ID model
for an example fraud detection problem. Sec-
tion 5 summarizes the paper. This paper is de-
rived from a longer working paper on this topic
(Cobb, 2010).

2 Notation and Definitions

This section introduces notation and definitions
used throughout the paper.

2.1 Notation

Variables are denoted by capital letters in plain
text, e.g., A, B, C. Sets of variables are denoted
by capital letters in boldface, e.g., X, Y, Z. If A

and X are one- and multi-dimensional variables,
respectively, then a and x represent specific val-
ues of those variables. The state space of X is
denoted by ΩX.

A probability potential, φ, for X is a function
φ : ΩX → [0, 1]. If A is discrete, the more intu-
itive notation P (A) may be used to represent a
discrete probability distribution. A utility po-
tential, u, for a set of variables X is a function
u : ΩX →R.

2.2 Mixtures of Truncated
Exponentials

One difficulty associated with including contin-
uous chance variables in IDs is that mathemat-
ical operations, such as integration, on proba-
bility density functions are difficult to perform
in closed form. For the case where all chance
variables are normally distributed and discrete
variables do not have continuous parents, the
technique of Madsen and Jensen (2005) can be
applied to solve the ID.

For problems with continuous variables that
are not normally distributed, the state spaces
must be discretized to permit an ID solution or
a mixture-of-Gaussians ID model (Poland and
Shachter, 1993) can be used. Another approach
is to approximate probability density functions

in the ID with mixtures of truncated exponen-
tials (MTE) potentials, which are defined as fol-
lows.

Definition 1. (MTE Potential (Moral et
al., 2001)). Let S be a continuous chance vari-
able. Given a partition Ω1, . . . , Ωn that divides
ΩS into hypercubes, an n-piece MTE potential
φ : ΩS �→ R+ has components

φh(s) = a0 +
m∑

i=1

ai exp {bi · s}

for h = 1, . . . , n, where ai, i = 0, . . . , m and bi,
i = 1, . . . , m are real numbers.

MTE potentials can be used to approximate
both probability distributions and utility func-
tions. The optimization procedure outlined by
Cobb et al. (2006) is used to determine the
parameters (the values ai and bi) required to
approximate probability density functions with
MTE potentials.

2.3 Operations on MTE Potentials

In this paper, the operations of combination
and marginalization are used to solve IDs where
MTE potentials are used to represent probabil-
ity density functions.

Definition 2. (Combination.) Combination
of MTE potentials is pointwise multiplication.
Let φ1 and φ2 be MTE potentials for X1 and
X2. The combination of φ1 and φ2 is a new
MTE potential for X = X1 ∪X2 defined as fol-
lows

φ(x) = (φ1 ⊗ φ2) (x) = φ1(x↓ΩX1) · φ2(x↓ΩX2)

for all x ∈ ΩX.
Combination of two MTE probability den-

sities results in an MTE probability density.
Combination of an MTE probability density
and an MTE utility potential results in an MTE
utility potential, as does the combination of two
MTE utility potentials. Note that since a dis-
crete probability distribution is a special case
of an MTE potential where a1, . . . , am in each
component are equal to zero, this definition of
combination applies to discrete probability dis-
tributions.

Cobb 91

Definition 3. (Marginalization of Chance
Variables.) Marginalization of a chance vari-
able is summation over its state space. Let φ be
an MTE potential for X = X′ ∪X . The state
space of X is ΩX = {x1, . . . , xn}. The marginal
of φ for a set of variables X′ is an MTE potential
computed as

φ↓X′
(x′) = φ−X(x′) =

n∑
i=1

φ(X = xi, x′) (1)

for all x′ ∈ ΩX′ . If the variable X is a continu-
ous chance variable, the summation in Eq. (1) is
replaced with integration as follows (assuming
the state space of X is ΩX = {x : xmin ≤ x ≤
xmax}):

φ↓X′
(x′) = φ−X(x′) =

∫
ΩX

φ(x) dx

for all x′ ∈ ΩX′ where x = (x, x′).

Definition 4. (Marginalization of Decision
Variables.) In this paper, all decision variables
are discrete and binary. Assume I is a discrete
decision variable with possible values I = 0 and
I = 1 that has a continuous parent S with ΩS

= {s : smin ≤ s ≤ smax}. Without loss of
generality, arbitrarily assign I = 0 to the binary
state of I that maximizes the value of u at smin.
To remove I from the ID, a threshold, Ψ, is
determined as follows:

INPUT: u, smin, smax, ε
OUTPUT: Ψ
INITIALIZATION: Ψ = smin

DO WHILE (u(I = 0, Ψ + ε) ≥
u(I = 1, Ψ + ε)) ∩ (Ψ ≤ smax)
Ψ = Ψ + ε

END DO
Ψ = Ψ + ε/2

The parameter ε is an increment in S that can
be assigned an appropriate value based on the
application being addressed. The decision vari-
able I is removed from the model by construct-
ing the following MTE potential using the util-
ity function u and the threshold value Ψ:

u↓S(s) =

{
u(I = 0, s) if smin ≤ s < Ψ
u(I = 1, s) if Ψ ≤ s ≤ smax .

This definition applies when u(I = 0, s) =
u(I = 1, s) at one point and is a simpler version
of the line search technique defined by Cobb and
Shenoy (2008).

2.4 Fusion Algorithm

The ID is solved by applying the fusion algo-
rithm (Shenoy, 1993). This algorithm involves
deleting the variables in an elimination sequence
that respects the information constraints in the
problem. The sequence is chosen so that deci-
sion variables are eliminated before chance or
decision variables that are immediate predeces-
sors. When a variable is to be deleted from the
model, all probability and/or utility potentials
containing this variable in their domains are
combined (according to Definition 2), then the
variable is marginalized from the result. The
appropriate marginalization operation depends
on whether the variable being marginalized is a
chance variable (see Definition 3) or a decision
variable (see Definition 4).

3 ID Model

This section describes the ID model.

3.1 Graphical Representation

The ID model for the credit card detection prob-
lem is shown in Figure 1. The single-border
ovals represent discrete chance variables. Fraud
(F) indicates whether or not an order is fraudu-
lent. The variables A0 and P0 reveal the number
of suspicious characteristics in the address and
product information on an order, respectively.
The double-border oval for order Size (S) de-
fines a continuous chance variable for the value
(or cost) of the merchandise contained on an
order. The arrows (or arcs) pointing from F

to A0, F to P0, and F to S specify that the
probability distributions for those variables are
conditioned on F .

The rectangle in Figure 1 represents the firm’s
decision on whether or not to investigate an or-
der. The arcs pointing from the variables A0 to

92 Cobb

u0

Product (P0) Size (S)Address
(A0)

Fraud (F)

Investigate (I)

Figure 1: ID Model.

I , P0 to I , and S to I show that the firm will ob-
serve the values of these chance variables prior
to making its decision on whether or not to in-
vestigate the order. The value I = 0 means that
the firms does not investigate, while the value
I = 1 means the firm investigates.

The diamond in the ID represents the joint
utility function. The arcs pointing from F , S,
and I to this node indicate that these variables
are in the domain of the joint utility function. In
this context, the firm’s utility will be the cost to
the firm of either investigating potential fraud
or shipping unpaid merchandise.

3.2 Numerical Representation

This section describes the potentials in the ID.

3.2.1 Fraud (F)

The variable F has state space ΩF = {0, 1},
where F = 0 stands for legitimate and F =
1 signifies fraudulent. Thus, the probability of
fraud is denoted by P (F = 1) = η.

3.2.2 Address Characteristics (A0)

The variable A0 has state space ΩA0 = {0, . . .,
m}. The distribution P (A0|F) is constructed
by using m variables representing the presence
of specific address characteristics for credit card
orders. For illustrative purposes, the remainder
of the description of the potentials in the model
will assume m = 3. Extension to the more gen-
eral case is straightforward.

The variable A0 “aggregates” the factors rep-
resented by the variables {A1, A2, A3}; thus, the
value of A0 is determined by the number of
variables in the set {A1, A2, A3} whose values
equal one. The distribution P (A0|(A1, A2, A3))
is shown in Table 1. Combining the informa-
tion in the variables {A1, . . . , Am} into one vari-

Table 1: P (A0|(A1, A2, A3)).
A0

A1 A2 A3 0 1 2 3

0 0 0 1 0 0 0
1 0 0 0 1 0 0
0 1 0 0 1 0 0
0 0 1 0 1 0 0
1 1 0 0 0 1 0
0 1 1 0 0 1 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1

able (A0) reduces the number of decision rules
determined when solving the ID from 2m+n to
(m + 1)(n + 1), which significantly reduces the
computational complexity of the solution. The
resulting policies are also easier to implement.

The probability potential for the factor Ai

given F is defined according to two parame-
ters. The probabilities of the presence of the
address inconsistency given the two states of
F are αi,0 = P (Ai = 1|F = 0) and αi,1 =
P (Ai = 1|F = 1), αi,0 < αi,1, for i = 1, 2, 3.

Given P (A0|(A1, A2, A3)) and P (Ai|F) for
i = 1, 2, 3, the probabilities P (A0 = i|F = f)
are determined as

P (A0|F) = (P (A0|(A1, A2, A3))⊗ P (A1|F)
⊗P (A2|F)⊗ P (A3|F))−{A1,A2,A3}

according to Definitions 2 and 3. The result is
shown in Table 2 and follows directly from the
chain rule for Bayesian networks (Pearl, 1988).

3.2.3 Product Characteristics (P0)

The variable P0 has state space ΩP0 = {0, . . .,
n}. The distribution P (P0|F) is constructed by
using n variables representing the presence of
specific product characteristics for credit card
orders. The variables P1, . . . , Pn are factors re-
lated to an order’s product information that
may be useful for distinguishing a legitimate
order from a fraudulent order. For example,
fraudulent orders are more likely than accept-
able orders to have multiples of the same item.

Cobb 93

Table 2: Probability Distribution for A0 given F (P (A0 = i|F = f)).
F = 0 F = 1

A0 = 0 (1− α10)(α20 − 1)(α30 − 1) (1− α11)(α21 − 1)(α31 − 1)

A0 = 1 α20 + α30 − 2α20α30 α21 + α31 − 2α21α31

+α10(1− 2α30 + α20(3α30 − 2)) +α11(1− 2α31 + α21(3α31 − 2))

A0 = 2 α20α30 + α10(α20 + α30 − 3α20α30) α21α31 + α11(α21 + α31 − 3α21α31)

A0 = 3 α10α20α30 α11α21α31

The probabilities of the presence of the product
characteristics given the two states of F are ρj,0

= P (Pj = 1|F = 0) and ρj,1 = P (Pj = 1|F =
1), ρj,0 < ρj,1, j = 1, . . . , n. The variable P0

summarizes the information in {P1, . . . , Pn} in
much the same way as A0 summarizes the in-
formation in the address characteristics for an
order.

Calculation of P (P0|F) is accomplished in the
same way as the determination of P (A0|F), so
the details are omitted. More information is
provided in (Cobb, 2010).

3.2.4 Order Size (S)

The chance variable S has ΩS = {s : smin ≤
s ≤ smax}. The probability potential φ for
{F, S} represents the conditional probability
density functions for S given F = 0 and F = 1.

The parameters used in the example of the
next section will be used to describe the po-
tential φ. Suppose the natural log of S is
normally distributed with mean μ = 2.5 and
variance σ2 = 0.5 given that F = 0, i.e.
S|F = 0 ∼ LN (2.5, 0.5). Also, assume the
natural log of S given F = 1 is normally dis-
tributed with μ = 3.5 and σ2 = 0.75, i.e.
S|F = 1 ∼ LN (3.5, 0.75). The MTE potential
fragment representing the conditional distribu-
tion for S given F = 0 is defined as

20 40 60 80 100 120

0.01

0.02

0.03

0.04

0.05

0.06

F=0

F=1

Figure 2: MTE Lognormal Approximations.

φ(F = 0, s) = f̂F=0(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

39.78 + 5.71 exp{0.0326(s− 7.39)}
−45.34 exp{0.0032(s− 7.39)}

if 1.46 ≤ s < 2.72

21.72− 1.49 exp{ − 0.0468(s− 7.39)}
−20.17 exp{0.0035(s− 7.39)}

if 2.72 ≤ s < 7.39

...

The full description of the function can be
found in (Cobb, 2010). The MTE potential
fragment φ(F = 1, s) representing the condi-
tional distribution for S given F = 1 is de-
fined similarly, and both MTE potentials are
displayed in Figure 2, overlaid on the actual
lognormal distributions. The prior distribution
for order size is skewed farther to the right for
fraudulent orders.

3.2.5 Utility Function (u0)
The joint utility function u0 has domain

{F, S, I}. Assume that the cost of investigating
an order for fraudulent activity is c (a constant).
The values for u0 are u0(F = 0, I = 0, s) = 0,

94 Cobb

u0(F = 0, I = 1, s) = −c, u0(F = 1, I = 0, s) =
−s, and u0(F = 1, I = 1, s) = −c.

If the firm investigates, it incurs the cost of
the investigation, but avoids forfeiting the value
of the merchandise when a fraudulent order is
thwarted. If the firm fails to investigate a fraud-
ulent order, it incurs a cost equal to the value
of the merchandise shipped to fulfill the order.

The joint utility function u0 is approxi-
mated by the MTE potential u1, which is
identical to u0 with the exception of one
term, which is defined (Cobb and Shenoy,
2006) as u1(F = 1, I = 0, s) = (smax −
smin)(13.512870 ·exp

{
0.071387

smax−smin
· (s− smin)

}
−

13.507018)− smin.
For the case where F = 1 and I = 0, the func-

tion u1 is an MTE approximation to the linear
function g(s) = −s. In the ID solution process,
the MTE utility function will be combined via
multiplication with the MTE density potential
for S given F . Since the class of MTE poten-
tials is closed under addition and multiplication,
the result remains an MTE potential. This al-
lows the resulting function to be integrated in
closed form to determine the firm’s maximum
expected utility.

4 Example

This section describes an example where opti-
mal decision rules are developed that allow the
firm to decide when to investigate potentially
fraudulent orders.

4.1 Problem Description

Assume m = n = 3, meaning that there are
three address factors and three product factors
used to determine the conditional distributions
for A0 given F and P0 given F , respectively.
These factors are:

Shipping and billing addresses match (A1)

Untraceable e-mail (A2) — the order origi-
nated from a free, web-based address.

Foreign address (A3)

Leave at home (P1) — the customer requests
that the shipment be left at the door if no
one is home.

Table 3: Parameters for the Example.
Variable F = 0 F = 1

Fraud (F) 1− η = .99 η = .01
Match (A1) α10 = .25 α11 = .40
Email (A2) α20 = .01 α21 = .05
Inter. (A3) α30 = .05 α31 = .25
Leave (P1) ρ10 = .20 ρ11 = .30
Rush (P2) ρ20 = .10 ρ21 = .20
Mult. (P3) ρ30 = .05 ρ31 = .075
Size (S) LN (2.5, .5) LN (3.5, .75)

Rush shipping (P2)

Multiple units of the same item (P3)

The presence of these factors is denoted by ei-
ther Ai = 1 or Pj = 1 and corresponds to a
higher incidence of fraud.

The potential representing the prior prob-
ability distribution for F has values P (F =
0) = 1 − η = 0.99 and P (F = 1) = η =
0.01. The conditional probability density func-
tions for order Size (S) are those approxi-
mated by the MTE potential φ in Figure 2.
The cost of investigating an order is c = 10,
and the MTE potential fragment approximat-
ing u0(F = 1, I = 0, s) in the joint utility func-
tion u0 is u1(F = 1, I = 0, s) = 5989.45 −
5993.51 exp{0.000161(s− 1.46)}.

The probability distribution P (A0|F) is de-
termined using the result in Table 2, and
P (P0|F) is calculated similarly. A summary of
the parameters in the example problem is given
in Table 3.

4.2 Solution

This section briefly describes the solution to the
example using the fusion algorithm. In this
problem, a possible deletion sequence is F , I ,
S, A0, P0.

The potentials in the model at the outset are
P (F), P (A0|F), P (P0|F), φ for {S, F}, and u1

for {F, S, I}. The first variable in the deletion
sequence is F , and since all potentials contain
F in their domain, all must be combined prior
to the marginalization of F . The combination

Cobb 95

20 30 40 50

0.30

0.25

0.20

0.15

0.10

0.05-

-

-

-

-

-

I=0 I=1
S

Figure 3: u2 where A0 = 2 and P0 = 2.

results in an MTE utility potential determined
as

u′2 = P (F)⊗ P (A0|F)⊗ P (P0|F)⊗ φ⊗ u1 .

The variable F is marginalized as

u2(A0 = i, P0 = j, I = k, s) =

u′2(F = 0, A0 = i, P0 = j, I = k, s)
+u′2(F = 1, A0 = i, P0 = j, I = k, s)

for all (i, j, k, s) ∈ Ω{A0,P0,I,S}. The function
u2 is shown graphically in Figure 3 for the case
where the number of observed address incon-
sistencies and suspicious product characteristics
are both two (A0 = 2 and P0 = 2). The ex-
pected utility that results from investigating the
potential fraud (I = 1) is less than the expected
utility associated with not investigating (I = 0)
for smaller orders.

The objective of the firm is to decide op-
timally whether to investigate potential fraud
after it observes the values of A0, P0, and S.
Thus, for each configuration of states of the dis-
crete variables A0 = i and P0 = j, the firm
must choose a threshold Ψi,j for order size us-
ing the procedure in Definition 4. As an exam-
ple, Ψ2,2 = 31.96 and is determined by finding
the point where the two functions in Figure 3
are approximately equal. For values of S below
this threshold, the firm will be better off in the
long run not investigating the order for poten-
tial fraud. For values of S above this threshold,
due to the potential loss of merchandise, the
firm should investigate potential fraud on an
order. Methods of investigating fraud include

Table 4: Decision Thresholds Ψi,j.
Ψ P0 = 0 P0 = 1 P0 = 2 P0 = 3

A0 = 0 95.56 89.86 76.96 61.96
A0 = 1 83.46 67.16 52.56 44.06
A0 = 2 47.16 38.96 31.96 26.86
A0 = 3 28.16 23.16 19.06 16.16

validating the billing address, shipping address,
e-mail address, and phone number, and contact-
ing the customer to confirm the order. This in-
vestigation is carried out at an average cost of
c = 10 per order.

The decision variable I is removed from the
model by constructing the following MTE po-
tential using the utility function u2 and the
threshold values Ψi,j:

u3(A0 = i, P0 = j, s) =⎧⎪⎪⎪⎨⎪⎪⎪⎩
u2(A0 = i, P0 = j, I = 0, s)

if smin ≤ s < Ψi,j

u2(A0 = i, P0 = j, I = 1, s)
if Ψi,j ≤ s ≤ smax .

for i = 0, 1, 2, 3 and j = 0, 1, 2, 3.

4.3 Results

The decision thresholds Ψi,j for the example
problem are shown in Table 4. At higher num-
bers of address inconsistencies and suspicious
product characteristics, the order size thresh-
olds are lower, since the firm has more reason
to believe that such orders are not legal.

The maximum expected utility from following
the decision thresholds is calculated as

u4 =
n∑

j=1

(
m∑

i=1

(∫
ΩS

u3(A0 = i, Po = j, s) ds

))
.

For the example problem, the maximum ex-
pected utility is u4 = −0.31173, which repre-
sents the fraud investigation and loss expense
stated on a per order basis.

Additional results and sensitivity analysis for
this example are provided in (Cobb, 2010).

5 Conclusions

An ID model that can be used to detect poten-
tially fraudulent online credit card transactions

96 Cobb

was introduced. A business can employ such a
model to establish decision policies that guide
employees to investigate orders that are most
likely to be suspect. By following such policies,
a business can minimize its total fraud-related
expenses, which include both the costs of lost
merchandise and the expense of following up on
suspicious orders.

In addition to considering order size as a cri-
teria for identifying potentially fraudulent or-
ders, the ID model allows a business to consider
other characteristics of the address and product
information on an order. When more of these
factors indicate that fraud may be present, the
order size threshold used to decide whether or
not to investigate an order is lowered, because
an illegal order becomes more likely. Using the
ID to establish such rules allows a business to
investigate the orders that are most likely to be
fraudulent and save the cost of such inquiries on
orders—even large ones—that are most likely
legitimate.

Future research can incorporate additional
complexities to make the model more realistic.
For instance, an implicit assumption is that the
investigation always concludes with certainty
that an order is fraudulent. A node represent-
ing the result of the investigation can be added
to the ID to relax this assumption. In cases
where a good order is mistakenly canceled, the
cost of the customer’s dissatisfaction should be
considered in the utility function. Also, the in-
vestigation cost, c, may not be a constant and
can be modeled as a random variable, perhaps
conditional on the number of suspicious address
and product characteristics observed.

Acknowledgments

The author is grateful for the insightful com-
ments of three anonymous reviewers. Support
from the Spanish Ministry of Science and Inno-
vation through project TIN2007-67418-C03-02
and by EFDR funds is gratefully acknowledged.

References

Cobb, B.R. 2010. Detecting Online Credit Card
Fraud with Hybrid Influence Diagrams,

Working Paper, Virginia Military Institute,
Lexington, VA. Available for download at:
www.vmi.edu/fswebs.aspx?tid=24697&id=24791

Cobb, B.R., P.P. Shenoy. 2006. Inference in hybrid
Bayesian networks using mixtures of truncated
exponentials. Internat. J. Approx. Reason. 41(3)
257–286.

Cobb, B.R., P.P. Shenoy. 2008. Decision making
with hybrid influence diagrams using mixtures of
truncated exponentials. European J. Oper. Res.
186(1) 261–275.

Cobb, B.R., P.P. Shenoy, R. Rumı́. 2006. Approx-
imating probability density functions in hybrid
Bayesian networks with mixtures of truncated ex-
ponentials. Stat. Comput. 16(3) 293–308.

Credit card fraud: A guide to help busi-
nesses recognize it, report it, stop it. 2008.
www.visa.ca/en/merchant/pdfs/
merchant fraud.pdf. Accessed on 26 November
2008.

Howard, R.A., J.E. Matheson. 1984/2005. Influ-
ence diagrams. R.A. Howard, J.E. Matheson, eds.
Readings on the Principles and Applications of
Decision Analysis II. Strategic Decisions Group,
Menlo Park, CA, 719–762.

Madsen, A.L., F. Jensen. 2005. Solving linear-
quadratic conditional Gaussian influence dia-
grams. Internat. J. Approx. Reason. 38(3) 263–
282.

Moral, S., R. Rumı́, A. Salmerón. 2001. Mixtures
of truncated exponentials in hybrid Bayesian net-
works. P. Besnard, S. Benferhart, eds. Symbolic
and Quantitative Approaches to Reasoning un-
der Uncertainty: Lecture Notes in Artificial In-
telligence, Vol. 2143, Springer-Verlag, Heidelberg,
156–167.

Pearl, J. 1988. Probabilistic Reasoning in Expert Sys-
tems: Networks of Plausible Inference. Morgan
Kaufmann, San Francisco, CA.

Poland, W.B., R.D. Shachter. 1993. Mixtures of
Gaussians and minimum relative entropy tech-
niques for modeling continuous uncertainties.
D. Heckerman, E.H. Mamdani, eds. Uncertainty
in Artificial Intelligence: Proc. Ninth Conf., Mor-
gan Kaufmann, San Francisco, CA, 183–190.

Shenoy, P.P. 1993. A new method for represent-
ing and solving Bayesian decision problems. D.J.
Hand, ed. Artificial Intelligence Frontiers in
Statistics: AI and Statistics III, Chapman and
Hall, London, 119–138.

Pp. 97–105 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Continuous Decision Variables with Multiple Continuous Parents

Barry R. Cobb
Virginia Military Institute

cobbbr@vmi.edu

Abstract

This paper introduces an influence diagram (ID) model that permits continuous decision
variables with multiple continuous parents. The marginalization operation for a continu-
ous decision variable first develops a piecewise linear decision rule as a continuous function
of the next continuous parent in the deletion sequence. Least squares regression is used
to convert this rule to a piecewise linear function of all the decision variable’s continuous
parents. This procedure is incorporated into an iterative solution algorithm that allows
more refined decision rules to be constructed once the non-optimal regions of the state
spaces of decision variables are identified. Additional examples serve to compare relative
advantages of this technique to other ID models proposed in the literature.

1 Introduction

The influence diagram (ID) is a graphical and
numerical representation for a decision prob-
lem under uncertainty (Howard and Matheson,
1984). The ID model is composed of a di-
rected acyclic graph that shows the relation-
ships among chance and decision variables in
the problem, as well as a set of conditional prob-
ability distributions for chance variables and a
joint utility function. An example of a decision
problem under uncertainty is given in the fol-
lowing section.

1.1 Example

A firm facing uncertain demand must choose
production capacity and set product prices
(Göx, 2002). Product demand is determined
as Q(p, z) = 12 − p + z, where P is the prod-
uct price and Z is a random demand “shock.”
Assume Z ∼ N (0, 1) and that the firm’s utility
(profit) function is

u0(k, p, z)

=

{
(p− 1) · (12− p+ z)− k if Q(p, z) ≤ k
(p− 1) · k − k if Q(p, z) > k .

(1)
Notice that the firm’s sales are limited to the
minimum of product demand and production

Shock (Z)

u0

Capacity (K)

Price (P)

Figure 1: Influence Diagram Model.

capacity (K). Figure 1 shows an ID model for
the example. The chance and decision variables
in the ID are depicted as ovals and rectangles,
respecitively. The joint utility function appears
as a diamond. Since there is an arrow pointing
from Z to K and P , Z is a parent of K and P .
The set of all parents of P is Pa(P) = {K,Z}.
An arrow pointing to a chance node indicates
the distribution for this node is conditioned on
the variable at the head of the arrow. An arrow
pointing to a decision node means that the value
of the variable will be known when the decision
is made.

1.2 Background

Although most ID models proposed in the
literature assume that all decision variables
take values in discrete (countable) state spaces,
there are some exceptions. Shachter and Ken-
ley (1989) introduce Gaussian IDs, where all
continuous chance variables are normally dis-

98 Cobb

tributed, all decision variables are continuous,
and utility functions are quadratic.

The mixture-of-Gaussians ID (Poland and
Shachter, 1993) requires continuous chance vari-
ables to be modeled as mixtures of normal
distributions and allows continuous decision
variables. Madsen and Jensen (2005) outline
an improved solution procedure for IDs con-
strained under the same conditions as mixture-
of-Gaussians IDs that is able to take advantage
of an additive factorization of the joint utility
function.

Cobb (2007) introduces an ID model which
allows continuous decision variables with one
continuous parent and continuous chance vari-
ables having any probability density function
(pdf). Using this approach, pdfs and utility
functions are approximated by mixtures of trun-
cated exponentials (MTE) potentials (Moral et
al., 2001), which allows the marginalization
operation for continuous chance variables to
be performed in closed form. This technique
develops a piecewise linear decision rule for
continuous decision variables and subsequently
marginalizes them from the model as determin-
istic chance variables.

This paper builds upon the model in (Cobb,
2007) by allowing continuous decision variables
to have multiple continuous parents. The
marginalization operation for continuous deci-
sion variables and the iterative solution algo-
rithm are introduced using examples. A longer
working paper (Cobb, 2010) contains more for-
mal definitions.

The remainder of this paper is organized as
follows. In §2, notation and definitions are in-
troduced. In §3, a procedure for marginalizing a
continuous decision variable is presented using
the example in §1.1. In §4, the results from the
example problem are compared to an analytical
solution. §5 describes solutions to additional
examples before §6 concludes the paper.

2 Notation and Definitions

2.1 Notation

In this paper, we assume all decision and chance
variables take values in finite-bounded, continu-

ous (non-countable) state spaces. All variables
are denoted by capital letters in plain text, e.g.,
A, B, C. Sets of variables are denoted by capital
letters in boldface, with Z representing chance
variables, D representing decision variables, and
X indicating a set of variables whose compo-
nents are a combination of chance and deci-
sion variables. If A and X are one- and multi-
dimensional variables, respectively, then a and
x represent specific values of those variables.
The finite-bounded, continuous state space of
X is denoted by ΩX.
Example 1. In the ID shown in Figure 1, the
state spaces of the variables are ΩK = {k : 0 ≤
k ≤ 14}, ΩP = {p : 1 ≤ p ≤ 9}, and ΩZ = {z :
−3 ≤ z ≤ 3}. This assumes the distribution for
Z is normalized over the interval [−3, 3] to solve
the ID.

MTE probability potentials are denoted by
lower-case Greek letters, e.g., φ, ψ, ϕ, whereas
MTE utility potentials are denoted by ui, where
the subscript i is normally zero for the joint
utility function in the problem, and one for the
initial MTE approximation to the joint utility
function. The subscript can be increased to in-
dex additional MTE utility potentials in the ini-
tial representation or solution.

2.2 Mixtures of Truncated
Exponentials (MTE) Potentials
(Moral et al., 2001)

Let X be a mixed variable and let Z =
(Z1, . . . , Zc) and D = (D1, . . . , Df) be the
chance and decision variable parts of X, respec-
tively. Given a partition Ω1, . . . ,Ωn that divides
ΩX into hypercubes, an n-piece MTE potential
φ : ΩX �→ R+ has components

φh(z,d) =

a0 +
m∑

i=1

ai exp

⎧⎨⎩
c∑

j=1

b
(j)
i zj +

f∑
�=1

b
(c+�)
i d�

⎫⎬⎭
for h = 1, . . . , n, where ai, i = 0, . . . , m and b(j)i ,
i = 1, . . . , m, j = 1, . . . , (c+f) are real numbers.

We assume all MTE potentials are equal to
zero in unspecified regions. In this paper, all
probability distributions and utility functions
are approximated by MTE potentials.

Cobb 99

-3 -2 -1 0 1 2 3
0

0.1

0.2

0.3

0.4

Figure 2: N (0, 1) pdf and MTE Potential φ1.

Example 2. The function f1(p) = p over the
interval [1, 9] can be approximated by the MTE
potential

uP (p) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
−53.028072 + 54.05148 exp{0.017847(p− 1)}

if 1 ≤ p < 5

−49.028072 + 54.05148 exp{0.017847(p− 5)}
if 5 ≤ p ≤ 9 ,

using the method described in (Cobb and
Shenoy, 2008). Similar MTE potentials, uK(k)
and uZ(z), are used to approximate the func-
tions f2(k) = k on [0, 14] and f3(z) = z on
[−3, 3]. These approximations are are substi-
tuted into (1) to form the MTE utility function
u1 for the example problem.

The resulting function will contain values of
variables in the limits of the domain. In other
words, to create a true MTE potential where
the limits are hypercubes, values for two of the
variables must be substituted. MTE potentials
defined in this way require replacement of linear
terms when integration is used to marginalize
variables in the ID solution. This is discussed
in (Cobb and Shenoy, 2006).

Example 3. The MTE approximation φ1 to
the N (0, 1) pdf (see Cobb et al., (2006) for nu-
merical details) that approximates the distribu-
tion for the variable Z in the example from §1.1
is shown in Figure 2, overlaid on the actual
N (0, 1) distribution. The MTE function is nor-
malized on the interval [−3, 3].

2.3 Fusion Algorithm

IDs are solved in this paper by applying the fu-
sion algorithm of Shenoy (1993), which is rele-

vant for the case where the joint utility function
factors multiplicatively. This algorithm involves
deleting the variables in an elimination sequence
that respects the information constraints in the
problem. The sequence is chosen so that deci-
sion variables are eliminated before chance or
decision variables that are immediate predeces-
sors.

When a variable is to be deleted from the
model, all probability and/or utility potentials
containing this variable in their domains are
combined via pointwise multiplication, then the
variable is marginalized from the result. The
appropriate marginalization operation depends
on whether the variable being marginalized is a
chance variable (in which case marginalization
is accomplished by integrating over the domain
of the chance variable being removed) or a deci-
sion variable. Formal definitions of combination
and marginalization of chance variables can be
found in (Cobb, 2010).

3 Marginalizing Decision Variables

Assume we want to eliminate a decision variable
D with parents X = {X1, X2 . . . , Xn} from the
ID. The variables in X may be either chance or
decision variables, and the subscripts on vari-
ables in X serve to number the variables as they
appear in the deletion sequence for the problem.
The set of parents excluding X1 is denoted by
X′ = X \X1. Eliminating the decision variable
is a four-step process:

(1) Combine all potentials containing D in
their domain, create discrete approxima-
tions to ΩD and ΩX′ , and find the discrete
value of D that maximizes utility for each
region of a hypercube of ΩX1 for each (dis-
crete) x′ ∈ ΩX′ .

(2) For each (discrete) x′ ∈ ΩX′ , create a de-
cision rule for D as a piecewise linear func-
tion of X1.

(3) Use least squares regression to create a
piecewise linear decision rule for D as a
function of X.

100 Cobb

(4) Convert D to a deterministic chance vari-
able, and marginalize D using the proce-
dure in §3.4.

This process has similarities to the procedure
for marginalizing a continuous decision variable
proposed by Cobb (2007); however, employ-
ing regression in Step 3 enables this new op-
eration to permit continuous decision variables
with multiple continuous parents. The steps are
introduced by illustrating the removal of P from
the ID of §1.1 using the deletion sequence P , K,
Z.

In this solution, we utilize v = 8 discrete val-
ues and regions at each step in the process when
we are required to discretize or sub-divide the
state space of a continuous variable.

3.1 Step 1–Discrete Approximation

The purpose of this step in the marginalization
process is to find a relationship—given a value
of Z—between the optimal price (P) and pro-
duction capacity (K) by examining the utility
function for various values of P .

In this step, discrete values pu, u = 1, . . . , 8,
for P are assigned as {1.5, 2.5, . . . , 8.5}. As-
sign discrete values zt, t = 1, . . . , 8, to the
chance variable Z, the most distant parent
of P in the deletion sequence. Based on
the state space ΩZ , these discrete values are
{−2.625,−1.875,−1.125, . . . , 2.625}. For each
discrete value zt, create an MTE utility func-
tion u1(k, p, zt) by substituting Z = zt in u1.

For each value zt, determine the (discrete)
value in ΩP that maximizes the utility function
u1(k, p, zt) for each region of a hypercube of ΩK .
For example, when Z = z3 = −1.125, the utility
functions u1(k, pu, z3) appear as shown in Fig-
ure 3. From the diagram, it is apparent that
u1(k, 8.5, z3) ≈ u1(k, 7.5, z3) when K = 2.75,
u1(k, 7.5, z3) ≈ u1(k, 6.5, z3) when K = 4.05,
and u1(k, 6.5, z3) ≈ u1(k, 5.5, z3) when K =
5.35.

The results of this step of the operation are
the sets of points, Φ1,t, and decision variable
values, Ψ1,t, for t = 1, . . . , 8. For instance,
Φ1,3 = {0, 2.75, 4.05, 5.35, 14} and Ψ1,3 =
{8.5, 7.5, 6.5, 5.5}, where the three in the sub-

2 4 6 8 10 12 14

-10

-5

5

10

15

20

P=8.5

P=7.5

P=6.5

P=5.5

K

)
12

5
.1

,
,

(
1

−
up

k
u

Figure 3: The Utility Functions u1(k, pu, z3).

scripts is an index on the related value z3 =
−1.125. The set Φ1,3 can be used to deter-
mine intervals where the optimal discrete value
of price is invariant, and the set Ψ1,3 contains
the optimal values for P corresponding to these
intervals.

This procedure is derived from the operation
for marginalizing a discrete decision variable in
a hybrid ID (Cobb and Shenoy, 2008).

3.2 Step 2–Piecewise Linear Decision
Rule

The purpose of this step is to express the rela-
tionship between optimal price (P) and produc-
tion capacity (K) by estimating a continuous
function P = f(K), given a value for Z.

Continuing from §3.1, when −1.5 ≤ z ≤
−0.75, Φ1,3 is used to determine k =

(
0+2.75

2 ,
2.75+4.05

2 , 4.05+5.35
2 , 5.35+14

2

)
= (1.375, 3.4, 4.7,

9.675), with a corresponding set of points, p
= (8.5, 7.5, 6.5, 5.5) defined as in Ψ1,3. The
equation for the line connecting the coordinates
{(k = 1.375, p= 8.5), (k = 3.4, p = 7.5)} is p(k)
= 9.17901 − 0.49383k. Similar equations are
determined using other sets of adjacent coordi-
nates and these form a piecewise linear decision
rule for P as

Ψ̂1,3(k)

=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
9 0 ≤ k < 0.3625
9.17901− 0.49383k 0.3625 ≤ k < 3.4
10.11540− 0.76923k 3.4 ≤ k < 4.7
7.44472− 0.20101k 4.7 ≤ k ≤ 14 .

The equation for the first (last) line segment is
extrapolated until the result of the function is
greater (less) than the endpoint of ΩP , in which

Cobb 101

case the function is defined as the maximum
(minimum) value in ΩP . A similar decision rule
is developed for the regions with midpoints zt,
t = 1, . . . , 8. A function Ψ̂1 is comprised of the
resulting piecewise functions as

Ψ̂1(k, z) =

⎧⎪⎪⎨⎪⎪⎩
Ψ̂1,1(k) −3 ≤ z < −2.25
...

...
Ψ̂1,8(k) 2.25 ≤ z ≤ 3 .

3.3 Step 3–Least Squares Regression

This step further refines the decision rule to be
a compact piecewise linear function for optimal
price given values of K and Z.

Continuing from §3.2, the state space of K—
the next parent of P in the deletion sequence—
is divided into 8 regions, [0, 1.75], . . ., [12.25, 14],
with the m-th region denoted by [kd

m−1, k
d
m]

where kd
m = kmin + m · (kmax − kmin)/v for

m = 0, . . . , v. Define ε = 0.1, nK = �(kmax −
kmin)/ε	 + 1, and nZ = �(zmax − zmin)/ε	+ 1.
The function Ψ̂1 is used to output a series of
ordered data points {Ψ̂1(ki, zj), ki, zj} for each
ki = kmin + (i − 1) · ε, i = 1, . . . , nK and
zj = zmin + (j − 1) · ε, j = 1, . . . , nZ . These
ordered data points are sorted into ascending
order according to the values ki and grouped
into v = 8 tables, where the m-th table contains
points such that all ki ∈ [kd

m−1, k
d
m] for each

m = 1, . . . , v. In other words, for each value ki

that appears in the m-th table, each pair (ki,
zj) appears exactly once, along with the corre-
sponding values Ψ̂1(ki, zj). Each table is used
to create the matrices required to estimate a lin-
ear equation p̂(k, z) = b2m + b3m · k+ b4m · z via
least squares regression.

For example, with ε = 0.1, nK = 141, and
nZ = 61, so 61 values for Z are matched with
each of the 18 values ofK in the second interval,
[1.75, 3.5], defined using ΩK . Thus, 18 × 61 =
1098 data points are used to define the (1098×
1) matrix Υ2 and the (1098 × 3) matrix Λ2 as
follows:

-3 -2 -1 1 2 3

6.5

7.5

8

8.5

P=f(Z)

Z

1Θ

1Ψ̂

Figure 4: The Decision Rule Θ1(4.375, z) for P .

Υ2 = Λ2 =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Ψ̂1 (k19, z1)
...

Ψ̂1 (k19, z61)
...

Ψ̂1 (k36, z1)
...

Ψ̂1 (k36, z61)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 k19 z1
...

...
...

1 k19 z61
...

...
...

1 k36 z1
...

...
...

1 k36 z61

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The least squares regression estimators are

determined as b2 = [b22 b32 b42]� =(
Λ�

2 Λ2

)−1
Λ�

2 Υ2. Following this process in each
region of the state space ofK creates the follow-
ing piecewise linear decision rule:

Θ
′
1(k, z) =⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
9.0194− 0.3631k+ 0.0986z 0 ≤ k < 1.75
9.0265− 0.3808k+ 0.3246z 1.75 ≤ k < 3.5
...

...
8.1670− 0.1731k+ 0.5340z 12.25 ≤ k ≤ 14 .

A revised piecewise linear decision rule is then
determined as

Θ1(k, z) =

⎧⎪⎨⎪⎩
pmin Θ

′
1(k, z) < pmin

Θ
′
1(k, z) pmin ≤ Θ

′
1(k, z) ≤ pmax

pmax Θ
′
1(k, z) > pmax .

Using this revised formulation of the decision
rule ensures that the assigned values are con-
tained in ΩP . A graphical view of the deci-
sion rule for P as a function of Z given that
K = 4.375 is shown in Figure 4. The decision
rule Θ1 is a refinement of the decision rule Ψ̂1.

102 Cobb

3.4 Step 4–Removing the Decision
Variable

Continuing from §3.3, since a value for P will
be completely determined by observed values of
K and Z, P can be replaced in the joint utility
function as u2(k, z) = u1 (Θ1(k, z), k, z). The
substitution of Θ1 for P in u1 is accomplished
on a piecewise basis. For instance, when 5.25 ≤
k ≤ 7, Θ1 is defined as f1(k, z) = 8.16701 −
0.17307k+ 0.47450z for all z ∈ ΩZ . When k ≥
12 − p + z, 0 ≤ z ≤ 3, and 1 ≤ p ≤ 5, u1 is
defined as

f2(p, k, z) = −1067.4336− 94.5901 exp{0.0102k}
+ · · ·+ 2311.6851 exp{0.0179p+ 0.02380z}+ · · ·
The calculation of u2(k, z) =

u1 (Θ1(k, z), k, z) includes the result of the
substitution f2(f1(k, z), k, z), with the ensuant
expression included in u2 where the domains of
the two functions overlap, or

f2(f1(k, z), k, z) =
−1067.4336− 94.5901 exp{0.0102k}+ · · ·
+2311.6851 exp{0.0179 · f1(k, z) + 0.02380z}+ · · ·

for 5.25 ≤ k ≤ 7 and 0.8269k − 0.5255z ≥
3.8330. A similar substitution of each piece of
Θ1 is made into each piece of u1 to create the
MTE utility function u2.

3.5 Results

To complete the example problem, the decision
variable K is marginalized using the process in
§3.1 through 3.4, except that since K has only
one parent (Z), Step 3 (least squares regression)
is not performed. The decision rule for K as a
function of Z is determined as Θ2(z) = 5.2646+
0.5833z for all z ∈ ΩZ . To marginalize K, a
new utility function u3 is determined as u3(z) =
u2 (Θ2(z), z). The firm’s expected utility is then
calculated as

∫
ΩZ

φ1(z) · u3(z) dz = 24.6394.
The ID method presented in this paper is sen-

sitive to the state spaces assigned to the decision
variables. In other words, if the continuous in-
terval of possible optimal values for the decision
variables can be narrowed, the accuracy of the
decision rules can be improved.

In this example, the ID decision rule Θ2(z)
only selects values for K in the interval

[3.5146, 7.0146]. Similarly, the decision rule
Θ1(k, z) only allows for values of P in the in-
terval [4.142, 9]. In a second iteration of the ID
solution procedure, we can replace the original
state spaces of the decision variables P and K

with these intervals and obtain a better approx-
imation to the true optimal decision rules and
profit function.

To complete the second iteration for the ex-
ample, the same marginalization procedure is
used to develop decision rules for P as a func-
tion of {K,Z} and K as a function of Z.

Cobb (2009) explains additional details of the
iterative algorithm.

4 Comparison

In the example problem, the firm knows the
true value, Z = z, at the time it chooses ca-
pacity. Göx (2002) uses this fact to find an
analytical solution for the optimal capacity of
k∗(z) = 10+z

2 . This result hinges on several re-
strictive assumptions, including the linearity of
the demand function and the symmetric form
of the distribution for Z. By choosing an exam-
ple with an analytical solution, we can compare
the results from the ID solution as a means of
determining its accuracy. The ID method can
then be extended to cases where an analytical
solution is not available (see §5).

The decision rule Θ2 for K determined using
two iterations of the ID solution procedure is
shown in Figure 5 with the analytical capacity
decision rule. This decision rule has seven linear
pieces. The mean squared error (MSE) (Win-
kler and Hays, 1970) can be used as a measure
of the difference between the analytical and es-
timated decision rules. The MSE is calculated
as∫

ΩZ

φ1(z) · (Θ2(z)− k∗(z))2 dz = 0.01469 .

The MSE after the first iteration is 0.07682, so
revising the state space and performing the sec-
ond iteration improves the accuracy of the de-
cision rule. The decision rule Θ1 for P is used
in the determination of Θ2, so this MSE mea-
surement is a measure of the accuracy of the
decision rules developed the ID solution. The

Cobb 103

-3 -2 -1 1 2 3

3.5

4.5

5

5.5

6

6.5

7

Z

K=f(Z)

ID

Analytical

Figure 5: Decision Rules for K = f(Z).

expected profit is 25.0792, as compared to the
first iteration and analytical values of 24.6394
and 25.25, respectively.

5 Additional Examples

This section briefly describes two additional ex-
amples derived from the problem in §1.1 (for
additional details, see (Cobb, 2010)).

5.1 Non-Gaussian Chance Variable

One advantage of using the ID model described
in this paper is that it can accommodate non-
Gaussian chance variables directly without us-
ing a mixture-of-Gaussians representation.

Suppose that the firm has established produc-
tion capacity at a minimum of 3.5 units and a
maximum of 6.5 units. The random variable K
represents the percentage of additional capac-
ity (above minimum) available (which fluctuates
with changes in labor and machine utilization)
and is modeled with a Beta(3, 3) distribution.
The distribution for K is approximated by the
MTE potential φ2 determined using the method
discussed by Cobb et al. (2006). The MTE ap-
proximationφ1 to the distribution for Z remains
the same.

Although P now has two parents (K and Z)
that are chance variables (one of which is non-
Gaussian), the procedure for marginalizing P

from the ID proceeds in exactly the same way
as in the previous example.

5.2 Nonmonotonic Decision Rule

Suppose P and K are decision variables as in
§1.1, but that the unit variable cost of $1 is
replaced in the joint utility function by z2, i.e.
unit variable costs are now higher for values of

-3 -2 -1 1 2 3

-20

-10

10

20

30

K=0.875

K=0.875

K=2.625

K=2.625

K=4.375

K=4.375

K=6.125

),(2 zku t

Z

Figure 6: The Utility Functions u2(kt, z) in the
Example with Revised Unit Variable Cost.

-3 -2 -1 1 2 3

1

2

3

4

5

6

Z

K=f(Z)

)(2 zΘ

Figure 7: The Decision Rule Θ2 for K.

the demand shock Z farther from zero. This
utility function is approximated with an MTE
utility function as in Example 2.

Figure 6 shows the utility function (for eight
discrete values of K) after marginalizaton of
P and illustrates that the optimal value for K
must be determined as a nonmonotonic function
of Z. For instance, when −2.25 ≤ z ≤ −1.15
or 2.65 ≤ z ≤ 2.75, a capacity of K = 2.625
is optimal, whereas if −1.15 ≤ z ≤ 0.45 or
2.55 ≤ z ≤ 2.65, the best value of K is 4.375.
Ultimately, these points are used to create the
decision rule Θ2 for K as a function of Z (see
Figure 7).

6 Conclusions

This paper has introduced improvements to the
model of Cobb (2007) that allow continuous de-
cision variables in IDs to have multiple contin-
uous parents. The framework proposed in this
paper has some potential advantages over other
ID models. To use the model in (Cobb, 2007) to
solve the example in §1.1, we would have to im-
pose one of the following restrictions: (1) model

104 Cobb

K as a discrete decision variable or Z as a dis-
crete chance variable, as the continuous decision
variable P would be allowed to have only one
continuous parent; or (2) discretize any pair of
chance and/or decision variables. A comparison
of the model in this paper to related models is
provided in (Cobb, 2010).

The method in this paper permits non-
Gaussian pdfs to be modeled without using
mixtures of Gaussian distributions. This is
in constrast to Gaussian IDs (Shachter and
Kenley 1989) and mixtures-of-Gaussians IDs
(Poland and Shachter, 1993; Madsen and
Jensen, 2005). Additionally, those models de-
termine only linear—as opposed to piecewise
linear—decision rules, and thus cannot accomo-
date a case where the optimal decision rule is a
nonmonotonic function of a decision rule’s con-
tinuous parent(s), as in the example of §5.2.

Additional research is needed to demonstrate
potential applications of the ID model and ex-
plain the compromise between computational
cost and decision rule accuracy when parame-
ters in the solution technique are altered. The
model presented here is that the methodology
has been designed to extend the ID model from
(Cobb, 2007). There are other methods that
could be employed to determine decision rules
for continuous variables with multiple contin-
uous parents, such as a straightforward grid
search or a sampling technique. Future research
will be aimed at exploring these methods and
comparing them with those in this paper.

Acknowledgments

The author is grateful for the insightful com-
ments of three anonymous reviewers. Support
from the Spanish Ministry of Science and Inno-
vation through project TIN2007-67418-C03-02
and by EFDR funds is gratefully acknowledged.

References

Cobb, B.R., 2007. Influence diagrams with contin-
uous decision variables and non-Gaussian uncer-
tainties. Decision Anal. 4(3) 136–155.

Cobb, B.R., 2009. Efficiency of influence diagram

models with continuous decision variables. Decis.
Support Syst. 48 257–266.

Cobb, B.R. 2010. Observing Multiple Continu-
ous Sources of Information in Decision Prob-
lems. Working Paper, Virginia Military Insti-
tute, Lexington, VA. Available for download at:
www.vmi.edu/fswebs.aspx?tid=24697&id=24791

Cobb, B.R., P.P. Shenoy. 2008. Decision making
with hybrid influence diagrams using mixtures of
truncated exponentials. Eur. J. Oper. Res. 186(1)
261–275.

Cobb, B.R., P.P. Shenoy, R. Rumı́. 2006. Approx-
imating probability density functions in hybrid
Bayesian networks with mixtures of truncated ex-
ponentials. Statist. Comput. 16(3) 293–308.

Göx, R.F. 2002. Capacity planning and pricing un-
der uncertainty. J. Management Accounting Res.
14(1) 59–78.

Howard, R.A., J.E. Matheson. 1984. Influence dia-
grams. R.A. Howard, J.E. Matheson, eds. Read-
ings on the Principles and Applications of De-
cision Analysis II. Strategic Decisions Group,
Menlo Park, CA, 719–762.

Madsen, A.L., F. Jensen. 2005. Solving linear-
quadratic conditional Gaussian influence dia-
grams. Internat. J. Approx. Reason. 38(3) 263–
282.

Moral, S., R. Rumı́, A. Salmerón. 2001. Mixtures
of truncated exponentials in hybrid Bayesian net-
works. P. Besnard, S. Benferhart, eds. Symbolic
and Quantitative Approaches to Reasoning un-
der Uncertainty: Lecture Notes in Artificial In-
telligence, Vol. 2143. Springer-Verlag, Heidelberg,
156–167.

Poland, W.B., R.D. Shachter. 1993. Mixtures of
Gaussians and minimum relative entropy tech-
niques for modeling continuous uncertainties.
D. Heckerman, E.H. Mamdani, eds. Uncertainty
in Artificial Intelligence: Proc. Ninth Conf., Mor-
gan Kaufmann, San Francisco, CA, 183–190.

Shachter, R.D., C.R Kenley. 1989. Gaussian influ-
ence diagrams. Management Sci. 35(5) 527–550.

Shenoy, P.P. 1993. A new method for represent-
ing and solving Bayesian decision problems.
D.J. Hand, ed. Artificial Intelligence Frontiers in
Statistics: AI and Statistics III. Chapman and
Hall, London, 119–138.

Winkler, R.L., W.L. Hays. 1970. Statistics: Proba-
bility, Inference, and Decisions. Holt, Rinehart,
and Winston, New York.

Pp. 105–113 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Generalized Continuous Time Bayesian Networks
and their GSPN Semantics

Daniele Codetta-Raiteri, Luigi Portinale
Dipartimento di Informatica, Università del Piemonte Orientale “A. Avogadro”

{dcr, portinal}@di.unipmn.it

Abstract
We present an extension to Continuous Time Bayesian Networks (CTBN) called Generalized CTBN

(GCTBN). The formalism allows one to model continuous time delayed variables (with exponentially
distributed transition rates), as well as non delayed or “immediate” variables, which act as standard
chance nodes in a Bayesian Network. The usefulness of this kind of model is discussed through an example
concerning the reliability of a simple component-based system. The interpretation of GCTBN is proposed
in terms of Generalized Stochastic Petri Nets (GSPN); the purpose is twofold: to provide a well-defined
semantics for GCTBNin terms of the underlying stochastic process, and to provide an actual mean to
perform inference (both prediction and smoothing) on GCTBN.

1 Introduction

The goal of this paper is to propose a general-
ization of Continuous Time Bayesian Networks
(CTBN) (Nodelman et al., 2005) by allowing
the presence of nodes with no explicit temporal
evolution, called “immediate nodes”. The re-
sulting framework is called Generalized CTBN
(GCTBN) and allows the modeling of processes
having both a continuous-time temporal com-
ponent and an immediate component captur-
ing the logical/probabilistic interactions among
modeled variables.

The possibilities offered by this generaliza-
tion, can be exploited in several applications.
For example, in system reliability analysis, it
is very practical to distinguish between system
components (having a temporal evolution) and
specific modules or subsystems, whose behavior
has to be modeled for the analysis. For instance,
in Fault Tree Analysis (Dugan et al., 1992), ba-
sic events represent the system components with
their failure rates, while non-basic events are
logical gates identifying modules of the system
under examination. In Dynamic Fault Trees
(Dugan et al., 1992), logical gates identifying
sub-modules, can be combined with dynamic
gates, modeling time-dependent dependencies
(usually assuming continuous time) among com-
ponents or sub-modules. Also in this case, it is
very important to distinguish, at the modeling

level, between delayed and immediate entities.
Of course, similar considerations apply in other
tasks as well, as in medical diagnosis, financial
forecasting, biological process modeling, etc.

The paper is organized as follows: Sec. 2 pro-
vides basic notions about the formalisms in-
volved in the GCTBN definition and analysis;
in Sec. 3, the GCTBN formalism is defined; in
Sec. 4, a reliability case study is introduced, to-
gether with the corresponding GCTBN model-
ing; in Sec. 5, a semantic model, based on the
formalism of Generalized Stochastic Petri Nets
(GSPN) (Ajmone et al., 1995) is defined, and
the corresponding model for the case study is
discussed; in Sec. 6, we provide the algorithms
to perform inference on a GCTBN, by means of
analysis on the corresponding GSPN.

2 Preliminary notions

CTBN. Probabilistic graphical models for
reasoning about processes that evolve over
time, allow for a factorization (Lauritzen and
Richardson, 2002) of the state space of the pro-
cess, resulting in better modeling and inference
features. Such models are usually based on
graph structures, grounded on the theory of
Bayesian Networks (BN). When time is taken
into account, the main choice concerns whether
to consider it as a discrete or a continuous di-
mension. In the second case, Continuous Time

106 Codetta-Raiteri & Portinale

Bayesian Networks (CTBN) have been firstly
proposed in (Nodelman et al., 2002; Nodelman
et al., 2005) and then refined in (Saria et al.,
2007).

Standard inference tasks in temporal prob-
abilistic models are prediction and smoothing.
Prediction consists in computing the probability
of a future state, given past evidence (a special
case occurs when the last evidence time point
and the query time are the same and is called
Filtering or Monitoring). Smoothing is the task
of estimating a past state, given all the evi-
dence (observations) up to now. Such tasks can
be accomplished by inference procedures usu-
ally based on specific adaptation of standard
BN algorithms. In case of a CTBN, exact in-
ference may often be impractical, so approxi-
mations through message-passing algorithms on
cluster graphs (Nodelman et al., 2005; Saria et
al., 2007), or through sampling (El-Hay et al.,
2008; Fan and Shelton, 2008), have been pro-
posed.

CTMC. A Continuous Time Markov Chain
(Ajmone et al., 1995) enumerates the possi-
ble system states (nodes) and state transitions
(arcs). A transition is not immediate, but may
occur after a random period of time ruled by
the negative exponential distribution according
to the transition rate. Besides transition rates,
a CTMC is characterized by the initial proba-
bility distribution of its states. There are two
main analyses that can be performed with a
CTMC: steady state and transient analysis. In
the first case, the equilibrium distribution (at
infinite time) of the states is computed, while
in the second case, such a distribution is com-
puted at a given time point.

GSPN are a particular form of Petri Nets, so
they are composed by places, transitions and
arcs (Fig. 2). A place can contain a discrete
number of tokens (place marking), and the cur-
rent state of the system is represented by the
net marking given by the number of tokens in
each place of the net. Transitions are used to
model the system state transitions; a transition
is enabled to fire when a certain net marking
holds, and when the transition fires, a certain

amount of tokens is moved from a set of places
to another one, changing the net marking, so
the system state.

Directed arcs are used to connect places to
transitions and vice-versa, with the aim of mov-
ing tokens when transitions fire. In GSPN, in-
hibitor arcs are also present and connect a place
to a transition with the aim of disabling the
transition if the place is not empty. A cardi-
nality can be associated with an arc in order to
specify the number of tokens to be moved, in
case of directed arcs, or the number of tokens
necessary to disable the transition, in case of
inhibitor arcs.

In GSPN, transitions can be immediate or
timed. Immediate transitions fire as soon as
they are enabled. In case of concurrent imme-
diate transitions, their firing can be ruled by
means of weights or priorities (π). Timed tran-
sitions fire if enabled, after a random period of
time ruled by the negative exponential distri-
bution according to the firing rate. Vanishing
markings are those enabling immediate tran-
sitions; tangible markings are those enabling
timed transitions.

The stochastic process associated with a
GSPN is a homogeneous continuous time semi-
Markov process (Ajmone et al., 1995) that can
be analyzed by removing from the set of pos-
sible markings (states), the vanishing markings
(since the system does not spend time in such
states), and by analyzing the resulting CTMC.
In this way, the analysis of a GSPN can provide
several measures, and in particular the transient
or steady state probability distribution of the
number of tokens in each place.

A GSPN model can be edited and analyzed
(or simulated) by means of GreatSPN (Chiola
et al., 1995); in particular, this tool allows to
set marking dependent firing rates. This means
that the value of the firing rate of a timed tran-
sition, can change according to a set of con-
ditions concerning the current marking of spe-
cific places. This possibility is exploited to sim-
plify the generation of the GSPN model from
the GCTBN (Portinale and Codetta, 2009).
However, a timed transition characterized by a
marking dependent firing rate, is equivalent to a

Codetta-Raiteri & Portinale 107

set of timed transitions, each characterized by a
certain constant firing rate and enabled by the
corresponding condition about the marking of
places. The two solutions determine the same
underlying CTMC.

3 Generalized CTBN

Following (Nodelman et al., 2002), a CTBN is
defined as follows:
Let X = X1, . . . Xn be a set of discrete vari-

ables, a CTBN over X consists of two compo-
nents. The first one is an initial distribution P 0

X

overX (possibly specified as a standard BN over
X). The second component is a continuous-
time transition model specified as (1) a directed
graph G whose nodes are X1, . . . Xn (and with
Pa(Xi) denoting the parents of Xi in G); (2) a
conditional intensity matrix (CIM) QXi|Pa(Xi)

for every Xi ∈ X.
A GCTBN is defined as follows:

Given a set of discrete variables X =
{X1, . . . Xn} partitioned into the sets D (de-
layed variables) and I (immediate variables)
(i.e. X = D ∪ I and D ∩ I = ∅), a GCTBN
is a pair N = 〈P 0

D, G〉 where
-P 0
D is an initial probability distribution over D;

-G is a directed graph whose nodes are
X1, . . . Xn (and with Pa(Xi) denoting the par-
ents of Xi in G) such that
1. there is no directed cycle in G composed only
by nodes in the set I;
2. for each node Ij ∈ I a conditional probabil-
ity table (CPT) P [Ij |Pa(Ij)] is defined (as in
standard BN);
3. for each node Dk ∈ D a CIM QDk|Pa(Dk) is
defined (as in standard CTBN).

Delayed nodes are, as in case of a CTBN,
nodes representing discrete variables with a con-
tinuous time evolution: the transition from a
value to another one, is ruled by exponential
transition rates defined in the CIM associated
with the node. A delayed node is characterized
also by the initial probability distribution of its
possible values. So, a delayed node implicitly in-
corporates a CTMC (Sec. 2). If a delayed node
is a root node (has no parent nodes) the transi-
tion rates are constant, otherwise the rates are

conditioned by the values of the parent nodes.
Such nodes, in the case of GCTBN, may be ei-
ther delayed or immediate.

Immediate nodes are introduced in order to
capture variables whose evolution is not ruled
by transition rates associated with their val-
ues, but is conditionally and immediately deter-
mined, at a given time point, by the values of
other variables in the model. Immediate nodes
are then treated as usual chance nodes in a BN
and have a standard CPT associated with them.
In case of an immediate root node, its CPT ac-
tually specifies a prior probability distribution.

In a GCTBN, an immediate node Ij directly
depends on its parent nodes (Pa(Ij)). However,
if the set Pa(Ij) contains immediate nodes, then
the change of such nodes is ruled in turns by
the change of their parents, eventually being
delayed variables. So, what really determines
a change in Ij is not Pa(Ij), but instead the
set of the “Closest” Delayed Ancestors of Ij
(CDA(Ij)). Such set contains any delayed vari-
able Dk such that a path from Dk to Ij exists
and contains no intermediate delayed nodes.

The initial distribution P 0
D is specified only

on delayed variables, since this is sufficient to
obtain the joint initial distribution over the set
X of all the variables of the GCTBN as follows:
P 0
X = P 0

D

∏
Ij∈I P [Ij |Pa(Ij)].

A few words are worth to be spent for the
structure of the graph modeling the GCTBN.
While it is in general possible to have cycles in
the graph (as in CTBN) due to the temporal na-
ture of some nodes, such cycles cannot be com-
posed only by immediate nodes. Indeed, if this
would be the case, we would introduce static
circular dependencies among model variables.

The evolution of a system modeled through
a GCTBN occurs as follows: the initial state
is given by the assignment of the initial values
of the variables, according to P 0

X (immediate
root nodes, if any, keep their initial value dur-
ing the model evolution). Given the current sys-
tem state (represented by the joint assignment
of the model variables, both delayed and imme-
diate), a value transition of a delayed variable
Dk will occur, after an exponentially distributed
delay, by producing a new state called a “van-

108 Codetta-Raiteri & Portinale

Figure 1: GCTBN model of the case study.

ishing state”; given the new vanishing state, a
new assignment is determined to any immediate
variable Ij such that Dk belongs to CDA(Ij).
The assignment to Ij is consistent with the CPT
of Ij . The resulting state, called a “tangible
state”, is the new actual state of the system,
from which the evolution can proceed, with a
new transition of value, by a delayed variable.
As we noticed in Sec. 2, the same state classifi-
cation can be recognized in GSPN.

4 A motivating case study

To highlight usefulness and features of a
GCTBN model, we now consider a simple case
study in the field of reliability analysis. It con-
sists of a small system composed by the main
component A and its spare component B. Ini-
tially A is active while B is dormant; in case of
failure of A, B is activated in order to replace
A. However, the activation of B may fail with
probability 0.01. If B fails before A, B can not
replace A. The system is considered as failed if
A is failed and B is dormant or failed. We sup-
pose that only while the system is failed, the
components A and B undergo repair. As soon
as the repair of one of the components is com-
pleted, the component re-starts in working state
and consequently the system becomes operative
again; this implies that the repair of the other
component is suspended.

The time to failure of the components is a
random variable ruled by the negative exponen-
tial distribution: in the case of A, the failure
rate is λA =1.0E-06 h−1. The failure rate of B,
λB, changes according to its current state: if B
is dormant, λB is equal to 5.0E-07 h−1; if in-
stead B is active, λB is equal to 1.0E-06 h−1.
The time to repair a component is still ruled by
the negative exponential distribution: A and B
have the same repair rate µA = µB = 0.01 h−1.

a)
1→ 2 2→ 1

SY S λA SY S µA

1 1.0E-06 h−1 1 0 h−1

2 1.0E-06 h−1 2 0.01 h−1

b)

1→ 2 2→ 1
A SY S λB A SY S µB

1 1 5.0E-07 h−1 1 1 0 h−1

1 2 − 1 2 −
2 1 1.0E-06 h−1 2 1 0 h−1

2 2 5.0E-07 h−1 2 2 0.01 h−1

c)

A B SY S Prob. A B SY S Prob.
1 1 1 1 2 1 1 0.99
1 1 2 0 2 1 2 0.01
1 2 1 1 2 2 1 0
1 2 2 0 2 2 2 1

Table 1: a) CIM of A. b) CIM of B. c) CPT of
SY S.

The GCTBN model. The case study de-
scribed above is represented by the GCTBN
model in Fig. 1 where the variables A, B, SY S
represent the state of the components and of the
whole system respectively. All the variables are
binary because each entity can be in the work-
ing state (1) or in the failed state (2); for the
component B, the working state comprises both
the dormancy and the activation.

The variable A influences the variable B be-
cause the failure rate of the component B de-
pends on the state of A. Both the variables A
and B influence SY S because the state of the
whole system depends on the state of the com-
ponents A and B. The arcs connecting the vari-
able SY S to A and B respectively, concern the
repair of the components A and B only while
the system is failed.
A and B are delayed variables (Sec. 3) and

implicitly incorporate a CTMC composed by
two states: 1 and 2. Since both components
are initially supposed to work, the initial prob-
ability distribution is set equal to 1 for states
A = 1 and B = 1. In the CIM of A (Tab. 1.a),
we can notice that the rate µA is not null only
if the value of SY S is 2. The rate λA instead,
is constant. In the CIM of B (Tab. 1.b), λB is
increased only when A is equal to 2 and SY S
is equal to 1 (this implies that B is active). As
in the case of the variable A, the rate µB is not
null only if the value of SY S is 2. The com-
bination A = 1, SY S = 2 is impossible, so the
corresponding entries are not significant.

The variable SY S is immediate (Sec. 3) and is

Codetta-Raiteri & Portinale 109

characterized by the CPT appearing in Tab. 1.c.
In particular, SY S is surely equal to 1 if A is
equal to 1, and surely equal to 2 if both A and
B are equal to 2. In the case of A equal to
2 and B equal to 1, SY S assumes the value 1
with probability 0.99 (this implies the activa-
tion of the spare component B), or the value 2
with probability 0.01 (this implies that B fails
to activate).

The introduction of the immediate variable
SY S is actually an important modeling fea-
ture, since it allows one to directly capture the
static (or immediate) interactions between A
and B, resulting in a probabilistic choice about
the whole system status. Without the use of an
immediate variable, it is hard to factorize the
model using variables A and B (see (Portinale
and Codetta, 2009) for an example, where an
ordinary CTBN may fail in modeling all possi-
ble state transitions).

5 A Petri Net semantics for GCTBN

Combining in a single model entities explicitly
evolving over time with entities whose determi-
nation is “immediate”, has been already pro-
posed in frameworks other than CTBN. In case
of continuous time, a model having such fea-
tures can be found in the framework of Petri
Nets, namely GSPN (Sec. 2). A GCTBN model
can be expressed in terms of a GSPN, by means
of a set of translation rules (see (Portinale and
Codetta, 2009) for details). This translation is
twofold: (1) it provides a well-defined semantics
for a GCTBN model, in terms of the underly-
ing stochastic process it represents; (2) it pro-
vides an actual mean to perform inference on
the GCTBN model, by exploiting well-studied
analysis techniques for GSPN.

In fact, solution techniques for GSPN have re-
ceived a lot of attention, especially with respect
to the possibility of representing in a compact
way the underlying CTMC and in solving it effi-
ciently (Miner, 2007). Once a GCTBN has been
compiled into a GSPN, such techniques can be
employed to compute inference measures on the
original GCTBN model (Sec. 6).

Case study. According to the conversion
rules described in (Portinale and Codetta,
2009), the GCTBN of the case study in Fig. 1
can be converted into the GSPN model shown
in Fig. 2 where the places A, B and SY S rep-
resent the variables of the GCTBN model. The
value of a GCTBN variable is mapped into the
marking (number of tokens) of the correspond-
ing place in the GSPN. Let us consider the place
B in the GSPN: the marking of the place B can
be equal to 1 or 2, the same values that the
variable B in the GCTBN can assume. B is
a delayed variable and its initialization is mod-
eled in the GSPN by the immediate transitions
B init 1 and B init 2. Their effect is to set the
initial marking of the place B to 1 or 2 respec-
tively. Their weights correspond to the initial
probability distribution of the variable B.

The change of the marking of the place B is
determined by the timed transitions B 1 2 and
B 2 1. The transition B 1 2 is enabled to fire
when the place B contains one token; the firing
sets the marking of B to 2. The transition B 2 1
instead, can fire when the marking of the place
B is equal to 2, and turns it to 1.

The dependency of the transition rate of a
variable on the values of the other variables
in the GCTBN model, becomes in the GSPN
model, the dependency of the firing rate of a
timed transition on the markings of the other
places. For instance, in the GCTBN model, the
variableB depends onA and SY S; in the GSPN
model, λB becomes the firing rate of the timed
transition B 1 2, its value depends on the mark-
ing of the places A and SY S, and assumes the
same values reported in Tab. 1.b. The firing
rate of the timed transition B 2 1 instead, is
µB reported in Tab. 1.b, still depending on the
marking of the places A and SY S.

In the GCTBN, the variable SY S is imme-
diate and depends on A and B. Therefore in
the GSPN, each time the marking of the place
A or B is modified, the marking of SY S has to
be immediately updated: each time the tran-
sition A 1 2, A 2 1, B 1 2 or B 2 1 fires, one
token appears in the place emptySY S; this
determines the firing of the immediate tran-
sition reset SY S 1 or reset SY S 2 removing

110 Codetta-Raiteri & Portinale

Figure 2: GSPN model obtained from the GCTBN in Fig. 1.

any token in SY S. Then, the marking of such
place is set by one of the immediate transitions
set SY S 1, set SY S 2, set SY S 3, set SY S 4,
set SY S 5. Each of them corresponds to one
entry having not null probability in the CPT of
Tab. 1.c.

Infinite rates. Another advantage of the
GSPN semantics for GCTBN is that we can
also model immediate changes on delayed vari-
ables; since delayed variables are characterized
by changing rates (conditioned on their par-
ents’ values), this can be theoretically modeled
by “infinite” rate values, but this is unmanage-
able with standard stochastic analysis. On the
other hand, modeling the changes of delayed
variables through transitions of a GSPN allows
one to use immediate transitions to represent
the above situation. A practical example can
again be found in reliability applications, when
the failure of a system component triggers the
instantaneous failure of a dependent component
(this is usually called a functional dependency
(Dugan et al., 1992)). Fig. 3 is an example of
a functional dependency between a component
F (the trigger) and a component A: the failure
of F immediately induces a failure of A. Fig. 3
shows the GCTBN model and the correspond-
ing GSPN.

Figure 3: a) GCTBN modeling a functional de-
pendency. b) The corresponding GSPN model.

6 Inference algorithms

In the present work, we take advantage of the
correspondence between GCTBN and GSPN, in
order to propose inference algorithms based on
GSPN solution algorithms. For instance, com-
puting the probability of a given GCTBN vari-
able assignment X = xi at time t, will corre-
spond to compute the probability of having i
tokens at time t in the place modeling X in the
GSPN.

Standard inference tasks are prediction and
smoothing. The prediction task consists in com-
puting P (Qt|et1 , . . . , etk) which is the posterior
probability at time t of a set of queried variables
Q ⊆ (D∪I), given a stream of observations (ev-
idence) et1 , . . . , etk from time t1 to time tk with
t1 < . . . tk < t. Every evidence etj consists of a

Codetta-Raiteri & Portinale 111

Procedure Prediction
INPUT: a set of queried variables Q, a query time t, a
set of temporally labeled evidences et1 , . . . etk

with
t1 < . . . tk < t
OUTPUT: P (Qt|et1 , . . . etk

)

- let t0 = 0;
for i = 1 to k {
- solve the GSPN transient at time (ti − ti−1);
- compute from transient, pi(j) = Pr{Xj |eti

} for Xj ∈ D ∪
R;
- update the weights of the immediate init transitions of
Xj according to pi(j); }
- solve the GSPN transient at time (t − tk);
- compute from transient, r = Pr{Q};
- output r;

Figure 4: The prediction inference procedure.

(possibly different) set of instantiated variables.
Prediction can then be implemented by repeat-
edly solving the transient (Sec. 2) of the cor-
responding GSPN at the observation and query
times. Of course, any observation will condition
the evolution of the model, so the suitable con-
ditioning operations must be performed before
a new GSPN resolution.

The smoothing task consists in computing
P (Qt|et1 , . . . , etk) which is the probability at
time t of a set of queried variables Q ⊆ (D ∪
I), given a stream of observations (evidence)
et1 , . . . , etk from time t1 to time tk with t < t1 <
. . . tk. The issue is how to condition on variables
observed at a time instant that follows the cur-
rent one. The idea is then to try to reformulate
the problem in such a way that it can be re-
duced to a prediction-like task. The approach
is then based on the application of the Bayes
rule as follows:
P (Qt|et1 , . . . etk) = αP (Qt)P (et1 , . . . etk |Qt) =
= αP (Qt)P (et1 |Qt) . . . P (etk |et1 , . . . etk−1

, Qt)
In this way, every factor in the above formula is
conditioned on the past and can be implemented
as in prediction. However, this solution requires
the computation of a normalization factor (α).

The pseudo-code for the prediction and
smoothing procedure is shown in Fig. 4 and
Fig. 5 respectively, and explained in details in
(Portinale and Codetta, 2009).

Case study. Consider again the case study of
Fig. 1. We can easily compute the unreliability
of the whole system, by asking for the proba-
bility P(SY S = 2) over time. This reduces to
compute the probability of having 2 tokens into

Procedure Smoothing
INPUT: a set of queried variables Q, a query time t, a
set of temporally labeled evidences et1 , . . . etk
with t < t1 < . . . tk

OUTPUT: P (Qt|et1 , . . . etk
);

{ - Let N be the cardinality of possible assignments qi(1 ≤
i ≤ N) of Q;
- A: array[N];
for i = 1 to N A[i]=Smooth(qi); //possibly in parallel
- output normalize(A); }
Procedure Smooth(q) {
- t0 = t;
- solve the GSPN transient at time t;
- compute from transient, r = Pr{Q = q};
- ev = q;
for i = 1 to k {
- compute from transient, pi−1(j) = Pr{Xj |ev} for Xj ∈ D ∪
R;
- update the weights of the immediate init transitions of
Xj according to pi−1(j);
- solve the GSPN transient at time (ti − ti−1);
- compute from transient, pi(e) = Pr{eti

}
- r = r · pi(e);
- ev = eti

; }
- output r; }

Figure 5: The smoothing inference procedure.

place SY S, on the corresponding GSPN. This
is done, by solving the transient (Sec. 2) at the
required time instants. Results for our exam-
ple are reported in Tab. 2. Since the modeled
system is repairable, it makes sense to ask for
the steady state distribution, in order to un-
derstand whether the system is reliable in the
long run. By solving the GSPN for steady state
(Sec. 2), we can indeed compute that the prob-
abilities of component A and B being faulty in
the long run are 0.496681 and 0.500026 respec-
tively, while the probability of the whole system
being faulty (P (SY S = 2)) is 0.000051, mean-
ing that a good reliability is assured.

Concerning prediction, let us consider to ob-
serve the system working (SY S = 1) at time
t1 = 105h and the system failed (SY S = 2) at
time t2 = 2 · 105h. As described in details in
(Portinale and Codetta, 2009), by applying the
procedure outlined in Fig. 4, we can compute
the probability of component A being working
at time t = 5 · 105h, conditioned by the obser-
vation stream. The result is 0.521855.

Concerning smoothing inference, let us sup-
pose to have observed the system working at
time t1 = 3·105h and failed at time t2 = 5·105h.
We ask for the probability of component A be-
ing failed at time t = 2·102h, conditioned by the
above evidence. By applying the procedure out-

112 Codetta-Raiteri & Portinale

Time (h) Unreliability Time (h) Unreliability
200000 1.4E − 05 400000 2.3E − 05
300000 1.9E − 05 500000 2.7E − 05

Table 2: Unreliability results.

lined in Fig. 5, as described in details in (Porti-
nale and Codetta, 2009), we obtain that the re-
quired probability is equal to 0.308548.

7 Conclusions and future works

The presented formalism of GCTBN allows one
to mix in the same model continuous time
delayed variables with standard “immediate”
chance variables, as well as to model immediate
changes on delayed variables. The usefulness of
this kind of model has been discussed through
some examples from reliability analysis.

The semantics of the proposed GCTBN for-
malism has been provided in terms of GSPN,
a well-known formalism with well established
analysis techniques. In particular, adopting
GSPN solution algorithms as the basis for
GCTBN inference, allows one to take advantage
of specialized methodologies for solving the un-
derlying stochastic process, that are currently
able to deal with extremely large models; in
particular, such techniques (based on symbolic
data structures) allow for one order of magni-
tude of increase in the size of the models to be
solved exactly, with respect to standard meth-
ods, meaning that models with an order of 1010

tangible states can actually be solved (Miner,
2007).

However, the analysis of a GCTBN by means
of the underlying GSPN is only one possibil-
ity that does not take explicit advantage of the
structure of the graph as in CTBN algorithms
(Nodelman et al., 2005; Saria et al., 2007). Our
future works will concentrate on the possibility
of adopting cluster-based or stochastic simula-
tion approximations, even on GCTBN models,
and in comparing their performance and qual-
ity with respect to GSPN-based solution tech-
niques. Finally, since symbolic representations
have been proved very useful for the analysis
of GSPN models, it would also be of signifi-
cant interest to study the relationships between

such representations and the inference proce-
dures on probabilistic graphical models in gen-
eral, since this could in principle open the possi-
bility of new classes of algorithms for BN-based
formalisms.

References

M. Ajmone, G. Balbo, G. Conte, S. Donatelli, and
G. Franceschinis. 1995. Modelling with General-
ized Stochastic Petri Nets. J. Wiley.

G. Chiola, G. Franceschinis, R. Gaeta, and M. Rib-
audo. 1995. GreatSPN 1.7: Graphical Editor and
Analyzer for Timed and Stochastic Petri Nets.
Performance Evaluation, 24(1&2):47–68.

J.B. Dugan, S.J. Bavuso, and M.A. Boyd. 1992.
Dynamic fault-tree models for fault-tolerant com-
puter systems. IEEE Transactions on Reliability,
41:363–377.

T. El-Hay, N. Friedman, and R. Kupferman. 2008.
Gibbs sampling in factorized continuous time
Markov processes. In Proc. 24rd UAI’08.

Y. Fan and C. Shelton. 2008. Sampling for ap-
proximate inference in continuous time Bayesian
networks. In Proc. 10th Int. Symp. on AI and
Mathematics.

S.L. Lauritzen and T.S. Richardson. 2002. Chain
graph models and their causal interpretations.
Journal Of The Royal Statistical Society Series
B, 64(3):321–348.

A.S. Miner. 2007. Decision diagrams for the exact
solution of Markov models. Proceedings in Ap-
plied Mathematics and Mechanics (PAMM), 7(1).

U. Nodelman, C.R. Shelton, and D. Koller. 2002.
Continuous Time Bayesian Networks. In Proc.
18th UAI’02, pages 378–387.

U. Nodelman, C.R. Shelton, and D. Koller. 2005.
Expectation propagation for continuous time
Bayesian networks. In Proc. 21st UAI’05, pages
431–440.

L. Portinale and D. Codetta. 2009. A GSPN seman-
tics for continuous time Bayesian networks with
immediate nodes. Technical Report TR-INF-
2009-03-03-UNIPMN, Dip. di Informatica, Univ.
del Piemonte Orientale. http://www.di.unipmn.it.

S. Saria, U. Nodelman, and D. Koller. 2007. Rea-
soning at the right time granularity. In Proc. 23rd
UAI’07, pages 421–430.

Pp. 113–121 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Same-Decision Probability: A Confidence Measure for
Threshold-Based Decisions under Noisy Sensors

Adnan Darwiche and Arthur Choi
Computer Science Department

University of California, Los Angeles
{darwiche, aychoi}@cs.ucla.edu

Abstract

We consider in this paper the robustness of decisions based on probabilistic thresholds
under noisy sensor readings. In particular, we consider the stability of these decisions
under different assumptions about the causal mechanisms that govern the output of a
sensor. To this effect, we propose the same-decision probability as a query that can be used
as a confidence measure for threshold-based decisions, and study some of its properties.

1 Introduction

There has been an increased interest recently
in providing assurances on the results of prob-
abilistic reasoning systems. One clear exam-
ple are the many results on sensitivity anal-
ysis, which is concerned with providing guar-
antees on the relationship between probabilis-
tic queries and model parameters; see, e.g.,
(Chan, 2009; Kwisthout and van der Gaag,
2008). These results include specific bounds on
the changes in probabilistic queries that could
result from perturbing model parameters.

We consider another class of assurances in
this paper, which is concerned with quantify-
ing the robustness of threshold-based decisions
against noisy observations, where we propose a
specific notion, called the same-decision proba-
bility. Our proposed notion is cast in the con-
text of Bayesian networks where the goal is to
make a decision based on whether some prob-
ability Pr(d | s) passes a given threshold T ,
where s represents the readings of noisy sen-
sors. The same-decision probability is based
on the following key observation. If one were
to know the specific causal mechanisms h that
govern the behavior of each noisy sensor (and
hence, allow us to precisely interpret each sen-
sor reading), then one should clearly make the
decision based on the probability Pr(d | s,h)
instead of the probability Pr(d | s). In fact,

the probability Pr(d | s) can be seen as sim-
ply the expectation of Pr(d | s,h) with respect
to the distribution Pr(h | s) over causal mech-
anisms. The same-decision probability is then
the probability that we would have made the
same threshold-based decision had we known
the specific causal mechanism h. More pre-
cisely, it is the expected decision based on Pr(d |
s,h), with respect to the distribution Pr(h | s)
over sensor causal mechanisms.

We show a number of results about this pro-
posed quantity. First, we show that a stan-
dard Bayesian network does not contain all of
the information necessary to pinpoint the dis-
tribution Pr(h | s) which is needed for com-
pletely defining the same decision probability.
We formulate, however, two assumptions, each
of which is sufficient to induce this distribu-
tion. Second, we propose a bound on the same-
decision probability using the one-sided Cheby-
shev inequality, which requires only the variance
of Pr(d | s,h) with respect to the distribution
Pr(h | s). Third, we propose a variable elimi-
nation algorithm that computes this variance in
time and space that are exponential only in the
constrained treewidth of the given network. We
conclude with a number of concrete examples
that illustrate the utility of our proposed confi-
dence measure in quantifying the robustness of
threshold-based decisions.

114 Darwiche & Choi

S1 S2

D X1 X2 D Pr(D|S1 =+, S2 =+)
+ 0.880952
− 0.119048

D Pr(D)
+ 0.5
− 0.5

D X1 Pr(X1|D)
+ + 0.9
+ − 0.1
− + 0.1
− − 0.9

Xi Si Pr(Si|Xi)
+ + 0.9
+ − 0.1
− + 0.1
− − 0.9

Figure 1: A simple Bayesian network, under
sensor readings {S1 =+, S2 =+}. Variables S1

and S2 represent noisy sensor readings, and they
have the same CPT Pr(Si|Xi). Variables X1

and X2 also have the same CPTs (only the one
for variable X1 is shown).

Table 1: Causal mechanisms for sensor readings
s = {S1 =+, S2 =+} for the network in Fig. 1.
Cases above threshold T = 0.6 are in bold.

h H1 H2 Pr(h|s1, s2) Pr(d|s1, s2,h)
1 t t 0.781071 0.90
2 p t 0.096429 0.82
3 l t 0.001071 0.10
4 t p 0.096429 0.90
5 p p 0.021429 0.50
6 l p 0.001190 0.10
7 t l 0.001071 0.90
8 p l 0.001190 0.18
9 l l 0.000119 0.10

2 An Introductory Example

Consider the Bayesian network in Figure 1,
which models a scenario involving a hypothesis
D of interest and two noisy sensors S1 and S2

that bear on this hypothesis. The network cap-
tures the false positive and false negative rates
of these sensors, where each sensor Si is meant
to measure the state of variable Xi. A typi-
cal usage of this and similar networks involves
the computation of our belief in the hypothesis
given some sensor readings, Pr(d | s1, s2). This
belief can then be the basis of a decision that
depends on whether this probability exceeds a
certain threshold, Pr(d | s1, s2) ≥ T . Scenarios
such as this are typical in applications such as
diagnosis (Hamscher et al., 1992), troubleshoot-
ing (Heckerman et al., 1995a), and probabilistic
planning (Littman et al., 1998).

Figure 1 shows a particular reading of two

sensors and the resulting belief Pr(D=+ |
S1 =+, S2 =+). If our threshold is T = 0.6,
then our computed belief confirms the decision
under consideration. This decision, however,
is based on the readings of two noisy sensors.
Suppose now that our model had explicated the
causal mechanisms that led to the sensor read-
ings we observed, as depicted in Table 1 (we
discuss how to obtain such a model in the next
section). This table depicts a distribution over
causal mechanisms Pr(h | s1, s2). Assuming a
particular causal mechanism h is the active one,
we also have a refined belief Pr(d | s1, s2,h)
on the hypothesis d. In fact, the original belief
Pr(d | s1, s2) can now be seen as the expecta-
tion of the refined beliefs with respect to the
distribution over causal mechanisms:

Pr(d|s1, s2) =
∑
h

Pr(d|s1, s2,h)Pr(h|s1, s2).

We show that this is the case in general, later.
Suppose now that we knew the specific causal

mechanism h that governs our sensor readings.
We would then be able to (and would pre-
fer to) make a decision based on the probabil-
ity Pr(d | s1, s2,h) instead of the probability
Pr(d | s1, s2), which again, is only an average
over possible mechanisms h. Consider for ex-
ample Table 1 which enumerates all nine causal
mechanisms. In only four of these cases does
the probability of the hypothesis pass the given
threshold (in bold), leading to the same deci-
sion. In the other five scenarios, a different deci-
sion would have been made. Clearly, the extent
to which this should be of concern will depend
on the likelihood of these last five scenarios. As
such, we propose to quantify the confidence in
our decision using the same-decision probability:
the probability that we would have made the
same decision had we known the causal mech-
anisms governing a sensor’s readings. For this
example, this probability is 0.975, indicating a
relatively robust decision.

3 Noisy Sensors

In this section, we show how we can augment a
sensor so that its causal mechanisms are mod-
eled explicitly. The ultimate goal is to construct

Darwiche & Choi 115

models like the one in Table 1, which are needed
for defining the same-decision probability.

Consider a Bayesian network fragment X →
S, where S represents a sensor that bears on
variable X and suppose that both S and X take
values in {+,−}.1 Suppose further that we are
given the false positive fp and false negative fn
rates of the sensor:

Pr(S=+|X=−) = fp, Pr(S=−|X=+) = fn.

Our augmented sensor model is based on a func-
tional interpretation of the causal relationship
between a sensor S and the event X that it
bears on. This causal perspective in turn is
based on Laplace’s conception of natural phe-
nomena (Pearl, 2009, Section 1.4). In partic-
ular, we assume that the output of a sensor S
is a deterministic function that depends on the
state of X, and that the stochastic nature of
the sensor arises from the uncertainty in which
functional relationship manifests itself.

We propose to expand the above sensor model
into X → S ← H, where variable H is viewed
as a selector for one of the four possible Boolean
functions mapping X to S, which we ascribe the
labels {t, l, p, n}:

H X S Pr(S|H,X)
t + + 1
t − + 0
l + + 0
l − + 1

H X S Pr(S|H,X)
p + + 1
p − + 1
n + + 0
n − + 0

We observe that these Boolean function have
commonly used diagnostic interpretations, de-
scribing the behavior of a sensor. The state
H= t indicates the sensor is truthful, H= l in-
dicates it is lying, H=p indicates it is stuck
positive and H=n indicates it is stuck nega-
tive. Note that any stochastic model can be
emulated by a functional one, with stochastic
inputs (Pearl, 2009; Druzdzel and Simon, 1993).

To reason about our augmented sensor model
X → S ← H, we need to specify a prior distri-
bution Pr(H) over causal mechanisms. More-
over, we need to specify one that yields a model

1Our discussion focuses on sensors over binary vari-
ables, but generalizing to multi-valued variables is not
difficult; see also (Druzdzel and Simon, 1993).

equivalent to the original model X → S, when
variable H has been marginalized out:

Pr(S=+|X=−)
=
∑

H Pr(S=+|H,X=−)Pr(H) = fp (1)
Pr(S=−|X=+)
=
∑

H Pr(S=−|H,X=+)Pr(H) = fn (2)

There is not enough information in the given
Bayesian network to identify a unique prior
Pr(H). However, if we make some assumptions
about this prior, we may be able to pin down a
unique one. We make two such proposals here.

For our first proposal, assume that the proba-
bility Pr(H= l) that a sensor lies is zero, which
is a common assumption made in the diagnostic
community. This assumption, along with Equa-
tions 1 and 2, immediately commits us to the
following distribution over causal mechanisms:

H t p n l

Pr(H) 1− fp − fn fp fn 0

For our second proposal, consider the event
αp = {H=p∨H= l} which denotes the materi-
alization of a causal mechanism that produces a
false positive behavior by the sensor. That is, if
αp holds, the sensor will report a positive read-
ing when variable X is negative. Moreover, the
event αn = {H=n ∨H= l} denotes the materi-
alization of a causal mechanism that produces
a false negative behavior by the sensor. Now,
if we further assume that the false positive and
negative mechanisms of the sensor are indepen-
dent, we get Pr(αp, αn) = Pr(αp)Pr(αn). Since
αp, αn is equivalent to H= l, we now get

Pr(H= l) = fpfn. (3)

This assumption, with Equations 1 and 2, com-
mits us to the following CPT:

H Pr(H)
t (1− fp)(1− fn)
p fp(1− fn)
n (1− fp)fn
l fpfn

The assumption is similar to parameter inde-
pendence used in learning Bayesian networks

116 Darwiche & Choi

Table 2: Causal mechanisms for sensor readings
s = {S1 =+, S2 =−} for the network in Fig. 1.
Cases above threshold T = 0.6 are in bold.

h H1 H2 Pr(h|s1, s2) Pr(d|s1, s2,h)
1 t t 0.268893 0.90
2 p t 0.298770 0.18
3 l t 0.029877 0.10
4 t n 0.298770 0.90
5 p n 0.066393 0.50
6 l n 0.003689 0.10
7 t l 0.029877 0.90
8 p l 0.003689 0.82
9 l l 0.000041 0.10

(Heckerman et al., 1995b).2 Interestingly, un-
der this assumption (and fp + fn < 1), as the
probabilities of H=p and H=n go to zero (i.e.,
the sensor does not get stuck), the probability
of H= l also goes to zero, therefore, implying
that the sensor must be truthful.

Note that the two assumptions discussed
above become equivalent as the false positive
and negative rates of a sensor approach zero.
In fact, as we shall illustrate later, the same-
decision probability is almost the same when
these rates are small, which is the more inter-
esting case. We stress here, however, that the
same decision-probability, as a notion, is inde-
pendent of the specific assumption adopted —
and so are the corresponding computational re-
sults we shall present later on computing and
bounding this probability.

4 Beliefs Based On Noisy Sensors

Suppose now that we have observed the values
of n sensors. For a sensor with a positive read-
ing, the three possible states are {t, l, p}, since
the probability Pr(H=n) that a sensor is stuck-
negative is zero when we have a positive reading.
Similarly, for a sensor with a negative reading,
the three possible states are {t, l, n}. Hence, we
have (at most) 3n sensor states that have non-
zero probability. Each one of these 3n states

2Namely, using a Dirichlet prior on the CPT of S
in the original model X → S would basically assume
independent false positive and false negative rates.

are causal mechanisms, and each refers to a hy-
pothesis about which sensors are truthful, which
are lying and which are irrelevant. Table 1 de-
picts the nine causal mechanisms corresponding
to two positive sensor readings in the network
of Figure 1. The table also depicts the posterior
distribution over these mechanisms, suggesting
that the overwhelming leading scenario is the
one in which the two sensors are truthful (h1).
Table 2 depicts the nine causal mechanisms as-
suming two conflicting sensor readings.

Given a reading s of sensors S, and letting h
range over the causal mechanisms, we now have:

Pr(d | s) =
∑
h

Pr(d | h, s)Pr(h | s) (4)

=
∑
h

Q(h)Pr(h | s).

We thus view the probability Pr(d | s) as an ex-
pectation E[Q(H)] with respect to the distribu-
tion Pr(H | s) over causal mechanisms, where
Q(h) = Pr(d | h, s).

Table 1 depicts the posterior over causal
mechanisms given two positive sensor readings
in the network of Figure 1. We have Pr(D=+ |
S1 =+, S2 =+) = 0.880952 in this case, which
one can easily verify as also being the expec-
tation of Pr(D=+ | S1 =+, S2 =+,h) with re-
spect to the distribution Pr(h | S1 =+, S2 =+).
Table 2 depicts another posterior over causal
mechanisms given two conflicting sensor read-
ings. We have Pr(D=+ | S1 =+, S2 =−) =
0.631147 in this case.

5 Same-Decision Probability

As mentioned in the introduction, one is usu-
ally interested in making a decision depending
on whether the probability of some hypothesis
d is no less than some threshold T . Assum-
ing that we know the correct causal mechanism
h governing the sensors readings s, we clearly
want to make this decision based on whether
the probability Q(h) = Pr(d | s,h) is no less
than threshold T . However, as we usually do
not know the correct causal mechanism, we end
up averaging over all such hypotheses, leading
to the expectation Pr(d | s), and then making
a decision depending on whether Pr(d | s) ≥ T .

Darwiche & Choi 117

Our interest now is in quantifying our con-
fidence in such a decision given that we do
not know the correct causal mechanism. Since
Q(H) is a random variable, we propose to quan-
tify such a confidence using the following, which
we call the same-decision probability:

P(Q(H) ≥ T) =
∑
h

[Q(h) ≥ T]Pr(h | s), (5)

where [Q(h) ≥ T] is an indicator function that
is 1 if Q(h) ≥ T and 0 otherwise. This is the
probability that we would have made the same
decision had we known the correct causal mech-
anisms governing the sensor readings.

Consider now Equation 5 in relation to Equa-
tion 4. Both equations define expectations with
respect to the same distribution Pr(h | s). In
Equation 4, the resulting expectation is the
probability Pr(d | s). In Equation 5, the ex-
pectation is the same-decision probability. One
key difference between the two expectations is
that the one in Equation 4 is invariant to the
specific distributions used for variables H, as
long as these distributions satisfy Equations 1
and 2. However, the expectation in Equation 5
— that is, the same-decision probability — is
indeed dependent on the specific distributions
used for variables H.

Consider now Table 1, which corresponds to
two positive sensor readings in Figure 1. As-
suming a threshold of T = 0.60, a decision
is confirmed given that we have Pr(D=+ |
S1 =+, S2 =+) = 0.880952 ≥ T . We make the
same decision, however, in only four of the nine
causal mechanisms. These probabilities add up
to 0.975; hence, the same-decision probability
is 0.975. Consider now Table 2, which corre-
sponds to two conflicting sensor readings. The
decision is also confirmed here since Pr(D=+ |
S1 =+, S2 =−) = 0.631147 ≥ T . Again, we
make the same decision in four causal mech-
anisms, although they are now less likely sce-
narios. The same-decision probability is only
0.601229, suggesting a smaller confidence in the
decision in this case.

Although computing the same-decision prob-
ability may be computationally difficult, the
one-sided Chebyshev inequality can be used to

bound it. According to this inequality, if V is
a random variable with expectation E[V] = µ
and variance Var[V] = σ2, then for any a > 0:

P(V ≥ µ− a) ≥ 1− σ2

σ2 + a2

Recall now that the probability Pr(d | s) is an
expectation E[Q(H)] with respect to the distri-
bution Pr(H | s), where Q(h) = Pr(d | h, s).
Suppose that E[Q(H)] ≥ T and a decision
has been confirmed accordingly. The same-
decision probability is simply the probability of
Q(H) ≥ T , where Q(H) is a random variable.
Using the Chebyshev inequality, we get the fol-
lowing bound on the same-decision probability:

P(Q(H) ≥ T) ≥ 1− Var[Q(H)]
Var[Q(H)]+[Pr(d|s)−T]2

Suppose now that E[Q(H)] ≤ T and a deci-
sion has been confirmed accordingly. The same-
decision probability in this case is the probabil-
ity of Q(H) ≤ T . Using the Chebyshev inequal-
ity now to bound P(V ≤ µ + a), we get the
same bound for the same-decision probability
P(Q(H) ≤ T). To compute these bounds, we
need the variance Var[Q(H)]. We provide an
algorithm for this purpose in the next section.

6 Computing the Variance

Let S and H be any two disjoint sets of variables
in a Bayesian network, with neither set contain-
ing variable D. The probability Pr(d | s) can be
interpreted as an expectation of Q(h) = Pr(d |
s,h) with respect to a distribution Pr(h | s).
We propose in this section a general algorithm
for computing the variance of such expectations.

Consider now the variance:

Var[Q(H)] = E[Q(H)2]− E[Q(H)]2

=
[∑

h

Pr(d | h, s)2Pr(h | s)
]− Pr(d | s)2

We need two quantities to compute this vari-
ance. First, we need the quantity Pr(d | s),
which can be computed using standard algo-
rithms for Bayesian network inference, such as
variable elimination (Zhang and Poole, 1996;
Dechter, 1996; Darwiche, 2009). The other

118 Darwiche & Choi

Algorithm 1 Variance by Variable Elimination

input:
N : a Bayes net with distribution Pr
D, d: decision variable and decision state
S, s: set of sensor variables and readings
H: set of health variables for sensors S

output: a factor that contains
∑

h
Pr(d,h,s)2

Pr(h,s)

main:
1: S1 ← factors of N under observations d, s
2: S2 ← factors of N under observations s
3: Y ← all variables in N but variables H
4: π ← an ordering of variables Y
5: S1 ← ve(S1,Y, π)
6: S2 ← ve(S2,Y, π)
7: S ← {χa | χa = φ2

a
ψa

for φa ∈ S1, ψa ∈ S2}
8: π ← an ordering of variables H
9: S ← ve(S,H, π)

10: return
∏
ψ∈S ψ

quantity involves a summation over instantia-
tions h. Naively, we could compute this sum
by simply enumerating over all instantiations h,
using again the variable elimination algorithm
to compute the relevant quantities for each in-
stantiation h. However, the number of instan-
tiations h is exponential in the number of vari-
ables in H and will thus be impractical when
the number of such variables is large enough.

However, with a suitably augmented vari-

Algorithm 2 Variable Elimination [ve]

input:
S: set of factors
Y: variables to eliminate in factor set S
π: ordering of variable Y
output: factor set where variables Y are elim-
inated
main:

1: for i = 1 to length of order π do
2: Si ← factors in S containing variable π(i)
3: ψi ←

∑
π(i)

∏
ψ∈Si

ψ
4: S ← S − Si ∪ {ψi}
5: return S

able elimination algorithm, we can compute this
summation more efficiently, and thus the vari-
ance. First, consider the following alternative
form for the summation:∑

h Pr(d | h, s)2Pr(h | s) = 1
Pr(s)

∑
h

Pr(d,h,s)2

Pr(h,s) .

Note that the term Pr(s) is readily available
using variable elimination and can be computed
together with Pr(d | s). Hence, we just need
the sum

∑
h

Pr(d,h,s)2

Pr(h,s) , which, as we show next,
can be computed using an augmented version of
variable elimination.3

Let Y denote all variables in the Bayesian
network excluding variables H. If we set evi-
dence s and use variable elimination to sum out
variables Y, we get a set of factors that rep-
resents the following distribution: Pr(H, s) =∏
a ψa(Xa). Here, ψa are the factors remain-

ing from variable elimination after having elim-
inated variables Y.

We can similarly run the variable elimina-
tion algorithm with evidence s, d to obtain a
set of factors whose product represents the fol-
lowing distribution: Pr(H, d, s) =

∏
a φa(Xa).

Using the same variable ordering when elimi-
nating variables Y, we can ensure a one-to-one
correspondence between factors in both factor-
izations: each pair of factors ψa and φa will be
over the same set of variables Xa for a given
index a. For each instantiation h, d, s, we have

Pr(h, d, s)2

Pr(h, s)
=
∏
a

φa(xa)2

ψa(xa)
,

where xa is an instantiation of variables Xa con-
sistent with instantiation h, d, s. We now com-
pute a new set of factors χa(Xa) = φa(Xa)

ψa(Xa) and
run the variable elimination algorithm a third
time to eliminate variables H from the factors
χa(Xa). The result will be a trivial factor that
contains the quantity of interest.4

3Formally, our summation should be over instantia-
tions h where Pr(h, s) > 0. Note that if Pr(h, s) = 0
then Pr(d,h, s) = 0. Hence, if we define x/0 = 0, then
our summation is simply over all instantiations h. In
Algorithm 1, we thus define factor division such that
φa(xa)2/ψa(xa) = 0 when ψa(xa) = 0.

4According to the formulation of variable elimination
in (Darwiche, 2009), a trivial factor is a factor over the
empty set of variables and contains one entry. It results
from eliminating all variables from a set of factors.

Darwiche & Choi 119

D

X1

X2

X3

Sa
1 Sb

1

Sa
2 Sb

2

Sa
3 Sb

3

Ha
1 Hb

1

Ha
2 Hb

2

Ha
3 Hb

3

D Pr(D)
+ 0.25
− 0.75

D X1 Pr(X1|D)
+ + 0.9
+ − 0.1
− + 0.1
− − 0.9

Figure 2: All sensors have fp = fn = .05. Vari-
ables Xi all have the same CPTs.

Algorithm 1 provides pseudo-code that im-
plements this procedure. Note that on Line 7,
there is a one-to-one correspondence between
the factors of S1 and S2 as we have a one-to-
one correspondence between the factors passed
to ve(S1,Y, π) and ve(S2,Y, π), and since each
call eliminates the same set of variables using
the same variable order. Algorithm 1 must
eliminate variables H last, so the complexity of
the algorithm is exponential in the constrained
treewidth (Darwiche, 2009). This is analogous
to the complexity of variable elimination for
computing MAP, where variables H are MAP
variables (Park and Darwiche, 2004).

7 Examples

Consider the Bayesian network in Figure 2,
which depicts a chain D,X1, X2, X3 with two
sensors Sai and Sbi attached to each node Xi.
Our goal here is to make a decision depend-
ing on whether Pr(D=+ | s) ≥ T for some
sensor reading s and threshold T = 0.5. We
will next consider a number of sensor readings,
each leading to the same decision but a differ-
ent same-decision probability. Our purpose is
to provide concrete examples of this probabil-
ity, and to show that it can discriminate among
sensor readings that not only lead to the same
decision, but also under very similar probabili-
ties for the hypothesis of interest. The examples
will also shed more light on the tightness of the
one-sided Chebyshev bound proposed earlier.

Our computations in this section assume
the independence between the mechanisms gov-

erning false positives and negatives, which is
needed to induce a distribution over causal
mechanisms (as in Section 3). We also pro-
vide the results under the second assumption
proposed where the lying causal mechanism has
zero probability (in brackets). As we discussed
earlier, we expect the two results to be very
close since the false positive and negative rates
are small, which is confirmed empirically here.

We start by observing that Pr(D=+) =
25%. Suppose now that we have a positive read-
ing for sensor Sa2 . We now have the hypothesis
probability Pr(D=+ | Sa2 =+) = 55.34% and
the decision is confirmed given our threshold.
The same-decision probability is 86.19%. From
now on, we will say that our decision confidence
is 86.19% in this case.

The following table depicts what happens
when we obtain another positive sensor reading.

Scenario 1 Scenario 2

sensor readings Sa
2 =+ Sa

2 =+ Sb
2 =+

hyp. prob. 55.34% 60.01%
dec. conf. 86.19%[85.96%] 99.22%[99.19%]

Note how the decision confidence has increased
significantly even though the change in the hy-
pothesis probability is relatively modest. The
following table depicts a scenario when we have
two more sensor readings that are conflicting.

Scenario 2 Scenario 3

readings
Sa

1 =+, Sb
1 =−

Sa
2 =+, Sb

2 =+ Sa
2 =+, Sb

2 =+
hyp. prob. 60.01% 60.01%
dec. conf. 99.22%[99.19%] 79.97%[80.07%]

Note how the new readings keep the hypothesis
probability the same, but reduce the decision
confidence significantly. This is mostly due to
raising the probability of some causal mecha-
nism under which we would make a different
decision. The following table depicts a conflict
between a different pair of sensors.

Scenario 3 Scenario 4

readings
Sa

1 =+, Sb
1 =−

Sa
2 =+, Sb

2 =+ Sa
2 =+, Sb

2 =+
Sa

3 =+, Sb
3 =−

hyp. prob. 60.01% 60.01%
dec. conf. 79.97%[80.07%] 99.48%[99.48%]

In this case, the sensor conflict increases the
same-decision probability slightly (from 99.22%

120 Darwiche & Choi

in Scenario 2 to 99.48%).5 The next example
shows what happens when we get two negative
readings but at different sensor locations.

Scenario 5 Scenario 6

readings
Sa

1 =−, Sb
1 =−

Sa
2 =+, Sb

2 =+ Sa
2 =+, Sb

2 =+
Sa

3 =−, Sb
3 =−

hyp. prob. 4.31% 57.88%
dec. conf. 98.73%[98.70%] 95.25%[95.23%]

When the negative sensors are close to the hy-
pothesis, they reduce the hypothesis probabil-
ity significantly below the threshold, leading to
a high confidence decision. When the readings
are further away from the hypothesis (and domi-
nated by the two positive readings), they reduce
the hypothesis probability, yet keep it above
the threshold. The decision confidence is also
reduced, but remains relatively high. Finally,
consider the table below which compares the de-
cision confidence, the bound on the confidence,
and the variance used to compute the bound.

Scenario confidence bound variance
1 86.19% ≥ 15.53% 1.54 · 10−2

2 99.22% ≥ 90.50% 1.05 · 10−3

3 79.97% ≥ 11.05% 8.06 · 10−2

4 99.48% ≥ 88.30% 1.32 · 10−3

5 98.73% ≥ 98.02% 4.22 · 10−3

6 95.25% ≥ 34.73% 1.16 · 10−2

Note that our decision confidence is high when
our bound on the same-decision probability is
high. Moreover, the one-sided Chebyshev in-
equality may provide only weak bounds, which
may call for exact computation of the same-
decision probability. We computed this quan-
tity through exhaustive enumeration here, yet
an algorithm that is exponential only in the con-
strained treewidth could open new possibilities
for reasoning about threshold-based decisions.

8 Conclusion

We considered in this paper the robustness of
decisions based on probabilistic thresholds un-
der noisy sensor readings. In particular, we sug-
gested a confidence measure for threshold-based
decisions which corresponds to the probability

5Knowing that sensor Sb
3 is lying, or that Sa

3 is telling
the truth, is enough to confirm our decision given our
threshold. The conflicting sensor readings thus introduce
new scenarios under which the decision is confirmed, al-
though these scenarios are very unlikely.

that one would have made the same decision
if one had knowledge about a sensor’s causal
mechanisms. We used the one-sided Chebyshev
inequality to bound this probability, which re-
quires computing the variance of a conditional
probability with respect to the marginal distri-
bution over a subset of network variables. We
also proposed a variable elimination algorithm
for computing this variance, whose complexity
is exponential only in the constrained treewidth
of the given network. We finally provided a
number of concrete examples showing the utility
of our proposed confidence measure in quantify-
ing the robustness of threshold-based decisions.

References

Hei Chan. 2009. Sensitivity Analysis of Probabilistic
Graphical Models: Theoretical Results and Their Ap-
plications on Bayesian Network Modeling and Infer-
ence. VDM Verlag.

Adnan Darwiche. 2009. Modeling and Reasoning with
Bayesian Networks. Cambridge University Press.

Rina Dechter. 1996. Bucket elimination: A unifying
framework for probabilistic inference. In UAI, pages
211–219.

Marek J. Druzdzel and Herbert A. Simon. 1993. Causal-
ity in Bayesian belief networks. In UAI, pages 3–11.

Walter Hamscher, Luca Console, and Johan de Kleer.
1992. Readings in model-based diagnosis. MK.

David Heckerman, John S. Breese, and Koos Rommelse.
1995a. Decision-theoretic troubleshooting. CACM,
38(3):49–57.

David Heckerman, Dan Geiger, and David Maxwell
Chickering. 1995b. Learning Bayesian networks: The
combination of knowledge and statistical data. Ma-
chine Learning, 20(3):197–243.

Johan Kwisthout and Linda C. van der Gaag. 2008. The
computational complexity of sensitivity analysis and
parameter tuning. In UAI, pages 349–356.

Michael L. Littman, Judy Goldsmith, and Martin Mund-
henk. 1998. The computational complexity of proba-
bilistic planning. JAIR, 9:1–36.

James Park and Adnan Darwiche. 2004. Complexity
results and approximation strategies for MAP expla-
nations. JAIR, 21:101–133.

Judea Pearl. 2009. Causality: Models, Reasoning and
Inference. Cambridge University Press, 2nd edition.

Nevin Lianwen Zhang and David Poole. 1996. Exploit-
ing causal independence in Bayesian network infer-
ence. JAIR, 5:301–328.

Pp. 121–129 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

On Causal Discovery from Time Series Data using FCI
Doris Entner1 and Patrik O. Hoyer1,2

1 HIIT & Dept. of Computer Science, University of Helsinki, Finland
2 CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We adapt the Fast Causal Inference (FCI) algorithm of Spirtes et al. (2000) to the problem of
inferring causal relationships from time series data and evaluate our adaptation and the original
FCI algorithm, comparing them to other methods including Granger causality. One advantage of
FCI based approaches is the possibility of taking latent confounding variables into account, as
opposed to methods based on Granger causality. From simulations we see, however, that while
the FCI based approaches are in principle quite powerful for finding causal relationships in time
series data, such methods are not very reliable for most practical sample sizes. We further apply the
framework to microeconomic data on the dynamics of firm growth. By releasing the full computer
code for the method we hope to facilitate the application of the procedure to other domains.

1 Introduction

One of the fundamental goals in empirical science is
to discover causal relationships. The most reliable
approach towards this goal is performing controlled
experiments; regrettably, such experiments are not
always possible, for technical or ethical reasons, or
high cost. Thus, scientists often seek (preliminary)
causal inferences from non-experimental data.

Such data often come in the form of multivariate
time series. For instance, economists study the evo-
lution of variables such as GDP, unemployment, and
interest rates, while biologists may look at the pop-
ulation dynamics of a set of species. In these cases,
a number of variables have been measured repeat-
edly over time, and the goal is often to understand
the myriad ways in which the variables interact.

In time series analysis, most approaches to causal
inference are based on Granger causality (Granger,
1969). The basic idea is to, for each variable, iden-
tify the set of other variables whose past values are
necessary and sufficient for optimal prediction. Un-
fortunately, if unmeasured variables directly affect
two or more of the observed variables, one cannot
directly interpret the results of such an analysis.

There exist, however, inference procedures which
are asymptotically correct even in the presence of
hidden variables. We adapt and evaluate the Fast
Causal Inference (FCI) method of Spirtes et al.

(2000), originally developed for the analysis of non-
temporal variables, to time series data. We demon-
strate the statistical behavior of the adapted proce-
dure using numerical simulations, and compare it to
other recently developed causal inference methods.
In addition, we apply it to a real-world dataset on the
dynamics of firm growth. We hope, by releasing the
full implementation of the method, to facilitate the
further development and adoption of this procedure
by researchers in a variety of fields.

2 ‘FCI’ in a nutshell

2.1 Problem definition

A directed graph G is a pair (V ,E) where V =

{1, . . . ,M} is a finite set of vertices and E ⊆ V ×V
is the set of directed edges between the vertices. If
(i, j) ∈ E then we write i→ j and say that i and j are
adjacent, j is a child of i, i is a parent of j, and write
i ∈ π(j), the parent set of j. A directed path from i
to j is a sequence of one or more edges i→ . . .→ j
where all edges along the path point towards j. In a
directed acyclic graph (DAG) there are no directed
paths from any vertex to itself. If there exists a di-
rected path from vertex i to j, or if i = j, we say that
i is an ancestor of j, and j is a descendant of i.

DAG structures are often used to model data-
generating processes, whereby each vertex i of G
represents one random variable Xi. Furthermore,

122 Entner & Hoyer

we associate with each vertex i a conditional distri-
bution P(Xi | Xπ(i)) representing the mechanism by
which Xi is generated conditional on the values of
its parents in the graph. Such a model is causal if,
when a given variable Xi is intervened on and set to
a specific value, the post-interventional distribution
is represented by the same model but with all edges
into node i removed (Pearl, 2000).

If the data is generated as described above, with
DAG G, the joint distribution P(X) (where X =

(X1, . . . , XM)) contains independencies related to
the structure of G. This is embodied in the graph-
ical criterion of d-separation (Pearl, 1988); if ver-
tices i and j are d-separated given some subset K ⊆
V \ {i, j} then in the distribution P(X) we necessar-
ily have that Xi is independent of X j given the vari-
ables {Xk : k ∈ K}, which we write Xi y X j | XK .
This is known as the Markov condition. If, further-
more, all independencies in P(X) are entailed by
d-separation in G, then we say that the distribution
P(X) is faithful to the graph G.

If the data-generating process results in a distri-
bution faithful to the underlying G, constraint-based
search algorithms can be used to infer various as-
pects of G. In general, causally different graphs
can result in the same set of independencies in the
data, a phenomenon known as Markov equivalence.
However, in many cases the set of all graphs which
are consistent with the observed pattern of indepen-
dencies in the data have some features in common,
and such features can then be inferred. For causally
sufficient systems, where all the Xi, i = 1, . . . ,M,
have been observed, the Markov equivalence classes
are particularly simple (Spirtes et al., 2000).

2.2 MAGs, PAGs, and FCI
For the more involved task of finding equivalence
classes in causally insufficient systems Spirtes et al.
(2000) developed the FCI algorithm. Its output
graph contains partial information about ancestral
relationships among the observed variables and is
thus termed a partial ancestral graph (PAG).

Towards this end, we need the following defi-
nitions (Richardson and Spirtes, 2002). A mixed
graph is a graph that contains three types of edges:
undirected (−−), directed (→) and bi-directed (←→).
(As we exclude selection bias we will not be dealing
with undirected edges so all our subsequent defini-

tions are conditional on this.) There can be at most
one such edge between any given pair of vertices,
and no edge can connect a vertex to itself. The terms
parent, child, directed path, ancestor and descendant
are defined as for DAGs. Additionally, if i←→ j then
i is a spouse of j. An ancestral graph is a mixed
graph for which there is no vertex i which is an an-
cestor of any of its parents nor any of its spouses.

Ancestral graphs can represent systems derived
from DAGs but in which a subset of the variables
have been hidden. A graphical separation prop-
erty termed m-separation can be defined, mirror-
ing d-separation for DAGs, such that m-separation
in an ancestral graph corresponds to independen-
cies between the observed variables in the distribu-
tion. A maximal ancestral graph (MAG) is an an-
cestral graph such that for every pair of variables
{Xi, X j} there is an edge between i and j if and only
if there does not exist a set K ⊆ V \ {i, j} such that
Xi y X j | XK . See (Richardson and Spirtes, 2002).

If two MAGs entail the same set of conditional
independencies they are said to be Markov equiv-
alent. Thus, a PAG describes an equivalence class
of MAGs, and is a graph with edges having three
kinds of edge marks: arrowtails, arrowheads, and
circles, in any combination. A PAG P of an equiv-
alence class fulfills that P has the same adjacen-
cies as any member of the equivalence class and
every non-circle mark is present in all members of
the equivalence class. As we exclude selection bias
(and hence undirected edges), in our case a PAG can
contain the following types of edges: →, ←→, ◦→,
and ◦−◦. An edge Xi→X j is interpreted as Xi being
an ancestor of X j (in the underlying DAG), and X j

not being an ancestor of Xi. If Xi←→X j then neither
variable is an ancestor of the other. The circle mark
represents cases where, in different members of the
equivalence class, both arrowtails and arrowheads
are present at this end; hence, based on independen-
cies alone, it is undecided whether that variable is
an ancestor or non-ancestor of the other variable.

Finally, the FCI algorithm (Spirtes et al., 2000)
uses independence tests on the observed data to in-
fer the appropriate PAG and thus (partial) informa-
tion on ancestral relationships between the observed
variables. We describe the relevant details of the al-
gorithm, along with the necessary adaptations to the
time series case in Section 4. For the moment, it suf-

Entner & Hoyer 123

fices to say that the algorithm starts from the com-
plete graph over all variables, and performs a se-
ries of independence tests according to which it re-
moves edges between those pairs of variables which
are (conditionally) independent. Subsequent ‘orien-
tation rules’ are employed to derive causal conclu-
sions which, under the stated assumptions and in the
limit of correctly identified dependencies and inde-
pendencies, are guaranteed to be valid. The full al-
gorithm, including a proof that the method not only
is sound but that it also is complete, is described in
(Zhang, 2008).

3 Time series model

Let X(t) = (X1(t), . . . , XM(t)) be a multivariate
time series with M variables defined at discrete time
points t ∈ Z, with X(t) either continuous (∈ RM)
or discrete-valued (∈ ZM). We assume that the
time series data is generated by the following pro-
cess (essentially a ‘dynamic bayes network’ with
hidden variables, or more precisely a discrete-time
first-order time-invariant multivariate Markov pro-
cess with sparse connections and hidden variables):

1. The causal structure of the time series is de-
fined by a bipartite graphGwith directed edges
E ⊆ V ×V where V = {1, . . . ,M} is the vari-
able set. An edge (i, j) ∈ E if and only if vari-
able i has a direct causal effect on variable j.

2. For all j and t, the value of X j(t) is drawn from
a distribution P(X j(t) |Xπ(j)(t − 1)) > 0 where
π(j) is the set of parents of variable j.1

3. Assume that the process has a strictly positive
invariant distribution (or density). For discrete
variables with a finite state space, this is guar-
anteed by the positivity of the conditional dis-
tribution, whereas for linear-Gaussian systems
the absolute values of all eigenvalues of the co-
efficient matrix need to be smaller than unity.

4. The observed data is a subset of size N ≤ M
of the generating variables. Without loss of
generality, let these be the first N variables,
i.e. X1(t), . . . , XN(t). The data is observed for
time indices t = {1, . . . ,T }, and the process is

1Note that for continuous variables, the conditional distri-
butions are typically represented by conditional densities.

X3(t−2)

X2(t−2)

X1(t−2) X1(t−1)

X2(t−1)

X3(t−1)

X1(t)

X3(t)

X2(t)

Figure 1: Data generating process over variables
X(t) = (X1(t), X2(t), X3(t)). The squared nodes rep-
resent observed variables, the oval ones hidden.

assumed already to be at equilibrium at time
t = 1 (i.e. we are sampling from equilibrium).

An example model is shown in Figure 1. In
the linear-Gaussian case this model would be rep-
resented by X(t) = AX(t − 1) + ε(t), where A
is the coefficient matrix and εi ∼ N(0, σ2

i) repre-
sents Gaussian noise. Note that A only has non-
zero entries where the corresponding variables are
connected by an edge. In the discrete case the pa-
rameters would be conditional probabilities; for bi-
nary variables there is one parameter for each vari-
able Xi(t) and each (joint) state of the parents of that
variable Xπ(i)(t − 1).

The model is quite general: For example, higher-
order Markov processes can be represented by
transforming them to first-order with additional hid-
den variables, and in terms of linear systems the
model can represent any finite-order ARMA model.

Note that in this model the equilibrium distribu-
tion of the time series data over any finite-length
time window of length τ, i.e. P(X(t − τ), . . . ,X(t))
is well-defined, and we can obtain (correlated) sam-
ples from it by taking windowed samples of the time
series data. Furthermore, the nodes correspond-
ing to variable-timepoint pairs satisfy the Markov
assumption with regard to the complete unrolled
graph (although note that dependencies due to nodes
‘outside the window’ need to be taken into account).
Finally, to be able to utilize the constraint-based
causal inference framework, we need to require that
the distribution P(X(t − τ), . . . ,X(t)) is faithful to
the unrolled graph; that is, it cannot contain inde-
pendencies that are not represented in the structure
of the unrolled graph.

4 FCI for time series

Given a single long sequence X(t), t = 1, . . . ,T
of multivariate time series data from a causal time

124 Entner & Hoyer

series model with potentially hidden variables, as
defined in Section 3, we can obtain correct (but typ-
ically only partial) knowledge about causal relation-
ships in the large sample limit as follows:

First, using the ‘sliding window’ approach, we
transform the original time series data into a set
of samples of the random vector X which col-
lects the values of all observed variables within a
time-window of finite length τ, i.e. X = (X1(t −
τ), . . . , XN(t − τ), . . . , X1(t), . . . , XN(t))T . Note that
this random vector is of length (τ + 1)N, and we
obtain a total of T − τ samples of it from the data.
Since by assumption the observed data come from
the time series at equilibrium, each sample is drawn
from the equilibrium distribution P(X). (Of course,
samples coming from close-by timepoints will be
correlated, as in any Markov chain, but as T →
∞ the number of effectively independent samples
grows without bound.)

Next, considering each component of X as a
separate random variable, the FCI algorithm, de-
signed for non-temporal data, is directly applica-
ble. Given successful independence tests (achiev-
able in the large sample limit) we obtain partial but
correct causal inferences concerning the elements
of the random vector X , and hence concerning the
original time series.

However, the amount of information returned by
standard FCI, even in the large sample limit, can
be quite restricted (for an example see Section 5).
Fortunately, because we know the data came from a
time series process, we have much prior information
that we can leverage. In particular, we know that (a)
causal effects must go forward in time, and (b) be-
cause of time-invariance, if Xi(t − t1) is an ancestor
of X j(t−t2), then Xi(t−t3) must also be an ancestor of
X j(t− t4) whenever t1− t2 = t3− t4. By adapting FCI
to explicitly incorporate such background knowl-
edge, we not only are able to make more inferences
about the existence or non-existence of causal con-
nections, but those inferences we do make are also
more often correct, as the prior knowledge regular-
izes the problem.

Towards this end, we define an edge between
Xi(t− t1) and X j(t− t2) to be homologous to an edge
between Xk(t − t3) and Xl(t − t4) if i = k, j = l,
and t1 − t2 = t3 − t4. Because of the time-invariant
structure of the data-generating model we obtain the

following two Lemmas.

Lemma 1. On a finite window of length τ including
the variables X(t − τ), . . . ,X(t), if in P(X) we
have Xi(t−t1) y X j(t−t2) | {Xk(t−t3), . . . , Xl(t−tK)}
with 0 ≤ ti ≤ τ, then we also have Xi(t − t1 + t′) y
X j(t − t2 + t′) | {Xk(t − t3 + t′), . . . , Xl(t − tK + t′)} for
all t′ such that (max(ti) − τ) ≤ t′ ≤ min ti.
Proof. Since the distribution is time invariant, on an
infinitely long window the claim is true. When only
including τ lags, the independencies are guaranteed
to hold if all involved nodes (in particular including
those in the conditioning set) lie inside the window.
This is ensured by the restrictions on t′. �

Lemma 2. Taking into account the time-invariant
underlying structure, in the PAG corresponding to
X = (X1(t − τ), . . . , XN(t)) any two homologous
edges must contain the same edge marks.
Proof. This follows directly from the underlying
time-invariant structure, because Xi(t − t1) is an an-
cestor of X j(t − t2) if and only if Xi(t − t3) is an
ancestor of X j(t − t4) when t1 − t2 = t3 − t4. �

The tsFCI (for ‘time series FCI’) algorithm is
thus obtained by adapting the FCI algorithm using
the prior knowledge, as shown in Algorithm 1. The
changes to FCI, highlighted in dark-blue italic, fol-
low from Lemmas 1 and 2. In addition, as suggested
in Spirtes et al. (2000), we can in all independence
tests restrict ourselves to conditioning sets contain-
ing no nodes from the present or the future and ori-
ent all arrows forward in time. We emphasize that
this prior knowledge needs to be applied at all stages
of the algorithm; simply post-processing the output
of standard FCI would be suboptimal.

Note that Lemma 1 implies that if a (conditional)
independence is found between two nodes Xi(t − t1)
and X j(t− t2), this not only allows us to remove that
edge from the PAG, but it additionally implies that
also some homologous edges can be removed (in-
cluding all such later edges). The directionality is
crucial here: earlier edges cannot necessarily be re-
moved, because at the early end of the window we
may not be able to condition on the necessary condi-
tioning set. This means that in the PAG, there may
be extra edges showing up in the early part of the
time window. If the time window is short these will
allow us to make fewer inferences but, in the limit,
will not cause us to make incorrect inferences.

Entner & Hoyer 125

Algorithm 1 tsFCI (sketch).

Note: Adaptation of FCI algorithm, see (Spirtes et al., 2000;
Zhang, 2008) for details of the original algorithm.

Input: A multivariate time series dataset with N variables, an
integer τ defining the window length.

1. Adjacency Phase
(a) Get the fully connected graph G over all (τ + 1)N nodes.

(b) Let AdjX be the adjacent nodes of a node X in the graph
G. Note that G will be modified in the following loop.

Repeat for n = 0, 1, 2, . . . (size of conditioning set)
Repeat for every ordered pair (X,Y) of adjacent vari-
ables with AdjX,past := |AdjX − {Y}− {Z : Z occurs after
or in same time slice as X} | ≥ n

Repeat for every set Z ⊆ AdjX,past with n elements:

If X y Y | Z:
Remove the edge between X and Y in G, define
SepSetX,Y = Z
Remove every homologous edge between X̃ and
Ỹ if the corresponding conditioning set Z̃ is fully
contained in the graph (by Lemma 1), and define
SepSetX̃,Ỹ = Z̃
Continue with the next pair.

(c) Try to remove more edges as in FCI by an additional
procedure and use Lemma 1 as in the previous step.

2. Orientation Phase
(a) For every edge orient the endpoint in the later time as

an arrowhead and for every instantaneous edge orient
both ends as arrowheads, by background knowledge.

(b) Use the complete orientation rule set from Zhang (2008)
to orient edge endpoints. Whenever an edge endpoint is
oriented, also orient the same endpoint for every homol-
ogous edge (by Lemma 2). (Note that in this step the
“SepSet” from 1(b) are needed.)

Output: A PAG over (τ+ 1)N nodes with repeating structure.

5 Simulations

We provide a complete implementation of our algo-
rithm, including code for all of our experiments, at:
http://cs.helsinki.fi/u/entner/tsfci/

First, to illustrate the theoretical potential (infi-
nite sample size limit) of tsFCI as compared to both
Granger causality and standard FCI, consider the
example introduced in Figure 1 with window length
τ = 2. A Granger-causality approach would cor-
rectly infer that the only cause of X1(t) is X1(t − 1),
as this is necessary and sufficient for optimal predic-
tion. However, it would also suggest that there are
direct causal connections from both variables and
all lags to X2(t), due to the hidden variable X3. FCI
and tsFCI yield the PAGs of Figure 2(a) and (b), re-

spectively. Both find that X2(t − 1) and X2(t − 2)
are not ancestors of (i.e. do not have a causal effect
on) X2(t), and X2(t − 1) is not an ancestor of X1(t).
From tsFCI (only), we additionally see that X1(t−1)
is a cause of X1(t) and of X2(t) (FCI could here not
rule out a hidden common cause as an explanation
for the correlation). One might think that a simple
‘post-processing’ of the output of FCI would be suf-
ficient but, in practice with finite sample data, this is
not the case as the output of FCI may not respect the
regular time series structure (see Figure 2(c)).

For a comprehensive analysis, we generate data
from randomly constructed time series models, and
apply FCI, tsFCI, Granger, Group Lasso (GL) for
time series (Haufe et al., 2010), and the ‘Phase
Slope Index’ (PSI) method of Nolte et al. (2008)
to the data. Both binary and linear-Gaussian data
was used; however we did not have implementa-
tions of Granger or GL for binary data, and PSI is
only applicable to continuous data. We can deduce
the behavior of FCI, tsFCI, and Granger in the in-
finite sample limit by using an independence oracle
based on d-separation in the generating model.

The methods are evaluated based on three scores,
each measuring the percentages of correct vs in-
correct vs “don’t know” answers to a set of sim-
ple causal queries. The ‘direct-cause’ score asks if
a given node (variable-timepoint pair) has a direct
effect on another given node, the ‘ancestor’ score
asks if a given node has any effect (potentially indi-
rect) on another node, and the ‘pairwise’ score asks
if a given variable has an effect on another given
variable (with any lag). Note that GL and PSI are
specifically constructed to answer the last question.

For reasons of space we cannot give all details
of the data generation here, but they are thoroughly
described in our online code package. Briefly, we
used models with up to 6 observed and 3 hidden
time series variables, with edge probabilities q =

0.25 and q = 0.5 between any pair of nodes, and
generated data of three different sample sizes (100,
1,000, 10,000). The window length is fixed at τ = 3
and we set the significance level to 0.01.2 Results
are shown in Figure 3. We state a few main points:

First, in the infinite sample size limit (“T → ∞”),

2Simulations showed that the significance level seems not to
have a crucial effect on the results. For smaller window lengths
τ less decisions are made than for longer ones.

126 Entner & Hoyer

(a) original FCI with oracle (b) tsFCI with oracle (c) original FCI on data

Figure 2: Output PAG of FCI and tsFCI when applying the algorithms to the generative model in Figure 1,
in (a) and (b) with an oracle (infinite sample size limit), and in (c) for a small sample size.

the main difference between the FCI-based methods
and Granger causality is that with the former some
decisions are not made but all made decisions are
correct, whereas in the latter all decisions are made
but some of them are wrong (because of the latents).
In this sense FCI/tsFCI is (in theory) more conserva-
tive than Granger. As expected, tsFCI makes some-
what more predictions than FCI.

Second, tsFCI consistently outperforms FCI on
finite-length data as well, particularly for continu-
ous variables and the ancestor score (structural mis-
takes of FCI may be reflected in this case).

Third, on all scores and for all methods, the accu-
racy increases with sample size, as expected. How-
ever, for realistic sample sizes, FCI and tsFCI are
quite far from the infinite sample limit. In particu-
lar, we found that as the unrolled graphs were rel-
atively dense (even for q = 0.25), these methods
need to rely on independence tests with large con-
ditioning sets, leading to inevitable errors that accu-
mulate. Only for the sparse, binary case does the
performance approach the theoretical limit. For the
continuous data, with our test settings, the standard
Granger procedure is superior to both FCI-based
methods both in terms of number of decisions made
and in terms of the correctness of those decisions.

Fourth, for binary data, the number of decisions
decrease for larger samples. This counterintuitive
result is due to weak causal effects (over long paths)
detected only for these sample sizes, which yields to
more edges and hence fewer orientation rules might
be applied. This is not particular to our case, but
can occur in other applications of FCI (to DAG in-
ference) as well.

Finally, in our experiments neither PSI nor Group
Lasso outperformed a basic Granger analysis. Since
we tried to choose the parameters close to optimal
for these methods, the explanation for our results is
that the particularities of the data generating setup

favored Granger. For instance, PSI was at a clear
disadvantage here because it seeks driver-receiver-
relationships among the variables, and so does not
allow both variables in an interacting pair being
drivers of the other. Such relationships were how-
ever common in our data.

6 Firm growth data

We also applied the tsFCI algorithm to microeco-
nomic data of growth rates of US manufacturing
firms in terms of employment, sales, research &
development (R&D) expenditure, and operating in-
come, for the years 1973–2004. Here, we estimated
the model including instantaneous effects,3 using a
significance level of 0.001 and τ = 3. The first two
lags of the PAG are shown in Figure 4.

The graph suggests that there are direct causal ef-
fects over time from employment to sales growth
and from sales to employment growth. Further-
more, there is no causal effect from operating in-
come to R&D growth (instantaneously or lagged),
whereas both employment and sales growth have
(direct or indirect) lagged effects on R&D growth.
Interestingly, these features essentially duplicate the
main findings of Moneta et al. (2010), in which a
Structural Vector Autoregression model was used to
infer causal relationships among the variables. One
difference, however, is that their analysis suggested
significant contemporaneous causal effects among
the variables, while our present approach attributes
most of the correlations to latents.

7 Related work

Most standard approaches to causal inference from
non-experimental time series data are rooted in the
concept of Granger causality (Granger, 1969). In

3In Algorithm 1 this means to not exclude nodes from the
present in the conditioning sets in step 1(b) and to not orient
instantaneous edges as double-headed arrows in step 2(a).

Entner & Hoyer 127

0

50

100
Direct−cause scores

T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞

q=0.25 q=0.5 q=0.25 q=0.5

binary data continuous−valued data

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

0

50

100
Ancestor scores

T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞

q=0.25 q=0.5 q=0.25 q=0.5

binary data continuous−valued data

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

0

50

100
Pairwise scores

T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞ T=100 T=1000 T=10000 T →→ ∞∞

q=0.25 q=0.5 q=0.25 q=0.5

binary data continuous−valued data

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

tsF
CI

FC
I

Gr
an

ge
r

PS
I

Gr
ou

p
La

ss
o

tsF
CI

FC
I

Gr
an

ge
r

PS
I

Gr
ou

p
La

ss
o

tsF
CI

FC
I

Gr
an

ge
r

PS
I

Gr
ou

p
La

ss
o

tsF
CI

FC
I

Gr
an

ge
r

tsF
CI

FC
I

Gr
an

ge
r

PS
I

Gr
ou

p
La

ss
o

tsF
CI

FC
I

Gr
an

ge
r

PS
I

Gr
ou

p
La

ss
o

tsF
CI

FC
I

Gr
an

ge
r

PS
I

Gr
ou

p
La

ss
o

tsF
CI

FC
I

Gr
an

ge
r

Figure 3: Results of simulations. From top to bottom row: direct-cause score, ancestor score, pairwise score.
In each row, the two left blocks of bars show the result for binary data for sparse (q=0.25) and less sparse
(q=0.5) graphs for different sample sizes and algorithms. The two right blocks of bars represent the same
results for continuous-valued data. The total height of each bar shows the percentage of made decisions.
Within each bar the green filled area marks the correct decisions, the red striped area the incorrect decisions.

essence, the assumption is that all relevant variables
have been measured, and there are no contempora-
neous effects, in which case the problem of deter-
mining causality turns into a well-defined statisti-
cal estimation problem. Naturally, it is important to
note that the chosen algorithms and representations
(such as whether to use a time-domain or frequency-
domain representation) are important in determin-
ing the overall performance of the algorithm from a
finite-length time series; see, for instance, the work
of Nolte et al. (2008) and Haufe et al. (2010).

One departure from the standard assumptions is
to include contemporaneous causation. For linear
models, this amounts to using Structural Vector Au-
toregression (SVAR) models rather than the Vector
Autoregression (VAR) model. The extra causal in-
formation inherent in SVAR models can be inferred
using conditional independence tests (Swanson and
Granger, 1997; Demiralp and Hoover, 2003) or
utilizing non-Gaussianity (Hyvärinen et al., 2008).
Nonlinear additive models, with latents which are

uncorrelated over time (Chu and Glymour, 2008),
constitute an interesting extension of this line of
work. However, these models are not guaranteed
in the limit to give correct results when temporally
dependent hidden variables may be present.

Another interesting recent development is given
by the difference-based causal models of Voortman
et al. (2010), specifically designed to model systems
that can be well represented by difference equations.
For such systems, their framework is likely to be su-
perior to more general models in terms of inferring
the causal structure.

Finally, the strongest connection to other recent
work is to the theoretical work of Eichler (2009),
for which, unfortunately, at the time of writing no
detailed algorithm was published to compare our
method against. In his approach, the starting point
is the estimation of Granger-causal vs Granger-non-
causal relationships, and any remaining contempo-
raneous dependencies. From such a path diagram,
certain causal vs non-causal inferences can be made

128 Entner & Hoyer

Empl.Gr(t-2)

OpInc.Gr(t-2)

Sales.Gr(t-2)

R&D.Gr(t-2)

Empl.Gr(t-1)

OpInc.Gr(t-1)

R&D.Gr(t-1)

Sales.Gr(t-1)

Empl.Gr(t)

OpInc.Gr(t)

R&D.Gr(t)

Sales.Gr(t)

Figure 4: Partial ancestral graph inferred from the
firm growth data (see Section 6 for discussion).

which are robust with respect to the presence of hid-
den variables. His method is also, though much
less directly than ours, derived from the theory de-
veloped for DAG structures. The main difference
between the two approaches is that tsFCI explicitly
models the temporal dynamics. This has the advan-
tage of more often being able to detect the absence
of direct effects between variable pairs. This comes
at a cost, however: For short time series it may be
difficult to reliably infer all temporal dependencies,
in which case the predictions may be less reliable.

8 Conclusions

While the assumptions underlying FCI seem in
many respects more likely to hold than those needed
to obtain valid causal conclusions from a Granger-
causality approach, our study suggests that caution
is in order. Even for processes with relatively few
interacting components, the practical problem of de-
tecting which independencies hold (and which do
not), from time series of reasonable length, can be
a significant obstacle to reliable causal inference.
Nevertheless, we suggest that, when the results are
interpreted with due caution, tsFCI may help shed
light on causal interactions in time series data.

Finally, while the models we consider are very
general, there is one respect in which they are quite
restricted: We cannot model cyclic contemporane-
ous causation. In many real world scenarios one
may not have a high enough sampling rate to ensure
that such causation within a measurement period
does not exist, including feedback loops. Unfortu-
nately, such loops are a violation of a basic assump-
tion underlying FCI. Furthermore, many time series
are aggregates in the sense that each data point is a
sum or average of a number of time slices in an orig-
inal time series with much faster dynamics. In such
cases the independencies present in the measured

data do not necessarily reflect the causal structure
in the original data. A challenge is how to extend
present methods to handle this type of data.

Acknowledgements
Thanks to Alex Coad, Michael Eichler, Stefan

Haufe, Alessio Moneta, Guide Nolte, Joseph Ram-
sey, and Peter Spirtes, for comments, discussions,
and making code and data available. Funding for
this work was provided by the Academy of Finland.

References

Chu, T. and Glymour, C. (2008). Search for additive nonlinear
time series causal models. JMLR, 9:967–991.

Demiralp, S. and Hoover, K. D. (2003). Searching for the
causal structure of a vector autoregression. Oxford Bulletin
of Economics and Statistics, 65:745–767.

Eichler, M. (2009). Causal inference from multivariate time se-
ries: What can be learned from Granger causality. In 13th
International Congress on Logic, Methodology and Philos-
ophy of Science.

Granger, C. W. J. (1969). Investigating causal relations by
econometric models and cross-spectral methods. Economet-
rica, 37:424–438.

Haufe, S., Müller, K.-R., Nolte, G., and Krämer, N. (2010).
Sparse causal discovery in multivariate time series. JMLR
W&CP, 6:97–106.

Hyvärinen, A., Shimizu, S., and Hoyer, P. O. (2008). Causal
modelling combining instantaneous and lagged effects: an
identifiable model based on non-gaussianity. In Proc. ICML,
pages 424–431.

Moneta, A., Entner, D., Hoyer, P. O., and Coad, A. (2010).
Causal inference by independent component analysis with
applications to micro- and macroeconomic data. Jena Eco-
nomic Research Papers, pages 2010–2031.

Nolte, G., Ziehe, A., Nikulin, V. V., Schlögl, A., Krämer, N.,
Brismar, T., and Müller, K.-R. (2008). Robustly estimating
the flow direction of information in complex physical sys-
tems. Physical Review Letters, 100:234101.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems:
Networks of Plausible Inference. Morgan Kaufmann.

Pearl, J. (2000). Causality: Models, Reasoning, and Inference.
Cambridge University Press.

Richardson, T. S. and Spirtes, P. (2002). Ancestral graph
markov models. The Annals of Statistics, 30(4):962–1030.

Spirtes, P., Glymour, C., and Scheines, R. (2000). Causation,
Prediction, and Search. MIT Press, 2nd edition.

Swanson, N. R. and Granger, C. W. J. (1997). Impulse response
function based on a causal approach to residual orthogonal-
ization in vector autoregressions. Journal of the American
Statistical Association, 92:357–367.

Voortman, M., Dash, D., and Druzdzel, M. J. (2010). Learning
why things change: the difference-based causality learner.
In Proc. UAI.

Zhang, J. (2008). On the completeness of orientation rules for
causal discovery in the presence of latent confounders and
selection bias. Artificial Intelligence, 172:1873–1896.

Pp. 129–137 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Variable elimination by factor indexing

Sander Evers, Peter J.F. Lucas
Institute for Computer and Information Sciences

Radboud University Nijmegen
s.evers@cs.ru.nl, peterl@cs.ru.nl

Abstract

It is known that solving an exact inference problem on a Bayesian network with many de-
terministic nodes can be far cheaper than what would be expected based on its treewidth.
In this article, we introduce a novel technique for this, which stores a deterministic node
as an array of function values rather than one of probabilities. We propose a variable
elimination algorithm, including a new elimination heuristic, that maximally exploits this
encoding using factor indexing. A preliminary empirical evaluation gives promising results.

1 Introduction

In general, exact inference on a Bayesian net-
work is known to take O(dw) time, where d
is the number of states per variable (assumed
that these are the same for each variable) and
w is the treewidth of the network’s moral graph
(Dechter, 1999). In the canonical technique
for exact inference, variable elimination (Zhang
and Poole, 1996), this constraint manifests itself
as the minimal size of the largest factor that is
created during the execution of the algorithm;
implemented as a multidimensional array, it has
w dimensions and d entries for each dimension.

When a network contains deterministic
nodes, inference can be much faster. One ex-
ample where this can be seen is the approach
of Chavira and Darwiche (2008), in which a
Bayesian network is transformed into a logical
theory, and inference is performed by counting
the models of this theory. These models should
be consistent with the constraints imposed by
the deterministic nodes. A good model count-
ing algorithm can use these constraints effec-
tively to prune the model search space.

A different approach (Larkin and Dechter,
2003) stays closer to variable elimination. Here,
a factor is implemented not as an array (with an
entry for each possible variable assignment), but
as a list of variable assignments that are nonzero
(sometimes called a sparse array). The length

A
X Z

Y M

dA

dM

Figure 1: Fragment of a Bayesian network. Variables A
and M are deterministic (indicated by a double border):
their values follow directly from their parents’ values.
This is reflected in A’s conditional probability distribu-
tion: P(a|x, y) equals 1 if a = dA(x, y), and 0 otherwise.

of this list can be much smaller than the size
of the array, but the overhead for multiplying
and marginalizing factors is larger, because the
list has to be searched for values (possibly using
a hash table). With this alternative implemen-
tation of factors, ordinary variable elimination
can be performed.

The approach we present in this article is also
based on a cheaper implementation, but only
of the deterministic factors. For example, con-
sider deterministic variable A in Fig. 1. Conven-
tionally, the corresponding factor is stored as a
three-dimensional array of conditional probabil-
ities P(a|x, y), which can take two values: 1 if
a = dA(x, y), 0 if a 6= dA(x, y). Here, dA is
the function that determines A given X and Y .
In our approach, we store this function directly,
as a two-dimensional array. If A has n possi-
ble states, this array contains n times as few
elements as the original array of probabilities.

130 Evers & Lucas

The true merit of our approach, however, lies
not in the efficient space use of the arrays that
make up the definition of the Bayesian network;
it lies in the ability to propagate this efficiency
to the intermediate arrays used in variable elim-
ination. For example, consider the elimination
of variable A from Fig. 1. In conventional vari-
able elimination, this requires the calculation of∑

a P(a|x, y)P(z |a)P(m|a, y) for each combina-
tion x, y, z,m; a four-dimensional array of which
each element is the result of summing n prob-
abilities. On the other hand, our approach ex-
ploits the fact that

∑
a P(a|x, y)P(z |a)P(m|a, y)

= P(z |A=dA(x, y))P(m|A=dA(x, y), y), (1)

i.e. we construct two low-dimensional arrays
(over variables XY Z and MXY , resp.) and
perform no summation at all. Moreover, we do
not even need to multiply these arrays at this
point yet; we could perhaps first eliminate Z
from the former.

We integrate this operation into variable
elimination by expressing it in factor algebra,
a convenient language to describe the ‘bulk op-
erations’ on multidimensional arrays that occur
in most inference procedures. To the multipli-
cation and summation operations usually en-
countered, we add an indexing operation writ-
ten cpdZ [A=dA] (for the first of the two arrays
above). This partially indexes the array cpdZ ,
which we will define as to contain the probabili-
ties P(z |a), using another array, namely dA. Its
implementation does not require the overhead of
sparse arrays, as no additional data structures
are used.

The remainder of the article has the follow-
ing outline. Sect. 2 summarizes the formal pre-
liminaries for inference on Bayesian networks.
In Sect. 3, we review variable elimination, with
an emphasis on the use of factor algebra. Our
main contribution, factor indexing, is presented
in Sect. 4, followed by an empirical evaluation
in Sect. 5. In Sect. 6, we conclude and propose
future work.

2 Formal preliminaries

A Bayesian network is a triple (V, par, cpd).
The set V = {V1, . . . , Vn} consists of n discrete
variables; each Vi has a finite domain dom(Vi).
The function par maps each variable Vj to a set
of parents Vpar(j) ⊂ V in such a way that there
are no cycles. The set cpd = {cpd1, . . . , cpdn}
contains, for each variable Vj , the family of con-
ditional probability distributions P(vj |vpar(j));
in Sect. 3, we will define this family as a factor
that we designate cpd j . A Bayesian network
defines a joint probability distribution over V:
P(v) =

∏
1≤j≤n P(vj |vpar(j)).

An inference query is a usually defined as the
conditional probability distribution P(q|e) over
some query variables Q ⊆ V given an instanti-
ation e of evidence variables E ⊆ V. However,
for simplicity we define an inference query as
the distribution P(q, e) in this article. This dis-
tribution can be derived from the joint distri-
bution by summing out the remaining variables
R = V \ (Q ∪E):

P(q, e) =
∑
r∈R

P(q, e, r) =
∑
r∈R

∏
1≤j≤n

P(vj |vpar(j))

From this, the conditional distribution can eas-
ily be derived: P(q|e) = P(q, e)/

∑
q∈Q P(q, e).

3 Factor algebra for variable
elimination

In this section, we review the theory of fac-
tor algebra and variable elimination (Zhang and
Poole, 1996), into which we will integrate our
new factor indexing operation in Sect. 4. Many
inference algorithms, including variable elimi-
nation and junction tree propagation (Lauritzen
and Spiegelhalter, 1988), are implemented using
multidimensional arrays; a factor is a mathe-
matical description of such an array, and factor
algebra is a convenient language to describe ar-
ray operations.

Formally, a factor f over variables V is
a function that maps every instantiation v
of V to a number f(v); an instantiation v =
{V1=v1, . . . , Vn=vn} is a function mapping each
Vj to a value vj ∈ dom(Vj). We refer to the
set dim(f) = V as f ’s dimensionality. Thus,

Evers & Lucas 131

each cpd j in a Bayesian network is a factor with
dim(cpd j) = Vj ∪Vpar(j) and values

cpd j(Vj=vj ,vpar(j)) = P(vj |vpar(j))

The weight of a factor f is defined as the number
of different instantiations it can be applied to,
and equals the size of the array needed to store
all f ’s values:

weight(f) def=
∏

Vj∈dim(f)

|dom(Vj)|

It is also possible to apply a factor to an instan-
tiation e of a subset of its dimensions (E ⊂ V):
then the result f(e) is not real number, but a
factor over V \ E. We also find it convenient
to use instantiations containing more variables
than are in the factor’s domain; in this case,
the superfluous variables are just ignored. So,
for example, f(v, Vn+1=y) = f(v).

An inference query can then be defined as the
factor infQ,E:

infQ,E(q, e) def= P(q, e) =
∑
r∈R

∏
1≤j≤n

cpd j(q, e, r)

where we apply each cpd j to a lot of superflu-
ous variables. In fact, infQ,E is a factor over
Q∪E and contains results for all instantiations
of E; however, one is usually interested in the
result for specific evidence e. Then, the infer-
ence goal is to calculate the partial instantiation
infQ,E(e), a factor over Q.

The basic factor algebra we use contains an
operator � for multiplying two factors, a unit
element 1 for �, and a summation operator ΣW

that sums out the W dimensions of a factor:

(f � g)(v) def= f(v) · g(v)

1() def= 1

(ΣWf)(u) def=
∑

w∈W
f(u,w)

where we define dim(f � g) = dim(f)∪ dim(g),
dim(1) = ∅, and dim(ΣWf) = dim(f) \W.
Note that we use w∈W to let variable w range
over all possible instantiations of W. In Sect. 4,
we extend this basic factor algebra.

Algorithm 1: Variable elimination. Initial-
ize the set of factors fj to the conditional
probability distributions. In each iteration,
heuristically choose a variable Vi. From the
current set of factors, replace all that have
Vi in their domain by their product, with Vi
summed out. For the definition of the cost
heuristic, see the running text.
Input:

• Bayesian network
(V, par, {cpd1, . . . , cpdn})
• evidence e (instantiation of E ⊂ V)
• query variables Q ⊂ V

Output: infQ,E(e) (a factor over Q)

W := V \ (Q ∪E)
foreach cpd j do fj := cpd j(e)

while W is not empty do
choose Vi ∈W for which the cost of

eliminate(Vi) is smallest
eliminate(Vi)
W := W \ {Vi}

infQ,E(e) :=
⊙{all remaining fj}

procedure eliminate(Vi)
p := 1

foreach fj s.t. Vi ∈ dim(fj) do
p := p� fj
delete fj

fi := ΣVip

Variable elimination is now formulated as
a procedure (Alg. 1) that stepwise constructs
the factor infQ,E(e) out of the set of factors
cpd1, . . . , cpdn, using above operators. In each
step, all the factors in the current set that con-
tain a certain variable Vi are joined together us-
ing �, after which ΣVi is applied to the result.

As for which Vi to choose next, Alg. 1 uses a
greedy heuristic: it always takes the one with
minimal cost. We define this cost to be the
size of the largest array constructed in this
step, i.e. weight(p) for the final value of p in
eliminate(Vi). This heuristic is known as the
minweight heuristic; other heuristics are also
possible, but minweight is known in practice to

132 Evers & Lucas

Table 1: Laws of factor algebra.

f � 1 = f (2)
f � g = g � f (3)

f � (g � h) = (f � g)� h =
⊙
{f, g, h} (4)

ΣV ΣW f = ΣWΣV f = ΣV,W f (5)
ΣV (f � g) = ΣV f � g if V ∈ dim(f),

V /∈ dim(g)
(6)

ΣV (f � g) = f � ΣV g if V /∈ dim(f),
V ∈ dim(g)

(7)

(
f � g)(e) = f(e)� g(e) (8)(
ΣV f

)
(e) = ΣV f(e) if e does not

instantiate V
(9)

perform best when variables have different do-
main sizes (Kjærulff, 1990). Note that the algo-
rithm can calculate the cost of eliminate(Vi) be-
fore actually executing it, as it is not necessary
to construct the array p to determine weight(p).

As a matter of fact, although Alg. 1 can cer-
tainly be read to perform array operations at
factor assignments such as p := p � fj and
fi := ΣVip, it does not have to perform any
array operations at all. Instead, it can perform
a symbolic construction of a new factor algebra
expression at these points. In that case, the re-
sult of the algorithm is not an array, but a large
symbolic expression which can be evaluated at a
later stage to produce said array. Thus, the in-
ference procedure is divided into a search phase
and an evaluation phase.

Correctness

Factor algebra is not only a tool for expressing
variable elimination concisely, but also for ana-
lyzing its correctness. Using some general laws
of factor algebra (see Table 1), we can prove
that the factor constructed by Alg. 1 indeed cor-
responds to the factor infQ,E(e) specified in the
text above. Making use of the definitions of �
and ΣR, we rewrite the definition of infQ,E into:

infQ,E = ΣR

⊙
1≤j≤n

cpd j

Using laws (8) and (9), the instantiation of evi-
dence is pushed into the expression:

infQ,E(e) = ΣR

⊙
1≤j≤n

cpd j(e)

Now, we will prove that the following invariant
holds at the start of each iteration:

infQ,E(e) = ΣW

⊙
{all remaining fj}

For the first iteration, this is trivial, as W was
set to R and each fj to cpd j(e). Next, elimi-
nating a variable Vi corresponds to the following
rewriting:

ΣW

⊙
{all remaining fj}

= ΣW

 ⊙
Vi /∈dim(fj)

fj �
⊙

Vi∈dim(fj)

fj

= ΣW\Vi

 ⊙
Vi /∈dim(fj)

fj � ΣVi

⊙
Vi∈dim(fj)

fj

in which the product is restructured using (3,4)
into a group that does not contain Vi and one
that does; next, distributive law (7) is used to
push the summation over Vi into the expression.

The bottom expression corresponds to the in-
variant for the next iteration, where W is set to
W \ {Vi}, and the fj factors with Vi ∈ dim(fj)
have been replaced with

fi := ΣVi

⊙
Vi∈dim(fj)

fj

After the last loop, W is empty, so

infQ,E(e) =
⊙
{all remaining fj}

which is what we wanted to prove.

4 Factor indexing

This section presents the main contribution of
this article: factor indexing, and its integration
in variable elimination. We propose a new fac-
tor algebra operator and laws, and extend Alg. 1
into Alg. 2, which uses them to eliminate deter-
ministic variables.

Evers & Lucas 133

A variable Y ∈ V is called deterministic if its
value is functionally determined by the value of
its parents (here X ⊂ V). This means that
its conditional probability distribution has the
following form:

cpdY (Y=y,x) =

{
1 if y = dY (x)
0 if y 6= dY (x)

where dY is a factor over X with values in
dom(Y), which we call Y ’s deterministic factor.

To account for deterministic variables, we ex-
tend the definition of a Bayesian network as fol-
lows: next to the set cpd of conditional prob-
ability distributions for non-deterministic vari-
ables V1, . . . , Vm, we include a set d of factors
for deterministic variables Vm+1, . . . , Vn. Factor
dj is then a factor over par(Vj) with values in
dom(Vj). So, unlike a cpd j factor, Vj /∈ dim(dj).

Like dY and cpdY above, every deterministic
factor d has a ‘probabilistic representation’. Al-
though we want to keep a factor deterministic
whenever possible during variable elimination,
sometimes it is unavoidable to translate it to its
probabilistic representation. For this, we define
the factor algebra operator 1V=d:

1V=d(V=v,u) def=

{
1 if v = d(u)
0 if v 6= d(u)

where dim(d) = U, and dim(1V=d) = {V }∪U.1

So, translating a network with deterministic
variables into a conventional one can now be
defined as cpd j = 1Vj=dj

for all m < j ≤ n.
Consider the nodes A and M in Fig. 1 with

the following deterministic factors:

dA(X=x, Y=y) = x+ y

dM (A=a, Y=y) = a · y
Conventionally, the probabilistic representa-
tions of dA and dM are used for variable elimina-
tion. For example, when eliminating variable A,
the following expression would be constructed:

ΣA(1A=dA
� 1M=dM

� cpdZ)
1From these dimensionalities, it immediately follows

that weight(1V =d) = |dom(V)| · weight(d), so an array
storing the probabilistic representation has |dom(V)| as
many elements as one storing the deterministic factor.

Let us focus on the values of sub-expression
1A=dA

� 1M=dM
, a factor over XY AM :

(1A=dA
� 1M=dM

)(X=x, Y=y,A=a,M=m)

=

{
1 if a=x+y ∧m=a·y
0 otherwise

Note that we can rewrite the condition into
a=x+y ∧ m=(x+y)·y, so m depends on x in-
stead of a. This suggests that we can rewrite
the factor into 1A=dA

� 1M=d′
M

, with

d′M (X=x, Y=y) = (x+y)·y
Similarly, cpdZ can be transformed into

cpd ′Z(X=x, Y=y, Z=z) = P(Z=z |A=x+y)

Neither d′M nor cpd ′Z contain variable A any-
more. Therefore, after rewriting the variable
elimination expression using these new factors,
the summation over A can be pushed inwards:

ΣA(1A=dA
� 1M=dM

� cpdZ)
= ΣA(1A=dA

� 1M=d′
M
� cpd ′Z)

= ΣA1A=dA
� 1M=d′

M
� cpd ′Z

Examining the first factor, we see that

(ΣA1A=dA
)(X=x, Y=y)

=
∑

a∈dom(A)

(1 iff a=x+y) = 1

because for each combination x, y there is only
one a s.t. a=x+y. Thus, we conclude that

ΣA(1A=dA
� 1M=dM

� cpdZ) = 1M=d′
M
� cpd ′Z

where the right hand side represents a much
cheaper way to eliminate A than the left hand
side. Note that this is the factor algebra equiv-
alent of Eq. 1 (see Introduction).

In order to integrate this rewrite rule into
variable elimination, we will now formalize the
transformations dM ⇒ d′M and cpdZ ⇒ cpd ′Z in
factor algebra.

We do this by introducing a new operation of
the form f [V=d], where factor f is indexed by
factor d in dimension V :

f [V=d](u) def= f(u, V=d(u))

134 Evers & Lucas

where the dimensionality of resulting factor
f [V=d] is (dim(f) \ {V }) ∪ dim(d)— so u is
an instantiation over these variables.

With this operation, we can define the above
transformations as follows:

d′M = dM [A=dA]
cpd ′Z = cpdZ [A=dA]

Note that, contrary to conventional indexing,
the dimensionality of f [V=d] can be larger than
that of f . For example, dim(cpd ′Z) = XY Z,
while dim(cpdZ) = AZ.

To the laws of factor algebra (Table 1), we
add the following:

f [V=d] = ΣV (f � 1V=d) (10)
(f � g)[V=d] = f [V=d]� g[V=d] (11)
1W=f [V=d] = 1W=f [V=d] if V 6= W (12)

Using these, we can generalize the rewrite rule
above. The elimination of deterministic variable
Vi from a product of factors fj and deterministic
factors dj can be rewritten as follows:

ΣVi

1Vi=di
�
⊙

Vj∈dim(fj)

fj �
⊙

Vj∈dim(dj)

1Vj=dj

=

⊙
Vj∈dim(fj)

fj [Vi=di] �
⊙

Vj∈dim(dj)

1Vj=dj [Vi=di] (13)

We apply this in a variable elimination algo-
rithm with factor indexing (Alg. 2). It has the
same structure as Alg. 1, but is extended as fol-
lows:

• For a deterministic variable Vi, we store di
instead of 1Vi=di

.

• To eliminate a deterministic variable Vi, we
use Eq. 13: we index all currently exist-
ing fj and dj factors over Vi by Vi=di, and
delete di itself.

• Not all deterministic variables are elimi-
nated like this: during the elimination of a
non-deterministic variable Vi, all determin-
istic factors over Vi have to be expanded to
their probabilistic representation. Also, for
a deterministic evidence variable, its factor
is expanded during initialization.

Algorithm 2: Variable elimination with
factor indexing. Next to the set of factors
fj , maintain a set of deterministic factors dj .
When eliminating a deterministic variable Vi
(for which di still exists), do not replace fac-
tors by their product but index them by di.
Note: in the absence of deterministic nodes,
the algorithm ‘degenerates’ to Alg. 1.
Input:

• Bayesian network w/deterministic nodes
(V, par, {cpd1, . . . , cpdm}, {dm+1, . . . , dn})
• evidence e (instantiation of E ⊂ V)
• query variables Q ⊂ V

Output: infQ,E(e) (a factor over Q)

W := V \ (Q ∪E)
foreach cpd j do fj := cpd j(e)
foreach dj do

if Vj ∈ E then
fj := 1Vj=dj

(e)
else

dj := dj(e)

while W is not empty do
choose Vi ∈W for which the cost of

eliminate(Vi) is smallest
eliminate(Vi)
W := W \ {Vi}

infQ,E(e) := (
⊙{all remaining fj})�⊙{
1Vj=dj

all remaining dj
}

procedure eliminate(Vi)
if di exists then

foreach dj s.t. Vi ∈ dim(dj) do
dj := dj [Vi = di]

foreach fj s.t. Vi ∈ dim(fj) do
fj := fj [Vi = di]

delete di
else

p := 1

foreach dj s.t. Vi ∈ dim(dj) do
p := p� 1Vj=dj

delete dj
foreach fj s.t. Vi ∈ dim(fj) do

p := p� fj
delete fj

fi := ΣVip

Evers & Lucas 135

The used elimination heuristic is still the cost
of the next elimination step. However, the defi-
nition of this cost is also extended. If Vi has no
deterministic factor dj associated with it, the
cost is still weight(p). If it does, the cost is∑
Vi∈dim(fj)

weight(fj [Vi=di]) +
∑

Vi∈dim(dj)

weight(dj [Vi=di])

Although space does not permit it here, a cor-
rectness proof can also be given for Alg. 2. The
invariant is:

infQ,E(e) = ΣW

((⊙
{all remaining fj}

)
�
⊙{

1Vj=dj
all remaining dj

})
5 Empirical evaluation

We have implemented the factor algebra de-
scribed above in Python, using the package
NumPy which provides an n-dimensional ar-
ray and executes array operations using fast C
loops (not unlike MATLAB). The � operator
directly translates to NumPy’s array multipli-
cation, which can handle the situation where
the operands have different dimensions. Index-
ing an array with another array is supported in
NumPy as well.

We perform inference on 4 networks with de-
terministic nodes known from the Bayesian net-
work literature (the students network is from
the UAI’08 evaluation track). We also in-
vestigated 6 generated networks of 100 nodes,
with 30 root nodes and 70 nodes with 2 par-
ents (randomly chosen from earlier generated
nodes). Each node has randomly generated
probabilities; each of the 70 non-root nodes has
a chance of being deterministic, in which case
we randomly generate a deterministic function.
Each variable has the same domain; between
networks, we vary the domain size (2 or 4).
Also, we vary the fraction of deterministic nodes
(30%, 60%, 90% of the non-root nodes).

For each network, we take medians over 10
runs; in each run, we instantiate 10 randomly
chosen2 evidence variables e and choose one

2However, for students, we took the 9 easiest evidence
files from the UAI’08 evaluation.

random query variable Q. Then we use algo-
rithms Alg. 1 and Alg. 2 to generate a sym-
bolic expression (a plan) for infQ,E(e), i.e. we
execute them as a search phase as discussed
in Sect. 3. As it is completely implemented in
Python (without regard for speed), we do not
time this phase; its performance would severely
distort the overall timing results.

We record the cost of the generated plans, i.e.
the summed weight of all the intermediate fac-
tors. In the second phase, we evaluate the plans
and record the (wall clock) duration. The ex-
periments were performed on a machine with a
3GHz Intel Core2Duo processor and 2GB RAM.

Results are shown in Table 2: the factor in-
dexing technique provides speedups ranging up
to 16×. Expectations are confirmed that it
works best with a high fraction of determinis-
tic nodes and/or larger domain sizes. However,
we noticed that the variance in performance be-
tween runs can be high: we suspect that the cur-
rent heuristic can easily guide the algorithm in
the wrong way, and will investigate more robust
heuristics in the future.

6 Conclusions and future work

We propose a new variable elimination tech-
nique for exact inference on Bayesian networks,
in which deterministic variables are eliminated
not by summation but by a factor indexing op-
eration. We emphasize the role of factor alge-
bra, which enables (a) a concise definition of
the algorithm, (b) a straightforward correctness
proof, and (c) a model for defining an elimina-
tion order heuristic in terms of the cost of array
operations. Indeed, our updated heuristic has
little to do with the network’s graph structure
anymore; this is in line with common knowledge
that treewidth is not so important for highly de-
terministic networks.

A preliminary empirical evaluation shows
that the technique performs decently on real-
world networks (small speedups) and good on
randomly generated networks (speedups of 1–
16). We expect much room for improvement
here: first, by developing heuristics that take
into account the actual cost of performing

136 Evers & Lucas

Table 2: Experimental results. Numbers are median values over 10 random queries.

network # vars plan cost cost impr. eval. time (s) speedup
(det.) Alg. 1 Alg. 2 Alg. 1/Alg. 2 Alg. 1 Alg. 2 Alg. 1/Alg. 2

munin-1 189 (65) 278M 260M 1.00 6.94 7.91 0.935
munin-4 1041 (411) 23.3M 19.2M 1.22 0.481 0.382 1.25
diabetes 413 (24) 13.2M 13.1M 1.00 0.148 0.151 0.994
students 376 (304) 4.32M 14.7K 293 0.205 0.053 4.13

random-2-30 100 (±21) 16.3K 3.85K 2.91 0.0120 0.0106 1.15
random-2-60 100 (±42) 19.6K 2.47K 5.82 0.0121 0.0088 1.35
random-2-90 100 (±63) 14.6K 0.711K 15.0 0.0117 0.0064 1.90
random-4-30 100 (±21) 6.28M 2.38M 9.23 0.122 0.0536 5.38
random-4-60 100 (±42) 2.27M 49.0K 55.1 0.0504 0.0098 5.39
random-4-90 100 (±63) 4.41M 14.7K 257 0.0908 0.0065 16.3

the different array operations instead of the
size of the resulting array; second, by exploit-
ing low-level machine knowledge to decrease
these actual costs. For example, current CPUs
and GPUs often feature vectorized processing
modes, which we expect can be exploited for the
bulk array operations of probabilistic inference.
When used properly, this might outperform in-
ference techniques for determinism that cannot
be expressed as array operations, e.g. (Chavira
and Darwiche, 2008; Larkin and Dechter, 2003).

Furthermore, we argue that our technique has
much potential for combination with other in-
ference algorithms, e.g. with junction tree prop-
agation (Lauritzen and Spiegelhalter, 1988), re-
cursive conditioning (Darwiche, 2001) and fac-
tor decomposition techniques (Heckerman and
Breese, 1996; Vomlel, 2002; Dı́ez and Galán,
2003).

Acknowledgements

The authors have been supported by the
OCTOPUS project under the responsibility
of the Embedded Systems Institute. The
OCTOPUS project is partially supported by the
Netherlands Ministery of Economic Affairs un-
der the Embedded Systems Institute program.

References

Mark Chavira and Adnan Darwiche. 2008. On prob-
abilistic inference by weighted model counting.
Artif. Intell., 172(6-7):772–799.

Adnan Darwiche. 2001. Recursive conditioning. Ar-
tif. Intell., 126(1-2):5–41.

Rina Dechter. 1999. Bucket elimination: A unify-
ing framework for reasoning. Artif. Intell., 113(1-
2):41–85.

Francisco Javier Dı́ez and Severino F. Galán. 2003.
Efficient computation for the Noisy MAX. Int. J.
Intell. Syst., 18(2):165–177.

D. Heckerman and J. S. Breese. 1996. Causal in-
dependence for probability assessment and infer-
ence using Bayesian networks. IEEE Transac-
tions on Systems, Man and Cybernetics, Part A,
26(6):826–831.

Uffe Kjærulff. 1990. Triangulation of graphs — al-
gorithms giving small total state space. Technical
Report R-90-09, Dept. of Mathematics and Com-
puter Science, Aalborg University.

David Larkin and Rina Dechter. 2003. Bayesian
inference in the presence of determinism. In C M
Bishop and B J Frey, editors, Proceedings of Ninth
International Workshop on Artificial Intelligence
and Statistics, Key West, USA.

S. L. Lauritzen and D. J. Spiegelhalter. 1988. Lo-
cal computations with probabilities on graphical
structures and their application to expert sys-
tems. Journal of the Royal Statistical Society. Se-
ries B, 50(2):157–224.

Jǐŕı Vomlel. 2002. Exploiting functional dependence
in Bayesian network inference. In UAI02, pages
528–535.

Nevin Lianwen Zhang and David Poole. 1996. Ex-
ploiting causal independence in bayesian network
inference. J. Artif. Intell. Res. (JAIR), 5:301–
328.

Pp. 137–145 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Parameter learning in MTE networks using incomplete data

Antonio Fernández
Dept. of Statistics and Applied Mathematics

University of Almeŕıa, Spain
afalvarez@ual.es

Helge Langseth
Dept. of Computer and Information Science

The Norwegian University of Science and Technology
helgel@idi.ntnu.no

Thomas Dyhre Nielsen
Dept. of Computer Science

Aalborg University, Denmark
tdn@cs.aau.dk

Antonio Salmerón
Dept. of Statistics and Applied Mathematics

University of Almeŕıa, Spain
antonio.salmeron@ual.es

Abstract

Bayesian networks with mixtures of truncated exponentials (MTEs) are gaining popularity
as a flexible modelling framework for hybrid domains. MTEs support efficient and exact
inference algorithms, but estimating an MTE from data has turned out to be a difficult
task. Current methods suffer from a considerable computational burden as well as the
inability to handle missing values in the training data. In this paper we describe an EM-
based algorithm for learning the maximum likelihood parameters of an MTE network when
confronted with incomplete data. In order to overcome the computational difficulties we
make certain distributional assumptions about the domain being modeled, thus focusing
on a subclass of the general class of MTE networks. Preliminary empirical results indicate
that the proposed method offers results that are inline with intuition.

1 Introduction

One of the major challenges when using prob-
abilistic graphical models for modeling hybrid
domains (domains containing both discrete and
continuous variables), is to find a representa-
tion of the joint distribution that support 1)
efficient algorithms for exact inference based on
local computations and 2) algorithms for learn-
ing the representation from data. In this paper
we will consider mixtures of truncated exponen-
tials (MTEs) (Moral et al., 2001) as a candi-
date framework. MTE distributions allow dis-
crete and continuous variables to be treated in
a uniform fashion, and it is well known that the
Shenoy-Shafer architecture (Shenoy and Shafer,
1990) can be used for exact inference in MTE
networks (Moral et al., 2001). Also, the expres-
sive power of MTEs was demonstrated in (Cobb
et al., 2006), where the most commonly used
marginal distributions were accurately approx-
imated by MTEs.

Algorithms for learning marginal and condi-

tional MTE distributions from complete data
have previously been proposed (Rumı́ et al.,
2006; Romero et al., 2006; Langseth et al., 2010;
Langseth et al., 2009). When faced with in-
complete data, (Fernández et al., 2010b) consid-
ered a data augmentation technique for learning
(tree augmented) naive MTE networks for re-
gression, but so far no attempt has been made
at learning the parameters of a general MTE
network.

In this paper we propose an EM-based algo-
rithm (Dempster et al., 1977) for learning MTE
networks from incomplete data. The general
problem of learning MTE networks (also with
complete data) is computationally very hard
(Langseth et al., 2009): Firstly, the sufficient
statistics of a dataset is the dataset itself, and
secondly, there are no known closed-form equa-
tions for finding the maximum likelihood (ML)
parameters. In order to circumvent these prob-
lems, we focus on domains, where the proba-
bility distributions mirror standard parametric

138 Fernández et al.

families for which ML parameter estimators are
known to exist. This implies that instead of try-
ing to directly learn ML estimates for the MTE
distributions, we may consider the ML estima-
tors for the corresponding parametric families.
Hence, we define a generalized EM algorithm
that incorporates the following two observations
(corresponding to the M-step and the E-step,
respectively): i) Using the results of (Cobb et
al., 2006; Langseth et al., 2010) the domain-
assumed parametric distributions can be trans-
formed into MTE distributions. ii) Using the
MTE representation of the domain we can eval-
uate the expected sufficient statistics needed for
the ML estimators. For ease of presentation we
shall in this paper only consider domains with
multinomial, Gaussian, and logistic functions,
but, in principle, the proposed learning proce-
dure is not limited to these distribution fami-
lies. Note that for these types of domains exact
inference is not possible using the assumed dis-
tribution families.

The remainder of the paper is organized as
follows. In Section 2 we give a brief introduc-
tion to MTE distributions as well as rules for
transforming selected parametric distributions
to MTEs. In Section 3 we describe the pro-
posed algorithm, and in Section 4 we present
some preliminary experimental results. Finally,
we conclude in Section 5 and give directions for
future research.

2 Preliminaries

2.1 MTE basics

Throughout this paper, random variables will
be denoted by capital letters, and their values
by lowercase letters. In the multi-dimensional
case, boldfaced characters will be used. The
domain of the variables X is denoted by ΩX .
The MTE model is defined by its corresponding
potential and density as follows (Moral et al.,
2001):

Definition 1. (MTE potential) Let W be a
mixed n-dimensional random vector. Let Z =
(Z1, . . . , Zd)T and Y = (Y1, . . . , Yc)T be the dis-
crete and continuous parts of W , respectively,
with c + d = n. We say that a function f :

ΩW 7→ R+
0 is a Mixture of Truncated Exponen-

tials potential if for each fixed value Z ∈ ΩZ of
the discrete variables Z, the potential over the
continuous variables Y is defined as:

f(y) = a0 +
m∑

i=1

ai exp {bT
i y} , (1)

for all y ∈ ΩY, where ai ∈ R and bi ∈ Rc,
i = 1, . . . ,m. We also say that f is an MTE
potential if there is a partition D1, . . . ,Dk of ΩY

into hypercubes and in each Dℓ, f is defined as
in Eq. 1. An MTE potential is an MTE density
if it integrates to 1.

A conditional MTE density can be specified
by dividing the domain of the conditioning vari-
ables and specifying an MTE density for the
conditioned variable for each configuration of
splits of the conditioning variables. The follow-
ing is an example of a conditional MTE density.

f(y|x)=

1.26 − 1.15e0.006y

if 0.4 ≤ x < 5, 0 ≤ y < 13 ,

1.18 − 1.16e0.0002y

if 0.4 ≤ x < 5, 13 ≤ y < 43 ,

0.07 − 0.03e−0.4y + 0.0001e0.0004y

if 5 ≤ x < 19, 0 ≤ y < 5 ,

−0.99 + 1.03e0.001y

if 5 ≤ x < 19, 5 ≤ y < 43 .

2.2 Translating standard distributions
to MTEs

In this section we will consider transformations
from selected parametric distributions to MTE
distributions.

2.2.1 The Multinomial Distribution
The conversion from a multinomial distribu-

tion into an MTE distribution is straightfor-
ward, since a multinomial distribution can be
seen as a special case of an MTE (Moral et al.,
2001).

2.2.2 The Conditional Linear Gaussian
Distribution

In (Cobb et al., 2006; Langseth et al., 2010)
methods are described for obtaining an MTE

Fernández et al. 139

approximation of a (marginal) Gaussian distri-
bution. Common for both approaches is that
the split points used in the approximations de-
pend on the mean value of the distribution being
modeled. Consider now a variable X with con-
tinuous parents Y and assume that X follows a
conditional linear Gaussian distribution:1

X|Y = y ∼ N (µ = b + wTy, σ2).

In the conditional linear Gaussian distribu-
tion, the mean value is a weighted linear com-
bination of the continuous parents. This im-
plies that we cannot directly obtain an MTE
representation of the distribution by following
the procedures of (Cobb et al., 2006; Langseth
et al., 2010); each part of an MTE potential
has to be defined on a hypercube (see Defini-
tion 1), and the split points can therefore not
depend on any of the variables in the potential.
Instead we define an MTE approximation by
splitting ΩY into hypercubes D1, . . . ,Dk, and
specifying an MTE density for X for each of
the hypercubes. For hypercube Dl the mean of
the distribution is assumed to be constant, i.e.,
µl = b + w1midl

1 + · · · + wjmidl
j , where midl

i

denotes the midpoint of Yi in Dl (by defining
fixed upper and lower bounds on the ranges of
the continuous variables, the midpoints are al-
ways well-defined). Thus, finding an MTE rep-
resentation of the conditional linear Gaussian
distribution has been reduced to defining a par-
titioning D1, . . . ,Dk of ΩY and specifying an
MTE representation for a (marginal) Gaussian
distribution (with mean µl and variance σ2) for
each of the hypercubes Dl in the partitioning.

In the current implementation we define the
partitioning of ΩY based on equal-frequency
binning, and we use BIC-score (Schwarz, 1978)
to chose the number of bins. To obtain an MTE
representation of the (marginal) Gaussian dis-
tribution for each partition in ΩY we follow the
procedure of (Langseth et al., 2010); four MTE
candidates for the domain [−2.5, 2.5] are shown
in Figure 1 (no split points are being used, ex-
cept to define the boundary).

1For ease of exposition we will disregard any discrete
parent variables in the subsequent discussion, since they
will only serve to index the parameters of the function.

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

−3 −2 −1 0 1 2 3
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Figure 1: MTE approximations with 5, 7, 9 and
11 exponential terms, respectively, for the trun-
cated standard Gaussian distribution with sup-
port [−2.5, 2.5]. It is difficult to visually distin-
guish the MTE and the Gaussian for the three
latter models.

Notice that the MTE density is only positive
within the interval [µ − 2.5σ, µ + 2.5σ] (con-
fer Figure 1), and it actually integrates up to
0.9876 in that region, which means that there is
a probability of 0.0124 of finding points outside
this interval. In order to avoid problems with 0
probabilities, we add tails covering the remain-
ing probability mass of 0.0124. More precisely,
we define the normalization constant

c =
0.0124

2
(
1− ∫ 2.5σ

0 exp{−x}dx
) ,

and include the tail

φ(x) = c · exp {−(x− µ)} .

for the interval above x = µ + 2.5σ in the MTE
specification. Similarly, a tail is also included
for the interval below x = µ− 2.5σ. The trans-
formation rule from Gaussian to MTE therefore
becomes

φ(x) =

c · exp {x− µ} if x < µ− 2.5σ,

σ−1
[
a0 +

∑7
j=1 ajexp

{
bj

x−µ
σ

}]
if µ− 2.5σ ≤ x ≤ µ + 2.5σ,

c · exp {−(x− µ)} if x > µ− 2.5σ.

(2)

140 Fernández et al.

2.2.3 The Logistic Function

The sigmoid function for a discrete variable
X with a single continuous parent Y is given by

P (X = 1 | Y) =
1

1 + exp{b + wy} .

(Cobb and Shenoy, 2006) propose an 4-piece
1-term MTE representation for this function:

P (X = 1 | Y = y)

=

0 if y < 5−b
w ,

a1
0 + a1

1(b, w) exp{b1w(y − b(w + 1))}
if 5−b

w ≤ y ≤ b′
w ,

a2
0 + a2

1(b, w) exp{b2w(y − b(w + 1))}
if b′

w < y ≤ −5−b
w , 1 if y > −5−b

w ,

(3)

where ak
0 and b1, b2 are constants and a1

1(b, w)
and a2

1(b, w) are derived from b and w. Note
that the MTE representation is 0 or 1 if y <
(5 − b)/w or y > (−5 − b)/w, respectively.
The representation can therefore be inconsistent
with the data (i.e., we may have data cases with
probability 0), and we therefore replace the 0
and 1 with ǫ and 1−ǫ, where ǫ is a small positive
number. (ǫ = 0.01 was used in the experiments
reported in Section 4.)

In the general case, where X has continuous
parents Y = {Y1, . . . , Yj} and discrete parents
Z = {Z1, . . . , Zk}, then for each configuration
z of Z, the conditional distribution of X given
Y is given by

P (X = 1 | Y = y,Z = z) =
1

1 + exp{bz +
∑j

i=1 wi,zyi}
. (4)

With more than one continuous variable as
argument, the logistic function cannot easily be
represented by an MTE having the same struc-
ture as in Equation 3. The problem is that the
split points would then be (linear) functions of
at least one of the continuous variables, which
is not consistent with the MTE framework (see

Definition 1). Instead we follow the same proce-
dure as for the conditional linear Gaussian dis-
tribution: for each of the continuous variables
in Y ′ = {Y2, . . . Yj}, split the variable Yi into a
finite set of intervals and use the midpoint of the
lth interval to represent Yi in that interval. The
intervals for the variables in Y ′ define a parti-
tioning D1, . . . ,Dk of ΩY ′ into hypercubes, and
for each of these partitions we apply Equation 3.
That is, for partition Dl we get

P (X = 1 | y,z) =
1

1 + exp{b′ + w1y1} ,

where b′ = b+
∑j

k=2 midk
l w

k
l . In the current im-

plementation Y1 is chosen arbitrarily from Y ,
and the partitioning of the state space of the
parent variables is performed as for the condi-
tional linear Gaussian distribution.

3 The General Algorithm

As previously mentioned, deriving an EM al-
gorithm for general MTE networks is compu-
tationally hard because the sufficient statistics
of the dataset is the dataset itself and there is
no closed-form solution for estimating the maxi-
mum likelihood parameters. To overcome these
computational difficulties we will instead focus
on a subclass of MTE networks, where the con-
ditional probability distributions in the network
mirror selected distributional families. By con-
sidering this subclass of MTE networks we can
derive a generalized EM algorithm, where the
updating rules can be specified in closed form.

To be more specific, assume that we have
an MTE network for a certain domain, where
the conditional probability distributions in the
domain mirror traditional parametric families
with known ML-based updating rules. Based on
the MTE network we can calculate the expected
sufficient statistics required by these rules (the
E-step) and by using the transformations de-
scribed in Section 2.2 we can in turn update
the distributions in the MTE network.

The overall learning algorithm is detailed in
Algorithm 1, where the domain in question is
represented by the model B. Note that in or-
der to exemplify the procedure we only consider

Fernández et al. 141

the multinomial distribution, the Gaussian dis-
tribution, and the logistic distribution. The al-
gorithm is, however, easily extended to other
distribution classes.

Algorithm 1: An EM algorithm for learn-
ing MTE networks from incomplete data.
Input: A parameterized model B over

X1, . . . ,Xn, and an incomplete
database D of cases over
X1, . . . ,Xn.

Output: An MTE network B′.
Initialize the parameter estimates θ̂B1

randomly.
repeat2

Using the current parameter estimates3

θ̂B, represent B as an MTE network B′
(see Section 2.2).
(E-step) Calculate the expected4

sufficient statistics required by the
M-step using B′.
(M-step) Use the result of the E-step5

to calculate new ML parameter
estimates θ̃B for B.
θ̂B ← θ̃B.6

until convergence ;7

return B′.8

3.1 The EM algorithm

The transformation rules for the conditional lin-
ear Gaussian distribution, the multinomial dis-
tribution, and the logistic distribution are given
in Section 2.2. In order to complete the specifi-
cation of the algorithm, we therefore only need
to define the E-step and the M-step for the three
types of distributions being considered.

3.1.1 The M-step
Given a database of cases D = {d1, . . . ,dN}

we derive the updating rules based on the ex-
pected data-complete log-likelihood function Q:

Q =
N∑

i=1

E[log f(X1, . . . ,Xn) | di]

=
N∑

i=1

n∑
j=1

E[log f(Xj | pa(Xj)) | di] .

The updating rules for the parameters for the
multinomial distribution and the Gaussian dis-
tribution are well-known and can be found in
Appendix A (see (Fernández et al., 2010a) for a
derivation).

A closed form solution does not exist for the
weight vector for the logistic function, and in-
stead one typically resorts to numerical opti-
mization such as gradient ascent for maximiz-
ing Q. To ease notation, we shall consider the
variable Xj with discrete parents Zj and con-
tinuous parents Y j (we drop indexes for the
parents whenever those are clear from the con-
text). Also, we use w̄z,j = [wT

z,j, bz,j]T and
ȳ = [yT, 1]T, in which case the gradient ascent
updating rule can be expressed as

ˆ̄wz,j := w̄z,j + γ
∂Q

∂w̄z,j
,

where γ > 0 is a small number and

∂Q

∂w̄z,j
=

N∑
i=1

P (z | di)
[∫

y
P (xj = 1, ȳ | di,z)

gz,xj=1(ȳ)ȳdy−∫
y

P (xj = 0, ȳ | di,z)gz,xj=0(ȳ)ȳdy

]
.

In order to find the partial derivative we need
to evaluate two integrals. However, the com-
bination of the MTE potential P (xj , ȳ | di,z)
and the logistic function gz,xj(ȳ) makes these
integrals difficult to evaluate. In order to avoid
this problem we use the MTE representation of
the logistic function specified in Section 2.2.3,
which allows the integrals to be calculated in
closed form.

3.1.2 The E-step
In order to perform the updating in the M-

step we need to calculate the following expecta-
tions (see Appendix A):

• E(Xj | di,z)

• E(XjȲ | di,z)

• E(Ȳ Ȳ
T | di,z)

• E
[
(Xj − l̄

T
z,jȲ)2 | di,z

]

142 Fernández et al.

All the expectations can be calculated ana-
lytically (see Appendix B). The main point to
notice in the calculations is that rather than cal-
culating e.g. E(Ȳ Ȳ

T | di,z) directly we instead
consider each of the components E(YjYk | di,z)
in the matrix individually.

4 Experimental results

In order to evaluate the proposed learning
method we have generated data from the Crops
network (Murphy, 1999). We sampled six com-
plete datasets containing 50, 100, 500, 1000,
5000, and 10000 cases, respectively, and for
each of the datasets we generated three other
datasets with 5%, 10%, and 15% missing data
(the data is missing completely at random (Lit-
tle and Rubin, 1987)), giving a total of 24 train-
ing datasets. The actual data generation was
performed using WinBUGS (Lunn et al., 2000).

Price

CropSubsidize

Buy

Figure 2: The Crops network.

For comparison, we have also learned baseline
models using WinBUGS. However, since Win-
BUGS does not support learning of multinomial
distributions from incomplete data we have re-
moved all cases where Subsidize is missing from
the datasets.

The learning results are shown in Table 1,
which lists the average (per observation) log-
likelihood of the model wrt. a test-dataset con-
sisting of 15000 cases (and defined separately
from the training datasets). From the table we
see the expected behaviour: As the size of the
training data increases, the models tend to get
better; as the fraction of the data that is missing
increases, the learned models tend to get worse.

The results also show how WinBUGS in gen-
eral outperforms the algorithm we propose in

this paper. We believe that one of the rea-
sons is the way we approximate the tails of the
Gaussian distribution in Eq. 2. As the tails are
thicker than the actual Gaussian tails, the like-
lihood is lower in the central parts of the distri-
bution, where most of the samples potentially
concentrate. Another possible reason is the way
in which we approximate the CLG distribution.
Recall that when splitting the domain of the
parent variable, we take the average data point
in each split to represent the parent, instead
of using the actual value. This approximation
tends to give an increase in the estimate of the
conditional variance, as the approximated dis-
tribution needs to cover all the training samples.
Obviously, this will later harm the average pre-
dictive log likelihood. Two possible solution to
this problem are i) to increase the number of
splits, or ii) to use dynamic discretization to
determine the optimal way to split the parent’s
domain. However, both solutions come with a
cost in terms of increased computational com-
plexity, and we consider the tradeoff between
accuracy and computational cost as an inter-
esting topic for future research.

The algorithm has been implemented in
Elvira (Elvira Consortium, 2002) and the soft-
ware, the datasets used in the experiments, and
the WinBUGS specifications are all available
from http://elvira.ual.es/MTE-EM.html.

5 Conclusion

In this paper we have proposed an EM-based
algorithm for learning MTE networks from in-
complete data. In order to overcome the com-
putational difficulties of learning MTE distribu-
tions, we focus on a subclass of the MTE net-
works, where the distributions are assumed to
mirror known parametric families. This sub-
class supports a computationally efficient EM
algorithm. Preliminary empirical results indi-
cate that the method learns as expected, al-
though not as well as WinBUGS. In particular,
our method seems to struggle when the por-
tion of the the data that is missing increases.
We have proposed some remedial actions to this
problem that we will investigate further.

Fernández et al. 143

ELVIRA WINBUGS
No. Cases Percentage of missing data Percentage of missing data

0% 5 % 10% 15% 0% 5 % 10% 15%
50 -3.8112 -3.7723 -3.8982 -3.8553 -3.7800 -3.7982 -3.7431 -3.6861

100 -3.7569 -3.7228 -3.9502 -3.9180 -3.7048 -3.7091 -3.7485 -3.7529
500 -3.6452 -3.6987 -3.7972 -3.8719 -3.6272 -3.6258 -3.6380 -3.6295

1 000 -3.6325 -3.7271 -3.8146 -3.8491 -3.6174 -3.6181 -3.6169 -3.6179
5 000 -3.6240 -3.6414 -3.8056 -3.9254 -3.6136 -3.6141 -3.6132 -3.6144

10 000 -3.6316 -3.6541 -3.7910 -3.8841 -3.6130 -3.6131 -3.6131 -3.6135

Table 1: The average log-likelihood for the learned models, calculated per observation on a separate
test set.

Acknowledgments

This work is supported by a grant from Ice-
land, Liechtenstein, and Norway through the
EEA Financial Mechanism. Supported and
Coordinated by Universidad Complutense de
Madrid. Partially supported by the Spanish
Ministry of Science and Innovation, through
project TIN2007-67418-C03-02, and by EFDR
funds.

A Updating rules

The updating rules for the parameters for the
multinomial distribution (i.e., θj,k,z = P (Xj =
k|Z = z)) and the conditional linear Gaus-
sian distribution (i.e., Xj |Z = z,Y = y ∼
N (̄lTz,jȳ, σ2

z,j)) are given by

ˆ̄lz,j ←
[

N∑
i=1

f(z | di)E(Ȳ Ȳ
T | di,z)

]−1

[
N∑

i=1

f(z | di)E(XjȲ | di,z)

]

σ̂z,j ←
[

1∑N
i=1 f(z | di)

N∑
i=1

f(z | di)E
[
(Xj − l̄

T
z,jȲ)2 | di,z

]]1/2

θ̂j,k,z ←

N∑
i=1

P (Xj = k,Z = z | di)

|sp(Xj)|∑
k=1

N∑
i=1

P (Xj = k,Z = z | di)

B Expected sufficient statistics

To illustrate the calculation of the expected suf-
ficient statistics we consider the calculation of
E

[
(Xj − l̄

T
z,jȲ)2 | di,z

]
(see Section 3.1.2):

E
[
(Xj−l̄

T

z,jȲ)2 | di

]
= E[X2

j | di]−
2̄lTz,jE[XjȲ | di] + E[(̄lTz,jȲ)2 | di]

For the second component in the summation
we need to calculate a vector of expectations,
where the kth element is E[XjYk | di]. By let-
ting the ranges of Xj and Yk be [xa, xb] and
[ya, yb] (dropping the j and k indices for sim-
plicity), respectively, it is easy to show that the
expectation can be calculated on closed form:

E [XjYi | di] =
a0

4
(y2

b − y2
a)(x

2
b − x2

a)+
m∑

j=1

aj

cj
2bj

2

(
− exp{bjya}+ bjyaexp{bjya}+

exp{bjyb} − bjybexp{bjyb}
)(
− exp{cjxa}+

cjxaexp{cjxa}+ exp{cjxb} − cjxbexp{cjxb}
)

.

For E[X2
j | di] and E

[
(̄lTz,jȲ)2 | di

]
the cal-

culations are similar; for the latter it im-
mediately follows from E

[
(̄lTz,jȲ)2 | di

]
=

l̄
T
z,jE

[
Ȳ Ȳ

T | di

]
l̄z,j.

References

Barry R. Cobb and Prakash P. Shenoy. 2006. Infer-
ence in hybrid Bayesian networks with mixtures

144 Fernández et al.

of truncated exponentials. International Journal
of Approximate Reasoning, 41(3):257–286.

Barry R. Cobb, Prakash P. Shenoy, and Rafael
Rumı́. 2006. Approximating probability density
functions in hybrid Bayesian networks with mix-
tures of truncated exponentials. Statistics and
Computing, 16(3):293–308.

Arthur P. Dempster, Nan M. Laird, and Donald B.
Rubin. 1977. Maximum likelihood from incom-
plete data via the EM algorithm. Journal of the
Royal Statistical Society, Series B, 39:1–38.

Elvira Consortium. 2002. Elvira: An environ-
ment for creating and using probabilistic graph-
ical models. In José A. Gámez and Antonio
Salmerón, editors, First European Workshop on
Probabilistic Graphical Models, pages 222–230.

Antonio Fernández, Helge Langseth, Thomas Dyhre
Nielsen, and Antonio Salmerón. 2010a. MTE-
based parameter learning using incomplete
data. Technical report, Department of Statis-
tics and Applied Mathematics, University of
Almeria, Spain. http://www.ual.es/~afa109/
downloads/Fernandez2010.pdf.

Antonio Fernández, Jens D. Nielsen, and Antonio
Salmerón. 2010b. Learning Bayesian networks
for regression from incomplete databases. Inter-
national Journal of Uncertainty, Fuzziness and
Knowledge Based Systems, 18:69–86.

Helge Langseth, Thomas D. Nielsen, Rafael Rumı́,
and Antonio Salmerón. 2009. Maximum likeli-
hood learning of conditional MTE distributions.
In Tenth European Conference on Symbolic and
Quantitative Approaches to Reasoning with Un-
certainty, volume 5590 of Lecture Notes in Artifi-
cial Intelligence, pages 240–251. Springer-Verlag,
Berlin, Germany.

Helge Langseth, Thomas D. Nielsen, Rafael Rumı́,
and Antonio Salmerón. 2010. Parameter estima-
tion and model selection in mixtures of truncated
exponentials. International Journal of Approxi-
mate Reasoning, 51:485–498.

Steffen L. Lauritzen. 1992. Propagation of proba-
bilities, means and variances in mixed graphical
association models. Journal of the American Sta-
tistical Association, 87:1098–1108.

Uri Lerner, Eran Segal, and Daphne Koller. 2001.
Exact inference in networks with discrete children
of continuous parents. In Proceedings of the Sev-
enteenth Conference on Uncertainty in Artificial
Intelligence, pages 319–328, San Francisco, CA.
Morgan Kaufmann Publishers.

Roderick J. A. Little and Donald B. Rubin. 1987.
Statistical analysis with missing data. John Wiley
& Sons, New York.

David Lunn, Andrew Thomas, Nicky Best, and
David J. Spiegelhalter. 2000. WinBUGS - a
Bayesian modelling framework: Concepts, struc-
ture, and extensibility. Statistics and Computing,
10(4):325–337.

Seraf́ın Moral, Rafael Rumı́, and Antonio Salmerón.
2001. Mixtures of truncated exponentials in hy-
brid Bayesian networks. In Sixth European Con-
ference on Symbolic and Quantitative Approaches
to Reasoning with Uncertainty, volume 2143 of
Lecture Notes in Artificial Intelligence, pages 145–
167. Springer-Verlag, Berlin, Germany.

Kevin P. Murphy. 1999. A variational approxima-
tion for Bayesian networks with discrete and con-
tinuous latent variables. In Kathryn B. Laskey
and Henri Prade, editors, Proceedings of the Fif-
teenth Conference on Uncertainty in Artificial In-
telligence, pages 467–475, San Francisco, CA.

Vanessa Romero, Rafael Rumı́, and Antonio
Salmerón. 2006. Learning hybrid Bayesian net-
works using mixtures of truncated exponentials.
International Journal of Approximate Reasoning,
42:54–68.

Rafael Rumı́, Antonio Salmerón, and Serafin Moral.
2006. Estimating mixtures of truncated exponen-
tials in hybrid Bayesian networks. TEST: An Of-
ficial Journal of the Spanish Society of Statistics
and Operations Research, 15(2):397–421, Septem-
ber.

Gideon Schwarz. 1978. Estimating the dimension of
a model. The Annals of Statistics, 6:461–464.

Prakash P. Shenoy and Glenn Shafer. 1990. Ax-
ioms for probability and belief-function propaga-
tion. In Proceedings of the Sixth Workshop on
Uncertainty in Artificial Intelligence, pages 169–
198.

Pp. 145–153 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

146 Gómez-Villegas et al.

Gómez-Villegas et al. 147

148 Gómez-Villegas et al.

Gómez-Villegas et al. 149

150 Gómez-Villegas et al.

Gómez-Villegas et al. 151

152 Gómez-Villegas et al.

Pp. 153–161 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Causal discovery for linear cyclic models with latent variables
Antti Hyttinen1, Frederick Eberhardt2, and Patrik O. Hoyer1,3

1 HIIT / Dept. of Computer Science, University of Helsinki, Finland
2 Dept. of Philosophy, Washington University in St Louis, MO, USA

3 CSAIL, Massachusetts Institute of Technology, Cambridge, MA, USA

Abstract
We consider the problem of identifying the causal relationships among a set of variables in the
presence of both feedback loops and unmeasured confounders. This is a challenging task which,
for full identification, typically requires the use of randomized experiments. For linear systems,
Eberhardt et al (2010) recently provided a procedure for integrating data from several experiments,
and gave a corresponding, but demanding, identifiability condition. In this paper we (i) charac-
terize the underdetermination of the model when the identifiability condition is not fully satisfied,
(ii) show that their algorithm is complete with regard to the search space and the assumptions, and
(iii) extend the procedure to incorporate the common assumption of faithfulness, and any prior
knowledge. The resulting method typically resolves much additional structure and often yields
full identification with many fewer experiments. We demonstrate our procedure using simulated
data, and apply it to the protein signaling dataset of Sachs et al (2005).

1 Introduction

Researchers are frequently interested in discovering
the causal relationships among some given set of
variables under study. Such relationships are often
represented as directed graphs, in which the vari-
ables constitute the nodes of the graph, and a di-
rected edge from one variable xi to another vari-
able x j indicates that xi is a direct cause of x j rel-
ative to that set of variables. Since causal rela-
tions are not directly observable they must be in-
ferred from available experimental or passive obser-
vational data. Several algorithms have been devel-
oped that discover as much as possible about such
causal relations from passive observational data.
One of the difficulties these algorithms confront is
the almost inevitable underdetermination of the true
causal structure. This problem is exacerbated when
there are unmeasured (latent) common causes of
the set of variables under consideration, or when
there are feedback loops. Consequently, constraints
are typically placed on the search space the algo-
rithms consider: The ‘FCI’ algorithm (Spirtes et
al., 2000) only considers acyclic causal structures
but allows latent variables, while the ‘CCD’ algo-
rithm of Richardson (1996) can handle cyclic causal

systems but does not allow for latents. Even with
these restrictions, both algorithms can at best return
equivalence classes of causal graphs.

Thus, it is common to turn to experimental data.
While randomized experiments break confounding
and feedback loops, they pose different challenges.
Given that experiments are often costly, how can
we identify the causal structure from as few ex-
periments as possible? How can we integrate the
data from several existing experiments to yield as
much information as possible about the causal re-
lationships among the variables? In this paper, we
show how to efficiently perform such causal discov-
ery in linear models from a combination of obser-
vational and experimental data, while allowing both
feedback loops and confounding hidden variables.

We consider a standard class of models known as
linear non-recursive structural equation models with
correlated disturbances (Bollen, 1989). Specifically,
let V = {x1, . . . , xN} denote the set of observed vari-
ables. Arranging these variables into the vector x,
the linear model is given by

x := Bx + e, (1)

where each element b ji of B gives the direct ef-
fect from xi to x j, also denoted b(xi → x j), and

154 Hyttinen at al.

��������x1
α ��

��

λ

����������x3��
µ

��
ε

����
��

��
��

�

γ

����������x2
β

��
��

ϕ

��
��������x4

δ

��
��������
��������

����������������x1 ����������������x3

ε
����

��
��

��
�

γ

����������x2
β

��
��

ϕ

��
��������x4

B =

0 0 0 0
0 0 ε 0
α 0 0 δ
0 β γ 0

 2 0 0

Bm =

0 0 0 0
0 0 ε 0
0 0 0 0
0 β γ 0

 1 0 0 0

Σe =

σ2
1 0 λ 0

0 σ2
2 µ ϕ

λ µ σ2
3 0

0 ϕ 0 σ2
4

Σm
e =

1 0 0 0
0 σ2

2 0 ϕ
0 0 1 0
0 ϕ 0 σ2

4

(a) (b)

Figure 1: (a) Example model. (b) Manipulated
model, corresponding to an experiment (Jm,Um)
where Jm = {x1, x3} and Um = {x2, x4}. Disturbance
variables are not shown.

the random vector e contains zero-mean disturbance
(error) variables with a covariance matrix Σe =

E{eeT }. An example model is given in Figure 1a.
An experiment Em = (Jm,Um) divides V into two

mutually exclusive and exhaustive sets Jm and Um.
Jm contains the variables subject to an intervention
in Em and Um contains the variables that are pas-
sively observed in that experiment. In such an ex-
periment, all variables xi ∈ Jm are independently
and simultaneously randomized. In terms of the di-
rected graph, this is represented by cutting all edges
into any such variable (Pearl, 2000). In terms of
the parameters, we thus have a manipulated model
(Bm,Σm

e), where Bm is equal to B except that all
rows corresponding to such randomized variables
are set to zero, and Σm

e equals Σe but with all rows
and columns corresponding to randomized variables
set to zero, except for the corresponding diagonal
element which is set to equal one due to the fixed
variance of the randomization. See Figure 1b.

If the variables cannot be ordered such that the
corresponding B is lower-triangular we have a truly
non-recursive system that cannot be represented as
a directed acyclic graph (DAG). If Σe has non-zero
off-diagonal entries the system is said to exhibit
confounding due to latent variables. In each ex-

periment Em the data are generated such that a ran-
dom sample of disturbance vectors e are drawn with
(manipulated) covariance Σm

e , and we observe the
vectors x (and hence their covariance Σm

x) generated
(at equilibrium) from the model with (manipulated)
coefficient matrix Bm. For the feedback system to
reach equilibrium, the absolute values of all eigen-
values of Bm must be smaller than one.1 A passive
observational dataset is obtained in an ‘experiment’
in which Jm = ∅ and Um = V.

In an experiment in which xi ∈ Jm and x j ∈
Um, the experimental effect of xi on x j, denoted
t(xi�x j || Jm), is defined as the covariance of xi and
x j in this experiment, i.e. Σm

x [i, j]. This is equal to
the sum of the strenghts of all uncut directed paths
from xi to x j, where the strength of a path is simply
the product of the edge coefficients (direct effects)
on that path.2

Our task is to devise a sequence of experiments
(E1, . . . ,EM), and corresponding estimation proce-
dure, that fully identifies the parameter matrices B
and Σe, in the sense that the estimates are consistent
(converge to the true values in the infinite sample
limit). Alternatively or in addition, for a fixed set of
experiments one would like to recover as many as
possible of these parameters. Note that if all but
one variable is randomized in an experiment (i.e.
Jm = V \ {x j}) one can consistently estimate all
direct effects b(xi → x j), ∀i � j, since in this
experiment the direct effects equal the experimen-
tal effects. Thus one solution to identify B con-
sists of M = N such experiments each interven-
ing on N − 1 variables. If in addition a passive
observational dataset were available, one can ob-
tain a consistent estimate of Σe from the identity
Σx = (I − B)−1Σe(I − B)−T , where Σx is the co-
variance of x in a passive observational dataset.

Can we get by with fewer experiments? Recently,
Eberhardt et al (2010) provided a procedure that
identifies the full matrix B if and only if the follow-
ing pair condition holds for each ordered variable
pair (xi, x j) ∈ V × V, with i � j: there is an ex-
periment Em = (Jm,Um) in the sequence in which
xi ∈ Jm and x j ∈ Um.

1As in (Eberhardt et al., 2010) we assume that this condition
is satisfied for all possible manipulations of the B-matrix.

2Note that this sum has an infinite number of terms when
the model is cyclic.

Hyttinen at al. 155

However, several questions were left unanswered
in their study. First, if the pair condition is not sat-
isfied for all ordered pairs, which direct effects are
identified and which are not? Second, is it possible
that some alternative procedure might identify the
full model even when for some pairs the condition
is not satisfied? Finally, satisfying the pair condition
for all ordered pairs is a very high bar for the identi-
fiability of the underlying causal structure, as it re-
quires that each variable must be subject to at least
one intervention at some point in the sequence of
experiments. For any observed variable that is not
subject to an intervention their algorithm can only
discover the causal structure marginalized over that
variable. Thus, can we make use of prior knowl-
edge when available, or strengthen some of the as-
sumptions, to avoid requiring the pair condition for
all pairs? We answer these three questions in Sec-
tions 2–4, respectively. Then, in Section 5, we de-
scribe a simple adaptive procedure for selecting the
sequence of experiments, while providing simula-
tions in Section 6 and an application to the protein
signaling dataset of Sachs et al (2005) in Section 7.
Conclusions are given in Section 8.

2 Characterization of underdetermination

Eberhardt et al (2010) showed that if the pair con-
dition (see Section 1) is not satisfied for all or-
dered pairs then their estimation procedure leaves
some total effects undetermined, and hence some
elements of the direct effects matrix B are unde-
termined as well. They then suggested a numerical
heuristic to identify the set of edges that are not yet
determined. Here we show how, using an alterna-
tive formulation of the procedure, we obtain a char-
acterization of the remaining underdetermination in
the direct effects.

From an experiment Em = (Jm,Um), with xi ∈ Jm

and x j ∈ Um, Eberhardt et at (2010) showed that one
can derive linear constraints on the total effects en-
tailed by the model. For the purposes of the present
paper, it is much more useful to work with the direct
effects. We can similarly derive the following linear
constraints expressing the experimental effects as a
linear sum of direct effects:

t(xi�x j || Jm) =
�

xk∈Um\x j

t(xi�xk || Jm) b(xk → x j)

+ b(xi → x j) (2)

For instance, for the experiment of Figure 1b, with
i = 3 and j = 4, we get t(x3�x4 || Jm) =
t(x3�x2 || Jm)b(x2 → x4) + b(x3 → x4), which is
easily verified. This equation holds for cyclic as
well as acyclic systems, and derives from the def-
inition of the experimental effect from xi to x j (see
Section 1). When grouping all directed paths from
xi to x j according to the final edge into x j, each
such group represents another experimental effect
obtainable from Em. Note that the experimental ef-
fects t(xi�x j || Jm) and t(xi�xk || Jm) are numerical
quantities estimated from the experiments, and the
unknowns are the direct effects b(xk → x j), ∀xk ∈
Um \ x j, and b(xi → x j).

This alternative representation immediately lends
itself to the identification of the underdetermination
in the direct effects. All linear equations of the form
of equation 2 can be written into a matrix equation
Kb = k, where the unknown vector b groups the
elements of the unknown matrix B. A given element
of b (and hence of B) is undetermined if and only
if that element is involved in the nullspace of the
constraint matrix K.

The above characterization does not provide
much of an understanding of the underdetermina-
tion in terms of the graph structure. Nevertheless,
consider the following. Any direct effects b(• →
x j) into x j are only constrained by experiments in
which x j ∈ Um. That is, the direct effects occur only
in constraints of this type and there is only one (lin-
early independent) such constraint for each ordered
pair (•, x j) that the pair condition is satisfied for.
Thus, in the general case, when the pair condition
is not satisfied for a particular pair (xi, x j) then the
entire j:th row of B is undetermined. Conversely,
since the direct effects into x j are the only direct
effects that enter into these types of constraints, it
follows that if the pair condition is satisfied for all
pairs (•, x j), then n−1 constraints can be determined
and the row in B specifying the direct effects into x j

is fully identified. Hence, to guarantee the identifi-
ability of a given direct effect b(xi → x j), it is nec-
essary to satisfy the pair condition for all ordered
pairs (xk, x j) with k � j. Note that in particular

156 Hyttinen at al.

graphs it may be possible to identify a direct effect
b(xi → x j) even when the above condition is not
true. In all cases, our code package provides the
user with an explicit characterization of which co-
efficients are determined and which are not, given
the results of any provided set of experiments.

3 Completeness of the procedure

An important question concerns whether the pro-
cedure introduced by Eberhardt et al (2010) fully
exploits all the available data. Each experiment
Em = (Jm,Um) supplies a data covariance matrix
Σm

x , in which each entry Σm
x [i, j] specifies the co-

variance between xi and x j in the experiment Em.
The procedure as described (and the related pair
condition theorem the authors gave) is based ex-
clusively on constraints due to the experimental ef-
fects t(xi�x j || Jm) = Σm

x [i, j] where xi ∈ Jm and
x j ∈ Um. These covariances only constitute part
of the information contained in a data convariance
matrix Σm

x . In particular, the covariances between
non-intervened variables, Σm

x [j, k] with x j, xk ∈ Um,
were not utilized at all.3 It is tempting to think
that this additional source of information could pro-
vide further leverage to identify the causal structure,
and thereby reduce the demands for identifiability.
However, we have the following negative result:

Lemma 1. Let the true model generating the data
be (B,Σe). For each of the experiments (Em)m=1,...,M
the obtained data covariance matrix is Σm

x . If there
is a direct effects matrix �B � B such that for all
(Em)m=1,...,M and all xi ∈ Jm and x j ∈ Um it produces
the same experimental effects t(xi�x j || Jm), then
the model (�B,�Σe) with �Σe = (I − �B)(I − B)−1Σe(I −
B)−T (I−�B)T has data covariance matrices�Σm

x = Σ
m
x

for all m = 1, ...,M.

Proof. The proofs for all results given in this paper
are provided in online supplementary material at:
http://cs.helsinki.fi/u/ajhyttin/exp/

When B is underdetermined Lemma 1 constitutes
a constructive proof that any measure of the co-
variance between two non-intervened variables pro-
vides no additional help with the identifiability of

3Obviously, when two variables are both in Jm, then the co-
variance between them in that experiment is zero by assump-
tion, since simultaneous interventions are assumed to make the
intervened variables independent.

B in the model space considered in (Eberhardt et
al., 2010). Intuitively, this result is a consequence
of the dependence of the covariances between non-
intervened variables on the model’s disturbance co-
variance matrix Σe. The additional (n2 + n)/2 un-
known parameters of Σe swamp the gains these co-
variance measures provide. Lemma 1 implies that
the pair condition theorem can be strengthened to
state that the method of Eberhardt et al. (2010) is
complete with regard to the information contained
in the data covariance matrices for the search space
they consider.

Theorem 1 (Completeness Theorem). Given the
data covariance matrices from a sequence of exper-
iments (Em)m=1,...,M over the variables in V, all di-
rect effects b(xi → x j) are identified if and only if
the pair condition is satisfied for all ordered pairs
of variables w.r.t. these experiments.4

However, measures of the covariances between
non-intervened variables are necessary to identify
the disturbance covariance matrixΣe (specifying the
latent variables). In the original procedure Σe was
determined using measurements from an additional
passive observational dataset (with Jm = ∅). It can
be shown that a much weaker condition, similar to
the pair condition for experimental effects, is neces-
sary and sufficient for the identification of Σe, if B is
already determined. We can thus state the following
general theorem of model identifiability:

Theorem 2 (Model Identifiability Theorem). Given
a sequence of experiments (Em)m=1,...,M over the
variables in V the model (B,Σe) is fully identified if
and only if for each ordered pair of variables (xi, x j)
there is an experiment Eb = (Jb,Ub) with xi ∈ Jb

and x j ∈ Ub and another experiment Ee = (Je,Ue)
with xi, x j ∈ Ue.

Thus, the good news is that the algorithm given
by (Eberhardt et al., 2010) does as well as it possibly
could with regard to identifiability. The bad news is
that the generality of its search space implies that
the conditions for identifiability are very demand-
ing. Hence, in the following section we consider
how the use of background knowledge or an addi-
tional assumption of faithfulness can help.

4Note the inevitable limitation of identifiability with regard
to self-loops discussed in (Eberhardt et al., 2010).

Hyttinen at al. 157

4 The faithfulness assumption

When two variables are independent one commonly
assumes that they are not causally connected. How-
ever, this assumption is non-trivial, since it pre-
cludes, for example, cases where two variables are
connected by two separate pathways that exactly
cancel each other out. The two variables are then
probabilistically independent, while they are still
causally connected by a directed path.

For instance, in the model of Figure 2a, in an
experiment where x1 is randomized, and x2 and x3
are (passively) observed, x1 and x3 would be found
marginally independent, but dependent conditional
on x2. Such an observation could have many possi-
ble alternative explanations, two of which are shown
in Figures 2b and 2c. In such cases scientists do of-
ten make the assumption that an absence of a cor-
relation is an indication of the absence of a causal
connection, and hence favor explanations (b) and (c)
over (a). In this section we introduce inference rules
that take advantage of this intuition.

The structure of a model entails certain marginal
and conditional independencies in the resulting dis-
tribution; these are characterized by the Markov
condition, and Spirtes (1995) has shown that the fa-
miliar concept of d-separation specifies all and only
the independencies entailed in all linear structural
equation models, including cyclic (non-recursive)
models. The intuition given above is then formal-
ized in the faithfulness assumption, which states that
all independencies in the population distribution are
derived from the structure of the graph, rather than
specific parameter values (Spirtes et al., 2000; Pearl,
2000).

For maximum generality, the algorithm in (Eber-
hardt et al., 2010) did not use the assumption of
faithfulness. However, given the demanding iden-
tifiability conditions (see Section 1), it is worth in-
vestigating whether faithfulness might add substan-
tial benefit when the pair condition is not satisfied
for all ordered pairs of variables.

In general, causal discovery based on faithfulness
proceeds in two steps. First, independence tests are
used to detect the absence of edges between pairs of
variables. Subsequently, the detected absences are
used to ‘orient’ as many as possible of the remaining
edges. We here employ an analogous approach.

(a) ��������x1
a ��

−ab

����������x2
b �� ��������x3

(b) ��������x1 �� ��������x2 ��������x3��

(c)

u

����
��

�

���
��

��

��������x1 �� ��������x2 ��������x3

Figure 2: Example graphs. In (c) u is unmeasured.

First, we rely on the fact that if, in any experi-
ment Em = (Jm,Um), two non-intervened variables
xi, x j ∈ Um are marginally or conditionally indepen-
dent (with any conditioning set not including xi and
x j), then by faithfulness b(xi → x j) = b(x j → xi) =
Σe[i, j] = 0. Similarly, if xi ∈ Jm and x j ∈ Um

are found marginally or conditionally independent,
faithfulness requires that b(xi → x j) = 0. (Note that
while independencies imply the absence of edges,
dependencies do not necessarily imply the presence
of any edge between a given pair of edges.) In our
implementation we run the statistically and compu-
tationally efficient schedule of independence tests
suggested by the PC-algorithm (Spirtes et al., 2000)
on the data from each experiment separately. Al-
thought PC is designed for a different search space,
any indepencies found are usable in our procedure
as well. Any obtained constraints are termed skele-
ton constraints.

The orientation rules of the second step of the in-
ference are more intricate. We cannot simply adopt
the orientation rules from existing constraint-based
algorithms since they only provide orientation rules
for search spaces where the true causal structure
either contains latent variables but no cycles (FCI,
(Spirtes et al., 2000)) or contains cycles but no la-
tent variables (CCD, (Richardson, 1996)). Since our
model space contains both latent variables and cy-
cles, and we have the advantage of experiments, dif-
ferent orientation rules are required. We employ the
following two rules that take advantage of the ori-
entation supplied by interventions. Any constraints
thus obtained are termed orientation constraints:

(1) If in a given experiment we have xi ∈ Jm

and x j, xk ∈ Um, and t(xi�x j || Jm) � 0 but
t(xi�xk || Jm) = 0, then b(x j → xk) = 0 by faithful-

158 Hyttinen at al.

ness. For instance, in the model of Figure 1a, in an
experiment with Jm = {x3}, we see an experimental
effect from x3 to x2, but no experimental effect from
x3 to x1. We would thus infer that b(x2 → x1) = 0.
Similarly we would infer that b(x4 → x1) = 0. This
rule is sound because by the antecedent there is a
directed path from xi to x j so that, were there a non-
zero direct effect b(x j → xk) it would follow that
there would be a directed path from xi to xk, which
for a faithful model would imply a non-zero experi-
mental effect of xi on xk.

(2) Again, if we have xi ∈ Jm and x j, xk ∈ Um,
and observe t(xi�x j || Jm) � 0, and in addition xi

is conditionally independent of xk given x j, then we
infer that b(xk → x j) = 0 and Σe[j, k] = 0. The rule
is correct under faithfulness because we must have
a directed path from xi to x j, so if there existed a
direct effect from xk to x j (or a confounder between
the two) by faithfulness this would cause a depen-
dence between xi and xk when conditioned on the
collider x j.

Since all the new constraints are (trivially) linear
in the direct effects, they can be directly added to
the set of constraints on the direct effects given by
the experimental effects described in Section 2. The
combined system can then be solved and the under-
determination characterized as before.

We note that the above rules clearly do not
exhaust the inferences that could (potentially) be
drawn by faithfulness. It is an open (and intrigu-
ing!) problem to devise a set of complete rules for
causally insufficient, cyclic discovery.

Finally, if by domain knowledge we are guaran-
teed that xi does not have a direct effect on x j (with
respect to V), then we may naturally add the con-
straint b(xi → x j) = 0. Such prior knowledge may
be particularly useful for dense graphs or models
which are close to unfaithful, when the faithfulness
rules would not apply or would be unreliable.

5 Adaptive selection of experiments

While the form of the constraints obtained from the
experimental effects (given in Section 2) can be pre-
dicted ahead of performing the experiments, con-
straints due to faithfulness come as an unexpected
‘bonus’: We cannot know ahead of time which inde-
pendencies will be uncovered. Hence, to minimize

the total number of experiments, one must react and
adapt the sequence to newly discovered constraints.

We have found that a simple greedy selection pro-
cedure works well. As in the original procedure of
Eberhardt et al (2010), we keep a list of which or-
dered pairs have the pair condition satisfied. How-
ever, in addition to pairs satisfied purely on the ba-
sis of the choice of previous experiments Em, we
also treat any pair (xi, x j) as if it is satisfied when-
ever, using the characterization of underdetermina-
tion in Section 2, the coefficient b(xi → x j) is de-
termined. This includes both coefficients directly
determined by background knowledge or our faith-
fulness rules, as well as coefficients indirectly deter-
mined by the collection of all existing constraints.
The next experiment is selected such that we maxi-
mize the number of ordered pairs for which the pair
condition is guaranteed to be satisfied after the ex-
periment, arbitrarily breaking ties. In the following
simulations, we demonstrate that, for sparse graphs,
this is an effective selection protocol.

6 Simulations

In this section, we describe a set of simulations on
random graphs that we used to investigate the power
provided by the faithfulness assumption.5

We generated a large number of random graphs
over 10 variables, with sparsity ranging from zero
edges up to 60 edges (out of 135 possible, count-
ing both direct and confounding edges). The coef-
ficients were drawn uniformly from [0.3, 0.8] with
random sign, and stability was examined by check-
ing the eigenvalues of the resulting B.

First, we study the theoretical limit behavior (in-
finite sample limit) of our procedure. In Figure 3a,
we plot the average number of experiments needed
to completely identify the model, as a function of
the underlying model sparsity and the number of in-
terventions per experiment. For one intervention per
experiment (left panel), in the absence of faithful-
ness rules the full 10 experiments are needed regard-
less of sparsity, while for relatively sparse graphs on
average a few experiments can be saved by utiliz-
ing faithfulness. When intervening on three vari-
ables per experiment (right panel), 7 experiments

5We encourage the interested reader to try out the method.
A complete implementation (reproducing all the simulations) is
available at: http://cs.helsinki.fi/u/ajhyttin/exp/

Hyttinen at al. 159

are needed in the basic case to satisfy the pair con-
dition for all pairs, and significant savings can be
obtained when using the faithfulness assumption.
Meanwhile, Figure 3b shows the number of ordered
pairs (a lower bound of the rank of the constraint
matrix) satisfied after only three experiments, as a
function of sparsity. It can be seen that for sparse
graphs, most of the structure of the graph has al-
ready been discovered at this stage of the sequence
of experiments.

Second, we look at finite sample behavior. Fig-
ure 4 shows the number of experiments used, as well
as the resulting accuracy (linear correlation between
estimated and true coefficients). In each experiment,
10,000 samples were used. We note the following:
To guarantee high accuracy in dense graphs, the pair
condition must be satisfied for all pairs based on
the experimental setup alone (as in the ‘no faithful-
ness’ procedure). However, when the true model is
sparse, significant savings in terms of the number
of experiments are possible. Especially when inter-
vening on several variables in each experiment, the
full model is typically identified with high accuracy
in just 4 experiments. Accuracy drops markedly for
dense graphs, as the number and size of possible
conditioning sets is so large that inevitably some de-
pendent variables are mistakenly inferred to be in-
dependent, yielding large errors. These erroneous
inferences cause the number of experiments to stay
roughly constant as a function of the number of
edges in the graph, in marked contrast to the infi-
nite sample limit of Figure 3a.

7 Application to flow cytometry data

Finally, we applied the algorithm (with the faithful-
ness rules) to the flow cytometry data of Sachs et al
(2005). In this data set only 4 of the 11 measured
variables were manipulated with no changes made
to the background conditions, see (Eberhardt et al,
2010) for details. This meant that the pair condition
was satisfied for only 40 ordered pairs out of the
total of 110. Together with the faithfulness rules,
however, these experiments were enough to deter-
mine a majority of the direct effects in the model.

We ran the inference procedure with a variety of
parameter settings (significance threshold for statis-
tical dependence, using the full faithfulness rules or

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0
2

4
6

8
10

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0
2

4
6

8
10

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0
20

40
60

80
10

0

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0
20

40
60

80
10

0

● no faithfulness
skeleton rules
all rules

1 variable interventions max 3 variable interventions(a)

(b)

nu
m

be
r o

f p
ai

rs
nu

m
be

r o
f e

xp
er

im
en

ts
number of edges number of edges

Figure 3: Performance of the procedure in the
infinite-sample limit. (a) Number of experiments
needed to identify the full model, and (b) amount
of structure discovered after three experiments, as a
function of the number of edges in the graph.

only the skeleton rules, threshold for detecting de-
termined vs undetermined coefficients, etc). A typ-
ical result is shown in Figure 5. We emphasize that
our method assumes linearity, while the true model
is likely to be at least somewhat non-linear. Thus
the main interest lies in the resulting structure, and
possibly the signs of the direct effects. While there
were differences in the inferred graphs, many fea-
tures were common to all of our results.

In particular, we always find (a) the well known
Raf→Mek→Erk pathway (and invariably, in addi-
tion, Mek seems to have a direct effect on Raf),
(b) PKC influences (directly or indirectly) a num-
ber of targets, including Raf, PKA, and Jnk, and (c)
a strong association between PIP2 and PIP3 (and
these are sometimes though not always connected
with Plcg). These features are quite compatible with
the ‘ground truth’ (from the literature) model given
by Sachs et al (2005). However, our procedure also
suggests that many of the variables have effects into
PKA, something not supported by their model. Fi-
nally, we note that our method quite often detects
bidirectional relationships; at this point, we do not

160 Hyttinen at al.

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0
2

4
6

8
10

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0
2

4
6

8
10

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

number of edges

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

10 20 30 40 50 60

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

edges

● no faithfulness
skeleton rules
all rules

(a)

(b)

1 variable interventions max 3 variable interventions

ac
cu

ra
cy

nu
m

be
r o

f e
xp

er
im

en
ts

number of edges number of edges

Figure 4: Results on simulated (sample) data.
(a) Number of experiments needed to identify the
model, and (b) accuracy (correlation between the
estimates and the true values), as a function of the
number of edges in the graph.

know whether this is due to the nature of our proce-
dure or whether this is a true feature of the data.

8 Conclusions

The discovery procedure is relatively unique in the
generality of the model space considered. While
there exists a large body of work on learning acyclic
causal structures with or without hidden variables,
there is comparatively little on learning models in-
volving feedback loops. Richardson (1996) gave
a constraint-based discovery procedure for passive
observational data, but did not allow for latent
variables. More recently, both Schmidt and Mur-
phy (2009) and Itani et al (2010) have introduced
probabilistic models for cyclic structures involving
discrete-valued variables, and given related discov-
ery procedures. While all of these methods use
somewhat different models and assumptions, ulti-
mately they nevertheless all share the goal of elu-
cidating causal structure among variables that are
recurrently connected. A thorough empirical study,
comparing the various methods both on simulations
and on a number of real datasets, would be an im-
portant next step.

��������PKC

0.20
��
0.20

��NA

��

−0.18

����������������������

��������PKA
−0.22

�� ��������Raf

NA
��

−0.19��

��������Plcg

NA

��

−0.14 ��

��������Jnk

NA

��

0.11 ��

��������P38NA
��

NA

��

0.14

��

−0.20

��

��������Mek

−0.30

��

−0.26
��

−0.11

����������������������

0.13

��

��������PIP3

NA��

NA

��

��������Erk

NA����������PIP2

NA

��

−0.14

��

��������Akt

−0.14
��

−0.26

��

Figure 5: Protein interaction graph inferred from the
dataset of Sachs et al (2005), with ‘NA’ denoting
non-identified edge strengths (which could poten-
tially be zero, hence these edges are plotted with
dotted lines). Settings: significance threshold 0.05,
only skeleton rules.

Acknowledgments
A.H. and P.O.H. were funded by Univ. of Helsinki
Research Funds and the Academy of Finland.

References
K. A. Bollen. 1989. Structural Equations with Latent

Variables. John Wiley & Sons.

F. Eberhardt, P. O. Hoyer, and R. Scheines. 2010. Com-
bining experiments to discover linear cyclic models
with latent variables. In AISTATS 2010.

S. Itani, M. Ohannessian, K. Sachs, G. P. Nolan, and
M. A. Dahleh. 2010. Structure learning in causal
cyclic networks. In JMLR W&CP, volume 6, pages
165–176.

J. Pearl. 2000. Causality. Oxford University Press.

T. Richardson. 1996. Feedback Models: Interpretation
and Discovery. Ph.D. thesis, Carnegie Mellon.

K. Sachs, O. Perez, D. Pe’er, D.A. Lauffenburger, and
G.P. Nolan. 2005. Causal protein-signaling networks
derived from multiparameter single-cell data. Sci-
ence, 308(5721):523–529.

M. Schmidt and K. Murphy. 2009. Modeling discrete in-
terventional data using directed cyclic graphical mod-
els. In UAI ’09.

P. Spirtes, C. Glymour, and R. Scheines. 2000. Causa-
tion, Prediction and Search. MIT Press, 2 edition.

P. Spirtes. 1995. Directed cyclic graphical representa-
tion of feedback models. In UAI’95.

Pp. 161–169 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Information enhancement for approximate representation of
optimal strategies from in�uence diagrams

Finn Verner Jensen
Aalborg University, Denmark

fvj@cs.aau.dk

Elena Gatti
Università di Milano-Bicocca, Italy

elena.gatti@disco.unimib.it

Abstract

The main source of complexity problems for large in�uence diagrams is that the last
decisions have intractably large spaces of past information. Usually, it is not a problem
when you reach the last decisions; but when calculating optimal policies for the �rst
decisions, you have to consider all possible future information scenarios. This is the curse

of knowing that you shall not forget. The usual approach for addressing this problem
is to reduce the information through assuming that you do forget something (LIMID,
(Nilsson and Lauritzen, 2001)), or to abstract the information through introducing new
nodes (Jensen, 2008). This paper takes the opposite approach, namely to assume that
you know more in the future than you actually will. We call the approach information

enhancement. We reduce the future information scenarios by adding information links.
We present a systematic way of determining information links to add.

1 Introduction

As opposed to decision trees, in�uence diagrams
are easy to enter to a computer. Hence, the hard
job is to establish a solution: a set of optimal
policies {δi}, one for each decision Di. There
are several algorithms for solving IDs (Olmsted,
1983) (Shachter, 1986),(Shenoy, 1992), (Jensen
et al., 1994), but the principle behind them all
is dynamic programming starting with the last
decision. That is, �rst an optimal policy for the
last decision is determined. Next, this policy
is represented somehow, and the optimal pol-
icy for the second last decision is determined by
using the policy for the last decision with the
aim of forecasting the expected utility. The way
it is performed is through variable elimination:
all variables are successively removed from the
graph, and when a variable A is removed, the re-
sulting graph will hold a link between any pair
of A's neighbors. For IDs the elimination order
has to respect the reverse (partial) temporal or-

dering induced by the structure of the ID. We
assume the reader to be familiar with standard
concepts and methods for probabilistic graph-
ical models (d-separation, triangulation, junc-
tion trees).

The solution phase may be very demanding
with respect to time and space, but it is an o�-
line activity where you are not bound by tough
resource constraints. The complexity problem
arises when you eliminate a variable A, and you
have to work with a joint table over an almost
too large set of neighbors of A.

The next task is to represent the solution.
The policies in the solution may have very large
domains. Take for example the last decision in
a sequence of ten. Then the policy δ10 is a func-
tion whose domain may include all previous ob-
servations and decisions.

For illustration, look at Figure 1. The domain
for δ4 contains 11 variables. This means that
variable elimination will have to deal with tables
with 1011 entries. It is an o�-line activity, and

162 Jensen & Gatti

U1

C17

C16C15C14C13

C12C11

O7

O8

D4

O5

O6

D3

O3

O4

D2
D1

C4C3

O1

O2

Figure 1: An in�uence diagram over variables
with ten states.

you may succeed by spending much time, space
and exploit sophisticated machines and/or cloud
computing. Although it may seem intractable
to represent δ4 for fast online access, it is not a
problem: the ID itself is a very compact repre-
sentation of a policy for the last decision. When
you have to take the decision D4, you know the
state of the information variables, and it is an
easy computational task to �nd an optimal de-
cision.

The problem concerns the �rst decision.
When taking the �rst decision you must antici-
pate what you will do when taking the last deci-
sion. However, you do not know the information
available at that time, and therefore you in prin-
ciple have to work with the joint probability of
all the unknown information variables (includ-
ing future decisions). This is what we call the
curse of knowing that you shall not forget.

We consider a solution of an in�uence diagram
as a representation of a set of policies. The pol-
icy for the �rst decisions may be represented as
a look-up table and the policies for the last deci-
sions may be represented as in�uence diagrams.
Usually, the domain of the �rst decision is not
extremely large, so you may o�-line compute an
optimal policy, which can be stored for fast ac-
cess. We shall address the decisions in between,
and we construct in�uence diagram representa-
tions, where policies of future decisions are ap-
proximated through reduction of their domain
(see Figure 2 for an illustration).

If the ID in Figure 2 is used to represent the
policy δ7, then the nodes P1 to P6 are known.
That is, the state of these nodes are entered be-
fore the solution algorithm is started, and they
do not contribute to the space complexity of the

solution algorithm. The problem for the situa-
tion in Figure 2 is twofold; the space of the past
for D7 is too large such that δ7 cannot be repre-
sented as a look-up table, and the space of future
information relevant for D10 is so large that an
on-line solution of the ID is not tractable.

The problem has previously been addressed
by an approach, which can be characterized as
information abstraction: you aim at determin-
ing a small set of variables which serve as an
abstraction of the actual information. This may
done with the LIMID approach (Nilsson and
Lauritzen, 2001), where it is assumed that some
information will be forgot in the future, or it
may be done through introduction of new nodes
(like history nodes) through which the informa-
tion is passed (Jensen, 2008).

In this paper we take the opposite approach,
which we call information enhancement : we as-
sume the decision maker to be more informed
than actually will be the case.

2 Information enhancement

Our information enhancement approach consists
of determining a small set of variables, which if
known would overwrite the actual information.
We shall use the terms disclosed and closed for
variables with known state and unknown state,
respectively.

The idea behind information enhancement is
to �nd a cut set S which d-separates the rest
of the information from the relevant utilities.
When S has been determined, we assume it to
be disclosed when taking the future decision.
We shall say that the new information nodes
are enhanced

To illustrate the approach, consider a �nite
horizon partially observable Markov decision
process (POMDP) (Drake, 1962) (see Figure 3).

As the nodes C1 to C7 may be a compound of
several variables, and the observed nodes may
also be a set of variables, we may assume that
all the chance variables have 50 states. Now,
consider the decision D3. The past is too large
for a direct representation of δ3, and the in�u-
ence diagram with the past of D3 instantiated
is also too complex. We can approximate δ3

Jensen & Gatti 163

24

21

23

22

D10

20

19

18

17

16

15
14

13

U

12

11

10

D9D89

8

7

D7

P6

P5

P4

P3

P2

P1

Figure 2: The general situation. You are in the middle of a series of decisions (D7); you have
collected much information (P1 to P6), and in order to determine an optimal decision for D7, you
have to anticipate a future decision (D10).

U6U5U4U3U2U1

D6D5D4D3D2D1

C13C12C11
C10

C9C8

C7C6C5C4C3C2C1

Figure 3: A POMDP.

164 Jensen & Gatti

by approximating δ6 through enhancing C6 (see
Figure 4), and the largest policy domain when
solving the ID will contain four variables (δ5 has
the domain {D3, C11, D4, C12}) .

U6U5U4U3U2U1

D6D5D4D3obsobs

C13C12C11
obs

obsobs

C7C6C5C4C3C2C1

Figure 4: C6 is enhanced for D6. With the past
of D3 instantiated, the largest policy domain
contains four variables.

You may also choose to approximate δ5

through enhancing C5 (Figure 5), and the
largest policy domain when solving the ID con-
tains three variables (δ6(C5, D5, C13)).

U6U5U4U3U2U1

D6D5D4D3obsobs

C13C12C11
obs

obsobs

C7C6C5C4C3C2C1

Figure 5: C5 is enhanced for D5. Now, the
largest domain contains three variables.

As a small test of the approach we tried the
three structures above (with only binary vari-
ables) with three di�erent arbitrary parameter
settings, and with utilities after each move as
well as with utility after the last move, only. We
looked at the policy δ3, and for all cases, the op-
timal policy was the same as the approximated
one.

2.1 Maximize uncertainty

Consider the general situation as described in
Figure 2. If we wish to approximate D10 by
information enhancement, we can enhance the
pair (11, 13) as well as (11, 14) - blocking for
everything but 10. (See Figure 6). When dis-
cussing IDs we shall use the terms 'variable' and
'node' interchangeably.

The node 14 is further away from the util-
ity node than 13, and therefore, disclosing 13

will give you more certainty of the expected
utility than would disclosing 14. This means
that adding the information 14's state brings
you closer to the actual knowledge at the time
of deciding D10 than would adding the informa-
tion of 13's state, and enhancing (11, 14) is a
better approximation than enhancing (11, 13).
We have performed a small experiment with

the ID in Figure 2 and approximated δ7 with the
optimal policy from Figure 6. All nodes were
binary. Out of the 64 con�gurations of the do-
main, the policies coincided on 61 cases. For one
case the approximated policy has a tie between
the correct decision and another one, in the two
other cases, the di�erence in EU between the
correct and the approximated decision was 0.001
on a value around 50 (on a scale from 0 to 100).

3 Border and Frontier

In general, we have two decision nodes Di and
Dj (i < j) in an in�uence diagram. The set
of disclosed variables at the time of deciding Di

is denoted P. We should index the set with i,
but for notational convenience we will skip the
indices i and j. The set of nodes becoming dis-
closed between deciding Di and Dj (including
Di) is denoted Inf . P and Inf are the dis-
closed nodes. With i = 7 and j = 10 in Fig-
ure 2 we have that P is the nodes P1 to P6 and
Inf= {D7, D8, D9, 8, 10, 16, 21, 22, 23}. The set
of descendants of Dj is denoted D. Only the
utility nodes in D are relevant for Dj . They are
denoted U . In Figure 2, D= {12, 24, U} and U
= {U}.
The scene is now that the utility nodes of in-

terest are U , and we look for closed nodes, which
if disclosed would turn some nodes in Inf irrel-
evant. That is, we search for cut sets C such
that U is d-separated from Inf given C (we de-
�ne d-separation such that nodes from Inf are
allowed in S). The chance nodes in D can not
be used in such cut sets as this would create a
directed cycle.

The basic idea is to establish two cut sets,
the border and the frontier. The border is the
smallest cut set of non-D chance nodes closest
to U .

Jensen & Gatti 165

24

21

23

22

D10

20

19

18

17

16

15
14

13

U

12

11

10

D9D89

8

7

D7

P6

P5

P4

P3

P2

P1

Figure 6: The ID in Figure 2 with the nodes 11 and 14 enhanced.

De�nition 1. A node X /∈D belongs to the bor-
der if

• X is a parent of an element of D

• There is an active path from Inf to X

The set of border nodes is denoted by B.
In Figure 2 the border consists of the nodes

{10, 11, 13}.
As none of the descendants of B are disclosed

before deciding Dj we have:

Proposition 1. Inf is d-separated from U
given B
Knowing that B is a cut set, you may go back-

wards from B in the network to create new cut
sets. Actually, all chance nodes on active paths
from Inf to B may be part of a cut set. The
task is to identify the relevant part of the net-
work and for this relevant part to identify good
cut sets for information enhancement.

De�nition 2. A network is regular if there is
no active path from Inf to U involving a con-
verging connection over a node in P or with a
descendant in P.
The network in Figure 2 is regular, and in

the following sections we assume the network in
consideration to be regular.

De�nition 3. The set of information holders,
I, consists of all closed nodes with a directed
path of closed nodes to Inf .

For the network in Figure 2 we have I=
Inf∪{7, 8, 9, 15, 18, 19}.

De�nition 4. A node in I that has a directed
path of closed nodes to U and with no interme-
diate nodes in I is said to belong to the frontier

of Dj . The set of frontier nodes is denoted by
F .
In Figure 2 the frontier of D10 consists of the

nodes {10, 15, 16, 22, 23, D9}.
Theorem 1. I is d-separated from U given F .

Proof. Let V0 ∈ I, U ∈ U , and let
⟨V0, . . . , Vk, U⟩ be an active path given F .

Assume that ⟨V0, . . . , Vk, U⟩ contains a con-
verging connection, and let
Vs−1 → Vs ← Vs+1 be the last converging con-
nection on the path from V0 to U . As Vs /∈ P nor
has a descendant in P, Vs or one of its descen-
dants is disclosed, and hence Vs ∈ I. Therefore,
also Vs+1 ∈ I. When you follow the path to-
wards U you will meet a diverging connection
Vt−1 ← Vt → Vt+1. Then Vt ∈ F , and the
path is not active. Note that you will meet a di-
verging connection at the latest when you reach
Vk → U . We conclude that there is no converg-
ing connections on the path.

Assume that the �rst link is V0 ← V1. Then,
follow the path until you reach a diverging con-
nection. As there are no converging connections
on the path, there must be exactly one diverg-
ing connection Vs−1 ← Vs → X. Then Vs ∈ F
and the path is not active.

To conclude: the active path is directed from
V0 to U , and it cannot contain intermediate
nodes from F . Therefore V0 ∈ F .

166 Jensen & Gatti

From the proof above we can conclude that in-
formation from Inf �ows to U through a path
against the direction of the links followed by a
path along the links. The node, where the di-
rection of the �ow turns, is a frontier node.

3.1 Finding the border and the frontier

There are two obvious candidate sets for en-
hancement, namely B and F . They are deter-
mined through a sequence of graph searches (for
example breath-�rst search). First you deter-
mine D and U , by starting a breath �rst search
from the decision Dj . All chance nodes reached
are labeled D. They are the elements of D, and
the utility nodes are the elements of U . The
nodes in D cannot be enhanced as this will in-
troduce a directed cycle. The non-D parents
of the nodes in D∪U are the candidate border
nodes, and they are labeled CB.

Next, start a backwards breath-�rst search
from each of the decision nodes Di+1, . . . , Dj .
That is, you follow the edges opposite to their
direction. You stop when you meet a previous
decision node or a node in P. Each node you
meet is labeled with an I. Perform a backwards
breath-�rst search from the nodes of D. When
you meet a node X with label I you give it the
label F , and break the search behind X. Finally,
perform a breath-�rst search from F . When you
meet a node X with label CB, change the label
to B and stop searching behind X. The vari-
ous labels for the ID in Figure 2 are given in
Figure 7.

4 Cut sets between frontier and

border

There may be other candidate sets for enhance-
ment than B and F . Actually, any set of nodes
which d-separates the frontier from the border
can be used for enhancement.

Proposition 2. Let ⟨V0, . . . , Vk⟩ be an active

path with V0 ∈ F and Vk ∈ B. Then the inter-

mediate nodes cannot be in D nor in I, and the

path is directed from V0 to Vk.

Proof. The proof of Theorem 1.

De�nition 5 (Free graph). The subgraph G
consisting of F , B and all nodes on a directed
path from a node in F to a node in B is called
the free graph (see Figure 8) .

17

14
13 B

10 B

11 B

15 F

22 F

D9 F

16 F 23 F

Figure 8: The free graph for the ID in Figure 2.

The proposition yields that we can use any
set in G which d-separates F from B. Unfor-
tunately, �nding all possible cut sets may for a
large G be intractable. If that is the case, the
following heuristics can in polynomial time pro-
vide a set of very good candidates for informa-
tion enhancement.

Note that you cannot just perform a �ow anal-
ysis on the directed graph G. In Figure 8, for
example, the set {10, 11, 15, 22} does not block
for the information coming from 16 or 23.

4.1 Cut set heuristics

To indicate that the information is �owing to B,
you extend the free graph with dummy children
Ui of the nodes in B. See Figure 9.

23 F

22 F

17

14

11 B

D9 F

U10

U11

10 B

13 B U13

16 F

15 F

Figure 9: The extended free graph for the ID in
Figure 2.

Next, triangulate the extended free graph and
form a junction tree.

Jensen & Gatti 167

24 D

21 I

23 I F

22 I F

D10

20

19 I

18 I

17

16 I F

15 I F
14

13 B

U

12 D

11 B

10 IFB

D9 I FD8 I9 I

8 I

7 I

D7 I

P6

P5

P4

P3

P2

P1

Figure 7: The ID marked after the search algorithms. "D" indicates that the node cannot be
enhanced; "I" indicates nodes with information to transmit; "B" indicates border; "F" indicates
frontier.

D9,

 11, 14,

 17, 23

11 11, U11

D9, 14 10, 14

13

10

13, U13

17, 23

14

10, U10

14, 15,

 22
10, 14,

 D9

16, 17,

 23

10, 13,

 14

Figure 10: A junction tree for the extended free graph in Figure 8.

168 Jensen & Gatti

The junction tree will provide separators,
which can be used to determine cut sets. You
look for sets of separators blocking the �ow from
frontier nodes to border nodes. You start in the
leafs with U -nodes and move backwards.
Consider the junction tree in Figure 10. The

separators 10, 11, and 13 d-separate the U -nodes
from the rest. They form B. As 10 is a frontier
node, you cannot block it with nodes further
back in the junction tree. Going backwards from
the clique (10, 13, 14) you meet the separator
(10, 14), and you �nd the cut set (10, 11, 14).
Going backwards from the separator (10, 14),
you meet a clique with the frontier node D9,
and therefore you hereafter have to include D9

in the cut sets. The same happens when you go
backwards from the separator 11. The the new
cut sets {10, 11, 14}, and {10, 14, 17, 23, D9}.
4.2 Irregular networks

If the network is irregular, the search for fron-
tier nodes is more involved. An active path
from Inf to U ∈ U ends with a directed se-
ries Vk → . . .→ U . The �rst node in this series
is a frontier node. For regular networks, the
frontier consists of common ancestors of B and
Inf . For irregular networks we need to de�ne
I di�erently: for X → Y ← Z with Y ∈ I and
with Z ∈ P or with a descendant in P we also
include X in I.
4.3 An iterative procedure

You may choose the nodes in the cut set itera-
tively, and whenever a node has been selected,
you may renew the analysis. In the example for
this paper it is certain that node 10 always will
be part of the domain for δ10. Hence, we need
not look for ways of blocking information com-
ing from 10, and the ancestors of 10 are only
relevant if they are ancestors of other informa-
tion nodes. Actually, for the ID in Figure 2,
inclusion of 10 does not change the analysis be-
cause the only parent of 10 is D9, and it is an
information node.

5 Conclusions and future work

We have established methods for �nding approx-
imate representations of future decisions policies

through information enhancement. The meth-
ods do not determine all possible candidates for
information enhancement. First of all, a good
cut set does not necessarily contain only nodes
between the border and the frontier. That is,
you may go behind the frontier.
Furthermore,we have only treated approxima-

tion of the last decision. Usually, the decision in
question has several future decisions to consider,
and you may look for a combined approximation
of several future decisions.

Acknowledgments

Thanks to the anonymous referees for construc-
tive feedback and to the Machine Intelligence
Group at Aalborg University for fruitful discus-
sions - thanks in particular to Thorsten Ottosen.

References

A. W. Drake (1962). Observation of a Markov pro-
cess through a noisy channel. Ph. D. thesis, MIT,
Dept of Electrical Engineering

Finn V. Jensen (2008). Approximate representation
of optimal strategies from in�uence diagrams Pro-
ceedings of the 4th European Workshop on Proba-
bilistic Graphical Models..

Frank Jensen, Finn V. Jensen and Søren L. Dittmer
(1994). From In�uence Diagrams to Junction
trees. Tenth Conference on Uncertainty in Arti-
�cial Intelligence, Morgan Kaufmann: 367�374.

Dennis Nilsson and Ste�en L. Lauritzen (2001). Rep-
resenting and solving decision problems with lim-
ited information. Management Science, 47: 1235-
1251.

S. M. Olmsted (1983). On Representing and Solv-
ing Decision Problems Ph.D. thesis, Department
of Engineering-Economic Systems, Stanford Uni-
versity.

Ross Shachter (1986). Evaluating in�uence dia-
grams. Operations Research, 34(6): 871�882.

Prakash P. Shenoy (1992). Valuation Based Systems
for Bayesian Decision Analysis. Operations Re-
search, 40(3): 463�484.

Pp. 169–177 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Robust Independence-Based Causal Structure Learning in Absence of
Adjacency Faithfulness

Jan Lemeire Stijn Meganck Francesco Cartella
ETRO Department, Vrije Universiteit Brussel, Belgium

Interdisciplinary Institute for Broadband Technology (IBBT), Belgium
{jan.lemeire, stijn.meganck, francesco.cartella}@vub.ac.be

Abstract
This paper presents an extension to the Conservative PC algorithm which is able to detect violations of

adjacency faithfulness under causal sufficiency and triangle faithfulness. Violations can be characterized by
pseudo-independent relations and equivalent edges, both generating a pattern of conditional independencies
that cannot be modeled faithfully. Both cases lead to uncertainty about specific parts of the skeleton of the
causal graph. This is modeled by an f-pattern. We proved that our Very Conservative PC algorithm is able
to correctly learn the f-pattern. We argue that the solution also applies for the finite sample case if we accept
that only strong edges can be identified. Experiments based on simulations show that the rate of false edge
removals is significantly reduced, at the expense of uncertainty on the skeleton and a higher sensitivity for
accidental correlations.

1 Introduction
Independence-based algorithms for learning the causal
structure from data rely on the Conditional Independen-
cies (CIs) entailed by the system’s causal structure. The
causal Markov condition gives the CIs that follow from a
causal structure that is represented by a Directed Acyclic
Graph (DAG): every variable is independent of its non-
effects conditional on its direct causes. All algorithms
rely on a form of faithfulness. Causal faithfulness says
that no other CIs appear in the system’s probability dis-
tribution than those entailed by the causal Markov con-
dition. Faithfulness is therefore a very convenient pro-
perty: all CIs tell us something about the causal struc-
ture. Violation of faithfulness means that there are non-
Markovian CIs.

The validity of causal faithfulness is supported by
the ‘Lebesgue measure zero argument’ (Meek, 1995b),
which says that the chance of randomly picking a pa-
rameterization of a Bayesian network resulting in non-
Markovian CIs has measure zero. But in near-to-
unfaithful situations probability distributions come in-
finitely close to unfaithful distributions, such that a test
for independence which has to rely on a finite sample
will not be able to identify the dependencies correctly.
The Lebesgue measure zero argument does not hold here,
since the ε-regions around unfaithful situations do not
have Lebesgue measure zero.

(Zhang and Spirtes, 2007) showed that only in cases of
triangle unfaithfulness violations of faithfulness are un-
detectable. This happens when the true probability dis-
tribution is not faithful to the true causal DAG, but is
nonetheless faithful to some other DAG. In those cases,

the CIs do not give enough evidence to learn the correct
DAG. This will be discussed in more detail in the next
section. We will therefore have to assume triangle faith-
fulness. Then, violations of faithfulness are detectable in
the sense the true probability distribution is not faithful
to any DAG. It means that there exist several DAGs that
each explain a subset of the CIs.

(Ramsey et al., 2006) showed that we only need ad-
jacency faithfulness and orientation faithfulness to learn
the correct equivalence class. Adjacency Faithfulness
states that any two adjacent variables do not become
independent when conditioned on some other (possible
empty) set of variables. It is necessary to recover the
correct skeleton of the true DAG. Orientation faithful-
ness (check reference for definition) is necessary for fin-
ding the correct orientations. (Ramsey et al., 2006) ex-
tended the well-known PC algorithm to detect violations
of orientation faithfulness. Violations lead to specific
ambiguous parts of the DAG, in which no decision on
the orientation can be taken. The Conservative PC al-
gorithm is given in the next section. In this paper we
apply the same idea for handling violations of adjacency
faithfulness. They can be identified, under triangle faith-
fulness, by two patterns: pseudo-independent relations
and equivalent edges. These patterns will lead to parts
of the model in which no decision can be taken on the
correct skeleton.

The following section recalls the important aspects of
independence-based causal structure learning. In section
3 we analyze violations of adjacency faithfulness. Based
on the identified CI patterns, the VCPC algorithm is pre-
sented and proven to be correct in section 4. Section 5

170 Lemeire et al.

analyzes the finite sample case. Finally, the experimen-
tal results are presented in section 6.

2 Independence-Based Causal Inference
We recall the Conservative PC algorithm (CPC), see
Alg. 1. Adj(G,X) denotes the set of nodes adjacent
to X in graph G. Single stochastic variables are de-
noted by capital letters, sets of variables by boldface ca-
pital letters. Step 3 consists of extensions to the original
PC algorithm (Spirtes et al., 1993) in which Orientation-
Faithfulness is tested (Ramsey et al., 2006). Edges of an
unshielded triple, i.e. a triple < X,Y, Z > for which
X and Z are both adjacent to Y , but X and Z are not
adjacent, are not oriented if a failure is detected, but are
indicated as unfaithful, as shown in Fig. 1(a). An e-
pattern is a partially-oriented DAG in which some triples
are denoted as unfaithful.

Undetectable violations of faithfulness only happen by
violations of the triangle faithfulness (Zhang and Spirtes,
2007) condition. It states that given a set of variables V
whose true causal DAG is G, let X , Y , Z be any three
variables that form a triangle in G

1. If Y is a non-collider on the path < X,Y, Z >,
then X , Z are dependent conditional on any subset
of V \{X,Z} that does not include Y .

2. If Y is a collider on the path < X,Y, Z >, then
X , Z are dependent conditional on any subset of
V \{X,Z} that includes Y

To illustrate triangle unfaithfulness, consider the DAG
shown in Figure 2(b). There are 3 ways to violate triangle
faithfulness for this DAG:

(TRUFF1) X⊥⊥Y gives faithful model X → Z ← Y

(TRUFF2) Y⊥⊥Z gives faithful model Y → X ← Z

(TRUFF3) X⊥⊥Z|Y gives faithful modelX → Y → Z

Besides faithfulness, minimality (MIN) is also a basic
condition: elimination of an edge leads to a Bayesian
network which violates the Markov condition. Formally:

∀X,Y ∈ Vwhich are adjacent in Bayesian network :
X 2Y | OthPa(X−Y) (1)

where OthPa(X−Y) of edge X−Y is defined as
Parents(Y) \ X if X is parent of Y , otherwise it is
Parents(X) \ Y . OthPa is short for ‘other parents’.

3 Violation of Adjacency Faithfulness
Here we analyze unfaithfulness in the case of a perfect
test for (conditional) independence. Later we will con-
sider imperfect tests due to finite sample sizes. In all

Algorithm 1 The CPC algorithm

S1 Start with the complete undirected graph U on
the set of variables V.

Part I Adjacency search.

S2 n = 0;

repeat

For each pair of variables A and B that are
adjacent in (the current) U, check through the
subsets of Adj(U,A) \ {B} and the subsets
of Adj(U,B) \ {A} that have exactly n varia-
bles. For all such subsets S check indepen-
dency A⊥⊥B | S. If independent, remove the
edge between A and B in U , and record S as
Sepset(A,B);

n = n+ 1;

until for each ordered pair of adjacent variables
A and B, ADJ(U,A) \ {B} has less than n ele-
ments.

Part II Orientation.

S3 LetG be the undirected graph resulting from step
S2. For each unshielded triple 〈A,B,C〉 in G,
check all subsets of A’s potential parents (nodes
that are adjacent to A but are not A’s children)
and of C’s potential partners:

(a) If B is NOT in any such set conditional on
which A and C are independent, orient the
triple as a collider: A→ B ← C;

(b) If B is in all such sets conditional on which
A and C are independent, leave A−B −C
as it is , i.e., a non-collider;

(c) Otherwise, mark the triple as “unfaithful” by
underlining the triple, A−B− C.

S4 Execute the orientation rules given in (Meek,
1995a), but not on unfaithful triples.

other cases than triangle unfaithfulness, there are Condi-
tional Independencies (CIs) that make violation of faith-
fulness detectable. Violations of adjacency faithfulness
can be identified by two patterns: pseudo-independent
relations and information equivalences. Consider X →
Y . There are 2 kinds of violations: one in which X and
Y are marginally independent and one in which they be-
come independent when conditioned on some Z.

Lemeire et al. 171

X

Y

Z X

Y

Z X

Y

Z

(a) (b) (c)

(Y)

(Z)

Figure 1: The three cases of uncertainty: (a) an un-
faithful triple by violation of orientation faithfulness for
unshielded triple 〈A,B,C〉, (b) PPIRs when X⊥⊥Y in
model X → Y ← Z and (c) equivalent edges when
X⊥⊥Y |Z in model X → Y → Z.

X

Y

Z X

Y

Z X

Y

Z

(a) (b) (c)

X

Y

Z X

Y

Z X

Y

Z

(d) (e) (f)

(z)

(y) (y)

(z)

Figure 2: Marginal independency X⊥⊥Y leads to viola-
tion of triangle faithfulness for (b) and (c). For (a) this
gives a PIR, denoted in (d). This model is equivalent to
(e). Both equivalent structures are denoted by PPIRs in
(f).

3.1 Violation by Marginal Independence

Whenever X⊥⊥Y for some adjacent variables X and Y ,
we call X − Y a Pseudo-Independent Relation (PIR).
Then, by Eq. 1, there exists at least one subset of V,
namely OthPa(X − Y), which turns the independency
into a dependency after conditioning. We call any such
subset a dependency set, or depset for short, of X and
Y , written as depsetXY . A special case in which PIRs
occur is identified as pseudo-independent models (Xiang
et al., 1996), in which three variables are pairwise inde-
pendent but become dependent when conditioned on the
third variable.

For not overloading the rest of the discussion we as-
sume that for each PIR there exists a depset with one
element. PIRs with larger depsets can be identified simi-
larly, but such cases are very rare.

Assumption 1 If X and Y are adjacent, and X⊥⊥Y ,
there exists a Z ∈ OthPa(X−Y) such that X 2Y |Z.

Take Z ∈ OthPa(X − Y) which forms a depset of
X−Y . Z is adjacent to Y . IfZ would also be adjacent to
X , X⊥⊥Y is a result of triangle unfaithfulness (TRUFF1
or TRUFF2), as shown in Fig. 2 by (b) and (c). By ex-
cluding the triangle case, X → Y ← Z is an unshielded
collider for which there is a U such that X⊥⊥Z|U and
in general X 2Z|Y,U. Fig. 2(a) shows such a model for

which U is empty. To denote a PIR, we annotate the edge
with the depset, as shown in Fig. 2(d).

A PIR implies a marginal independence and a condi-
tional dependence. This pattern is the same as that of a
v-structure. Hence, a PIR leads to two equivalent struc-
tures that can explain all CIs. Fig. 2(e) gives the same CIs
as (d). We describe this pattern by connecting variables
which are marginally independent but have a depset by a
special edge: a Potential PIR (PPIR). A PPIR is written
as X−(Z)−Y and graphically denoted by a dashed edge
annotated with the depset, as shown in Fig. 2(f). A PPIR
can thus be a PIR or be part of a v-structure. In Sec. 4
we will see that in certain cases, a PIR can be identified
from a structure with 2 PPIRs.

3.2 Violation by a non-Markovian Conditional
Independence

A second violation of adjacency faithfulness happens
when for adjacent variables X and Y : X 2Y |depsetXY

and there is a set Z for which [X⊥⊥Y | Z ∪ depsetXY].
The latter denotes a strict CI: a CI that turns into a condi-
tional dependency for each proper subset of the conditio-
ning set. Based on this independence, the PC algorithm
would wrongly remove the edge between X and Y . We
will prove that under triangle faithfulness (1) there are
CIs that let us detect such false separations, and (2) the
ambiguities can be represented by equivalent edges. We
first define equivalent edges and present an example. For
clarity, we omit the depset depsetXY in the discussion.

3.2.1 Equivalent edges
The result of a false separation given by the above

strict CI are 2 or more equivalent structures in which one
edge can be replaced by another. We call them equiva-
lent edges. Equivalent edges are linked with an arc with
a bullet at each end, as shown in Fig. 1(c).

Definition 2 Take distribution P and G a DAG not con-
taining directed edges X−Y and Z−Y . Two edges X−Y
and Z−Y are called equivalent edges if and only if G is
not Markovian for P and

G ∪X−Y is Markovian for P

⇔ G ∪ Z−Y is Markovian for P (2)

Note that with X−Y we denote that the edge can have
both orientations. A DAG is called Markovian for a dis-
tribution if all CIs of the DAG given by the Markov con-
dition are present in the distribution.

3.2.2 Example of Information Equivalence.
Consider the structure Z → X → Y and the determi-

nistic relation X = f(Z). Two conditional independen-
cies follow:

Z⊥⊥Y | X & X⊥⊥Y | Z. (3)

172 Lemeire et al.

We call Y and Z information equivalent with respect to
X (Lemeire, 2007). Since X 2Y , this a violation of the
intersection condition (Pearl, 1988). The first equation
comes from the Markov condition, the second is implied
by the functional relation. X is completely determined
by Z, so Z has all information about X . Knowing Z
therefore renders X irrelevant for Y . Information equi-
valences happen when there are deterministic relations,
but also under weaker conditions (Lemeire, 2007).

In the example, we have [X⊥⊥Y | Z] which falsely
suggests that Z separates X from Y and edge X → Y
can be removed. But Z⊥⊥Y | X suggests that Y − Z
can be removed. Removal of both edges results in a non-
Markovian DAG. An ambiguity on the correct structure
is a result. X or Z should be connected to Y to explain
the dependencies. Structures Z → X → Y and X ←
Z → Y are equivalent given the CIs. X − Y and Z − Y
are equivalent edges.

Concluding, CI Z⊥⊥Y | X made it possible to identify
a strict CI that would lead to a false separation. In the
following section we present the general conditions and
prove that they lead to equivalent edges.

3.2.3 Conditions for equivalent edges
When strict CI [X⊥⊥Y |Z] is observed, removal ofX−

Y is only valid when Z is a minimal cut set1 in the true
graph. The following theorem gives the conditions to
recognize a ‘false minimal cut set’. A strict d-separation,
denoted as [X⊥Y |Z], is a d-separation which gives a d-
connection for any proper subset of Z.

Theorem 3 Z is not a minimal cut set for X and Y in
G if for one of the elements U of Z one of the following
d-separations hold in G: (Z’ = Z \ U and T ⊂ V \ Z \
{X,Y })

1. U⊥Y |Z’ or U⊥X|Z’;

2. U⊥Y |Z’,T and U⊥X|Z’,T;

3. [U⊥Y |X,Z”] or [U⊥X|Y,Z”] for some Z” ⊂ Z’;

4. [U⊥Y |X,Z’,T] or [U⊥X|Y,Z’,T].

If none of the d-separations hold, either Z is a subset of a
minimal cut set, or there is a U ∈ Z that forms a triangle
or a v-structure with X and Y .

Proof:
To be a minimal cut set, all elements of Z must lie on a
separate path between X and Y , and all paths between
X and Y must be blocked by Z. With path we mean an
active path in terms of a d-connection. The conditions
happen when Z is not a minimal cut set. Condition (1)

1A cutset is a set of variables which blocks all active paths
between X and Y . A cutset is minimal if no proper subset is a
cutset.

or (2) hold when U is not connected to X or Y with a
separate path. Condition (3) or (4) happen when U is
d-connected to Y via X (by the strictness).

The last part is about what happens when none of the
conditions are met. Conditions (1) or (2) guarantee that
all elements of Z are connected with X and Y via sepa-
rate paths. Next for a cut set, all paths between X and Y
must be cut. If there would be an uncut path via another
node, this node should be added to Z to form a cut set.
The remaining case is whenX and Y are adjacent. Then,
unless U forms a triangle with X and Y , there exists a
subset T which separates U from Y (or X). U can then
be d-separated from Y given X , T and Z’ (condition
(4)) unless they form a v-structure (U → X ← Y).

The CIs corresponding to the d-separations of the the-
orem can be used to detect false separations. Condition
(1) will be used in the finite sample case discussed in
Section 5. The CIs corresponding to conditions (3) and
(4) result in the presence of equivalent edges, as shown
by the following theorem.

Theorem 4 If G containing edges X−Y and U−Y is a
Markovian DAG for P , [X⊥⊥Y |Z’ ∪ U] and one of the
CIs corresponding to conditions (3) and (4) holds for U ,
then X−Y and U−Y are equivalent edges.

Proof:
First we prove that G \ X−Y is a Markovian DAG. To
prove this, assume A 0B|S which holds in G but would
not be represented in G \X−Y . For this, the only active
path fromA toB must go viaX−Y and no path may exist
via U−Y . It follows thatA⊥B|S∪X (a). A is related to
X but cannot be related to U since otherwise there would
be a path to Y via U−Y . This could only happen if U is a
collider on the path betweenA and Y . We prove that this
results in a contradiction. From Y → U follows that the
path from U goes towards X to have an active path from
Y to X through U (to represent the dependencies given
by the strict CI). Acyclicity gives then Y → X . The
active path from X to A must then be pointing towards
A for having an active path between A and B. This,
however, creates a path from Y to A via U and X , which
was excluded. HenceA⊥U |S (b). From the given CI and
the CIs following from (a) and (b) follows that A⊥⊥B|S
which results in a contradiction.

Next, by conditions (3) or (4), U could be d-separated
from Y by X . But if we would also remove U−Y , the
dependency X 2Y |Z’ is not present anymore, since the
path from X to Y via U is removed. The graph without
both edges is thus not Markovian. The graph G \U−Y is
also Markovian by swappingX and U in the proof.

The simplest case of Condition (3), with an empty Z”,
was discussed in Section 3.2.2. Fig. 3 gives an exam-

Lemeire et al. 173

X

Y

T

(a)

U

X

Y

T

(b)

U

X

Y

T

(c)

U

Figure 3: Example of two equivalent structures. If
X⊥⊥Y |U holds for (a) and U⊥⊥Y |X,T for (b), than both
represent the same CIs. X−Y and U−Y are equivalent
edges, which is denoted in (c).

ple of Condition (4) with a non-empty T. Assume that
the non-Markovian CI [X⊥⊥Y |U] holds. In that case, the
CPC algorithm will delete edge X − Y . Since at that
point of the algorithm Y is still connected to U , all ob-
served dependencies are explained. But with Markovian
independency U⊥⊥Y |X ∪ T , deletion of edge Y −U re-
sults in a model which cannot explain the dependencies.
We end up with two equivalent structures: one with edge
X−Y , the other with edge Y −U . Both models explain
all dependencies. But the first cannot explainX⊥⊥Y | Z,
the second cannot explain Z⊥⊥Y |X ∪ U .

To simplify the rest of the discussion we will exclude
the equivalences following from a condition with a non-
empty Z” in condition (3) of the theorem. They can be
treated in a similar way, but are much rarer.

Assumption 5 For all strict independencies of the form
[X⊥⊥Y |U ∪ Z ∪ depsetXY] (with Z’ ⊂ Z):

Y⊥⊥U |X ∪ Z’ ∪ depsetXY ⇒ Y⊥⊥U |X ∪ depsetXY .

3.2.4 Relation to NPC
The necessary path condition (NPC) algorithm (Steck

and Tresp, 1999) was introduced as a robust extension
for the PC algorithm. It states that for each strict con-
ditional independence [X⊥⊥Y |Z] there must exist a path
between X (Y) and each U ∈ Z not crossing Y (X).
This is similar to the notion described above that the mi-
nimal cutset of two variables needs to be connected to
both variables. The NPC introduces the concept of am-
biguous edges, which is defined as an edge whose pres-
ence depends on the absence of another. In NPC, these
ambiguous regions are resolved by including a minimal
number of ambiguous edges in order to satisfy a maximal
number of independence relations. In our case, ambigu-
ous regions correspond to the equivalences we find be-
tween edges. Instead of forcing them into a DAG struc-
ture, we model the ambiguity explicitly by an f-pattern.
An f-pattern is an e-pattern augmented by edges that are
denoted as PPIRs and subsets of edges denoted as equi-
valent. An oriented PPIR in the pattern is identified as a
PIR.

3.3 Augmented Knowledge Graph
We will use an augmented knowledge graph to model the
causal information. We define an augmented knowledge
graph (AKG) (Eberhardt, 2008) as a graph containing the
following relations between any two variables X and Y :
X Y , X → Y , X−Y , X− (S)−Y andX− (S)→ Y ,
with S a set of sets of variables. Furthermore, edges can
be also related with one another either by a straight line

or a curved line with round endpoints • •.
An f-pattern can be represented using an augmented

knowledge graph by using the following interpretations
for the different relations between variables

X Y Neither X nor Y are direct causes of one another.

X → Y X is a direct cause of Y .

X − Y Either X is a direct cause of Y or reverse.

X − (S)→ Y There is a pseudo-independent causal re-
lationship between X and Y with ∀D ∈ S, D is a
depset for the PIR.

X − (S)− Y There is either a pseudo-independent, di-
rect causal or no relation between X and Y

and the following interpretations for the relation between
edges:

X −−Y−− Z The triple < X,Y, Z > is unfaithful.

X −−Y−
• •
− Z The edgesX−Y and Z−Y are equivalent.

4 The Very Conservative PC Algorithm
The Very Conservative PC algorithm (VCPC) adds to

CPC the rules of S2’ to S2 (Alg. 2) and replaces Part
II with Part II’ (Alg. 3). Besides recording the sepsets
for pairs of variables, it will also record depsets. The
algorithm returns an f-pattern. When we speak about ad-
jacencies, these special edges are also considered. Non-
equivalent and non-PPIR edges are called normal edges.

Theorem 6 (Correctness of VCPC) Consider a graph
G, a JPD P generated by G and I(P), the set of CIs of
P : if minimality, triangle-faithfulness and assumptions 1
and 5 hold for P , the algorithm will, based on I(P), re-
turn an f-pattern describing a set of DAGs that includes
G. The algorithm is not trivial; it does not always return
the set of all DAGs.

Proof:
1) Assume adjacency faithfulness:
Given adjacency faithfulness, the only difference with
CPC during the adjacency search is that in step S2’[II]a
for each true v-structureX → Z ← Y , such that X⊥⊥Y ,
a PPIRX−(Z)−Y is added. During the first part of the
orientation phase these PPIRS are temporarily removed

174 Lemeire et al.

Algorithm 2 VCPC algorithm S2’

[I] Before testing whether X⊥⊥Y |S holds, check the
following:

a When X − Y is a PPIR, add depsetXY to S.

b IfX−Y has an equivalent edgeX−Z or Y −Z
and Z is a member of S, skip the test.

[II] If the independence test returns X⊥⊥Y |S, do the
following before removing the edge:

a If S is empty, look for a T in Adj(X) ∪ Adj(Y)
for which X 2Y | T . If such a T exists, do not
remove the edge, denote it as a PPIR with depset
T .

b If S is not empty, test for all Z ∈ S whether
X⊥⊥Z|Y ∪depsetXY and Z⊥⊥Y |X∪depsetXY .
If for a Z, one of both independencies hold, do
not remove edge X − Y and do the following.
Assume the first independency is found (if the
second independency holds, just swaps X and Y
in the following.). (1) If X − Z has been re-
moved due to d-separation by respectively Y or
X , use this edge for constructing all sets S in
S2 and add the edge back to the graph and go
to (3). (2) If X − Z has been removed due to
some other d-separation, leave edge X − Y in
the graph, but do not qualify it as equivalent. (3)
If Y 2Z|depsetXY , denote X − Y as equivalent
to X − Z in the graph.

to discover the v-structures. As a result in step S5a, the
PPIR is removed and the correct structure is found. The
correctness as well as the non-triviality follows then
from the correctness and non-triviality of CPC, proven
by (Ramsey et al., 2006).
2) No adjacency faithfulness:
We have to prove that no edge is deleted based on
non-Markovian CIs, and that no mistakes are made
during orientation.
2.1) No missing edges
A) Assume X − Y in correct graph and X⊥⊥Y :
In step S2’[II]a, the algorithm looks for a variable T
such that X 2Y |T . The existence of T follows from
Minimality. Therefore the edge X − Y will be replaced
by a PPIR. Now, we show that this PPIR is not removed
from the graph, which can only happen when there is a
v-structure. If a PPIR would be removed based on the
existence of a v-structureX → Z ← Y for some Z, then
this indicates that the triangle faithfulness assumption
is not satisfied. The removal of a PPIR in this case is

Algorithm 3 VCPC algorithm Part II’

Part II’ Orientation.

• Perform all of the following steps until no more
edges can be oriented:

Remove the PPIRs from G;

Perform S3’ as explained in (Ramsey et al.,
2006), except that unshielded triples containing
an equivalent edge are not considered;

Perform S4 from the original algorithm on non-
equivalent edges;

Add the PPIR edges back G;

S5 Go through all PPIRs. Look for triangles con-
sisting of normal edges and PPIRs in which for
each PPIR the opposite variable in the triangle is
a depset.

a If the triangle contains two normal edges
which form a v-structure, remove the PPIR.

b If the triangle only contains one normal edge
which is directed, direct the PPIR that con-
tains the node to which the arrow of the nor-
mal edge is pointing, label the PPIR as a PIR
and remove the other PPIR from the graph.

c For all oriented edges D → A in G for
which only A belongs to the triangle, check
whetherA andD form a faithful triple and a
v-structure with one of the two other nodes
of the triangle (as in S3 of CPC). When tes-
ting the triple A, B and D, add depsetAB

to the conditioning set of the independence
tests. If a v-structure is found, orient the two
triangle edges containing A towards A and
delete the third triangle edge if it is a PPIR.

an immediate consequence of the triangle faithfulness
assumption which dictates that the direction of one of
the arcs in the triangle imposes a v-structure. We do not
orient v-structures containing equivalent edges, since a
v-structure based on an equivalent edge which is not in
the true graph could lead to erroneous deletion of a PIR
when the equivalent edge appears in a triangle with the
PIR.
B) Assume X−Y in correct graph and X⊥⊥Y |S, S 6= ∅:
Take Z ∈ S. Because of triangle faithfulness, Z cannot
be adjacent to both X and Y , say it is not adjacent to
X . Z can then be d-separated from X which gives

Lemeire et al. 175

X⊥⊥Z|Y ∪ U. If U is not empty, from Assumption 5 it
follows that X⊥⊥Z|Y . Edge X − Y is not removed. If
U is empty and X 2Z|Y , edge X − Y will be removed
temporarily. It will be added back when X⊥⊥Z|Y ∪U is
discovered at a later stage.
C) Non-triviality is a direct consequence of the deletion
of an edge X −Y if for ∀S ⊆ {X,Y } the independency
X⊥⊥Y |S holds.
2.2) Correct conservative orientation:
a) Orientation in the first step of the VCPC orientation
phase (II’) is only based on non-equivalent edges and
non-PPIRs. So the correctness of CPC proves the
correctness of these orientation steps in our algorithm.
b) We do not orient any edges based on equivalent edges.
c) Both S5b and S5c trigger when there is a known
orientation of a normal edge inside a triangle with (a)
PPIR(s) (S5b) or when the orientation of an edge in such
a triangle can be inferred (S5c). A direct consequence
of triangle faithfulness is that there is a v-structure at
the node of the triple which has an incoming arrow.
So the correctness of orientation follows from triangle
faithfulness.

5 Finite Sample Case

In this section we consider the finite sample case in
which the independence oracle can make errors. Let’s
assume that the oracle for measuring CI is based on esti-
mating the Dependency Strength (DS) and using a thres-
hold for deciding independency. The smaller the sample,
the more the estimated DS can deviate from the true va-
lue. A higher threshold is used for smaller sample sizes
so that true independencies are not misclassified as de-
pendencies. But this implies that the weaker a (condi-
tional) dependency is, the more likely it gets misclassi-
fied as an independency. This is especially true as the DS
becomes lower than the threshold. The oracle will only
detect dependencies that are sufficiently strong. The fol-
lowing three cases should be considered.

5.1 Weak edges.

An edge X−Y with a small DS(X;Y) can still have
a high DS(X;Y |Z) when conditioned on one of the
other parents, as is shown by the PIRs. A PIR still con-
tains a lot of information, despite the marginal indepen-
dence. Our extensions overcome missing PIRs or quasi-
PIRs (edges that look like PIRs due to the finite sam-
ple size). On the other hand, if both DS(X;Y) and
DS(X;Y |OthPa(X−Y)) are small, we cannot over-
come overlooking such edges, which we call weak edges.
Limited data gives limited precision.

5.2 Near-to-unfaithfulness.

In general, dependencies with a low DS lead to near-to-
unfaithful situations. Faithful distributions can come in-
finitely close to the unfaithful cases. This leads to the
same CI patterns as in the unfaithful cases.

5.3 Weakening by conditioning.

A third way in which limited samples disrupt the learning
is that an increased cardinality of the conditioning set re-
duces the robustness of most independence tests (Spirtes
et al., 1993, p.116). We call this effect ‘weakening by
conditioning’, which results in strict CIs not correspond-
ing to minimal cut sets. They can be detected by the CIs
corresponding to the conditions of Theorem 3.

6 Experimental results

To illustrate the adequacy of our extensions, simulations
were performed on linear Gaussian and binary models.
Experiments were performed on 100 randomly selected
DAGs with d nodes and d edges, where d is randomly
chosen between 5 and 25. For each such graph, a ran-
dom structural equation model was constructed by selec-
ting edge coefficients randomly uniformly from [0.1, 1]∪
[−1,−0.1] and the variance of the disturbance terms was
chosen randomly from [0.01, 1]. A random data set of
1000 cases was simulated for each of the models, to
which the PC, CPC and VCPC algorithms were applied
with depth 2 and significance level α = 0.05 for each
independence test based on Fisher’s Z transformation of
partial correlation. The output graph was compared to
the Markov equivalence class (MEC) of the true DAG.
Similar experiments were performed with Bayesian net-
works defined over a set of binary variables and ran-
domly chosen conditional probabilities. The Chi-Square
test was used as independence test.

The table on the next page shows the outcomes ave-
raged over all experiments and relative to the number of
nodes (percentages). Correct edges are the edges of the
MEC of the true graph that appear as normal edges in the
f-pattern. PPIRs and equivalent edges in the f-pattern are
counted as ambiguous edges. False negative edges are
edges in the MEC that do not appear in the f-pattern, not
as a normal edge and not as an ambiguous edge. Weak
edges are false negatives whose nodes are marginally in-
dependent and independent conditional on the other pa-
rents. False positive edges appear as normal edges in the
f-pattern, but not in the MEC. If the nodes of a false po-
sitive are not d-connected in the MEC, they are classified
as ‘not connected’.

The learning performance of the orientation is evalu-
ated by looking at edges appearing in both the MEC and
the f-pattern. Edges having the same orientations in both
are counted as correct orientations, when not oriented in

176 Lemeire et al.

PC CPC VCPC
Edges
Correct 76.7 76.2 77.9
Ambiguous 0.0 0.0 74.4
False negatives 23.2 23.8 8.1
Weak 3.7 4.5 3.6
False positives 4.1 4.3 11.8
Not connected 2.9 3.1 9.3
Orientations
Correct 25.3 29.8 36.6
Ambiguous 3.6 16.5 47.6
Wrong 19.9 2.1 3.7
False positives 15.1 2.9 3.9

both or only in f-pattern as ambiguous. Wrong orienta-
tions appear as oriented in both, but in the opposite di-
rection. False positives are arrowheads appearing in the
f-pattern but not in the MEC.

The results show that the difference between the PC
and CPC lies clearly in the reduction of the false positive
arrowheads, although we notice an increase in false neg-
atives. The VCPC algorithm clearly reduces the number
of false negative edges. If we consider that weak edges
cannot be identified, the performance gain is even more
drastic. By subtracting the number weak edges from the
false negatives, the number of false negatives drops from
19.5%/19.3% for PC/CPC to 4.5% for VCPC. This drop
is at the expense of ambiguous edges and more false pos-
itives. The latter can be explained by accidental correla-
tions.

Accidental correlations lead to false negative inde-
pendence tests - the oracle qualifies a Markovian CI as
dependent due to accidentally-correlated data. VCPC
is conservative about dependencies, it will not remove
edges if there is no alternative path to explain a de-
pendency. Take nodes that are not d-connected in the
true graph (‘not connected’ in the table), but are acci-
dently correlated. If this accidental correlation is above
the threshold, the oracle will qualify it as a depen-
dency. In the following steps, when conditioning hap-
pens on other variables, the weakening-by-conditioning
effect will bring the measured dependency strength be-
low the threshold and remove the ‘accidental’ edge. This
happens with PC and CPC.

Finally, the experiments showed that the standard de-
viation for the false positive and negative edges is almost
as high as the average, which points to a high perfor-
mance fluctuation from one experiment to another.

7 Conclusions

We cannot rely on adjacency faithfulness when con-
structing robust learning algorithms. We showed that

under triangle faithfulness, violations can be detected
by two patterns: potential pseudo-independent relations
(PPIRs) and equivalent edges. Based on both patterns,
a set of DAGs can be identified that are indistinguish-
able from the perspective of the CIs. Just like the
Conservative PC algorithm detects and treats failures of
orientation-faithfulness, our Very Conservative PC algo-
rithm detects violations of adjacency-faithfulness.

In the finite sample case, weak conditional dependen-
cies can be wrongly classified as CIs by the oracle. This
leads to near-to-unfaithful cases, weakening by condi-
tioning and weak edges. The two first are treated, mis-
sing weak edges should be accepted. Since weak edges
and triangle unfaithfulness cannot be detected, we be-
lieve that this analysis shows the natural bounds of what
can reliably be learned under causal sufficiency.

References
Frederick Eberhardt. 2008. Almost optimal intervention

sets for causal discovery. In UAI, pages 161–168.

Jan Lemeire. 2007. Learning Causal Models of Multi-
variate Systems and the Value of it for the Performance
Modeling of Computer Programs. Ph.D. thesis, Vrije
Universiteit Brussel.

Christopher Meek. 1995a. Causal inference and causal
explanation with background knowledge. In Procs of
UAI-1995, pages 403–41.

Christopher Meek. 1995b. Strong completeness and
faithfulness in Bayesian networks. In Procs of UAI-
1995, pages 411–418.

Judea Pearl. 1988. Probabilistic Reasoning in Intelli-
gent Systems: Networks of Plausible Inference. San
Mateo, CA, Morgan Kaufman Publishers.

Joseph Ramsey, Jiji Zhang, and Peter Spirtes. 2006.
Adjacency-faithfulness and conservative causal infe-
rence. In Procs of UAI-2006, pages 401–408.

Peter Spirtes, Clark Glymour, and Richard Scheines.
1993. Causation, Prediction, and Search. Springer
Verlag, 2nd edition.

Harald Steck and Volker Tresp. 1999. Bayesian belief
networks for data mining. In Procs of the 2nd Work-
shop on Data Mining und Data Warehousing.

Yang Xiang, S. K. Wong, and N. Cercone. 1996. Crit-
ical remarks on single link search in learning belief
networks. In Procs of UAI-1996, pages 564–571.

Jiji Zhang and Peter Spirtes. 2007. Detection of un-
faithfulness and robust causal inference. In Procs of
the LSE-Pitt Conference: Confirmation, Induction and
Science, London.

Pp. 177–185 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Scaling Up MAP Search in Bayesian Networks
Using External Memory

Heejin Lim, Changhe Yuan, and Eric A. Hansen
Department of Computer Science and Engineering

Mississippi State University
Mississippi State, MS 39762

Abstract
State-of-the-art exact algorithms for solving the MAP problem in Bayesian networks use depth-
first branch-and-bound search with bounds computed by evaluating a join tree. Although this
approach is effective, it can fail if the join tree is too large to fit in RAM. We describe an external-
memory MAP search algorithm that stores much of the join tree on disk, keeping the parts of
the join tree in RAM that are needed to compute bounds for the current search nodes, and using
heuristics to decide which parts of the join tree to write to disk when RAM is full. Preliminary
results show that this approach improves the scalability of exact MAP search algorithms.

1 Introduction

State-of-the-art exact MAP algorithms for Bayesian
networks use depth-first branch and bound (DF-
BnB) search, and prune the search tree using bounds
that are computed by evaluating a join tree (Park
and Darwiche, 2003; Yuan and Hansen, 2009) or an
arithmetic circuit (Huang et al., 2006). For large and
complex Bayesian networks, however, the join tree
or arithmetic circuit can be too large to fit in RAM,
limiting scalability. In this paper, we focus on the
approach that uses a join tree to compute bounds.
The memory required to store the join tree is expo-
nential in the treewidth of the Bayesian network.

We describe how to improve the scalability of a
MAP search algorithm that evaluates a join tree to
compute bounds by using external memory to store
the join tree when it is too large to fit in RAM. The
efficiency of this approach depends on the heuris-
tics used to decide which parts of the join tree to
write to disk when RAM is full. Our study shows
that commonly used heuristics for external-memory
algorithms, such as least recently used (LRU) and
least frequently used (LFU), do not always perform
well in MAP search. We introduce new heuristics
that take into account the unique characteristics of
the search algorithm. Preliminary results show that
the approach can solve MAP problems that could
not previously be solved due to memory limitations.

2 Background

We begin with a brief review of the MAP problem
and algorithms for solving the MAP problem using
branch-and-bound search.

2.1 The MAP problem
The Maximum a Posteriori assignment problem
(MAP) is defined as follows. Let M be a set of
explanatory variables in a Bayesian network; from
now on, we call these the MAP variables. Let E be
a set of evidence variables whose states have been
observed. The remaining variables, denoted S, are
variables for which the states are unknown and not
of interest. Given an assignment e for the variables
E, the MAP problem is to find an assignment m for
the variables M that maximizes the joint probability
P (m, e) (or, equivalently, the conditional probabil-
ity P (m|e)). Formally,

m̂MAP = arg max
M

∑
S

P (M,S,E = e) , (1)

where P (M,S,E = e) is the joint probability dis-
tribution of the network given the assignment e.

2.2 Join tree upper bound
In Equation (1), the maximization and summation
operators are applied to different sets of variables.
The MAP variables in M can be maximized in dif-
ferent orders, and the variables in S can be summed

178 Lim et al.

out in different orders, without affecting the re-
sult. But the summations and maximizations are
not commutable. As a result, variable elimination-
based methods for solving MAP have a complexity
that depends on the constrained treewidth of the net-
work, and they are typically infeasible because they
require too much memory.

If the ordering among the summations and maxi-
mizations is relaxed, however, an upper bound on
the probability of a MAP solution is computed.
The following theorem is due to Park and Dar-
wiche (2003).

Theorem 1. Let ϕ(M,S,Z) be a potential over the
disjoint variable sets M, S, and Z. For any instan-
tiation z of Z, the following inequality holds:∑
S

max
M

ϕ(M,S,Z = z) ≥ max
M

∑
S

ϕ(M,S,Z = z) .

Based on this result, Park and Darwiche (2003)
compute upper bounds for the MAP problem using
the join tree algorithm, but with redefined messages.
Each message is computed such that variables in S
are summed over before MAP variables are maxi-
mized.

2.3 Solving MAP using DFBnB
Park and Darwiche (2003) use the join tree upper
bound in a depth-first branch-and-bound (DFBnB)
search algorithm to solve the MAP problem. Since
a full evaluation of the join tree computes simulta-
neous upper bounds for all MAP variables, Park and
Darwiche use dynamic variable ordering to speed
up their search algorithm. Yuan and Hansen (2009)
observe that, when a static variable ordering is used,
it is only necessary to compute bounds for the next
MAP variable to be instantiated at each step, and
this only requires evaluating a small part of the join
tree. They use a static ordering of MAP variables
that is created from a post-order traversal of the
MAP variables in the join tree. With this static or-
dering, the upper bounds needed for the next instan-
tiating variable(s) in MAP search can be computed
incrementally by message passing along a limited
and fixed path in the join tree. During forward
traversal of a branch of a search tree, it is only nec-
essary to perform message passing once along this
path in the join tree, broken up into separate steps

, ,

, ,

,

, ,

, ,

, ,

, ,

, ,

, ,

,,

3,4,7,9

3,7,8

1,2,3

3,4,13

4,12

3,9,15

0,5,6,7

0,4,7

0,4,14

7,9,10

9,10,11

3,7
3,4

4

3,9
4,7

7,9

9,100,40,7
3

Figure 1: Example of a join tree for upper bound
computation. The shaded nodes are nodes of the
join tree that contain MAP variables.

for each instantiating variable. To allow efficient
backtracking, the clique and separator potentials of
the join tree that are changed during bounds compu-
tation are cached in the order that they are changed.
During backtracking, the cached potentials can be
used to efficiently restore the join tree to its previ-
ous state before one or more MAP variables were
instantiated. The readers are referred to (Yuan and
Hansen, 2009) for more details of the algorithm.

We illustrate the idea with an example. Figure 1
shows the join tree of a Bayesian network based on
the Hugin architecture (Jensen et al., 1990). The
numbers are the indices of distinct variables in the
network, and the numbers in bold-face italics rep-
resent the MAP variables, which are 0, 1, 2, 5, and
6. Let the static search ordering of the MAP vari-
ables be: 1,2,0,5,6. After MAP variables 1 and 2
are instantiated, their values are entered as evidence
to clique {1, 2, 3}. Messages can then be sent to the
other parts of the join tree to get upper bounds for
the remaining MAP variables. However, since the
next variable in the static ordering is 0, it is only
necessary to send messages along the shaded path
from clique {1, 2, 3} to clique {0, 4, 7}. None of
the other parts of the join tree need to be involved
in the propagation. The path has a new set of clique
and separator potentials as a result of the message
propagation. The old potentials are cached before
they are overwritten with the new potentials. If all
the search nodes after instantiating variable 0 can
be pruned using upper bounds, the search algorithm
backtracks to the parent search node and retracts the
join tree to the previous state. This can be achieved
by simply restoring the cached potentials in reverse
order and rolling back the changes.

Lim et al. 179

3 External-memory MAP Search

The MAP search algorithms of Park and Dar-
wiche (2003) and Yuan and Hansen (2009) use
join tree evaluation to compute bounds for a depth-
first branch-and-bound search. We use the Yuan
and Hansen algorithm as the basis for our external-
memory algorithm, in part because it has been
shown to be more efficient than the Park and Dar-
wiche algorithm when their internal-memory ver-
sions are compared, and in part because its incre-
mental approach is easier to convert to an efficient
external-memory algorithm. Each time the Park and
Darwiche algorithm computes bounds for a node of
the search tree, it must perform a full join tree evalu-
ation; this could require copying the entire join tree
into RAM for each search node, incurring a large
amount of disk I/O. By contrast, each time the Yuan
and Hansen algorithm computes bounds for a node
of the search tree, it only needs to keep a small part
of the join tree in RAM. As we will see, the locality
that it exploits for incremental message propagation
is also exploited by an external-memory version of
the algorithm to minimize disk I/O.

3.1 Memory architecture

Figure 2 illustrates how our algorithm uses RAM
and disk. We call the jointree without potentials the
skeleton. The skeleton is typically small and always
resides in RAM, as shown in Figure 2. Each clique
of the skeleton has one main pointer that points to
the clique’s potential, which we call the main poten-
tial. The clique may also have one or more cache
pointers that point to cached copies of the poten-
tial. The basic idea of the algorithm is to store some
of the potentials in RAM and some on disk. When a
potential is stored on disk, it is stored in a file named
by a unique tag assigned to the potential. In Fig-
ure 2, arc 1 shows an example of a main pointer,
and arc 2 shows an example of a cache pointer.

All computation on the jointree is based on the
main potentials. The other potentials are only for
caching purposes. A potential needed for compu-
tation should reside in RAM. When necessary, we
can write a potential in RAM to a disk file named
after the potential’s tag, in order to free up space in
RAM; we can also use a tag to find the appropriate
disk file to read the potential back into RAM.

Disk

Memory

RAM

Tag
2

1

3,4,7,9

3,7,8

1,2,3

3,4,13

4,12

3,9,15

0,5,6,7

0,4,7

0,4,14

7,9,10

9,10,11

3,7
3,4

4

3,9
4,7

7,9

9,100,40,7
3

Figure 2: Memory architecture of the algorithm.

3.2 Initialize an upper-bound join tree

In (Yuan and Hansen, 2009), we initialize an upper-
bound jointree for a Bayesian network completely
in RAM. We first create its skeleton. We then ini-
tialize all the clique potentials with appropriate con-
ditional probability tables of the Bayesian network.
After entering evidence to the jointree, a full join
tree propagation is performed to finish initializing
the upper-bound join tree. A full join tree propaga-
tion involves two phases: collect and distribute. In
the collect phase, all cliques send messages to their
parents by combining messages sent from children
cliques. After the root receives all messages from
its children, the distribute phase starts, in which all
cliques send messages to their children by combin-
ing messages from parents.

Several preprocessing methods can be used to re-
duce the size of an upper-bound jointree in order to
delay the use of external memory. First, we use rel-
evance reasoning (Lin and Druzdzel, 1997) to pre-
process a Bayesian network based on the evidence
and target variables of a MAP problem. This step
reduces the size of the network by removing irrel-
evant variables such as barren variables. Second,
we create an upper-bound join tree that is as small
as possible without considering the quality of the
bounds. Third, we can release clique potentials that
are only needed during join tree initialization, and
not during MAP search. By releasing, we mean that
the potentials are deleted and their pointers are set
to NULL. With incremental join tree bounds, only
part of the join tree is involved in message propa-
gation during MAP search. In Figure 1, the sec-

180 Lim et al.

ond left-most branch has no MAP variables. Once a
clique on this branch has sent a message to its par-
ent, the clique can be released from memory. In fact,
all non-shaded parts of the join tree in Figure 1 can
be released before MAP search. Doing so not only
postpones the use of external memory, it improves
the efficiency of the algorithm, because there is no
need to send messages to these parts of the join tree
during the distribute phase.

Nevertheless, the final upper-bound join tree may
still be too large to fit in RAM. In that case, we must
construct the join tree incrementally and store parts
of it on disk. We do so as follows. After construct-
ing the skeleton, we initialize the jointree by inter-
leaving potential initialization and message propa-
gation via a left-to-right, leaf-to-root traversal of the
jointree. For Figure 1, we would start by initializ-
ing the potential of clique {1, 2, 3} in the left-most
branch. We then initialize the potential for separa-
tor {3} by calculating the message to be sent from
{1, 2, 3} to {3, 7, 8}. After that, we initialize the po-
tential of clique {3, 7, 8} and combine the message
stored in separator {3}. To avoid exhausting RAM,
we estimate the amount of additional RAM needed
for each step of the algorithm and check if the in-
crease is larger than the amount of available RAM.
If there is not sufficient RAM available, we have to
write to disk some cliques or separators that are al-
ready constructed and reside in RAM. In a later sec-
tion of the paper, we introduce several heuristics for
selecting which cliques and separators to write to
disk. For now, it suffices to say that enough RAM
will be freed so that the current step can be exe-
cuted. We can use the above incremental scheme to
complete the collect phase.

The collect phase traverses a join tree from left
to right. After the collection phase finishes, the
cliques stored on disk most likely come from the
leftmost branches. Since the distribute phase may
need to restore some clique potentials from disk
to RAM, the distribute phase uses a right-to-left,
root-to-leaf traversal of the join tree so as to use
clique potentials that currently reside in RAM first.
The leftmost branches are not read from disk until
they are needed. After the distribute phase finishes,
cliques from the rightmost branches are swapped
out to disk. This improves the performance of MAP
search because the search starts from the leftmost

branches as well.
We may still be able to release part of the join tree

during the distribute phase. When all of the MAP
variables are in one branch of the join tree, we can
release the root and its immediate successor cliques
if they do not contain MAP variables.

Finally, calculating a message requires the poten-
tials of at least one clique and one separator to be in
RAM at the same time. For example, we need both
clique {1, 2, 3} and separator {3} to be able to com-
pute the message to be sent to {3, 7, 8}. Therefore,
our method has a minimal memory requirement that
is equal to the largest total size of any neighboring
pair of clique and separator.

3.3 MAP search using external memory
Once the upper-bound join tree is initialized, we
start the MAP search. At each search step, we
need to use the join tree to compute the search
bounds, which requires message propagation on the
jointree. For each message propagation step, we
check whether or not the potentials we need reside
in RAM. If not, we check whether there is enough
RAM available for reading them back in RAM from
disk. If necessary, we use the heuristics described in
Section 3.4 to select potentials to write from RAM
to disk in order to free up enough RAM to continue.
The strategy of using external memory is similar to
the strategy used in the join tree initialization phase.
There are, however, some important differences that
warrant discussion.

For efficient backtracking, the Yuan and Hansen
algorithm caches and restores potentials during the
MAP search. The need for caching makes using
external memory slightly more complicated. New
strategies are needed, both during forward search
and backtracking.

During forward search, we need to cache a po-
tential before we set the state of a newly instantiated
MAP variable as evidence to a clique potential, and
before we update a clique or separator potential us-
ing incoming messages. There are two possibilities.
One is that the potential to be cached is in RAM.
If enough additional RAM is available, we make a
copy in RAM immediately. If not, we free up space
by writing some cliques from RAM to disk before
making the copy in RAM. The second possibility is
that the potential is on disk. Since we need the po-

Lim et al. 181

tential in the next operation, we read a copy of the
potential from disk to RAM and swap the main and
cache pointers so that the main pointer points to the
copy in RAM.

When backtracking, we need to restore the join
tree to a previous state by restoring some cached
potentials. A potential and its cached copy can be
in RAM and/or disk. No matter where they are, we
simply delete the current main potential and redirect
the main pointer to point to the cached copy. There-
fore, no disk I/O is needed during backtracking. We
only read potentials from disk to RAM when they
are needed during forward search.

The strategies described above allow a potential
that is once written to disk to remain on disk and to
be repeatedly used until it is not needed anymore.
This helps to limit the number of times the same
potential is written to disk or read from disk.

3.4 Heuristics

It is critical for our MAP algorithm to have a good
heuristic for selecting which cliques and separators
to write to disk when RAM is full, in order to keep
the amount of disk I/O as low as possible.

Commonly-used heuristics include storing the
least recently used (LRU) or the least frequently
used (LFU) data in external memory. We imple-
mented both and found that the LRU heuristic out-
performs the LFU heuristic because message prop-
agation follows a fixed post-traversal order of the
join tree. We also tested two other heuristics. One
heuristic that we call largest first (LF) selects the
largest cliques to store in external memory. The
other heuristic that we call largest but least fre-
quently used (LLF) integrates the LF and LFU
heuristics. LLF selects the largest cliques, but de-
creases the priority of a clique if it is selected too
often. More formally, we use the following formula
to order the candidate cliques,

priority =
size

#I/O
, (2)

where size is the size of a clique and #I/O is the
number of times the clique is written to disk or read
from disk. The clique that has the largest priority
value is selected as the next clique to write to disk.

4 Empirical evaluation

We tested our external-memory algorithm
(DFBnB+EM) by comparing it to the original
internal-memory MAP algorithm (DFBnB) devel-
oped by Yuan and Hansen (2009). Experiments
were performed on a 2.1GHz processor with 4GB
of RAM running a 32-bit version of Windows
Vista. The user is only allowed to use 2GB of
the memory address in a 32-bit environment. The
magnetic disk used for external memory operates
at 5400RPM and its interface is SATA2 (Serial
Advanced Technology Attachment).

4.1 Benchmarks and experimental design

Algorithm performance was tested on a set of
benchmark Bayesian networks. Two of the net-
works, BN-43 and BN-44, are from the UAI-06 in-
ference competition. For these two networks, the
MAP problem cannot be solved without using disk.
This shows that the new algorithm increases the
range of problems for which the MAP problem can
be solved exactly.

The other networks have been previously used to
test the internal-memory version of the MAP search
algorithm. They allow us to compare the perfor-
mance of the internal-memory MAP-search algo-
rithm to the external-memory algorithm under ar-
tificial memory limits. For each Bayesian network,
we set the low memory limit based on the minimal
memory requirement for the join tree of the net-
work. We set the high memory limit by averaging
the low memory limit and the total memory used
by the internal-memory MAP search algorithm. For
the BN-43 and BN-44 networks, we set the low
memory limit in the same way but set the high mem-
ory limit to be all available RAM.

Since the artificial memory limits are set based
on the join tree size, they do not consider other
memory requirements of the MAP algorithm, such
as memory incurred during search. Even when the
initial join tree fits in physical memory, caching
potentials during MAP search can significantly in-
crease the amount of memory needed. Yuan and
Hansen (2009) found that the increase ranges from
slightly larger to several times larger. Therefore,
MAP search may still fail if external memory is not
used. Finally, the Windows OS typically allocates

182 Lim et al.

Network DFBnB
#Nodes #Backtracks Build(ms) Search(ms) Largest clique Jointree Avg memory Max memory

Hailfinder 9,902 61,721 15 457 26K 98K 231K 231K
Water 5 14 1,683 372 41M 70M 126M 140M
Munin4 195 104 57,332 567 8M 155M 180M 408M
Barley 282 2,524 8,949 62,858 100M 230M 345M 475M
Mildew 1,135 6,102 5,490 13,684 43M 104M 166M 167M
Andes 124,971 975,861 743 80,522 2M 5M 14M 14M
Pigs 75,627 660,986 2,313 150,206 4M 11M 32M 33M
Diabetes 11,783 161,262 7,629 204,837 2M 89M 144M 150M
BN-43 5,520 54,700 - - 512M 1,008M - -
BN-44 1,292 16,276 - - 258M 890M - -

Table 1: Results for the DFBnB algorithm of Yuan and Hansen (2009). ‘#Nodes’ is the number of search
nodes. ‘#Backtracks’ is the number of backtracking steps. ‘Largest clique’ is the largest clique size, and
‘Jointree’ is the jointree size. ‘Avg memory’ is the average total memory of the test cases, while ‘Max
memory’ is the maximum total memory. ‘K’ means kilobytes, and ‘M’ megabytes. Since the internal-
memory algorithm could not solve the MAP problem for networks BN-43 and BN-44, the partial results in
the table are from the external-memory algorithm.

a significant portion of memory to service applica-
tions. Therefore, not all RAM is available for use
by the MAP algorithm.

For each of the benchmark Bayesian networks,
we generated 10 random test cases with as many
root nodes as MAP variables and with all leaf
nodes as evidence variables so that they are solv-
able within reasonable time. Tables 1 and 2 report
the average results for these test cases.

4.2 Analysis of results

Table 1 shows the results for the DFBnB algorithm
and Table 2 shows the results for the DFBnB+EM
algorithm. However, note that the numbers of
search nodes (#Nodes) and backtracks (#Back-
tracks) shown in Table 1, as well as the size of the
largest clique and the size of the join tree, are the
same for both algorithms.

Unsurprisingly, there is more disk I/O (both reads
and writes) when there is more backtracking. But
interestingly, the amount of data read from disk to
RAM is often larger than the amount of data writ-
ten from RAM to disk. During backtracking, we
need to restore some cached potentials. If they are
in external memory, we do not need to immediately
read them from disk to RAM; we just pass their tags
to the potential pointers. When forward search re-
sumes, copies are then read from disk to RAM for
message propagation, and main and cache point-
ers are swapped so that the cache pointer points to

4

6

8

10

12

14

16

18

20

N
u

m
b

e
r

o
f

I/
O

s

1
0

0
0

LF

LLF

LRU

0

2

4

6

8

10

12

14

16

18

20

0.14 0.18 0.18 0.36 0.62 1.44 2.08 11.88

N
u

m
b

e
r

o
f

I/
O

s

1
0

0
0

Clique Size (KB)

LF

LLF

LRU

Figure 3: Number of times chosen for I/O (in thou-
sands) versus clique size for different heuristics on
the Hailfinder network.

the external-memory copy. No write is necessary
during this process, unless memory is running low.
This is desirable because, for the same amount of
data, writing to disk takes more time than reading
from disk. This can be explained as follows. When
there is not much backtracking, however, as for the
Munin network, it is possible for more data to be
written to disk than read from disk.

Table 2 compares the performance of the three
heuristics described in Section 3.4: LRU, LF, and
LLF. The results indicate that LRU typically incurs
the least amount of I/O. A join tree typically has
smaller leaf cliques and larger inner cliques, and in-
ner cliques are accessed more often during back-

Lim et al. 183

Network
DFBnB+EM

Memory limit Heuristics Jointree building MAP search
Time Write Read Time Write Read

Hailfinder

40K
LF 836 303K 227K 147,730 58M 97M
LLF 881 303K 227K 91,539 33M 73M
LRU 1,218 302K 209K 156,263 9M 62M

135K
LF 16 0K 0K 900 507K 8M
LLF 19 0K 0K 1,915 298K 20M
LRU 19 0K 0K 3,293 267K 27M

Water

55M
LF 2,951 180M 164M 1,767 223M 234M
LLF 2,972 180M 164M 2,199 223M 234M
LRU 3,187 186M 168M 2,034 237M 240M

90M
LF 1,758 0M 0M 957 93M 93M
LLF 1,766 0M 0M 1,108 62M 132M
LRU 1,778 0M 0M 1,296 91M 151M

Munin4

10M
LF 67,879 697M 534M 2,940 334M 333M
LLF 69,180 697M 534M 8,311 333M 332M
LRU 81,317 570M 410M 20,562 239M 234M

95M
LF 59,037 186M 123M 2,305 102M 93M
LLF 59,870 248M 180M 2,138 114M 98M
LRU 74,017 281M 206M 10,581 84M 66M

Barley

150M
LF 11,906 363M 293M 266,415 24G 30G
LLF 11,605 363M 293M 259,678 22G 30G
LRU 11,522 313M 275M 291,873 24G 31G

250M
LF 8,859 0M 0M 229,783 21G 27G
LLF 8,923 0M 0M 113,009 6G 17G
LRU 8,869 0M 0M 88,168 249M 15G

Mildew

50M
LF 8,065 335M 272M 46,589 5G 7G
LLF 7,859 335M 272M 47,537 5G 7G
LRU 8,331 344M 280M 40,764 2G 4G

110M
LF 5,643 0M 0M 16,395 55M 2G
LLF 5,588 0M 0M 16,373 55M 2G
LRU 5,680 0M 0M 18,595 66M 606M

Andes

5M
LF 782 2M 1M 139,772 3G 12G
LLF 775 1M 1M 120,408 977M 9G
LRU 818 0M 0M 362,868 1G 8G

10M
LF 772 0M 0M 84,679 319M 1G
LLF 757 0M 0M 87,456 13M 5G
LRU 765 0M 0M 175,501 51M 7G

Pigs

10M
LF 2,528 10M 8M 877,444 77G 86G
LLF 2,558 15M 12M 399,216 23G 47G
LRU 6,251 9M 6M 1,866,499 8G 42G

20M
LF 2,384 0M 0M 184,497 523M 29G
LLF 2,363 0M 0M 197,263 368M 27G
LRU 2,443 0M 0M 1,163,290 3G 23G

Diabetes

5M
LF 10,821 155M 115M 3,445,326 115G 124G
LLF 11,213 159M 119M 2,275,228 62G 77G
LRU 11,475 146M 106M 2,661,619 44G 62G

75M
LF 7,694 0M 0M 238,486 147M 26G
LLF 7,680 0M 0M 238,031 51M 30G
LRU 7,682 0M 0M 227,471 34M 20G

BN-43

600M
LF 81,276 4G 4G 1,760,086 41G 46G
LLF 82,602 4G 4G 1,804,655 41G 46G
LRU 71,151 3G 3G 1,114,261 24G 29G

Available
LF 13,962 0M 0M 514,972 10G 20G
LLF 13,775 0M 0M 481,041 5G 16G
LRU 13,962 0M 0M 451,230 5G 15G

BN-44

350M
LF 70,731 4G 3G 3,513,469 251G 254G
LLF 69,006 4G 3G 3,472,347 239G 245G
LRU 77,144 3G 3G 3,219,000 208G 214G

Available
LF 18,426 0M 0M 537,318 16G 64G
LLF 17,984 0M 0M 407,260 1G 50G
LRU 18,225 0M 0M 510,685 12G 56G

Table 2: Results of external-memory MAP search. Running time is measured in milliseconds. ‘K’ means
kilobytes, ‘M’ means megabytes, and ‘G’ means gigabytes.

184 Lim et al.

tracking search. Therefore, LRU tends to select
smaller cliques to write to disk. By contrast, LF and
LLF select larger cliques to write to disk. This re-
sult is clearer in Figure 3, which plots the number of
disk I/O operations versus clique size in solving the
MAP problem for the Hailfinder network. The two
largest cliques are not selected often by LF and LLF
because they are stored in external memory early in
the search, and they remain there most of the time.
They are only occasionally copied from disk back
to RAM during backtracking.

However, the amount of disk I/O is not directly
proportional to running time. Although LRU has
the least amount of I/O and is faster than LF and
LLF on some networks, it can be much slower on
some other networks, such as Munin4 and Pigs. One
reason for this is the small cliques chosen by LRU
may not completely fill the I/O buffers, leading to
more I/O operations. If all cliques are large, as they
are for BN-43 and BN-44, LRU may perform better.

The LF heuristic may repeatedly select the same
large cliques to write to disk because it only con-
siders clique size. The LLF heuristic decreases the
frequency with which the same large cliques are
selected by prioritizing cliques based on dividing
clique size by the number of times the clique has
been written to or read from disk. Results show that
when there is a lot of backtracking and not much
RAM available, LLF can be significantly faster than
LF. This is illustrated by the results for Hailfinder
and Barley. Otherwise, LF and LLF demonstrate
similar behavior in most cases.

We can use the ratio of the size of the join tree
to the size of the largest clique to estimate the im-
provement in scalability from using our external-
memory algorithm. For the benchmark networks,
the ratio ranges from several times to around 45
times. The ratio is even higher if we take into ac-
count all memory used by the original MAP algo-
rithm, since caching potentials can increase the size
of a join tree.

5 Conclusion

We have introduced an external-memory approach
to scaling up a depth-first branch-and-bound algo-
rithm for solving the MAP problem that uses incre-
mental join tree bounds (Yuan and Hansen, 2009).

Our results show that the external-memory ap-
proach improves scalability and allows MAP prob-
lems to be solved exactly that could not be solved
before due to memory limitations.

The minimum memory requirement of our algo-
rithm is the amount of memory needed to store any
neighboring pair of clique and separator. We plan
to address this limitation by allowing just part of a
clique to be stored in RAM while the rest is stored
on disk (Kask et al., 2010). We will try to develop
better heuristics for selecting potentials to write to
external memory. Although we already use rele-
vance reasoning to exploit evidence-based indepen-
dence, we will consider whether the lazy propaga-
tion architecture proposed in (Madsen and Jensen,
1999) can improve the efficiency of our algorithm.

Acknowledgments This research was supported
by NSF grants IIS-0953723, EPS-0903787, and IIS-
0812558.

References
Jinbo Huang, Mark Chavira, and Adnan Darwiche. 2006.

Solving map exactly by searching on compiled arithmetic
circuits. In Proceedings of the 21st National Conference on
Artificial Intelligence (AAAI-06), page 143148.

Finn V. Jensen, Steffen L. Lauritzen, and Kristian G. Ole-
sen. 1990. Bayesian updating in recursive graphical models
by local computation. Computational Statistics Quarterly,
4:269–282.

Kalev Kask, Rina Dechter, and Andrew Gelfand. 2010.
BEEM: Bucket elimination with external memory. In Pro-
ceedings of The 26th Conference on Uncertainty in Artificial
Intelligence (UAI-10), AUAI Press Corvallis, Oregon.

Yan Lin and Marek J. Druzdzel. 1997. Computational advan-
tages of relevance reasoning in Bayesian belief networks.
In Proceedings of the Thirteenth Annual Conference on Un-
certainty in Artificial Intelligence (UAI-97), pages 342–350,
San Francisco, CA. Morgan Kaufmann Publishers, Inc.

Anders L. Madsen and Finn V. Jensen. 1999. Lazy propa-
gation: A junction tree inference algorithm based on lazy
evaluation. Artificial Intelligence, 113(1-2):203–245.

James D. Park and Adnan Darwiche. 2003. Solving MAP
exactly using systematic search. In Proceedings of the
19th Conference on Uncertainty in Artificial Intelligence
(UAI–03), pages 459–468, Morgan Kaufmann Publishers
San Francisco, California.

Changhe Yuan and Eric A. Hansen. 2009. Efficient computa-
tion of jointree bounds for systematic MAP search. In Pro-
ceedings of 21st International Joint Conference on Artificial
Intelligence (IJCAI-09), pages 1982–1989, Pasadena, CA.

Pp. 185–193 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Modelling the Interactions between Discrete and Continuous Causal Factors
in Bayesian Networks

Peter J.F. Lucas and Arjen Hommersom
Radboud University Nijmegen,

Institute for Computing and Information Sciences, The Netherlands
Email: {peterl,arjenh}@cs.ru.nl

Abstract

The theory of causal independence is frequently used to facilitate the assessment of the proba-
bilistic parameters of discrete probability distributions of complex Bayesian networks. Although
it is possible to include continuous parameters in Bayesiannetworks as well, such parameters
could not, so far, be modelled by means of causal independence theory, as a theory of continuous
causal independence was not available. In this paper, such atheory is developed and generalised
such that it allows merging continuous with discrete parameters based on the characteristics of
the problem at hand. This new theory is based on the discovered relationship between the theory
of causal independence and convolution in probability theory, discussed for the first time in this
paper. It is also illustrated how this new theory can be used in connection with special probability
distributions.

1 Introduction

One of the major challenges in building Bayesian
networks is to estimate the associated probabilistic
parameters. As these parameters of a Bayesian net-
work have the form of conditional probability dis-
tributionsP (E | C1, . . . , Cn), it has been beneficial
to look upon the interaction between the associated
random variablesE, C1, . . . , Cn as the interactions
betweencausesCk and aneffectE. This insight has
driven much of the early work (Pearl, 1988), and
is still one of the main principles used to construct
Bayesian networks for actual problems.

Causal principles have also been exploited in situ-
ations where the number of causesn becomes large,
as the number of parameters needed to assess a fam-
ily of conditional probability distributions for a vari-
ableE grows exponentially with the number of its
causes. The theory of causal independence is fre-
quently used in such situations, basically to decom-
pose a probability table in terms of a small number
of causal factors (Henrion, 1989; Pearl, 1988; Heck-
erman and Breese, 1996). However, so far this the-
ory was restricted to the modelling ofdiscreteprob-
ability distributions, where in particular three types
of interaction are in frequent use: the noisy-OR

and the noisy-MAX—in both cases, the interaction
among variables is being modelled as disjunctive
(Dı́ez, 1993; Henrion, 1989; Pearl, 1988)—and the
noisy-AND. Interactions amongcontinuouscause
variables are usually modelled by statistical tech-
niques such as logistic regression and probit regres-
sion, typically by using iterative numerical methods
that estimate the weight parameters by maximising
the likelihood of the data given the model (Bishop,
2006). Clearly, these regression models resist man-
ual construction based on a solid understanding of
a problem domain; the fact that Bayesian networks
can be constructed using a mixture of background
knowledge and data, depending on the availability
of knowledge and data of the problem at hand, is
seen as one of the key benefits of the technique.
Moreover, it is not possible to combine regression
models with discrete causal independence models.

In this paper, a new framework of causal inde-
pendence modelling is proposed. It builds upon the
link we discovered between the theory of causal in-
dependence and the convolution theorem of proba-
bility theory. The framework is developed by gener-
alising this theorem into an algebra that supports the
modelling of interactions, whether discrete, contin-
uous, or both, in a meaningful way.

186 Lucas & Hommersom

Fat Loss
(L)

Energy
Intake

(I)

Calories
Eaten
(C)

Heat
Production

(H)

Basal Meta-
bolic Rate

(B)

External
Work
(W)

Physical
Activity

(Y)

Fat Removal
(R)

Liposuction
(S)

Figure 1: Causal factors that affect fat loss in hu-
mans.

2 Motivating Example

In biomedical modelling one often has to deal with a
mixture of discrete and continuous causes that give
rise to an effect. For example, the amount offat
storagein the human body is determined by theen-
ergy balance, i.e., the balance between energy in-
take and expenditure. A decrease in fat storage usu-
ally occurs whenever the energy intake is smaller
than the energy expenditure. The energy expendi-
ture is determined by the internal heat produced,
which is mainly the basal metabolic rate (BMR),
plus external work estimated by physical activity.
Besides altering the energy balance, the storage can
be decreased by means ofliposuction. The en-
ergy variables are naturally represented as contin-
uous variables, whereas ‘Liposuction’ is discrete.

The causal model is presented in Figure 1 and
the conditional probability distributions of fat loss
are represented by:P (L | C,B, Y, S). Somehow
this distribution must be determined by the interac-
tion between the intermediate causal variables con-
cerned, expressed byA ≡ (I ≤ (H + W)) (energy
intake is less than or equal to heat production plus
external work), withA standing for an appropriate
energy balance. Furthermore, the binary (Boolean)
effect variable fat lossL is defined asL ≡ (A ∨R)
(fat lossL is due to a change in the energy balance
A or fat removalR). The techniques developed in
this paper will allow one to exploit such information
in building a Bayesian network.

3 Preliminaries

This section provides a review of the basics under-
lying the research of this paper.

3.1 Probability theory and Bayesian networks

In this paper we are concerned with both discrete
and continuous probability distributionsP , defined
in terms functionsf , called the probability mass
function for the discrete case and density function
for the continuous case. Associated with a mass and
density function, respectively, are distribution func-
tions, denoted byF . Random variables are denoted
by upper case, e.g.,X, I etc. Instead ofX = x
we will frequently write simplyx. This is also the
notation used to vary over values in summation and
integration and to indicate that a binary variableX
has the value ‘true’. The value ‘false’ of a binary
variableX is denoted bȳx. Finally, free variables
are denoted by uppercase, e.g.,X.

A Bayesian networkis a concise representation
of a joint probability distribution on a set of random
variables (Pearl, 1988). It consists of an acyclic di-
rected graphG = (V,A), where each nodeV ∈ V
corresponds to a random variable andA ⊆ V × V
is a set of arcs. The absence of arcs in the graph
G models independences between the represented
variables. In this paper, we give an arcV → V ′ a
causal reading: the arc’s direction marksV ′ as the
effectof thecauseV . In the following, causes will
often be denoted byCi and their associated effect
variable byE.

Associated with the qualitative part of a Bayesian
network are numerical parameters from the encoded
probability distribution. With each variableV in the
graph is associated a set ofconditional probability
distributionsP (V | π(V)), describing the joint in-
fluence of values for the parentsπ(V) of V on the
probabilities of the variableV ’s values. These sets
of probabilities constitute the quantitative part of
the network. A Bayesian network represents a joint
probability distribution of its variables and thus pro-
vides for computing any probability of interest.

3.2 Causal modelling

One popular way to specify interactions among sta-
tistical variables in a compact fashion is offered by
the notion ofcausal independence(Heckerman and
Breese, 1996). The global structure of a causal-
independence model is shown in Figure 2; it ex-
presses the idea that causesC = (C1, . . . , Cn) in-
fluence a given common effectE through interme-

Lucas & Hommersom 187

C1 C2 . . . Cn

I1 I2 . . . In

E b

Figure 2: Causal independence model.

diate variablesI = (I1, . . . , In) and a Boolean,
or Boolean-valued, functionb, called theinterac-
tion function. The influence of each causeCk on
the common effectE is independent of each other
causeCj, j 6= k. The functionb represents in which
way the intermediate effectsIk, and indirectly also
the causesCk, interact to yield the final effectE.
Hence, this functionb is defined in such way that
when a relationship, as modelled by the functionb,
betweenIk, k = 1, . . . , n, andE = 1 (true) is sat-
isfied, then it holds thatb(I1, . . . , In) = 1, denoted
by b(I1, . . . , In) = e.

The conditional probability of the occurrence of
the effectE given the causesC1, . . . , Cn, can be
obtained from the conditional probabilitiesP (Ik |
Ck) as follows:

Pb(e | C1, . . . , Cn) =
∑

b(i1,...,in)=e

n∏
k=1

P (ik | Ck) (1)

Formula (1) is practically speaking not very use-
ful, because the size of the specification of the func-
tion b is exponential in the number of its arguments.
The resulting probability distribution is therefore in
general computationally intractable, both in terms
of space and time requirements. An important sub-
class of causal independence models, however, is
formed by models in which the deterministic func-
tion b can be defined in terms of separate binary
functions gk, also denoted bygk(Ik, Ik+1). Such
causal independence models have been calledde-
composablecausal independence models (Hecker-
man and Breese, 1996); these models are of sig-
nificant practical importance. Often, all functions
gk(Ik, Ik+1) are identical for eachk; a function
gk(Ik, Ik+1) may therefore be simply denoted by
g(I, I ′). Typical examples of decomposable causal
independence models are the noisy-OR (Dı́ez, 1993;

Henrion, 1989; Pearl, 1988; Srinivas, 1993) and
noisy-MAX (Dı́ez, 1993; Heckerman and Breese,
1996; Srinivas, 1993) models, where the function
g represents a logical OR and a MAX function, re-
spectively.

In the case of continuous causal factors with a
discrete effect variable, there are two main propos-
als for the conditional distribution of the discrete
node (Bishop, 2006). Suppose we have a binary ef-
fect variableE and continuous parentsC1, . . . , Cn.
If E is modelled using alogistic function, then

P (e | C1, . . . , Cn) =
exp(b + wT ϕ(C))

1 + exp(b + wT ϕ(C))
(2)

wherewT = (w1, . . . , wn) is a weight vector and
ϕ(C) a, possibly nonlinear, basis function applied
to the causesC. The other option is to use theprobit
regression model, with

P (e | C1, . . . , Cn) = P (Θ ≤ (b + wT ϕ(C))) (3)

whereΘ ∼ N(0, 1). Although both types of model
are flexible, it is very hard to come up with sensible
weight vectorsw and basis functionsϕ based only
on available domain knowledge of the relations be-
tween causes.

3.3 The convolution theorem

A classical result from probability theory that is use-
ful when studying sums of variables is the convo-
lution theorem. The following well-known theorem
(cf. (Grimmett and Stirzaker, 2001)) is central to the
research reported in this paper.

Theorem 1. Letf be a joint probability mass func-
tion of the random variablesX and Y , such that
X + Y = z. Then it holds thatP (X + Y = z) =
fX+Y (z) =

∑
x f(x, z − x).

Proof. The (X,Y) space determined byX + Y =
z can be described as the union of disjoint sets
(for eachx):

⋃
x ({X = x} ∩ {Y = z − x}), from

which the result follows.

If X andY are independent, then, in addition, the
following corollary holds.

Corollary 1. LetX andY be two independent ran-
dom variables, then it holds that

P (X + Y = z) = fX+Y (z)

=
∑

x

fX(x)fY (z − x) (4)

188 Lucas & Hommersom

The probability mass functionfX+Y is in that
case called theconvolutionof fX andfY , and it is
commonly denoted asfX+Y = fX ∗ fY . The con-
volution theorem is very useful, as sums of random
variables occur very frequently in probability theory
and statistics. The convolution theorem can also be
applied recursively, i.e.,

fX1+···+Xn = fX1 ∗ · · · ∗ fXn

as follows from the recursive application of Equa-
tion (4):

P (X1 + · · ·+ Xn = z) =∑
yn−2

∑
yn−3

· · ·
∑
y1

∑
x1

fX1(x1)fX2(y1 − x1) · · ·

fXn−1(yn−2 − yn−3)fXn(z − yn−2) (5)

where we use the following equalities:

Y1 = X1 + X2

Yi = Yi−1 + Xi+1, ∀i: 2 ≤ i ≤ n− 2

Thus,Yn−2 = X1 + · · · + Xn−1, andXn = z −
Yn−2. As addition is commutative and associative,
any order in which theYi’s are determined is valid.

The convolution theorem does not only hold for
the addition of two random variables, but also for
Boolean functions of random variables. However,
in contrast to the field of real numbers where a value
of a random variableXn is uniquely determined by
a real numberz andyn−2 throughXn = z − yn−2,
in Boolean algebra values of Boolean variables only
constrain the values of other Boolean variables.
These constraints may yield a set of values, rather
than a single value, which is still compatible with
the convolution theorem. In the following, we use
the notationb(X, y) = z for such constraints, where
the Boolean valuesy andz constrainX to particular
values. For example, for(X ∨ y) = z, wherey, z
stand forY = 1 (Y has the value ‘true’) andZ = 1
(Z has the value ‘true’), it holds thatX ∈ {0, 1}.
Theorem 2. Letf be a joint probability mass func-
tion of independent random, Boolean variablesI
and J and let b be a Boolean function defined on
I andJ , then it holds that

P (b(I, J) = e) =
∑

i

fI(i)P (b(i, J) = e)

Proof. The(I, J) space defined byb(I, J) = e can
be decomposed as follows:

⋃
i{I = i} ∩ {J =

j | b(i, j) = e}, where the expressionb(i, j) = e
should be interpreted as a logical constraint on the
Boolean values of the variableJ . As in Theorem 1,
the individual sets{I = i} ∩ {J = j | b(i, j) = e}
are mutually exclusive.

This theorem is illustrated by the following ex-
ample.

Example 1. Consider the example given in Figure
1 as discussed in Section 2, and the Boolean rela-
tion A ∨ R ≡ L, which expresses that fat lossL
is due to changes in the energy balanceA or fat
removal R. By applying Theorem 2 the follow-
ing results: P (A ∨ R = l) =

∑
a fA(a)P (a ∨

R = l) = fA(a) (fR(r) + fR(r̄)) + fA(ā)fR(r) =
fA(a)fR(r)+fA(a)fR(r̄)+fA(ā)fR(r), where the
term (fR(r) + fR(r̄)) results from the logical con-
straint thata ∨ R = l, i.e., R ∈ {0, 1}. Note that
this is exactly the same result as for the noisy-OR
model with the causal variablesC marginalised out:

P∨(l) =
∑

a∨r=l

fA(a)fR(r) = P (A ∨R = l)

4 Convolution-based Causal
Independence

In this section, we start to systematically explore
the relationship between the convolution theorem of
probability theory and the theory of causal indepen-
dence.

4.1 General idea

The idea now is that we can use any Boolean-valued
function, as long as the function is decomposable, to
model causal interaction using the convolution the-
orem. A discrete causal independence model can
also be written as follows:

Pb(e | C) = P (b(I1, . . . , In) = e | C)

where the right hand side can be determined as fol-
lows:

P (b(I1, . . . , In) = e | C) =∑
jn−2

∑
jn−3

· · ·
∑
j1

∑
i1

fI1(i1 | C1)

·PI2(b1(i1, I2) = j1 | C2) · · ·
PIn(bn−1(jn−1, In) = e | Cn) (6)

Lucas & Hommersom 189

and the Boolean random variablesJk are defined in
terms ofIl’s dependent on the constraints imposed
by the Boolean operatorsbk. This can be proven
by an inductive argument over all the cause vari-
ables. If we use a single operator⊙ that is com-
mutative and associative, then the order of evalua-
tion does not matter, and we can ignore parentheses:
b(I1, . . . , In) = I1 ⊙ · · · ⊙ In (Zhang and Poole,
1996; Lucas, 2005). However, if the single oper-
ator used to define the Boolean functionb is nei-
ther commutative nor associative, then the order in
which the Boolean expression is evaluated matters,
and one should use parentheses.

The principles discussed above carry over to the
continuous case. The convolution theorem for con-
tinuous variablesX, Y , andZ, with Z = X + Y ,
has the following form:

fX+Y (z) =
∫ ∞

−∞
fX(x)fY (z − x) dx

where fX+Y , fX , and fY are probability density
functions, and the variablesX andY are assumed
to be independent. In the context of the theory of
causal independence, we use convolution to com-
pute the conditional probability density function
fb(e | C), in a way very similar to the discrete case,
whereb is the causal interaction function.

4.2 A language for modelling interactions

To carry over the ideas of causal independence from
the discrete case, we consider various operators for
continuous variables. This will build up a rich lan-
guage for modelling causal independence.

4.2.1 Boolean-valued continuous operators

Moving to the continuous case, first letI be a
set of independent continuous causal random vari-
ables with associated probability densityf(I | C).
Consider the Boolean-valued decomposable func-
tions b, i.e., functionsb : I → {0, 1}, such that
constraints on some variablesI ′ ⊂ I imposed byb
are measurable sets of values forI ′. We now wish
to use the theory of causal independence in order
to decompose the probability massfb(e | C). If
I = {J,K} are continuous intermediate variables
andC = {CJ , CK} the relevant causal variables,
then:

fb(e | C) = P (b(J,K) = e | C)

=
∫∫

b(j,k)=e
fJK(j, k | C) dk dj

=
∫ ∞

−∞
fJ(j | CJ)

∫
b(j,k)=e

fK(k |CK) dk dj (7)

=
∫ ∞

−∞
fJ(j |CJ)P (b(j,K) = e |CK)dj (8)

The constraintb(j,K) = e determines a subspace
of the real numbers for variableK over which the
density functionfK is integrated.

For a generaln-ary Boolean-valued functionb of
continuous variables, we can apply this equation re-
cursively, which gives:

fb(e | C) = P (b(I1, I2, . . . , In) = e | C) =∫ ∞

−∞
fI1(i1 | C1)

∫
b(i1,i2,...,in)=e

fI2(i2 | C2) · · ·

·
∫

b(i1,...,in)=e
fIn(in | Cn) din · · · di1 (9)

If b is defined on both discrete and continuous vari-
ables, then this yields a mix of sums and integrals
by repeated application of Theorem 2 and Eq. (8).

Analogously to the convolution notation, we de-
fine an operator b for denoting this decomposition
for any Boolean function such that:

b (fC1
I1

, . . . , fCn
In

)(e) = fC
b(I1,...,In)(e) = fb(e | C)

where the superscriptsC1 andC2 represent condi-
tioning on the corresponding variables. This allows
us to deal with complex combinations of such oper-
ators in a compact fashion.

If b is binary, we use an infix notation; e.g.,∨

denotes the decomposition of two densitiesfJ and
fK using a logical OR. Returning to the fat loss
problem (denoted by the variableL with l standing
for L = 1) of Example 1, we have:

(fA
∨ fR)(l) =

∑
a

fA(a)P ((a ∨R) = l)

which is again the noisy-OR operator.
In the following section, a language that supports

Boolean combinations of relations is developed.

4.2.2 Relational operators

The relational operators are treated similarly to
convolutions and Boolean operators by viewing a

190 Lucas & Hommersom

relation and a value of a random variable as a con-
straint on the other variables. First, basic operators
to build up our language are basic relational opera-
tors, such as=,≤, >. Consider≤:

P≤(e | C) = P ((I1 ≤ I2) = e | C) =∫∫
(i1≤i2)=e

f(i1, i2 | C) di1 di2 (10)

If I1 andI2 independent, then the following equality
results:

P≤(e | C) =
∫ ∞

−∞
fI1(i1 | C1)

·P ((i1 ≤ I2) = e | C2) di1

=
∫ ∞

−∞
fI1(i1 | C1)

·
∫ ∞

ii

fI2(i2 | C2) di2 di1

A similar expression can be derived for>, while
P ((I1 = I2) = e | C) = 0 asP ((I2 = i1 | C2) =
0 for continuous variablesI1 andI2. This expres-
sion implies that, in caseI1 andI2 are independent,
the relation can be decomposed. As a result, we can
use the notation as introduced earlier to obtain op-
erators R :

(fC1
I1

R fC2
I2

)(e) = fR(e | C)
= P (R(I1, I2) = e | C)

whereR is one of the basic relational operators.
Subsequently, we look at the extension of this

language with convolutions of the interaction be-
tween variables and constants. A constantk can be
described by a uniform probability distribution with
density function

fJ(j) =
{

1/δ if j ∈ (k − δ/2, k + δ/2]
0 otherwise

for δ ∈ R+ very small, then

P ((I ≤ J) = e) = (fI
≤ fk)(e)

=
∫ k

−∞
fI(i) di = P (I ≤ k)

as one would expect. For convenience, we have
written fk for this density functionfJ and will do
so in the following.

For modelling the interaction between convolu-
tions of variables, letI a set of continuous random
variables andK a set of constants. Then, asum-
relation is a Boolean-valued functionb such that

b(I) = R(
n∑

k=1

Vk,

m∑
l=1

Wl)

whereV ⊆ I∪K, W ⊆ I∪K, andR is a relational
operator.

If V andW do not overlap in variables except for
the constants, the sums ofV andW are indepen-
dent. In that case, the relation can be decomposed
by Eq. (9). So we have the following proposition.

Proposition 1. The causal independence model of
a sum-relationR(

∑n
k=1 Vk,

∑m
l=1 Wl) with contin-

uous interaction variablesI can be written as:

P (R(
n∑

k=1

Vk,
m∑

l=1

Wl) = e)

= (fV1+···+Vn
R fW1+···+Wm)(e)

if V ∩W ∩ I = ∅.

Example 2. Recall the example in Figure 1 as
discussed in Section 2. The causal independence
model of the energy balanceA can be written as:

P ((I ≤ H + W) = a | C,B, Y)
= (fC

I
≤ f

{B,Y }
H+W)(a) = (fC

I
≤ (fB

H ∗ fY
W))(a)

where∗ is the convolution operator.

This approach could be extended easily to other
operators, such as subtraction, but we refrain from
this because of space limitations.

4.2.3 Boolean combinations of relations

Sum-relations can now be combined using
Boolean functions in a uniform manner. LetIc be
a set of continuous causal random variables,Id a
set of discrete causal random variables, andI =
Ic ∪ Id. A Boolean combination bcis a Boolean-
valued function defined onI as follows:

bc(I) = b(R1(V1), . . . , Rn(Vn), Id)

whereb is a Boolean function andR1, . . . , Rn a set
of sum-relations.

If the continuous variables in the Boolean com-
binations of relations are partitioned, Eq. (6) can be
applied to obtain the following proposition.

Lucas & Hommersom 191

Proposition 2. The causal independence model
of a Boolean combination of sum-relations
b(R1(V1), . . . , R2(Vn)), can be written as:

P (b(R1(V1), R2(V2)) = e | C)
= (fC1

R1(V1)
b fC2

R2(V2))(e)

if V1 ∩ V1 = ∅.

Example 3. Again, consider the example in Fig-
ure 1 as discussed in Section 2. We are now in the
position to decompose the full causal independence
function representing fat lossL.

P ((I ≤ H + W) ∨R) = l | C,B, Y, S)
= P ((R ∨ (I ≤ H + W)) = l | C,B, Y, S)

= f
{C,B,Y,S}
R∨(I≤H+W)(l)

= (fS
R

∨ fL≤H+W)(l)

= (fS
R

∨ (fC
I

≤ (fB
H ∗ fY

W)))(l)

5 Special Probability Distributions

In this section, the theory developed in the previous
sections is illustrated by actually choosing special
probability distributions to model problems.

5.1 Bernoulli distribution

As an example of discrete distributions, we take the
simplest one: the Bernoulli distribution. This distri-
bution has a probability mass functionf such that
f(0) = 1 − p and f(1) = p. Let P (Ik | ck)
be Bernoulli distributions with parameterspk where
k = {1, 2}. Suppose the interaction betweenC1

andC2 is modelled by≤, then the effect variableE
also follows a Bernoulli distribution with parameter:

P≤(e | c1, c2) = (f c1
I1

≤ f c1
I2

)(e)

=
∑
i1

fI1(i1 | c1)P ((i1 ≤ I2) = e | c2)

= p1 − p1p2 + 1

By the same reasoning, we obtain the parameters of
the resulting distribution when̄c1 or c̄2.

5.2 Exponential distribution

In order to model the time it takes for the effect
to take place due to the associated cause, we use
the exponential probability distribution with distri-
bution functionF (t) = 1 − e−λt, wheret ∈ R+

0

is the time it takes before the effect occurs. The
associated probability density function isf(t) =
F ′(t) = λe−λt. Now, letI1 andI2 stand for two of
such temporal random variables such thatI1 ≤ I2,
meaning that intermediate effectI1 does not occur
later thanI2. The probability mass ofE to occur is:

P≤(e | C) = (f c1
I1

≤ f c1
I2

)(e)

=
∫ ∞

−∞
fI1(i1 | c1)P ((i1 ≤ I2) = e | c2) di1

=
∫ ∞

−∞
fI1(i1 | c1)

∫ ∞

0
fI2(i1 + δ | c2) dδ di1

=
∫ ∞

−∞
λ1e

−λ1i1e−λ2i1 di1 =
λ1

λ1 + λ2

where we use a delayδ ≥ 0. If λ1 = λ2, then
PI1≤I2(e | C) = 1/2.

5.3 Conditional Gaussian distribution

The most common hybrid distribution for Bayesian
networks is the conditional Gaussian distribution
(Lauritzen and Wermuth, 1989). We illustrate the
theory for the case when a continuous interaction
variableI has a continuous cause variableC. The
distribution ofI is given in this model byf(i | C) =
N(α + βC, σ2). Let I1 andI2 be two such random
variables with causal variablesC1 andC2. It is well-
known that variableE with fI1−I2(e | C) is dis-
tributed Gaussian with meanα1+β1C1−α2−β2C2

and varianceσ2
1 + σ2

2 . Similarly, the convolution of
two Gaussian variables is a Gaussian variable with
the sums of means and variances. Because of space
limitations, the derivations are omitted.

Here we illustrate the relational operator≤. The
probabilityP≤(e | C) can be obtained by

P≤(e | C) = fC1
I1

≤ fC2
I2

= (fC1
I1

− fC2
I2

) ≤ 0 = FJ(0)

= 1
2

[
1 + erf

(
−(α1+β1c1−α2−β2c2)√

2(σ2
1+σ2

2)

)]
= P (Θ ≤ b + w1c1 + w2c2)

whereb = α2−α1√
σ2
1+σ2

2

, w1 = −β1√
σ2
1+σ2

2

, w2 = β2√
σ2
1+σ2

2

,

and Θ ∼ N(0, 1), which is a probit regression
model (cf. Section 3.2).

Example 4. Consider the energy balanceA as de-
composed in Example 2. Suppose all causal and in-
teraction variables are conditionally Gaussian. Sup-
pose the balance is negative, i.e.,a is true, then,

192 Lucas & Hommersom

1500 2000 2500 3000 3500
0

2

4

6
x 10

−4

Calories Eaten

D
en

si
ty

1500 2000 2500 3000 3500
0

0.5

1

1.5

2
x 10

−3

BMR+Activity

D
en

si
ty

Calories Eaten

B
M

R
+

A
ct

iv
ity

1500 2000 2500 3000 3500
1500

2000

2500

3000

3500

Calories Eaten

B
M

R
+

A
ct

iv
ity

1500 2000 2500 3000 3500
1500

2000

2500

3000

3500

0

0.5

1

0

0.5

1

x 10
−6

Figure 3: Example distributions, where, from left to right,the first figure shows the density ofC ∼
N(2800, 700); the second figure shows the density ofB + Y ∼ N(2300, 200); the third figure shows
the probability distributionsP (A | C,B + Y) with A ≡ I ≤ (H + W) whereI ∼ N(0.9 · C, 200) and
H + W ∼ N(1.1 · (B + Y), 300); finally, the figure on the right shows the joint density of{A,C,B + Y }.

(fB
H ∗ fY

W)(a) represents a distributionN(αH +
αW + βHCB + βW CY , σ2

H + σ2
W), i.e., the sum of

the mean and variance. Using the above, it follows
that the probability ofa is:

P (a) = (fC
I

≤ (fB
H ∗ fY

W))(a)

which is a probit regression model withb = (αI −
αH − αW)/σ′, wC = βI/σ

′, wB = −βH/σ′, and

wY = −βW /σ′, whereσ′ =
√

σ2
I + σ2

H + σ2
W .

In Figure 3 a number of plots are given to illus-
trate this model for some realistic parameters. Note
that the energy balance distributions depicted in the
third figure are split up into 0 (too much intake),
1 (too much energy expenditure), and an uncertain
band in the middle.

6 Conclusions

We presented a new algebraic framework for causal
independence modelling of Bayesian networks that
goes beyond what has been available so far. In con-
trast to other approaches, the framework supports
the modelling of discrete as well as of continuous
variables, either separately or mixed.

The design of the framework was inspired by
the convolution theorem of probability theory, and
it was shown that this theorem easily generalises
to convolution with Boolean-valued functions. We
also studied a number of important modelling oper-
ators. Contrary to regression models, we were thus
able to model interactions between variables using
knowledge at hand. Furthermore, the theory was
illustrated by a number of typical probability distri-
butions which one needs to use when actually build-
ing Bayesian network models for problems. Finally,
although some of the results suggest that standard

tools for solving the inference problem can be used,
such as the probit model for the conditional Gaus-
sian distribution, more research is required and such
we intend to undertake in the near future.

References
C.M. Bishop. 2006.Pattern Recognition and Machine

Learning. Springer.

F.J. Dı́ez. 1993. Parameter adjustment in Bayes net-
works: the generalized noisy OR-gate. InUAI’93,
pages 99–105.

G. Grimmett and D. Stirzaker. 2001.Probability and
Random Processes. Oxford University Press, Oxford.

D. Heckerman and J.S. Breese. 1996. Causal indepen-
dence for probabilistic assessment and inference using
Bayesian networks.IEEE Transactions on Systems,
Man and Cybernetics, 26(6):826–831.

M. Henrion. 1989. Some practical issues in constructing
belief networks. In J.F. Lemmer and L.N. Kanal, edi-
tors,Uncertainty in Artificial Intelligence, pages 161–
173, Amsterdam. Elsevier.

S.L. Lauritzen and N. Wermuth. 1989. Graphical
models for associations between variables, some of
which are qualitative and some quantitative.Annals
of Statistics, 17:31–57.

P.J.F. Lucas. 2005. Bayesian network modelling through
qualitative patterns.AI, 163:233–263.

J. Pearl. 1988.Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann Publishers, Palo Alto.

S. Srinivas. 1993. A generalization of the noisy-OR
model. InUAI’93, pages 208–215.

N.L. Zhang and D. Poole. 1996. Exploiting causal
independence in Bayesian network inference.JAIR,
5:301–328.

Pp. 193–201 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Contextual Variable Elimination with Overlapping Contexts

Wannes Meert, Jan Struyf and Hendrik Blockeel
Katholieke Universiteit Leuven, Department of Computer Science, Belgium

{firstname.lastname}@cs.kuleuven.be

Abstract

Belief networks (BNs) extracted from statistical relational learning formalisms often in-
clude variables with conditional probability distributions (CPDs) that exhibit a local struc-
ture (e.g, decision trees and noisy-or). In such cases, naively representing CPDs as tables
and using a general purpose inference algorithm such as variable elimination (VE) results
in redundant computation. Contextual variable elimination (CVE) partly addresses this
problem by representing the BN in terms of smaller units called confactors. This leads to a
more compact representation and faster inference. CVE requires that a variable’s confac-
tors are mutually-exclusive and exhaustive. We propose CVE-OC (CVE with overlapping
contexts), which lifts these restrictions. This seemingly simple step shows to be powerful
and allows for a more efficient encoding of confactors and a reduction of the computational
cost. Experiments show that CVE-OC outperforms CVE on multiple problems.

1 Introduction

Belief networks (BNs) (Pearl, 1988) are a well-
known formalism to represent probabilistic re-
lations between variables. Their main advan-
tage is that they allow one to graphically repre-
sent which variables are (in)dependent of which
other variables. A BN takes the form of a di-
rected acyclic graph in which the variables are
nodes and the dependence information is en-
coded by means of the edges. The BN de-
fines the variables’ joint probability distribu-
tion, which is compactly represented as a prod-
uct of factors. This product includes for each
variable one factor, which is typically encoded
as a table that represents the conditional prob-
ability distribution (CPD) of the variable given
its parents in the BN. BN inference (computing
the conditional probability of a query variable
given certain evidence) can be performed by
summing out all non-query non-evidence vari-
ables from the factorization. This is essentially
what the variable elimination (VE) algorithm
(Zhang and Poole, 1996) does.

A field where BNs are applied is statistical
relational learning (SRL) (Getoor and Taskar,
2007). This is a research area that combines the

elegant handling of uncertainty from probability
theory with the capability of representing com-
plex relational domains of first-order logic. A
large number of the formalisms used in SRL can
be converted into BNs (e.g., CP-logic, ProbLog,
ICL, PRISM, BLP). For these formalisms, only
exploiting the notion of independence does not
yield the most efficient representation possible.
The CPDs resulting from the conversion exhibit
a particular internal structure, which we will
call local structure. For example, a CPD may
be given as a decision tree (Ramon et al., 2008),
may express that the different conditions in-
fluence the variable independently (noisy-or or
noisy-max), or may impose constraints on the
range of a variable in a certain context (Meert
et al., 2008). In these cases, a table based repre-
sentation contains redundancies; an alternative
representation that avoids these redundancies
may yield more efficient inference.

Several methods have been proposed to ex-
ploit local structure. For instance, contextual
variable elimination (CVE) (Poole and Zhang,
2003) uses a more compact representation for
decision trees and more complex local structures
that exhibit contextual independence. This re-
duces the tree-width of the network, thus al-

194 Meert et al.

lowing for more efficient inference. CVE is a
generalization of probability trees and a com-
parison is made in (Poole and Zhang, 2003).
Another example is multiplicative factorization
(MF) (Dı́ez and Galán, 2003) that can exploit
local structures like independent causation (e.g.
noisy-or/and). CVE and MF each exploit one
particular type of structure, but cannot han-
dle the other. CVE relies on contexts being
mutually-exclusive and exhaustive (we will call
this the MEE-restriction), which makes it un-
suitable to combine it with MF.

There are also methods that utilize a pre-
processing phase to compile the belief network
into a different structure, which is optimized
for answering multiple queries and allows ef-
ficient inference with particular types of local
structure. Some known methods are the Arith-
metic Circuits (AC) of (Chavira and Darwiche,
2007) and the AND/OR-trees of (Mateescu and
Dechter, 2008). In SRL, for each query a new
network is built (every time requiring a compi-
lation), therefore, in this paper, we focus on the
compilation-free methods.

The main contribution of this paper is that
we show how in CVE the MEE-restriction can
be lifted. This leads to a new method, CVE-
OC : CVE with overlapping constraints. Lift-
ing the MEE-restriction has two important con-
sequences: (a) contexts can be encoded more
compactly, with increased efficiency as a result,
and (b) factorizations like MF can also be han-
dled, which means that CVE-OC can exploit all
structures that CVE and MF can exploit. An
additional contribution, is that CVE-OC han-
dles constraints on the range of multi-valued
variables. This is an extension of CVE for which
no concrete solution has been presented up till
now.

This paper is organized as follows. We start
by providing background on CVE and MF. Af-
ter this we presents CVE-OC, the paper’s main
contribution. Next, we discuss its usefulness in
the context of statistical relational learning. We
present an experimental evaluation in that con-
text, and finally present our conclusions.

2 Preliminaries

2.1 Contextual variable elimination
(CVE)

CVE makes use of a more specific form of con-
ditional independence known as contextual in-
dependence (Boutilier et al., 1996; Poole and
Zhang, 2003).

Definition 1 (Contextual Independence). As-
sume that X Y, Z and C are sets of variables.
X and Y are contextually independent given Z
and context C = c, with c ∈ dom(C), iff

Pr(X|Y = y ∧ Z = z ∧C = c) =
Pr(X|Z = z ∧C = c)

for all y ∈ dom(Y) and z ∈ dom(Z) such that
Pr(Y = y ∧ Z = z ∧C = c) > 0. We also say
that X is contextually independent of Y given Z
and context C = c (if we drop C = c, we say X
is conditionally independent from Y given Z).

VE (Zhang and Poole, 1996) represents the
joint distribution as a product of factors, in
which each factor is a conditional probability
table. CVE (Poole and Zhang, 2003) factorizes
the joint distribution further by replacing each
factor by a set of contextual factors or confac-
tors. A confactor ri consists of two parts: a
context and a table:

〈V1 = v1,i ∧ . . . ∧ Vk−1 = vk−1,i︸ ︷︷ ︸
context

,

factor i(Vk, . . . , Vm)︸ ︷︷ ︸
table

〉

The context is a conjunction of variable-value
tests (Vj = vj,i), which indicates the condition
under which the table is applicable (if the con-
text is “true” the table is always applicable).
The context is used to split up factors into con-
factors based on Def. 1. The table stores proba-
bilities for all value assignments of a set of zero
or more variables (Vk, . . . , Vm).

The set of confactors that together represent
the CPD of a variable V (the confactors for
V) is mutually-exclusive and exhaustive (MEE).
This means that for each possible value assign-
ment for a variable V and its parents pa(V),

Meert et al. 195

A1

A2

D
f 1−α1
t α1

D
f 1−α2
t α2

D
f 1−α3
t α3

f t

<1 ≥1

�A1 = f ∧A2 = 0 ,
D
f 1−α1
t α1

�

�A1 = t ,
D
f 1−α3
t α3

�

�A1 = f ∧A2 = 1 ,
D
f 1−α2
t α2

�

A1

D

A2

O

Decision
Tree

Noisy-OR

A3

a. Belief network

�A1 = f ∧A2 = 2 ,
D
f 1−α2
t α2

�

O A3 D
f f f 1
t f f 0
f t f 1−β1
t t f β1
f f t 1−β2
t f t β2
f t t (1−β1)(1−β2)
t t t 1− (1−β1)(1−β2)

�A1 ∈ { f}∧A2 ∈ {0} ,
D
f 1−α1
t α1

�

�A1 ∈ { f}∧A2 ∈ {1,2} ,
D
f 1−α2
t α2

�

�A1 ∈ {t} ,
D
f 1−α3
t α3

�

D A1 A2
f f 0 1−α1
t f 0 α1
f t 0 1−α3
t t 0 α3
f f 1 1−α2
t f 1 α2
f t 1 1−α3
t t 1 α3
f f 2 1−α2
t f 2 α2
f t 2 1−α3
t t 2 α3

O� D
f f 1
t f 1
f t 1−β1
t t 1

O� A3
f f 1
t f 1
f t 1−β2
t t 1

O� O
f f 1
t f 0
f t −1
t t 1

MF

CVE CVE-OC

CVE-OC

b. VE-factor for D (decision tree) c. CVE-confactors for D d. CVE-OC confactors for D

�D = t ∧O� = f , 1−β1 �
�A3 = t ∧O� = f , 1−β2 �

�true ,

O� O
f f 1
t f 0
f t −1
t t 1

�

e. VE-factor for O (noisy-or) f. VE-factors after MF for O g. CVE-OC confactors for O

Pr(O = t | pa(O)) =
1− ∏

i:(pa(O)[i]=T)
(1−βi)

D A3

O'

O

dom(A2) = {0,1,2}
dom(A1) = dom(A3) = { f , t}
dom(D) = dom(O) = { f , t}

Figure 1: (a) Belief network with local structure; on top the graphical model, then the decision
tree for node D and the definition of noisy-or for node O, and at the bottom the domains for the
variables; (b) CPD for D represented as a table like in VE; (c) CPD for D represented by confactors
for use in CVE; (d) CPD for D represented by confactors for CVE-OC; (e) CPD for O; (f) CPD for
O factorized with MF for use in VE; (g) CPD for noisy-or represented by confactors for CVE-OC
after MF.

there is precisely one confactor of which the ta-
ble includes the parameter Pr(V = v |pa(V) =
vpa). These conditions ensure that confactors
for the same variable do not overlap, therefore,
the set of all confactors for a variable is identical
to the original factor.

Fig. 1.c shows a confactor representation of a
BN for which the CPD for D can be represented
by a decision tree. This CPD can be compactly
represented as a set of confactors of which each
context is the conjunction of variable-value tests
on a path from the decision tree root to one of
its leaves. (As a note, the converse is not true; a
decision tree cannot always represent confactors
equally compactly.)

We describe CVE at a high level (the com-
plete algorithm can be found in (Poole and
Zhang, 2003)). Similar to VE, CVE eliminates
the non-query, non-evidence variables one by
one from the joint distribution. To eliminate
a variable E, it relies on four basic operations:

1. 〈c, t1〉⊗〈c, t2〉 ≡ 〈c, t1⊗t2〉, multiplying two
confactors with identical contexts c.

2.
∑
E〈c, t〉 ≡ 〈c,

∑
E t〉, summing out a vari-

able E that appears in the table of a con-
factor.

3.
∑
E (〈c ∧ E = e1, t1〉, . . . , 〈c ∧ E = ek, tk〉) ≡
〈c,∑ ti〉, summing out a variable E, with
domain e1, . . . , ek, that appears in the
contexts.

4. 〈c, t〉 ≡ 〈c ∧ X = x1, t(X = x1)〉, . . . , 〈c ∧
X = xk, t(X = xk)〉, splitting a factor;
t(X = xi) is table t but elements for which
X 6= xi are removed.

The first three operations are only possible if
the contexts are identical (indicated with c) ex-
cept for the variable to eliminate (E). To make
the contexts identical, CVE uses the fourth op-
erator (splitting). Given two confactors, re-
peated splitting can be used to create two con-
factors with identical contexts. The order in

196 Meert et al.

which these operators are applied is chosen by
the so-called absorption algorithm for CVE.
Splitting creates extra confactors, and therefore
heuristics are used to avoid this operation as
much as possible.

Confactors can represent CPDs more com-
pactly than tables, but, as the previous discus-
sion illustrates, at the cost of more complicated
basic operations.

2.2 Multiplicative factorization of
noisy-max

Fig. 1.e shows how noisy-or can be represented
in terms of a table that is used by VE. This rep-
resentation has the disadvantage that, while the
inputs independently cause the output, this in-
dependence is not reflected in the factorization.
Confactors do not offer a solution for this type
of local structure, so another technique should
be used.

(Dı́ez and Galán, 2003) propose a state-of-
the-art multiplicative1 factorization (MF) for a
factor representing noisy-or (and its generaliza-
tion noisy-max). In this new set of factors, each
factor only involves one of the inputs. In gen-
eral, this leads to faster inference with VE. It
is not necessary for this paper to fully under-
stand the method or the example in Fig. 1.f,
but important to note is that this method uses
multiple factors to represent the CPD for a vari-
able (in this case O′). Because of the MEE-
restriction, these two factors cannot be repre-
sented by confactors.

3 CVE with overlapping contexts

Our main contribution is the CVE-OC algo-
rithm. The CVE-OC algorithm removes the
restrictions on the confactors imposed by the
CVE algorithm:

First, CVE expects that the confactors for
a variable V are MEE. This condition ensures
that the parameters in the confactors are iden-
tical to those in V ’s original conditional prob-
ability table. It is also a pre-condition for

1The term ‘multiplicative’ is used because the sum-
mation that is typical for noisy-or is transformed into a
multiplication causing further factorization.

the algorithm CVE uses to combine confac-
tors while eliminating a variable (the absorp-
tion algorithm). As mentioned in the introduc-
tion, this pre-condition has certain disadvan-
tages (e.g., it is incompatible with MF (Dı́ez
and Galán, 2003), and it may make expressing
logical constraints more complicated). There-
fore, we choose to remove this pre-condition.
As a result, a parameter in the original table
is not guaranteed to be equal to a parame-
ter in a single confactor (like in CVE) but is
equal to the multiplication of different param-
eters found in different confactors with non-
mutually-exclusive contexts. As a consequence
the absorption algorithm can no longer be used
and we need a new technique to decide which
confactors to combine when.

Second, the equality tests in the contexts can
be replaced with set membership tests. This
allows for a more compact representation in do-
mains with multi-valued variables. This repre-
sentation was already proposed by Poole and
Zhang (Poole and Zhang, 2003), but not sup-
ported in their algorithm and implementation
as it requires one to extend the splitting opera-
tion.
A confactor ri now has the following form:

〈V1 ∈ v1,i ∧ . . . ∧ Vk ∈ vk,i ∧ . . . ∧ Vn ∈ vn,i ,

factor i(Vk, . . . , Vn, . . . , Vm)〉
The context is a conjunction of set membership
tests (Vj ∈ vj,i, vj,i ⊆ dom(Vj), with 1 ≤ j ≤ n),
which indicates the condition under which the
table is applicable. The table stores probabili-
ties for given value assignments for a set of zero
or more variables (Vk . . . Vm). Note that a vari-
able can now appear both in the context and in
the table.

The interpretation of a set of confactors with
overlapping contexts for a variable V can be
given in terms of the multiplication of their pa-
rameters. Given a value assignment for a vari-
able and its parents, it is now possible that mul-
tiple confactors for V have contexts that are a
applicable and each of these confactors has a pa-
rameter in its table that is consistent with the
value assignment. The product of these param-
eters is equal to the parameter in the original

Meert et al. 197

table representing the CPD. If the set is not ex-
haustive, we assume that the value assignments
not covered by a context correspond to param-
eters that are equal to 1.0, which are irrelevant
in a multiplication.

Based on the above modifications, we can
convert the CPDs in Fig. 1.c and 1.f into the
more compact representation in Fig. 1.d and
1.g, which is the input to CVE-OC. This shows
three new uses of confactors: (a) it is possible to
use set membership to express value ranges of a
variable (e.g., the conditions on A2); (b) noisy-
or can be represented more efficiently by using
MF (Dı́ez and Galán, 2003) (possibly combined
with set membership in case of multi-valued
variables); (c) logical constraints can be more
compactly expressed and will be exploited dur-
ing variable elimination.

3.1 The CVE-OC algorithm

Recall from the explanation of CVE that its core
operations are not only multiplication and sum-
out, but also compatibility checking and split-
ting. As explained in (Poole and Zhang, 2003),
compatibility checking and splitting must be
performed very often and may therefore be com-
putationally expensive.

Since CVE-OC allows overlapping contexts,
it cannot use absorption to reduce the number
of compatibility checks. Moreover, the use of
set membership tests requires even more types
of splitting. To improve the efficiency of com-
patibility checking and splitting we propose a
temporary tree-based index structure to repre-
sent the set RE of all confactors that contain
the variable E that is being eliminated.

Fig. 2 shows an example of this index struc-
ture. Each internal node contains a variable
that appears in a context of a confactor in RE
and the outgoing edges of the node are labeled
with subsets of the variable’s domain. The leaf
nodes contain the tables.

Before explaining the index construction pro-
cedure, we define the rank of a variable. Each
variable is given a different rank. rank(E) = 0,
and the ranks of the other variables are posi-
tive and increase monotonically with the num-
ber of confactors they appear in (ties are broken

Contexts

Tables

�A2 ∈ {0,1} , γ1 �
�A2 ∈ {2} , γ2 �

A1

A2

D
f 1−α1
t α1

D
f 1−α2
t α2

{f}

{0}
{1,2}

{t}

A1

A2

{f}

{0}
{1}

{t}

D
f (1−α1) · γ1
t α1 · γ1

D
f (1−α3) · γ2
t α3 · γ2

D
f (1−α2) · γ1
t α2 · γ1

D
f 1−α3
t α3

D
f (1−α2) · γ2
t α2 · γ2

{2}
D
f (1−α3) · γ1
t α3 · γ1

A2 {2}{0,1}

Combination

a c

b

Figure 2: (a) Tree index structure used by CVE-
OC to eliminate A2, after adding the confac-
tors from Fig. 1.d. (b) The tree structure after
adding the confactors shown in (c) to (a).

at random). The index will have the property
that variables with a higher rank occur higher
up in the tree.

To construct the index, CVE-OC starts with
a tree that consists of a single leaf that contains
a table t = 1.0. Then it absorbs all confactors
from RE one by one into the tree. In the end,
the tree will contain for any context a correct
CPD. To absorb a confactor r = 〈c, t〉, it moves
the confactor down the tree. When it encoun-
ters an internal node containing variable N , one
of the following five cases may occur (CVE-OC
acts according to the first case that applies).

1. c’s top-ranked variable V has a higher rank
than rank(N), i.e., V should appear above
N in the tree. V occurs as V ∈ v in c.
CVE-OC then replaces node N by a new
node labeled V with two outgoing edges:
one labeled v, and one labeled with its com-
plement (dom(V) − v). The original sub-
tree rooted at N is duplicated and becomes
both the left and right subtree of the new
node V . CVE-OC removes variable V from
r’s context c and sorts the resulting confac-
tor down both subtrees.

198 Meert et al.

2. N appears in r’s context, i.e., (N ∈ n) ∈ c.
If one of the outgoing edges from N is la-
beled n, then CVE-OC sorts r down that
branch. If not, then it must perform the
splitting operation. To this end, it pro-
cesses all N ’s outgoing edges in turn. For
a given edge i, if its label ni is disjoint
from n, the corresponding subtree is in-
compatible with r and no further compu-
tation is required. Otherwise, ni must be
split. CVE-OC removes the edge labeled
ni from N and replaces it with two new
edges, one labeled n+

i = ni ∩ n and one
labeled n−i = ni − n. The original sub-
tree rooted at ni is duplicated below these
two new edges. Next, CVE-OC removes N
from r’s context and projects its table on
the condition N ∈ n+

i . Then it sorts the
resulting confactor down edge n+

i .

3. N appears in r’s table. Let n1, . . . , nk be
the labels of N ’s outgoing edges. CVE-OC
sorts r down the tree via each ni after pro-
jecting r’s table on the condition N ∈ ni.

4. r represents a logical constraint (t = 0) and
c = ∅. In this case, CVE-OC replaces node
N by a new leaf and initializes the table in
that leaf to zero. We call this step pruning
the tree based on a constraint.

5. CVE-OC sorts r down to all subtrees of N .

If r reaches a leaf, which stores a table tl, then
the following happens. If tl = 0, then this leaf
represents a constraint and no further compu-
tation is required. If tl 6= 0, then there are two
cases: either c = ∅ or c 6= ∅. In the former case,
CVE-OC replaces the table in the leaf by the
product of tl and t. In the latter case, it must
introduce a new node for the top ranked vari-
able in c into the tree. This is done in precisely
the same way as in step one above.

After all confactors in RE are absorbed into
the index, CVE-OC can sum-out the variable
E. This is done in two steps. In the first step,
E is summed out from all the tables in the
leaves of the index. The next step applies to
all internal nodes that are labeled with E. Be-
cause rank(E) = 0, all children of such nodes

are leaves. To sum-out E, a node that contains
E is simply replaced by a leaf with a table equal
to the sum of the tables in E’s children.

After E is eliminated, the tree is converted
back into a set of confactors, by creating one
confactor for every leaf. Together with the con-
factors not in RE , these form the set of con-
factors for the following elimination step. Note
that we cannot reuse the same index for elim-
inating a different variable because the index
is specific to the variable that is being elimi-
nated. Also, converting all confactors into one
single tree is to be avoided as a tree is in general
not the most compact representation for a set
of confactors. Therefore, we include as few as
possible confactors in the tree (by means of the
variable ordering), and we only use the tree to
make compatibility checking and splitting more
straightforward.

4 Experiments

We evaluate the inference methods on the task
of inferring the marginal distribution of one des-
ignated variable in four types of BNs of varying
complexity. We always select the variable with
the highest inference cost and do not include
any evidence (i.e., we consider the most diffi-
cult case). The software and BNs are available
online (dtai.cs.kuleuven.be/corporal). We com-
pare five algorithm/input combinations: VE,
VE with multiplicative factorization (VE+MF),
CVE∈, CVE-OC, and CVE-OC with multi-
plicative factorization (CVE-OC+MF). CVE∈

is our own C++ implementation of CVE; it is
the second algorithm described in (Poole and
Zhang, 2003) (which uses absorption), extended
with set membership tests (so we can accurately
assess the contribution of the overlapping con-
factors). CVE-OC uses exactly the same input
(confactors) as CVE∈; CVE-OC+MF has ad-
ditional confactors for noisy-or/and structures.
We use the minimum deficiency elimination or-
dering (Bertele and Brioschi, 1972), which is a
simple greedy heuristic that performs well for
VE. Fig. 3 presents the results. Additionally,
we have added in the graphs results obtained
using the ACE system (Chavira and Darwiche,

Meert et al. 199

2007), which is a representative and state-of-
the-art compilation-based approach. Version
2.0 is used, with default settings. The input
consists of conditional probability tables except
for noisy-or/and nodes which are encoded using
the noisy-max syntax.

The BNs in (a) and (b) are constructed from
artificial CP-logic theories (Vennekens et al.,
2009). The BNs in (a) only include intercon-
nected noisy-or (white) and and (black) nodes
with a linearly increasing number of parents.
VE runs out of memory when the the number
of noisy-or nodes is larger than 8, while CVE
can handle larger BNs because of its compact
confactor representation. VE+MF and CVE-
OC+MF are much faster than the other meth-
ods because they efficiently factorize the noisy-
or nodes. For experimental comparison of MF
with other methods for noisy-or networks we
refer to (Dı́ez and Galán, 2003; Savicky and
Vomlel, 2007). The ACE system also exploits
the presence of noisy-or/and nodes but is a fac-
tor 100 slower because of the compilation where
it optimizes for all variables. After crossing
the curves for non-MF methods, the ACE-curve
stops because the tables used as input become
too large to generate. The network in (b) con-
tains many CPDs structured as decision trees
(black) with a linearly increasing number of par-
ents. CVE and CVE-OC are well suited to
handle such a representation and are therefore
faster than VE (MF has no influence). The
ACE system seems to be unable to fully ex-
ploit the interconnected decision tree structures
in the CPDs and is also slower because it tries
to optimize the structure for all variables.

The BNs in (c) are constructed from a CP-
theory that was learned from the UW-CSE
dataset (Richardson and Domingos, 2006). The
UW-CSE BNs include all structures also in-
cluded in (a) and (b). For such networks CVE-
OC+MF excels as it can efficiently represent all
these structures. The other methods run out
of memory because they cannot represent one
of the local structures efficiently. The noisy-
or/and nodes are no problem for the ACE sys-
tem and when the decision tree structures do
not interact too heavily it can handle them effi-

ciently. The curve for CVE-OC+MF fluctuates
because the heuristic used for the elimination
ordering is too agnostic about local structure
when combining different structures. A better
heuristic is an interesting future research topic.

The networks in (d) are the randomized net-
works used in Fig. 11 of (Poole and Zhang, 2003)
and created with the original Java code avail-
able from the author. This experiment com-
pares CVE∈ with the new CVE-OC algorithm
on the same data as Poole and Zhang used.
This shows that CVE-OC, although more gen-
erally applicable, is about as fast as CVE∈ even
when there are no additional structures to be
exploited.

5 Conclusions and future work

We presented the algorithm CVE-OC (CVE
with overlapping contexts), which extends con-
textual variable elimination (CVE). The intro-
duction of overlapping contexts is a simple but
powerful step. From the representation point of
view, it offers an elegant combination of deter-
ministic and probabilistic knowledge. From the
computational point of view, the need for equal-
ity testing is reduced, invalid combinations of
values are pruned, and the loosened restrictions
allow for better optimizations. CVE-OC gen-
eralizes over both CVE and MF, and provide
optimization opportunities beyond the union of
what those methods offer.

The experiments show that CVE-OC, while
more generally applicable, can handle input for
CVE without any loss in efficiency. Because
of its generality, the input for CVE-OC can be
more compact than for CVE and other known
optimization methods for VE can be integrated.
For example, the integration of MF is shown to
be faster and more compact than only VE, CVE
or MF.

In future work, we intend to perform more ex-
periments on the propagation of constraints in
CVE-OC and would like to investigate more the
influence of heuristics for elimination orderings.
With respect to SRL, we would like to investi-
gate further the relationship between CVE-OC
and other SRL inference algorithms and see how

200 Meert et al.

10
-5

10
-3

10
-1

10
1

10
3

C
P
U

ti
m
e
[s
]

4 5 6 7 8 9 10 11 12

Number of noisy-or nodes

(a) Growing Head

S
iz
e
4

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

C
P
U

ti
m
e
[s
]

4 6 8 10 12 14 16 18 20 22

Number of decision-tree nodes

(b) Growing Body with Negation

S
iz
e
4

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

C
P
U

ti
m
e
[s
]

0 2 4 6 8

Number of students

(c) UWCSE

S
iz
e
1

10
-1

10
0

10
1

10
2

10
3

C
V
E
-O

C

10
-1

10
0

10
1

10
2

10
3

CVE

(d) Poole & Zhang’s Random Networks

.
.
.

....
. .
.

.. .
.

.

.
........

. .
...
....

VE
VE + MF
CVE
CVE-OC
CVE-OC + MF
ACE

Figure 3: Inference times for networks originating from CP-theories and random networks. The
horizontal axis of (a)-(c) indicates BN complexity.

we can integrate this into learning methods for
SRL.

Acknowledgements

Institute for the Promotion of Innovation
through Science and Technology in Flan-
ders (IWT-Vlaanderen) to Wannes Meert.
GOA/08/008 ‘Probabilistic Logic Learning’.

References

U. Bertele and F. Brioschi. 1972. Nonserial Dy-
namic Programming. Academic Press.

C. Boutilier, N. Friedman, M. Goldszmidt, and
D. Koller. 1996. Context-specific independence
in Bayesian networks. In Proceedings of the 12th
Conference on Uncertainty in Artificial Intelli-
gence, pages 115–123.

M. Chavira and A. Darwiche. 2007. Compil-
ing Bayesian networks using variable elimination.
In Proceedings of the 20th International Joint
Conference on Artificial Intelligence, pages 2443–
2449.

F.J. Dı́ez and S.F. Galán. 2003. Efficient compu-
tation for the noisy MAX. Intelligent Systems,
18(2):165–177.

L. Getoor and B. Taskar, editors. 2007. Statistical
Relational Learning. MIT Press.

R. Mateescu and R. Dechter. 2008. Mixed deter-
ministic and probabilistic networks. ICS technical
report, University of California, Irvine, May.

W. Meert, J. Struyf, and H. Blockeel. 2008.
Learning ground CP-logic theories by leveraging
Bayesian network learning techniques. Funda-
menta Informaticae, 89(1):131–160.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Mor-
gan Kaufmann.

D. Poole and N. Zhang. 2003. Exploiting contextual
independence in probabilistic inference. Artificial
Intelligence Research, 18:263–313.

J. Ramon, T. Croonenborghs, D. Fierens, H. Bloc-
keel, and M. Bruynooghe. 2008. Generalized
ordering-search for learning directed probabilistic
logical models. Machine Learning, 70(2-3):169–
188.

M. Richardson and P. Domingos. 2006. UW-CSE.
http://alchemy.cs.washington.edu/data/uw-cse/.

P. Savicky and J. Vomlel. 2007. Exploiting tensor
rank-one decomposition in probabilistic inference.
Kybernetika, 43(5):747–764.

J. Vennekens, M. Denecker, and M. Bruynooghe.
2009. CP-logic: A language of causal proba-
bilistic events and its relation to logic program-
ming. Theory and Practice of Logic Programming,
9(3):245–308.

N. Zhang and D. Poole. 1996. Exploiting causal
independence in bayesian network inference. Ar-
tificial Intelligence Research, 5:301–328.

Pp. 201–209 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Honour Thy Neighbour—Clique Maintenance in Dynamic Graphs

Thorsten J. Ottosen
Department of Computer Science, Aalborg University, Denmark

nesotto@cs.aau.dk

Jǐŕı Vomlel
Institute of Information Theory and Automation of the AS CR, The Czech Republic

vomlel@utia.cas.cz

Abstract

Whenever objects and their interaction is modelled via undirected graphs, it is often of
great interest to know the cliques of the graph. For several problems the graph changes
frequently over time, and we therefore seek methods for updating the information about
the cliques in a dynamic fashion to avoid expensive recomputations. This dynamic problem
was investigated by Stix, and in this paper we derive a new simple method based on the
Bron-Kerbosch algorithm that compares favourably to Stix’ approach. The new approach
is generic in the sense that it can be used with other algorithms than just Bron-Kerbosch.
The applications include fuzzy clustering and optimal triangulation of Bayesian networks.

1 Introduction

We consider the problem of maintaining the set
of cliques of a dynamic undirected graph. The
graph is dynamic in the sense that edges can
be removed and added, but the set of vertices
is invariant. When we add a new set of edges,
we call the problem incremental, and when we
remove a set of edges, we call the problem decre-
mental. Finding all the cliques of a static graph
is a hard problem: the clique decision problem
is NP-complete (Karp, 1972) and listing all the
cliques may require exponential time as there
exists graphs with exponentially many cliques
(Moon and Moser, 1965)—albeit it is solvable
in polynomial time for many classes of graphs.
However, in this work we shall consider the ini-
tial set of cliques for given (several well-known
algorithms exists for this purpose).

Previous research has been motivated by
fuzzy clustering (Stix, 2004), but we have an-
other application in mind. Specifically, our
motivation is to find optimal triangulations of
Bayesian networks with respect to the total
table size by using a best-first or depth-first
search. This requires a lower bound on the total

table size for which we may use the total table
size of the current partially triangulated graph.
In turn, this requires that we know the cliques of
the current graph. A detailed description of the
new best-first and depth-first approach to trian-
gulation can be found in (Ottosen and Vomlel,
2010).

We shall use the following notation and defi-
nitions. G = (V,E) is an undirected graph with
vertices V = V(G) and edges E = E(G). For
a set of edges F, V(F) is the set of vertices
{u, v : {u, v} ∈ F}. For W ⊆ V, G[W] is the
subgraph induced by W. Two vertices u and v
are connected in G if there is an edge between
them. A graph G is complete if all pairs of ver-
tices {u, v} (u 6= v) are connected in G. A set
of vertices W ⊆ V is complete in G if G[W] is a
complete graph. If W is complete and no com-
plete set U exists such that W ⊂ U, then W
is a clique. (Remark: note that any complete
set is sometimes called a clique; then what we
defined as a clique is called a maximal clique.)
The set of all cliques of a graph is denoted
C(G) and the set of all cliques that intersects
with a set of vertices W is denoted C(W,G).
For a single vertex v we also allow the notation

202 Ottosen & Vomlel

1 2

3 4

5 6

1 2

3 4

5 6

Figure 1: Left: The initial graph G = (V,E).
Right: The updated graph G′. We have C(G) =
E and C(G′) = {{1, 2, 3, 4}, {3, 5, 6}, {3, 4, 6}}.
So in this example we have RC(G,G′) = C(G)
and NC(G,G′) = C(G′).

C(v,G). The neighbours of a set of vertices W
are those vertices from V\W that are connected
to at least one vertex v ∈W and we write this
as nb(W,G). Similarly, fa(W,G) is the family
of W in G, that is, the set nb(W,G) ∪ {W}.
As usual we allow the notation nb(v,G) and
fa(v,G). A vertex v is simplicial if nb(v,G) is
complete. If G′ = (V,E ∪ F) is the graph re-
sulting from adding a set of new edges F to G,
then RC(G,G′) = C(G) \ C(G′) is the set of re-
moved cliques, and NC(G,G′) = C(G′)\C(G) is
the set of new cliques. Figure 1 illustrates these
concepts. Finally, a complete set of vertices C
in G′ is called a clique candidate for G′.

2 Stix’ Approach To Clique
Maintenance

Stix observed that it was somewhat expensive
to recompute all cliques of a graph given that
the graph had only changed slightly. Therefore
Stix derived the approach explained below and
showed that it did indeed out-perform a full re-
computation scheme (Stix, 2004).

Stix’ approach works by adding (removing)
one edge at a time. To add (remove) a set of
edges, the technique is simply applied once for
each edge. The technique (both for incremental
and decremental problems) may be summarized
as follows: (1) Let G = (V,E) be an undirected
graph, and let G′ = (V,E ∪ {{v,w}}). (2) Ini-

tially let C = C(G). (3) Generate a set of clique
candidates K for the updated graph G′. (4)
Add/remove a candidate C ∈ K to/from C de-
pending on whether it is a clique in G′. (5) In
the end, C equals C(G′)

The check in step 4 is shown in Algorithm
1 where we have improved Stix’ approach by
only considering the neighbours nb(C,G′) of a
clique candidate C (notice that this algorithm
should be called with the updated graph G′ as
its second argument).

Stix’ algorithm is based on the following the-
orem:

Theorem 1. (Stix, 2004) Let G = (V,E) be an
undirected graph, and let G′ = (V,E∪{{v,w}})
be the graph after adding the edge {v,w}. Then

1. All cliques of C(G) that do not contain v
or w are in C(G′).

2. For all A ∈ C(v,G) and for all B ∈ C(w,G)
we have

(a) L = A∩B∪{v,w} is a clique candidate
for G′.

(b) |A \B| = 1 =⇒ A 6∈ C(G′); otherwise
A is a clique candidate for G′.

(c) |B \A| = 1 =⇒ B 6∈ C(G′); otherwise
B is a clique candidate for G′.

3. The set C(G′) is fully determined by state-
ment (1) and by inspecting all the clique
candidates of statement (2).

Stix’ algorithm with several improvements is
presented as Algorithm 2. Notice that the first
part of condition 2(b) and 2(c) is not checked in
Algorithm 2. We conducted experiments with
these conditions being checked, but found it to
be about 40% slower. Furthermore, we accu-
mulate clique candidates in a set to reduce the
number of calls to IsClique(·).

Next we illustrate how Stix’ algorithm work
in a small example.

Example 1. Consider the graph in Figure 2 on
the left which we want to update with the set
of edges {{3, 4}, {3, 5}}. When adding the edge
{3, 4}, line 7-13 in Stix’ algorithm combines the
two sets of cliques C(3,G) = {{1, 3}, {3, 6}}

Ottosen & Vomlel 203

Algorithm 1 Verifying a complete set C is a
clique (improved version)
1: function IsClique(C,G)
2: Input: A non-empty, complete set of
3: vertices C, and a graph G.
4: for all v ∈ nb(C,G) do
5: if C ⊆ nb(v,G) then
6: return false
7: end if
8: end for
9: return true

10: end function

and C(4,G) = {{2, 4, 5}, {4, 5, 6}}. The re-
sulting set of clique candidates is then K =
{{3, 4}, {3, 4}, {3, 4}, {3, 4, 6}}. Then follows a
series of calls to IsClique(·) which determines
that the clique {3, 6}must be removed from and
the clique {3, 4, 6} must be added to C .

In the second iteration we add the edge
{3, 5} and get the set of candidates K =
{{3, 5}, {3, 5}, {3, 4, 5}, {3, 4, 5, 6}} and deter-
mine that the cliques {3, 4, 6} and {4, 5, 6} must
be removed and the clique {3, 4, 5, 6} must be
added.

The above example shows that there are two
potential performance problems with Stix’ ap-
proach when adding multiple edges:

1. Many duplicate clique candidates are gen-
erated and existing cliques are combined
multiple times, and

2. A great number of calls to IsClique(·) is
needed to prune candidates and remove old
cliques.

To overcome these problems, one might try to
generalize Stix’ theoretical results to account for
a larger set of edges being added at one time.
However, it turns out that such an approach
suffers even more from the problems above. In
the following we shall therefore present a rad-
ically different approach that overcomes both
problems.

3 Clique Maintenance by Local
Search

The general idea behind this method is sim-
ple: instead of running the Bron-Kerbosch al-

Algorithm 2 Incremental clique maintenance
by single-edge updates (improved version)
1: function EdgeBasedUpdate(C ,G,F)
2: Input: A graph G = (V,E),
3: the set of cliques C of G, and
4: the set of new edges F.
5: for all {u, v} ∈ F do
6: Let G′ = (V, E(G) ∪ {{u, v}})
7: Set K = ∅
8: for all A ∈ C(u,G) do
9: for all B ∈ C(v,G) do

10: Let C = A ∩ B ∪ {u, v}
11: Set K = K ∪ {C}
12: end for
13: end for
14: for all K ∈ C(u,G) ∪ C(v,G) do
15: if !IsClique(K,G′) then
16: Set C = C \ {K}
17: end if
18: end for
19: for all K ∈ K do
20: if IsClique(K,G′) then
21: Set C = C ∪ {K}
22: end if
23: end for
24: Set G = G′

25: end for
26: return C
27: end function

gorithm (or a similar algorithm) on the whole
graph, run it on a smaller subgraph where all
the new cliques appear and existing cliques dis-
appear. Then simply update the set of cliques
based on the vertices of the subgraph and the
newly found cliques. Algorithm 3 is the mod-
ified Bron-Kerbosch algorithm which by using
a pivot can reduce the search space (to get the
original algorithm simply exchange the iteration
in line 7 with ”for all v ∈ P do”). In our imple-
mentation we pick the pivot deterministically as
the first vertex in P because this is very easy (for
alternative pivot selection strategies see (Cazals
and Karande, 2008) and (Koch, 2001)).

To find all cliques of a graph G, the algo-
rithm should be called with the argument tu-
ple (G, ∅,V(G), ∅). However, an important ob-

204 Ottosen & Vomlel

1 2

3 4 5

6

1 2

3 4 5

6

1 2

3 4 5

6

Figure 2: The sequence of graphs considered by Stix’ algorithm (Algorithm 2) when adding the set
of edges {{3, 4}, {3.5}}. Left: The initial graph—a dotted edge indicates it is about to be added to
the graph. Middle: the graph after the first edge has been added. Right: The final graph.

Algorithm 3 The Bron-Kerbosch algorithm
with pivot
1: function BKWithPivot(G,R,P,X)
2: if P = ∅ and X = ∅ then
3: return {R}
4: else
5: Let C = ∅
6: Let u = SelectPivot(P,X,G)
7: for all v ∈ P \ nb(u,G) do
8: Set P = P \ {v}
9: Let Rnew = R ∪ {v}

10: Let Pnew = P ∩ nb(v,G)
11: Let Xnew = X ∩ nb(v,G)
12: Let K =
13: BKWithPivot(G,Rnew,Pnew,Xnew)
14: Set X = X ∪ {v}
15: Set C = C ∪ K
16: end for
17: Return C
18: end if
19: end function

servation is that the algorithm can also search
a subgraph G[W] for cliques by simply pass-
ing the arguments (G, ∅,W, ∅). It is this abil-
ity that our new clique maintenance algorithm
takes advantage of. Our new algorithm for dy-
namic clique maintenance is presented in Algo-
rithm 4, and explained in the next example.

Example 2. Consider again Figure 2. We im-
mediately update the graph G = (V,E) with
the set of new edges {{3, 4}, {3, 5}} (line 6).

The set U becomes {3, 4, 5} and fa(U,G′) actu-
ally equals V and so we will run Bron-Kerbosch
on the whole graph (of course, for larger graphs
this is rarely the case). Then we iterate through
the existing cliques and remove those that inter-
sect with U (line 9-13)—this step only leaves the
clique {1, 2} in C . Then we add all the cliques
found in the subgraph G′[fa(U,G′)] (line 14-18)
if and only if they intersect with U—in this case
only {1, 2} is not added. We can observe that
the clique {2, 4, 5} is both removed and added
again by the algorithm.

As the above example explains, our algorithm
sometimes removes and adds the same clique.
This is usually not a problem in practice, as
comparison of cliques is much faster than calling
IsClique(·). The correctness of the algorithm
follows from the results below.

Lemma 1. Let G = (V,E) be an undirected
graph, and let G′ = (V,E ∪ F) be the graph
resulting from adding a set of new edges F to
G. Let U = V(F). If C ∈ NC(G,G′), then
C ⊆ fa(U,G′).

Proof. Since C is a new clique, it must contain
at least two vertices from U. Since C is complete
all vertices v ∈ C\U must be connected to some
vertex in U. Hence v is a neighbour of U.

Lemma 2. Let G and G′ be given as in Lemma
1. Then C ∈ RC(G,G′) if and only if there
exists K ∈ NC(G,G′) such that C ⊂ K.

Ottosen & Vomlel 205

Algorithm 4 Incremental clique maintenance
by local search
1: function SetBasedUpdate(C ,G,F)
2: Input: A graph G = (V,E),
3: the set of cliques C of G, and
4: the set of new edges F.
5: Let U = V(F)
6: Let G′ = (V,E ∪ F)
7: Let Cnew =
8: BKWithPivot(G′, ∅, fa(U,G′), ∅)
9: for all C ∈ C do . Remove old cliques

10: if C ∩U 6= ∅ then
11: Set C = C \ {C}
12: end if
13: end for
14: for all C ∈ Cnew do . Add new cliques
15: if C ∩U 6= ∅ then
16: Set C = C ∪ {C}
17: end if
18: end for
19: return C
20: end function

Proof. By Lemma 1, all new cliques K ⊆
fa(U,G′). Since a newly formed clique K is the
only way to remove an existing clique C from
C(G′), the result follows.

Theorem 2. Let G,G′,F and U be given as in
Lemma 1. The cliques of C(G′) can be found by
removing the cliques from C(G) that intersect
with U and adding cliques of G′[fa(U,G′)] that
intersect with U.

Proof. We first show we add all new cliques by
considering just G′[fa(U,G′)]. By Lemma 1,
this subgraph contains all the new cliques. Fur-
thermore, any new clique C must intersect with
U; otherwise it could not contain a new edge.
Therefore all the new cliques are added.

We remove all relevant cliques if C ∈
RC(G,G′) implies C ∩ U 6= ∅. So let C ∈
RC(G,G′). Assume C ∩ U = ∅; then for each
v ∈ nb(C,G) ∩ U, C 6⊆ nb(v,G) (otherwise C
could not be a clique in G). But then no new
clique can cover C which is a contradiction to
Lemma 2. Hence C ∩ U 6= ∅, and therefore we
remove all relevant cliques.

Last we consider that we might also remove a
clique C ∈ C(G)∩C(G′). Since C ∩U 6= ∅, then
C ⊆ fa(U,G′), and C will be added again when
we add cliques from G′[fa(U,G′)] that intersect
with U.

Remark. Theorem 2 also implies that we can
apply further pruning based on the set U in Al-
gorithm 3. In particular, the for-loop in line 7
can be skipped if (R ∪P)∩U = ∅. We have not
implemented this pruning, however.
Remark. Stix derives a second approach to deal
with the decremental problem. A nice property
of our approach is that it works almost unal-
tered for this case (simply remove the set F of
edges from the graph instead of adding them).

4 Triangulation by Clique
Maintenance

An undirected graph is triangulated (or chordal)
if every cycle of length greater than 3 has a
chord. For example, the graphs in Figure 1
(left) and Figure 2 (right) are not triangulated,
whereas the graph in Figure 1 (right) is triangu-
lated. Triangulated graphs appears in remark-
ably diverse set of applications, ranging from ef-
ficient Gaussian elimination and compression in
databases to compilation of Bayesian networks
and decision graphs. It is the latter topic we
have in mind in the following discussion. First
we need some additional definitions.

The elimination of a vertex v ∈ V of G =
(V,E) is the process of removing v from G and
making nb(v,G) a complete set. This process
induces a new graph H = (V \ {v},E ∪ F)
where F is a set of fill-in edges. An elimina-
tion order of G = (V,E) is a bijection f : V →
{1, 2, . . . , |V|} prescribing an order for eliminat-
ing all vertices of G. The table size of a clique
C is given by ts(C) =

∏
v∈C |sp(v)| where sp(v)

denotes the state space of the variable corre-
sponding to v in the Bayesian network. Finally,
the total table size of a graph H is given by
tts(H) =

∑
C∈C(H) ts(C).

Triangulation algorithms aim at minimizing
different criteria. Two common criteria are the
treewidth and the total table size criteria. The
treewidth of a graph is the size of the largest

206 Ottosen & Vomlel

clique minus one, and the treewidth criterion
requires the triangulated graph to have mini-
mum treewidth. The total table size criteria
requires the triangulated graph to have the min-
imum total table size. Of the two, the total ta-
ble size criterion yields the most exact bound on
the time and memory requirement of the sub-
sequent inference in Bayesian networks (in par-
ticular when the domains of the variables have
different size). In this section we shall therefore
discuss how one may exploit knowledge of the
cliques of a graph to perform a triangulation
with minimum total table size. (This is an NP-
hard problem (Wen, 1990), but for probabilistic
inference we are in the fortunate situation that
the task can often be performed off-line).

It is well-known that if all vertices are elim-
inated in G according to an elimination order
f , the union of all the fill-in edges produced in-
duces a triangulation of G. In this way each
triangulation T of G corresponds to at least
one elimination order, and we may explore the
space of all possible triangulations T (G) by in-
vestigating all possible elimination orders. Even
though the search space is of size O(|V|!), coa-
lescing applies and reduces the search space to
O(2|V|) size which turns out to be tractable for
medium-sized models (say |V| ≤ 64) (Ottosen
and Vomlel, 2010).

To perform this exploration, we may gener-
ate the search graph dynamically (on-demand)
where each node corresponds to a subset of V
being eliminated from G, and where each edge
corresponds to a particular vertex being elim-
inated. (We use the term ”node” exclusively
for vertices in the search graph, and the term
”vertices” exclusively for vertices in the graph
being triangulated.) In the start node s no ver-
tices have been eliminated, and in a goal node t
all vertices have been eliminated and the graph
G has been triangulated. To compute a cost for
each path in the search graph, we associate the
following with each node n:

1. H = (V,E ∪F): the original graph with all
fill-in edges F accumulated along the path
to n from the start node s.

2. The set of cliques for H, C(H).

3. The total table size for the graph H.

To maintain tts(H) efficiently we need C(H)
which in turn requires H (as described in Sec-
tion 3). The following example shows how one
particular path in the search space is generated.

Example 3. Consider the graphs in Figure 3
where fill-in edges are indicated with dotted
lines. We follow an elimination order starting
with 〈6, 4〉. The cliques of the initial graph
may be computed using the Bron-Kerbosch al-
gorithm (Algorithm 3), and the total table size
is (assuming binary variables) 3 ·22 + 2 ·23 = 28
which is an lower estimate of the total table size
of the triangulated graph. This information is
then associated with the start node s.

Then we can make vertex 6 simplicial and
run the clique update algorithm such the set of
cliques is up-to-date. Again we can recompute
the total table size. This information is then
associated with a successor node n of s and the
edge between them is labelled with vertex 6.

When we generate a successor node m of n
(corresponding to the elimination of vertex 4),
we must not add fill-ins to already eliminated
vertices. Therefore the relevant graph corre-
sponds to Figure 3 (right) including the fill-in
edge (in particular, {2, 6} should not be a fill-in
edge). In this manner one may continue until
the graph is triangulated. In this case, this hap-
pens after we eliminate vertex 4. Finally, we
see that the cliques of the triangulated graph
are {3, 4, 5, 6}, {2, 3, 4, 5}, and {1, 2, 3}, thus its
true total table size equals 2 · 24 + 23 = 40.

5 Results

In this section we shall compare the two ap-
proaches for dynamic clique maintenance. For
that purpose we have used a set of public
Bayesian networks1. This gave us 7 real-world
undirected graphs, and for each graph we gen-
erated 10 more by successively adding 5% of the
missing (undirected) edges at random (in total
77 graphs). We have then performed two tests
on this dataset:

1http://compbio.cs.huji.ac.il/Repository/
networks.html

Ottosen & Vomlel 207

1 2

3 4 5

6

1 2

3 4 5

6

Figure 3: Left: The initial graph G = (V,E):
when we eliminate vertex 6, we need to add the
fill-ins {3, 4} and {3, 5}. Right: The graph af-
ter adding fill-in edges induced by eliminating
vertex 6: when we eliminate vertex 4, the fill-in
{2, 3} is added and the graph is now triangu-
lated.

1. For each graph in the dataset, add all
the missing edges in isolation. The set of
cliques is updated after an edge is added.
Then the edge is removed, and the next
edge is added etc.

2. For each graph in the dataset, triangulate
the graph by making all vertices simplicial
in some random order. The set of cliques
is updated after each vertex is made sim-
plicial. Already simplicial vertices are re-
moved before an update. (Note that we did
not moralize the initial directed network
even though this might lead to a slightly
more accurate test.)

These two test scenarios were chosen because
we believe that they show the worst-case perfor-
mance (scenario 1), and the expected speedup
for our triangulation problem (scenario 2). For
each graph we then ran the tests 1000 times
(with different random order each time for Test
2) and saved the mean time. We have then plot-
ted the mean time of Stix’ approach divided by
the mean time of the new approach (we call this
the ”saving ratio”).

In Figure 4 and 5 we have collected the results
of the two tests. The total time saving ratio for
various graph densities are summarized in Ta-
ble 1. We can see that even for Test 1, the new

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 25 30 35 40 45 50 55 60 65

sa
vi

ng
 r

at
io

vertices

Edge Test

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.1 0.2 0.3 0.4 0.5 0.6

sa
vi

ng
 r

at
io

density

Edge Test

Figure 4: Results for Test 1: updating the set of
cliques after adding a single edge. Points above
y = 1 indicate that the new approach is faster.

method often performs better. However, over-
all Stix’ method works better for more dense
graphs. There seems to be no clear connection
between the size of the graph and saving ratio.

For Test 2 the new method is significantly
better, especially for more dense graphs. There
also seems to be a connection between the size
of the graph and performance, with the saving
ratio increasing as the size increases. This might
be because larger graphs allow for more cliques
and larger neighbour sets.

6 Conclusion

We have described a new method for main-
taining the cliques of a dynamic graph. The
new method works by employing a local search
for cliques—the local search can in principle

208 Ottosen & Vomlel

 0

 50

 100

 150

 200

 250

 20 25 30 35 40 45 50 55 60 65

sa
vi

ng
 r

at
io

vertices

Triangulation Test

 0

 50

 100

 150

 200

 250

 0 0.1 0.2 0.3 0.4 0.5 0.6

sa
vi

ng
 r

at
io

density

Triangulation Test

Figure 5: Results for Test 2: updating the set of
cliques after adding fill-in edges. Points above
y = 1 indicate that the new approach is faster.

be done by any existing clique search algo-
rithm. The new method is both simpler and
more generic than previous methods, and ex-
periments show that the new method performs
significantly faster when adding a set of fill-in
edges.

We also described how dynamic clique main-
tenance algorithms may found the basis for new
total table size triangulations methods. These
methods may be optimal off-line triangulations,
or they may be any-time triangulation heuris-
tics. Since the off-line triangulations methods
can explore the whole space of possible triangu-
lations, they can also be used to give a precise
evaluation of the quality of the triangulations
returned by heuristics.

Table 1: Total time saving ratio for different
graph densities. A value above 1 indicates that
the new method was faster in terms of total run-
ning time for all graphs of the specified density.

Density δ Test 1 Test 2
δ ∈ [0, 0.1) 1.74 4.77
δ ∈ [0.1, 0.2) 1.32 9.09
δ ∈ [0.2, 0.3) 1.12 19.35
δ ∈ [0.3, 0.4) 0.88 40.95
δ ∈ [0.4, 0.5) 0.76 86.68
δ ∈ [0.5, 0.6) 0.80 153.04

Acknowledgements

We would like to thank the three anonymous
reviewers for their constructive comments.

J. Vomlel was supported by the Ministry of
Education of the Czech Republic through grants
1M0572 and 2C06019 and by the Czech Science
Foundation through grants ICC/08/E010 and
201/09/1891.

References

F. Cazals and C. Karande. 2008. A note on the
problem of reporting maximal cliques. Theoretical
Computer Science, 407(1-3):564–568, November.

R. M. Karp. 1972. Reducibility among combinato-
rial problems. In R. E. Miller and J. W. Thatcher,
editors, Complexity of Computer Computations,
pages 85–103. Plenum Press.

Ina Koch. 2001. Enumerating all connected max-
imal common subgraphs in two graphs. Theor.
Comput. Sci., 250(1-2):1–30.

J. W. Moon and L. Moser. 1965. On cliques in
graphs. Israel Journal of Mathematics, 3:23–28.

Thorsten J. Ottosen and Jǐŕı Vomlel. 2010. All
roads lead to Rome—new search methods for op-
timal triangulations. In Proceedings of the Fifth
European Workshop on Probabilistic Graphical
Models.

Volker Stix. 2004. Finding all maximal cliques in dy-
namic graphs. Comput. Optim. Appl., 27(2):173–
186.

Wilson Wen. 1990. Optimal decomposition of be-
lief networks. In Proceedings of the Sixth Con-
ference on Uncertainty in Artificial Intelligence
(UAI-90), pages 209–224, New York, NY. Else-
vier Science.

Pp. 209–217 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

All Roads Lead To Rome—New Search Methods for Optimal
Triangulation

Thorsten J. Ottosen
Department of Computer Science, Aalborg University, Denmark

nesotto@cs.aau.dk

Jǐŕı Vomlel
Institute of Information Theory and Automation of the AS CR, The Czech Republic

vomlel@utia.cas.cz

Abstract

To perform efficient inference in Bayesian networks, the network graph needs to be triangu-
lated. The quality of this triangulation largely determines the efficiency of the subsequent
inference, but the triangulation problem is unfortunately NP-hard. It is common for ex-
isting methods to use the treewidth criterion for optimality of a triangulation. However,
this criterion may lead to a somewhat harder inference problem than the total table size
criterion. We therefore investigate new methods for depth-first search and best-first search
for finding optimal total table size triangulations. The search methods are made faster by
efficient dynamic maintenance of the cliques of a graph. The algorithms are mainly sup-
posed to be off-line methods, but they may form the basis for efficient any-time heuristics.
Furthermore, the methods make it possible to evaluate the quality of heuristics precisely.

1 Introduction

We consider the problem of finding optimal cost
triangulations of Bayesian networks. We solve
this problem by searching the space of all possi-
ble triangulations. This search is carried out by
trying all possible elimination orders and choos-
ing one of those that have a minimal total ta-
ble size. Of all commonly-used optimality cri-
teria, the total table size yields the most ex-
act bound of the memory and time requirement
of the probabilistic inference. However, finding
optimal triangulations is difficult: computing
a minimum fill-in is NP-complete (Yannakakis,
1981) and finding a triangulation with minimal
total table size is NP-hard (Wen, 1990).

There are several issues that motivates an in-
vestigation of this problem. Since the prob-
lem is NP-hard, we cannot expect the prob-
lem to be solvable in a reasonable amount of
time for large networks. However, triangulation
can always be performed off-line on specialized
servers and saved for use by the inference al-

gorithms. This is important as intractability
or simply poor performance is a major obsta-
cle to more wide-spread adoption of Bayesian
networks and decision graphs in statistics, en-
gineering and other sciences. Furthermore, effi-
cient off-line algorithms allow us to evaluate the
quality of on-line methods which can otherwise
only be compared to other on-line methods. An
off-line method, on the other hand, can effec-
tively answer whether the subsequent inference
is tractable. Finally, off-line methods can often
be turned into good any-time heuristics.

Previous research on triangulation has also
used best-first search (Dow and Korf, 2007) and
depth-first search (Gogate and Dechter, 2004),
however, the optimality criteria is the treewidth
of the graph and so the found triangulation is
(in the best case) only guaranteed to be within
a factor of n (n being the number of vertices
of the graph) from the optimal total table size
triangulation—this factor could mean the dif-
ference between an intractable and a tractable
inference. With the treewidth optimality cri-

210 Ottosen & Vomlel

terion, one can continuously apply the prepro-
cessing rules of (Bodlaender et al., 2005), but
for the total table size criterion we can (so far)
only remove simplicial vertices which makes this
problem considerably harder. The seminal idea
of divide-and-conquer triangulating using de-
composable subgraphs dates back to (Tarjan,
1985). Leimer refines this approach such that
the generated subgraphs are not themselves de-
composable (i.e., they are maximal prime sub-
graphs and this unique decomposition is de-
noted a maximal prime subgraph decomposi-
tion) (Leimer, 1993). Basically, this means
that the problem of triangulating a graph G is
no more difficult than triangulating the largest
maximal prime subgraph of G. This decompo-
sition is exploited in (Flores and Gámez, 2003).

In (Shoikhet and Geiger, 1997) a dynamic
programming algorithm is given based on de-
compositions by minimal separators, and again
the optimality criterion is treewidth. As noted
by its authors, the method may be adopted to
yield an optimal total table size triangulation as
well. Finally, an overview of triangulation ap-
proaches is given in (Flores and Gámez, 2007).

2 Preliminaries

We shall use the following notation and defini-
tions. G = (V,E) is an undirected graph with
vertices V = V(G) and edges E = E(G). For
a set of edges F, V(F) is the set of vertices
{u, v : {u, v} ∈ F}. An undirected graph is
triangulated (or chordal) if every cycle of length
greater than 3 has a chord. For example, in Fig-
ure 1 the graph on the left is not triangulated
whereas the graph on the right is triangulated.
For W ⊆ V, G[W] is the subgraph induced by
W. A triangulation of G is a set of edges T such
that T ∩ E = ∅ and the graph H = (V,E ∪ T)
is triangulated. We denote the set of all trian-
gulations of a graph G for T (G).

Two vertices u and v are connected in G if
there is an edge between them. A graph G is
complete if all pairs of vertices {u, v} (u 6= v)
are connected in G. A set of vertices W ⊆ V
is complete in G if G[W] is a complete graph.
The neighbours nb(v,G) of a vertex v ∈ V is

the set W ⊆ V such that each u ∈ W is con-
nected to v. The family fa(v,G) of a vertex v
is the set nb(v,G) ∪ {v}, and the neighbours
and family of a set of vertices is defined sim-
ilarly. The elimination of a vertex v ∈ V of
G = (V,E) is the process of removing v from G
and making nb(v,G) a complete set. This pro-
cess induces a new graph H = (V \ {v},E ∪ F)
where F is the set of fill-in edges. For exam-
ple, in Figure 1 (left), eliminating the vertex 6
induces the two fill-in edges shown with dotted
edges in the adjacent graph. If F = ∅, then v
is a simplicial vertex. An elimination order of
G = (V,E) is a bijection f : V → {1, 2, . . . , |V|}
prescribing an order for eliminating all vertices
of G. If all vertices are eliminated in G accord-
ing to an elimination order f , the union of all the
fill-in edges produced induces a triangulation of
G. In this way each triangulation T of G corre-
sponds to at least one elimination order, and we
may explore the space T (G) by investigating all
possible elimination orders.

Given G = (V,E), a set of vertices C ⊆ V
is a clique if it is a maximal complete set and
C(G) is the set of all cliques in G. The table size
of a clique C is given by ts(C) =

∏
v∈C |sp(v)|

where sp(v) denotes the state space of the vari-
able corresponding to v in the Bayesian net-
work. Finally, the total table size of a graph H
is given by tts(H) =

∑
C∈C(H) ts(C).

Triangulation algorithms aim at minimizing
different criteria. The most common are the
fill-in, the treewidth and the total table size cri-
teria. The fill-in criterion requires the trian-
gulated graph to have the minimum total num-
ber of fill-in edges. The treewidth of a graph
is the size of the largest clique minus one, and
the treewidth criterion requires the triangulated
graph to have minimum treewidth. The total ta-
ble size criteria requires the triangulated graph
to have the minimum total table size. Com-
monly seen triangulation heuristics include min-
fill and min-width which both greedily pick the
next vertex to eliminate based on a local score.
In min-fill a vertex is chosen if its elimination
leads to the fewest fill-in edges; in min-width a
vertex is chosen if it has the fewest number of
neighbours.

Ottosen & Vomlel 211

1 2

3 4 5

6

1 2

3 4 5

6

1 2

3 4 5

6

1 2

3 4 5

6

Figure 1: Example of the fill-in edges and partially triangulated graphs induced by an elimination
order that starts with the sequence 〈6, 4〉: the dotted edges are fill-in edges. Left: the initial graph.
Middle left: the fill-in edges induced by eliminating vertex 6. Middle right: the fill-in edges induced
by eliminating vertex 4. Right: the final triangulated graph.

3 The Search Space for
Triangulation Algorithms

Our goal is to explore the space T (G) encoding
all possible ways to triangulate a graph G in.
To do this, we generate a search graph dynami-
cally (on-demand) where each node corresponds
to a subset of V being eliminated from G, and
where each edge is labelled with the particular
vertex that has been eliminated. (Note that we
exclusively use the term ”node” for vertices in
the search graph whereas the term ”vertex” is
used exclusively for vertices in the undirected
graph being triangulated.) In the start node s
no vertices have been eliminated, and in a goal
node t all vertices have been eliminated and the
graph G has been triangulated.

Since we are seeking optimal total table size
triangulations we also need to associate this
quantity with each node. By definition, the to-
tal table size is easy to compute if we know the
cliques of the partially triangulated graph, and
therefore we also need to associate this graph
with each node. Below we give a small example
of a path in the search space—in Section 5 we
shall explain the algorithms in detail.

Example 1. Consider the graphs in Figure 1
and assume that all variables (in the original
Bayesian network) are binary. The graph asso-
ciated with the start node s would be the graph
on the left and this graph has a total table size

of 22 + 22 + 22 + 23 + 23 = 28.
The graph associated with a successor nodem

of s (corresponding to the elimination of vertex
6) would correspond to the graph in the middle
(left) (including dotted edges) with total table
size 22 + 22 + 23 + 24 = 32.

And the successor node of m (corresponding
to the elimination of vertex 4) would be asso-
ciated with graph on the right, which is also a
goal node, with total table size 23+24+24 = 40.
Note that when introducing fill-in edges, we
must not add edges to vertices that has already
been eliminated—this is why this step does not
add the edge {2, 6} even though the vertices are
both neighbours of vertex 4.

Observe that the total table size of a node
is never higher than the total table size of its
successor node(s). This implies that the total
table size associated with any non-goal node n
is a lower-bound on the total table size of any
goal node that may be discovered from n. This
property guarantees that the algorithms in Sec-
tion 5 are admissible.

4 Dynamic Clique Maintenance

To compute the cliques of a graph associated
with a node in the search graph, we may use
a standard algorithm for this task, for exam-
ple, the well-known Bron-Kerbosch algorithm
(Cazals and Karande, 2008). However, as we

212 Ottosen & Vomlel

can see from the above example, each path in
the search graph corresponds to a sequence of
graphs where the difference between adjacent
graphs is quite small. Therefore we may exploit
this similarity among adjacent graphs to avoid
the quite expensive recomputation of the cliques
and total table size of the graphs.

(Stix, 2004) investigated this problem, how-
ever, his method leads to many redundant com-
putations when the added edges appear close
together (as is the case for fill-in edges). There-
fore we give a new algorithm that performs sig-
nificantly faster for this type of update.

The general idea behind this method is sim-
ple: instead of searching for cliques in the whole
graph, simply run a clique enumeration algo-
rithm on a smaller subgraph where all the new
cliques appear and existing cliques disappear.
This algorithm for dynamic clique maintenance
is presented as Algorithm 1, and as a side-effect
it also updates the total table size and the cur-
rent graph. This implies that the total table
size does not need to be computed from scratch
either. In our case we employ Bron-Kerbosch
for the local search in FindCliques(·). Its cor-
rectness follows from the following result.

Theorem 1. (Ottosen and Vomlel, 2010). Let
G = (V,E) be an undirected graph, and let G′ =
(V,E ∪ F) be the graph resulting from adding
a set of new edges F to G. Let U = V(F).
The cliques of C(G′) can be found by remov-
ing the cliques from C(G) that intersect with U
and adding cliques of G′[fa(U,G′)] that intersect
with U.

(Xiang and Lee, 2006) describes a set of vertices
called a cruz which is central to their method
for learning. The method described above may
also be used to efficiently determine the cruz.

5 Optimal Total Table Size
Triangulation Algorithms

We have now shown how we may efficiently com-
pute the total table size for each successor m of
a node n in the search space T (G), and we have
furthermore established that the total table size
for a node n is a lower-bound of any possi-
ble triangulation associated with the set of goal

Algorithm 1 Incremental maintenance of
cliques and total table size by local search
1: procedure IncrUpdate(&G,&C ,&tts,F)
2: Input: A graph G = (V,E),
3: the set of cliques C of G,
4: the total table size tts of G, and
5: the set of new edges F.
6: Set G = (V,E ∪ F)
7: Let U = V(F)
8: Let Cnew = FindCliques(G, fa(U,G))
9: for all C ∈ C do . Remove old cliques

10: if C ∩U 6= ∅ then
11: Set tts = tts - ts(C)
12: Set C = C \ {C}
13: end if
14: end for
15: for all C ∈ Cnew do . Add new cliques
16: if C ∩U 6= ∅ then
17: Set tts = tts + ts(C)
18: Set C = C ∪ {C}
19: end if
20: end for
21: end procedure

node reachable from n. Given this, we may use
standard algorithms like best-first search and
depth-first search to explore the search space
and at the same time be guaranteed that the
algorithms terminate with an optimal solution.

Best-first search is an algorithm that succes-
sively expands nodes with the shortest distance
to the start node until a goal node has a shorter
path than all non-goal nodes. The benefit of
the best-first strategy is that we may avoid
exploring paths that are far from the optimal
path. The disadvantage of a best-first strategy
is that the algorithm must keep track of a fron-
tier (or fringe) or nodes that still needs to be
explored. Depth-first search, on the other hand,
explores all paths in a depth-first manner and
therefore uses only Θ(|V|) memory for a graph
G = (V,E). However, depth-first search is typ-
ically forced to explore more paths than best-
first search.

To compute a cost for each path in the search
graph, we associate the following with each node
n:

Ottosen & Vomlel 213

1. H = (V,E ∪F): the original graph with all
fill-in edges F accumulated along the path
to n from the start node s.

2. R: the remaining graph H[V \W] where W
are the vertices of G eliminated along the
path from s to n.

3. C : the set of cliques for H, C(H).
4. tts: the total table size for the graph H.
5. L: a list of vertices describing the elimina-

tion order.
To maintain tts(H) efficiently we need C(H)
which in turn requires H, and we saw how this
can be done in Section 4 . The graph R makes
it easy to determine if the graph H is trian-
gulated and may be computed on demand to
reduce memory requirements.

In the worst case, the complexity of any best-
first search method isO(β(|V|)·|V|!) (where β(·)
is a function that describes the per-node over-
head) because we must try each possible elim-
ination order. However, it is well known that
the remaining graph H[V \W] is the same no
matter what order the vertices in W have been
eliminated in, so we can use coalescing of nodes
and thus reduce the worst case complexity to
O(β(|V|) · 2|V|) (Darwiche, 2009).

For depth-first search the complexity is often
thought to remain at Θ(γ(|V|) · |V|!), however,
at the expense of memory we may also apply
coalescing for pruning purposes. Hence, depth-
first search can be made to run in O(γ(|V|)·|V|!)
time using O(2|V|) memory, but the hidden con-
stants will be much smaller in this case com-
pared to best-first search.

Both γ(|V|) and β(|V|) take at least O(|V|3)
time as they are dominated by the removal of
simplicial vertices (the lookup into the coalesc-
ing map takes O(|V|) time due to the compu-
tation of the hash-key, and the priority queue
look-up for best-first search may take O(|V|)
time since the queue may become exponentially
large). Getting a more precise bound on the two
functions is difficult as the complexity of main-
taining the cliques and total table size depends
very much on the graph being triangulated.

In Algorithm 2 we describe the basic best-
first search with coalescing, and depth-first

Algorithm 2 Best-first search with coalescing
function TriangulationByBFS(G)

Let s = (G,G, C(G), tts(G), 〈〉)
EliminateSimplicial(s)
if |V(s.R)| = 0 then

return s
end if
Let map = ∅ . Coalescing map
Let O = {s} . The open set
while O 6= ∅ do

Let n = arg min
x∈O

x.tts

if |V(n.R)| = 0 then
return n

end if
Set O = O \ {n}
for all v ∈ V(n.R) do

Let m = Copy(n)
EliminateVertex(m, v)
EliminateSimplicial(m)
if map[m.R].tts ≤ m.tts) then

continue
end if
Set O = O \ {map[m.R]}
Set map[m.R] = m
Set O = O ∪ {m}

end for
end while

end function

search with coalescing and pruning based on the
currently best path is described in Algorithm
3. The procedure EliminateVertex(·) simply
eliminates a vertex from the remaining graph R
and updates the cliques and total table size of
the partially triangulated graph H (see Section
4). The procedure EliminateSimplicial(·)
removes all simplicial vertices from the remain-
ing graph.

6 Results

In this section we describe experiments with the
optimal methods as well as several heuristics de-
rived from these. For that purpose we have gen-
erated 50 random graphs with varying size and
density. In this paper we have only performed
experiments on bipartite graphs—these graphs

214 Ottosen & Vomlel

Algorithm 3 Depth-first search with
coalescing and upper-bound pruning

function TriangulationByDFS(G)
Let s = (G,G, C(G), tts(G), 〈〉)
EliminateSimplicial(s)
if |V(s.R)| = 0 then

return s
end if
Let best = MinFill(s) . Best path
Let map = ∅ . Coalescing map
ExpandNode(s, best,map)
return best

end function
procedure ExpandNode(n,&best,&map)

for all v ∈ V(n.R) do
Let m = Copy(n)
EliminateVertex(m, v)
EliminateSimplicial(m)
if |V(m.R)| = 0 then

if m.tts < best.tts then
Set best = m

end if
else

if m.tts ≥ best.tts then
continue

end if
if map[m.R].tts ≤ m.tts) then

continue
end if
Set map[m.R] = m
ExpandNode(m, best,map)

end if
end for

end procedure

result from the application of rank-one decom-
position to BN2O networks—see (Savicky and
Vomlel, 2009) for details. The main reason for
using these graphs is that they are among the
most difficult to triangulate. This is because (1)
moralization should not be applied after using
rank-one decomposition, and (2) bottom and
top layers are not connected. Thereby the ini-
tial graph is sparser than usual which gives tri-
angulation algorithms more freedom (in terms
of choosing fill-in edges) when searching for a
triangulation.

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100 1000
B

F
S

 T
im

e
DFS Time

Figure 2: Comparison of the running time of
best-first search and depth-first search. Both
algorithms terminate with an optimal triangu-
lation (values above the line indicate depth-first
search was faster).

We have performed two different tests on this
dataset: (1) a comparison of depth-first search
and best-first search, and (2) a comparison be-
tween heuristic methods. For Test 2 we have
implemented the following heuristic methods:

(a) Limited-branching depth-first search. This
means that we only expand the n succes-
sors of a node which have the lowest total
table size. For example, ”limited-branch-5”
expands at most five successors per node.

(b) Limited memory best-first search. Here we
limit the size of the open set O to some
fixed value n by removing the worst nodes
when the set is considered full. For exam-
ple, ”limited-mem-10k” has at most 10.000
nodes in its open set.

(c) The min-width and min-fill heuristics im-
plemented so that a successor node is gen-
erated for all ties instead of breaking ties
randomly. We refer to these algorithms as
min-width* and min-fill*, respectively.

The results from Test 1 are given in Figure 2.
It appears that best-first search performs better
when the computational time is large.

Ottosen & Vomlel 215

Table 1: Summary statistics for exhaustive
search algorithms. Each row summarizes the
mean time for graphs with n vertices. The value
in parenthesis in the first column indicates the
number of graphs of that size.

Vertices DFS BFS
20 (10) 0.3s 0.3s
30 (20) 9.1s 17.5s
40 (10) 30.6s 31.8s
50 (5) 30.4s 33.0s
60 (5) 591.7s 607.0s
% Fastest 71 37

Table 2: Results for heuristic algorithms. The
first column describes the percentage of graphs
that were triangulated optimally, and the sec-
ond column contains the maximum percent-wise
deviation from the total table size of an optimal
triangulation. The third column indicates total
time for triangulating all 50 graphs.

% op. % dev. time
min-width* 82 23,916 1s
min-fill* 84 1,322 1s
lim.-br.-2 DFS 94 53 83s
lim.-br.-3 DFS 98 27 270s
lim.-br.-4 DFS 100 0 512s
lim.-mem-100 BFS 96 2 2234s
lim.-mem-1k BFS 100 0 6447s

In Table 1 we give summary statistics for this
test. We have computed the p-value of the two-
sided Wilcoxon two-sample test of the null hy-
pothesis that the distribution of depth-first time
minus best-first time is symmetric about 0. The
p-value is 0.001069, which means that the null
hypothesis is rejected, that is, differences are
significant (in favor of depth-first search).

The results from Test 2 are given in the Table
2. Here we have run the heuristics on the 50
graphs from Test 1. From this we can conclude
that min-fill and min-width are quite often good
heuristics, but that their induced search spaces
are too small to avoid triangulations that are
far from optimal. The new heuristics seem to
avoid this pitfall.

Notice that the BN2O networks only have bi-
nary variables. Therefore min-width actually
corresponds to the commonly used min-weight
heuristic. The graph where min-width* found
an exceedingly poor triangulation has 40 ver-
tices and a density around 0.36. The total ta-
ble size for min-width* was 595, 634, 176, and
this means that no stochastic (breaking ties ran-
domly) min-width heuristic can yield a triangu-
lation that requires below some 2.4 GB of mem-
ory (assuming 4 bytes for a float). Contrast
this with the optimal triangulation which leads
to a memory requirement of only 10 MB.

7 Discussion

The fact that depth-first search came out as
the fastest algorithm must be considered a sur-
prise. We believe that the main reason for this
is that the pruning via the coalescing map turns
out to work quite well—this pruning is the di-
rect cause of the change in complexity from
Θ(γ(|V|) · |V|!) to O(γ(|V|) · |V|!). The exper-
iments indicate that best-first search actually
runs in O(γ(|V|) · 2|V|) time. Secondly, it is
worth mentioning that depth-first search only
needs very few (otherwise expensive) free-store
allocations. To further improve the pruning by
the coalescing map, then we should consider
a hybrid best-first-depth-first scheme where we
explore the most promising paths earlier. In
light of this discussion we believe depth-first
search should be reconsidered also for the min-
imum treewidth criterion.

8 Conclusion

The contributions of this paper are three-fold.
First, we have described new methods for find-
ing optimal total table size triangulations of
undirected graphs. The methods rely heavily on
efficient dynamic maintenance of the cliques and
total table size of a graph. These methods are
mainly supposed to be used off-line, but they
may also be transformed into any-time heuris-
tics.

Secondly, experiments show that depth-first
search is faster than best-first search—this was
quite unexpected. The main reason is that we

216 Ottosen & Vomlel

use pruning based on a coalescing map which
lowers the time complexity from Θ(γ(n) · n!)
to O(γ(n) · n!) (n being the number of ver-
tices in the graph and γ(n) being the per-node
overhead). From the experiments we can infer
that this pruning is so effective that depth-first
search actually runs in O(γ(n)·2n) time. There-
fore we believe it will be beneficial to recon-
sider depth-first search for triangulation with
the minimum treewidth criterion.

Third, we have examined the quality of com-
mon heuristic algorithms on a set of graphs
that are quite difficult to triangulate. The ex-
periments show that these heuristics will never
be able to guarantee good triangulations on all
types of graphs, for example, on one model the
min-width (and min-weight) heuristic would re-
turn a triangulation that requires at least 2.4
GB of memory whereas the optimal solution re-
quires only 10 MB. This shows that off-line tri-
angulation methods could be required in some
cases.

Acknowledgement

The authors would like to thank the three
anonymous reviewers for their helpful com-
ments.

J. Vomlel was supported by the Ministry of
Education of the Czech Republic through grants
1M0572 and 2C06019 and by the Czech Science
Foundation through grants ICC/08/E010 and
201/09/1891.

References

Hans L. Bodlaender, Arie M.C.A. Koster, and Frank
van den Eijkhof. 2005. Preprocessing rules for
triangulation of probabilistic networks. Compu-
tational Intelligence, 21:286–305.

F. Cazals and C. Karande. 2008. A note on the
problem of reporting maximal cliques. Theoretical
Computer Science, 407(1-3):564–568, November.

Adnan Darwiche. 2009. Modelling and Reasoning
with Bayesian Networks. Cambridge University
Press.

P. Alex Dow and Richard E. Korf. 2007. Best-first
search for treewidth. In AAAI’07: Proceedings of
the 22nd national conference on Artificial intelli-
gence, pages 1146–1151. AAAI Press.

M. Julia Flores and José A. Gámez. 2003. Tri-
angulation of Bayesian networks by retriangula-
tion. International Journal of Intelligent Systems,
18:153–164.

M. Julia Flores and José A. Gámez. 2007. A review
on distinct methods and approaches to perform
triangulation for Bayesian networks. Advances in
Probabilistic Graphical Models, pages 127–152.

Vibhav Gogate and Rina Dechter. 2004. A complete
anytime algorithm for treewidth. In Proceedings
of the Proceedings of the Twentieth Conference
Annual Conference on Uncertainty in Artificial
Intelligence (UAI-04), pages 201–208, Arlington,
Virginia. AUAI Press.

Hanns-Georg Leimer. 1993. Optimal decomposition
by clique separators. Discrete Math., 113(1-3):99–
123.

Thorsten J. Ottosen and Jǐŕı Vomlel. 2010. Honour
thy neighbour—clique maintenance in dynamic
graphs. In Proceedings of the Fifth European
Workshop on Probabilistic Graphical Models.

Petr Savicky and Jǐŕı Vomlel. 2009. Triangulation
heuristics for BN2O networks. In C. Sossai and
G. Chemello, editors, Proceedings of the 10th Eu-
ropean Conference on Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, pages
566–577. Springer.

Kirill Shoikhet and Dan Geiger. 1997. A practical
algorithm for finding optimal triangulations. In
AAAI’97: Proceedings of the 14th national con-
ference on Artificial intelligence, pages 185–190.
AAAI Press.

Volker Stix. 2004. Finding all maximal cliques in dy-
namic graphs. Comput. Optim. Appl., 27(2):173–
186.

Robert E. Tarjan. 1985. Decomposition by clique
separators. Discrete Mathematics, 55(2):221 –
232.

Wilson Wen. 1990. Optimal decomposition of be-
lief networks. In Proceedings of the Sixth Con-
ference on Uncertainty in Artificial Intelligence
(UAI-90), pages 209–224, New York, NY. Else-
vier Science.

Y. Xiang and J. Lee. 2006. Learning decomposable
markov networks in pseudo-independent domains
with local evaluation. Mach. Learn., 65(1):199–
227.

Mihalis Yannakakis. 1981. Computing the mini-
mum fill-in is NP-complete. SIAM Journal on
Algebraic and Discrete Methods, 2(1):77–79.

Pp. 217–225 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

An Aggregation and Disaggregation Procedure for the
Maintenance of a Dynamic System under Partial Observations

Demet Özgür-Ünlüakın
Bahçeşehir University, Istanbul-Turkey

demet.unluakin@bahcesehir.edu.tr

Taner Bilgiç
Boğaziçi University, Istanbul-Turkey

taner@boun.edu.tr

Abstract

We study the maintenance of a dynamic system consisting of several components each of
which age with a constant transition probability of failure. The state of the components
are hidden. However, partial observations exist in each time period. The decision of
whether to replace a component or to do nothing is to be made in each decision epoch. A
hierarchical solution procedure is proposed to solve the problem. An aggregate model is
developed by aggregating states and actions so that it can be solved with exact partially
observable Markov decision process (POMDP) techniques. Then disaggregation is per-
formed by simulating the process using a dynamic Bayesian network (DBN) and applying
troubleshooting approaches in the decision epoch where replacement is planned in the
aggregate policy.

1 Introduction

We consider the maintenance planning problem
of a dynamic system whose status is not ob-
servable but is estimated through indirect sig-
nals. Such problems are common in space sys-
tems and hazardous material detection systems
where the system is far away and cannot be
directly observed. However, such systems can
still be controlled remotely to perform diagnos-
tic tests and repair actions.

The major difference of the problem we con-
sider from other maintenance problems in the
literature is the complex structure of the sys-
tem due to several (possibly interacting) com-
ponents which results in a huge state space.

Our approach to maintenance is akin to
the decision-theoretic troubleshooting problems
(DTTP) (Kalagnam and Henrion, 1988) in han-
dling complex system structures. Complex sys-
tem structure in DTTP is usually represented
with Bayesian Networks (BNs) (Heckerman et
al., 1995; Jensen et al., 2001) which encode the
conditional probabilistic dependence relations
of the components. We use the same kind of BN
representation at each discrete decision epoch.
In DTTP the task is to find a minimum-cost

action plan. DTTP has always been studied as
a static problem under the assumption that a
system has an observable malfunction and then
troubleshooting process starts. However, we
study a dynamic problem, hence the objective is
to minimize the total expected costs, comprised
of replacement and observation costs for a finite
planning horizon.

BNs have been used in reliability problems
to represent the (complex) relations in the sys-
tem (Torres-Toledano and Sucar, 1998; Bobbio
et al., 2001; Langseth and Portinale, 2006). Re-
cently there have also been studies using DBNs
in reliability analysis (Welch and Thelen, 2000;
Weber and Jouffe, 2003; Muller et al., 2004). A
DBN is an extended BN which includes a tem-
poral dimension. However all reliability stud-
ies with DBNs are descriptive (i.e.,the dynamic
problem is represented with DBNs and the out-
come of the analysis is how system reliability
behaves in time). The impact of performing
a repair at a specific time on this behavior is
also reported in some of them. However opti-
mization of maintenance activities (i.e., finding
a minimum cost plan) is not considered which
is one of the main motivations of this paper.

218 Özgür-Ünlüakin & Bilgiç

Therefore our approach is prescriptive as op-
posed to being descriptive.

The maintenance problem we consider can be
modeled as a POMDP (Hauskrecht, 2000) in
which the decision maker makes sequential de-
cisions under partial information. POMDPs fall
prey to the “curse of dimensionality” as their
state space grows exponentially with the num-
ber of components in the system. The type of
a POMDP model having several hidden vari-
ables is rarely studied due to its computational
complexity. There are algorithms for comput-
ing optimal solutions to POMDPs. However
these algorithms are applicable in practice only
to relatively simple problems. Also some struc-
tural results have been presented in some spe-
cific machine maintenance applications (Ross,
1971; Rosenfield, 1976), but such results are not
common for general POMDPs.

The rest of the paper is organized as follows:
In Section 2, we define and represent the main-
tenance planning problem. In Section 3, we
present the proposed solution. In Section 4, we
give the experimental design and the results of
computational study. In Section 5, we conclude
and point to further research directions.

2 Problem Definition and
Representation

2.1 Problem Definition

There is a system consisting of several compo-
nents each of which age with a constant transi-
tion probability of failure. It is not possible to
observe the system components, they are hid-
den. However the system gives signals at each
decision epoch which may indicate some partial
information about the state of the components.
This is the only information one can get from
the process. System components age with a con-
stant rate constituting the dynamic behavior of
the problem. It is possible to replace compo-
nents in any period and when a component is
replaced, a replacement cost is charged. On the
other side, since observing a signal indicating
faulty components in the next decision epoch
is undesirable, it incurs another type of cost,
which is called observation cost in this study.

There is a trade off between replacing the com-
ponents and observing undesirable signals. In
each decision epoch, the decision maker can ei-
ther prefer doing nothing or replacing only one
of the components. The aim is to find a pol-
icy that minimizes expected total replacement
and observation cost in a given horizon. The
following assumptions are made:

(i) Every component has a constant transition
probability of failure. (ii) All other conditional
probability distributions are discrete. (iii) All
components have two states (“w”: working
state, “nw”: failure state). (iv) Components
can only fail at the beginning of a time period.
Once they fail they will be in state “nw” unless
they are repaired. (v) Once a component is re-
placed in a period, its working state probability
becomes 1 in the next period. (vi) Only one
replacement can be done in a given epoch.

The first three assumptions are required for
computational purposes as DBN tools usually
work with discrete probabilities and states. The
fourth and fifth assumptions are standard in
reliability. The sixth assumption implies that
there is a limit to replacements at each epoch
(possibly due to a time or a budget constraint).

2.2 Problem Representation

The maintenance problem can be expressed as
a POMDP with the following parameters:

I : number of components in the process
i : index for component
Ci : set of states of component i, i = 1, · · · , I
A : set of actions
Θ : set of observations
T ′i : set of transition probabilities of component i.

T ′i :Ci ×A× Ci → [0, 1]
O′: set of observation probabilities among

component states and observations.
O′: C1 × · · · × CI ×Θ→ [0, 1]

R : reward function that assigns rewards to
observations and actions. R : A×Θ→ R

Part (only two epochs) of the influence dia-
gram describing the problem is given in Figure 1
where cit, at, ot and rt denote component state,
action, observation and reward at time t.

Özgür-Ünlüakin & Bilgiç 219

ot

at

rt

cItc1t

ot+1

c1,t+1 cI,t+1

at+1

cit

ci,t+1

rt+1

t t+1

Figure 1: Part of the influence diagram describ-
ing the maintenance problem

The system gives two types of signals: g and
r which stand for green and red respectively,
Θ = {g, r}. A green signal is preferred to a
red signal since it implies a better condition
of components. In each epoch, the decision
maker can either prefer doing nothing or re-
placing one of the components. Hence A =
{dn, rc1, rc2, · · · , rcI}, where dn denotes doing
nothing and rci denotes replacing component i
for i = 1, 2, · · · , I. Table 1 shows the transi-

Table 1: Transition probability of component i
at ∈ At\{rci}

ci,t+1

cit w nw

w pi 1− pi

nw 0 1

at = rci

ci,t+1

cit w nw

w 1 0
nw 1 0

tion probabilities, T ′i , for component i having
two states, Ci = {w, nw}, given at ∈ A\{rci}
and at = rci respectively. Here, at ∈ A\{rci}
means the decision maker takes an action other
than replacing component i in decision epoch
t. In this case, P (ci,t+1 = w|cit = w) = pi
where 0 < pi < 1 and 1 − pi is the constant
transition probability of failure for a working
component i. When at ∈ A\{rci} and compo-
nent i is non-working in period t, it will still be
non-working in the subsequent period t+ 1. So
P (ci,t+1 = nw|cit = nw) = 1. When at = rci,
component i will be in its working state with
probability one in the next period no matter

whether it is working or not in the current pe-
riod.

3 Proposed Solution

The system under maintenance can be arbi-
trarily complex. There may be non-component
nodes in the system which are not temporal and
only transmits information from its parents to
its children. After eliminating these nodes from
the graph, we propose POMDPs as a solution to
the maintenance problem with the reduced joint
state space as the hidden process state space.
This space grows exponentially with the number
of component nodes in the graph. To overcome
this difficulty we propose a hierarchical solution
procedure where in the higher level we solve an
aggregate model of the problem with an exact
POMDP solver and in the lower level we disag-
gregate the aggregate solution using DBNs.

3.1 POMDP Formulation

The maintenance problem has a POMDP struc-
ture with the following exception: In a POMDP,
there is usually a single variable defining the
hidden process. However, in our problem the
hidden process is more complex since it consists
of several component nodes (Figure 1). One so-
lution to this drawback is to merge all compo-
nent nodes into a single mega node as in Fig-
ure 2. Here, the component nodes c1t,..cit,..,cIt
are merged into the process node st. After the
merge, the bold black arcs are added to the
model, the grey arcs are deleted from the model
and the rest of arcs are maintained as they are
before the merge. Let S be the new process
state space of st, T be the new set of transition
probabilities of the process node, and O be the
new set of observation probabilities. The follow-
ing conversions should be done to formulate the
problem as a POMDP. The new process state
space S is the Cartesian product of the com-
ponent state spaces and can be represented as
S = C1 × C2 × ...× CI , where |S| =∏I

i=1 |Ci|.
The new observation probabilities O can be

constructed as follows:

P (ot|st) = P (ot|c1t, c2t, .., cIt), (1)

220 Özgür-Ünlüakin & Bilgiç

o
t

a
t

r
t

o
t+1

a
t+1

r
t+1

s
t

s
t+1

t t+1

Figure 2: Part of the influence diagram after
conversion to POMDP

which are in fact equal to the observation proba-
bilities O′ before merge. When components are
independent as in Figure 2, the new transition
probabilities T can be constructed from T ′i as in
(2). For more general models where there are
also dependencies among components, T can be
constructed with (3), where pa(ci,t+1) consists
of all parents of ci,t+1 including cit and at.

P (st+1|st, at) =
I∏
i=1

P (ci,t+1|cit, at), (2)

P (st+1|st, at) =
I∏
i=1

(ci,t+1|pa(ci,t+1)). (3)

3.2 Aggregate Model

We have formulated the maintenance problem
as a POMDP with a hidden state space whose
cardinality is |S| =

∏I
i=1 |Ci|. As i increases

|S| increases exponentially making the problem
harder to solve. To overcome this difficulty, we
can aggregate some states and form new ag-
gregate states Sp. Let Sa be the new state
space, built after aggregation, whose elements
are Sp which are mutually exclusive and totally
exhaustive sets (i.e., ∪Pp=1Sp = S, Sp ∩ Sq =
∅, p 6= q p, q = 1..P). Let P be the new cardi-
nality of Sa, |Sa| = P . Let T a and Oa be the
new transition and observation probabilities of
this aggregate model which are obtained from

T and O respectively as follows:

P (st+1 ∈ Sq|st ∈ Sp, at) =∑
st+1∈Sq

∑
st∈Sp

P (st+1|st, at)
|Sp| , (4)

P (ot|st ∈ Sp) =

∑
st∈Sp

P (ot|st)
|Sp| , (5)

where the cardinality |Sp| is a normalizing fac-
tor. When process states are aggregated, it is
more meaningful to aggregate the related ac-
tions. Let Aa denote the new action space, built
after aggregation, whose elements are Aj which
are mutually exclusive and totally exhaustive
sets (i.e., ∪Jj=1Aj = A, Aj ∩ Al = ∅, j 6=
l j, l = 1..J). Let J be the new cardinality of
Aa, |Aa| = J .

When actions are aggregated, it affects the
transition probabilities and the reward func-
tion since they depend on actions performed in
each decision epoch. Let T aa and Ra be the
new transition probabilities and the new reward
function of this aggregate model where actions
are also aggregated in addition to states. T aa

and Ra are obtained from the original data, T
and R, respectively as follows:

P (st+1 ∈ Sq|st ∈ Sp, at ∈ Aj) =∑
at∈Aj

∑
st+1∈Sq

∑
st∈Sp

P (st+1|st, at)
|Aj ||Sp| , (6)

R(Aj , o) =

∑
a∈Aj

R(a, o)

|Aj | , (7)

where |Aj ||Sp| and |Aj | are normalizing factors.
In (6–7), actions are given equal probabilities
to be performed during aggregation. However,
when one prefers to replace some components
more or less frequently than the others, giving
weights to actions according to the desired fre-
quency is more appropriate. Let Wa be the
weight of action a. Let T aaw and Raw be the
new transition probabilities and the new reward
function of this weighted aggregate model where
actions are also aggregated with respect to their
weights in addition to the aggregation of states.

Özgür-Ünlüakin & Bilgiç 221

T aaw and Raw are obtained from the original data,
T and R, respectively as follows:

P (st+1 ∈ Sq|st ∈ Sp, at ∈ Aj) =∑
at∈Aj

∑
st+1∈Sq

∑
st∈Sp

WaP (st+1|st, at)∑
at∈Aj

Wa|Sp| ,

(8)

R(Aj , o) =

∑
a∈Aj

WaR(a, o)∑
a∈Aj

Wa
. (9)

Although some detailed information is lost af-
ter aggregation, the aggregate model has fewer
process states and action states than the origi-
nal model, which makes it easier to solve.

3.3 Disaggregation

The aggregate solution given by an exact
POMDP solver is disaggregated to obtain an
expected maintenance cost of the original prob-
lem. Disaggregation is performed by simulat-
ing the process with a DBN tool (Bayesian
Network Toolbox) and applying troubleshoot-
ing approaches in the decision epoch, where re-
placement is planned in the aggregate policy, to
obtain which component to replace.

3.3.1 DBN Formulation

The original problem is simulated with a
DBN given in Figure 3, where action at is repre-
sented as a probabilistic node such that at ∈ A,
A = {dn, rc1, rc2, ..., rcI}. Solid arcs represent

o
1

c
I1

c
11

o
2

c
12

c
I2c

i1
c

i2

o
3

c
13

c
I3

c
i3

a
1

a
2 a

3

t=2t=1 t=3

Figure 3: DBN representation of the disaggre-
gate problem

the causal relations between the components
and the observation node. They constitute the
conditional probabilities P (ot|c1t..cIt) for all t.
The dashed arcs represent temporal relations of
the components and actions between two con-
secutive time periods. They constitute the con-
ditional probabilities P (ci,t+1|cit, at). Temporal
relations are the transition probabilities of com-
ponents due to aging and replacement which are
given in Table 1.

3.3.2 Disaggregation Procedure

The disaggregation procedure takes the op-
timal policy of the aggregate POMDP model
as input. This policy is an aggregate policy in
terms of aggregate actions. It does not specify
which component to replace when it decides to
do a replacement. This is done by the disaggre-
gation procedure. It is performed by simulating
the original problem (before merge) with a DBN
represented in Figure 3. Let ε be the evidence
set containing the total evidence gathered so far.
It is accumulated by two means in every period:
one is the selected disaggregated action of the
current period and the other is the sampled ob-
servation of the next period. In each period,
if a replacement is required by the aggregate
policy, the component which has the highest ef-
ficiency is selected. This constitutes the current
disaggregated action. The efficiency measure is
defined as follows:

efit =
P (ci,t+1 = nw| ε ∪ {ot+1 = r})

πi
, (10)

where the numerator is the probability of com-
ponent i being nonworking given the up-to-date
evidence and also the condition that a red sig-
nal is observed in the next period although this
may not be the case. Appending the latter one
to the evidence indicates the component which
explains observing a red signal in the next pe-
riod. The denominator, πi, is the replacement
cost of component i and it makes the efficiency
measure to trade off component’s nonworking
probability to its replacement cost. The com-
ponent with the highest efficiency is selected to
be replaced.

222 Özgür-Ünlüakin & Bilgiç

4 Computational Study

The design structure given in Table 2 is used in
the computational study. Four factors are de-
termined in the experimental design. Two of
them are related with costs and the other two
are related with probabilities in the problem.
The values of each factor are seen in the related
column of the table. When observation prob-
abilities are different, probability of observing
green differs as number of faults differs for in
between states (other than the all working and
all nonworking states). As an alternative case,
invariant observation probabilities mean proba-
bility of observing a green signal is same for all
intermediate states and it is the average of the
observation probabilities of the different case.
Each combination of factor values leads to a to-

Table 2: Experimental design
Transition Working Replacement Red Observation

Probability Cost Cost Probability
Increasing Increasing High Different

Constant-low Constant Low Indifferent
Constant-high

Decreasing

tal of 32 data sets. After elimination of four
symmetric data, we have a total of 28 data sets.

For a four component dynamic system, when
components are merged into a single process
node, we have a total of 24 = 16 states and
5 actions. We try to solve the problem with an
exact POMDP solver, but it cannot be solved
exactly. Then states are aggregated into three
states such that S1 is the all working state, S3

is the all nonworking state, and S2 is the in be-
tween state (at least one working and one non-
working component exist). Actions are aggre-
gated into two actions such that A1 is doing
nothing and A2 is replacing one of the compo-
nents. Initially no weights are given to the ac-
tions in A2 while aggregating. Observation and
transition probabilities, and reward function are
aggregated accordingly as in Equations 5, 6 and
7 respectively.

After aggregating the problem into three
compound states and two compound actions,
it can be solved with an exact POMDP solver
(pomdp-solve) implementing the Witness algo-

rithm (Cassandra et al., 1994) for a finite hori-
zon of 100 periods. All data sets are also solved
with an approximate POMDP solver, ZMDP
software package (Smith, 2007), for a finite hori-
zon of 100 periods which finds upper bounds for
the cost function and gives POMDP policies as
an output. The ZMDP policy file is also sim-
ulated with the DBN in Figure 3 to achieve a
complete solution as in the case of the disaggre-
gate solution. Both disaggregation and ZMDP
simulation are replicated 50 times and the aver-
age cost of these is reported with their standard
deviations in Table 3.

We observe that, in data sets d01-d04, d08,
d10, d11, d15-d18, d22, d24 and d25, only the
first component is replaced in all replacement
times and replications. So, a better aggregation
can be possible by giving more weights to the
replacement actions of components which are
replaced more frequently and giving no weights
to the replacement actions whose components
are not even replaced. So we re-aggregate the
data sets having unequal transition probabili-
ties or unequal replacement costs by giving the
average number of replacements of each compo-
nent as its weight to the corresponding replace-
ment action. Data sets d06, d07, d13, d14, d20,
d21, d27 and d28 have equal transition prob-
abilities and replacement costs, so giving un-
equal weights do not lead to different aggrega-
tions other than the ones already constituted.
The computational results of the weighted ag-
gregation are also tabulated in Table 3.

The results show that average cost of most
of the re-aggregated data sets improve (d01-
d04, d08-d11, d15, d16, d22-d25) or remain the
same (d05, d12, d19 and d26) except data sets
d17 and d18 which have performed already well
with the equal weighted aggregation. One can
make new aggregations of replacement actions
with the new average number of replacements
of components. This goes on until a cycle of
aggregate policies is determined, which means
no new solutions will be available to the deci-
sion maker. However, there is no guarantee that
disaggregation results will improve every time a
new aggregation is performed as in the case of
data sets d17 and d18.

Özgür-Ünlüakin & Bilgiç 223

Table 3: Computational results
Equal Weighted ZMDP t-test

Set Disagg (std) Disagg (std) Sim.Avg (std) p-value

d01 1497.3 (131.9) 1220.8 (103.6) 854.7 (129.2) .0000 *
d02 1500.8 (72.27) 1308 (104.3) 1295.2 (85.96 .5046
d03 1068.4 (163.8) 717.5 (127) 605.52 (112.16) .0000 *
d04 1218.8 (84.19) 904.2 (104.4) 915.86 (110.26) .5871
d05 1308.1 (123.4) 1308.1 (123.4) 908.6 (96.46) .0000 *
d06 1479.4 (85.93) - - 1495.2 (96.77) .3901
d07 955.4 (130.8) - - 562.30 (81.95) .0000 *
d08 414.6 (41.79) 375.1 (30.73) 348.74 (42.23) .0006 *
d09 496.2 (4.11) 398.4 (22.22) 396.6 (24.65) .7021
d10 296.6 (36.54) 269.7 (44.09) 232.6 (40.46) .0000 *
d11 324.9 (25.54) 299.4 (30.49) 292.38 (33.35) .2747
d12 400.8 (43.16) 400.8 (43.16) 476.2 (.57) .0000 +
d13 554.4 (23.12) - - 495.6 (4.70) .0000 *
d14 280.3 (31.87) - - 227.7 (40.17) .0000 *
d15 1336.2 (126.1) 886.8 (95.33) 851.3 (102.4) .0761
d16 1259.7 (87.37) 878.4 (90.25) 898.8 (125.3) .3525
d17 853.26 (105.8) 924.76 (125.9) 764.66 (115.60) .0001 *
d18 873.32 (86.54) 1150.2 (105.87) 892.7 (97.9) .2958
d19 1059.8 (123.2) 1059.8 (123.2) 1120.6 (102.2) .0085 +
d20 1298.6 (103.4) - - 1306.4 (91.65) .6906
d21 853.9 (119.4) - - 690.7 (105.09) .0000 *
d22 381.38 (44.52) 315.28 (26.8) 377.1 (36.5) .0000 +
d23 496.2 (4.58) 295.7 (21.75) 303.7 (21.3) .0661
d24 238.32 (31.17) 221.3 (25.24) 242.12 (29.18) .0002 +
d25 245.16 (25.35) 236.8 (23.82) 234.94 (20.85) .6788
d26 341 (47.78) 341 (47.78) 274.4 (36.6) .0000 *
d27 501.1 (23.28) - - 494.9 (5.1) .0689
d28 242.3 (33.06) - - 236.7 (25.88) .3479

It is of interest to analyze the performance
of the two procedures in each data set in order
to understand what type of data sets our pro-
cedure is successful at. So, for each data set,
we perform hypothesis test for two samples and
use two-sided t-test to test whether the means
of simulated ZMDP cost and the best disaggre-
gation cost (with bold number) are equal or not
in each data set. The resulting p-value is given
in the table for each data set. When significance
level is taken as 0.05, data sets with p-value less
than 0.05 are marked in the table with * or + in-
dicating that the simulated ZMDP cost is signif-
icantly less than the disaggregation cost or vice
versa, respectively. There are 15 data sets out of
28 where the two methods significantly differ in
terms of cost values. 11 of these data sets belong
to the case where simulated ZMDP cost is sig-
nificantly lower than disaggregate cost whereas
4 of them belong to the case where disaggre-
gate cost is significantly lower. If we look at the
distribution of 11 data sets where ZMDP cost
is significantly lower than disaggregate cost, we
will see that 8 of them lie within the data sets
with different observation probabilities for the

in between states (d01-d14). Alternatively only
1 out of 4 data sets where disaggregate cost is
significantly lower than simulated ZMDP cost,
lies in d01-d14. These results give insight that
our solution procedure is more successful at the
data sets whose observation probabilities of the
aggregated states are invariant.

One may be interested in obtaining the over-
all performance of the proposed procedure by
using one-sided paired t-test. Experimental re-
sults already show that there are plenty of in-
stances where our procedure is outperformed
by the simulated ZMDP. However simulated
ZMDP has two drawbacks: First, in order to
run ZMDP in a finite horizon, time information
is added explicitly into the state information.
So, when the number of components increase,
state space and hence size of the ZMDP input
file grows exponentially. Second, when ZMDP
is run, it gives an upper bound for the cost
function. However to obtain full solutions as
in the case of our procedure, we also simulate
the ZMDP output file. This requires more com-
putational time than simulating the aggregate
model of our procedure.

224 Özgür-Ünlüakin & Bilgiç

5 Conclusion

We tackle the maintenance problem of a com-
plex system where system components are
partially observable via indirect signals, and
present a hierarchical solution procedure to
solve it. The complex POMDP problem is ag-
gregated in terms of states and actions such that
it can be solved exactly and the optimal pol-
icy is implemented on the system by simulat-
ing it with DBNs. Our solutions are compared
with the solutions of the approximate POMDP
solver, which uses full information state space,
on 28 data sets. The results show that when
observation probabilities are invariant among
the states aggregated into the same compound
state, our procedure performs better.

In the aggregation, we prefer to aggregate
the states into three compound states which
are all working, all nonworking and in between
states; and the actions into two compound ac-
tions which are doing nothing and doing a re-
placement. A POMDP with three states and
two actions can always be solved exactly. How-
ever, significant probabilistic information can
be lost. The disaggregation result can be at
most as good as the quality of the aggregate
policy. The action aggregation can be improved
by giving weights to replacement actions while
the state aggregation is harder to improve. The
average number of replacements of components
obtained from the disaggregation solution can
be used as weights, however determining the
appropriate weights for action aggregation from
the parameters of the problem will be a better
way since this will reduce the number of ag-
gregations and hence the effort. This can be a
future study.

References

A. Bobbio, L. Portinale, M. Minichino, and E. Cian-
camerla. 2001. Improving the analysis of de-
pendable systems by mapping fault trees into
Bayesian networks. Reliability Engineering and
System Safety, 71:249–260.

Anthony R. Cassandra, Leslie P. Kaelband, and
Michael L. Littman. 1994. Acting optimally in
partially observable stochastic domains. Tech-

nical Report CS-94-20, Brown University, Prov-
idence, Rhode Island.

Milos Hauskrecht. 2000. Value function approxi-
mations for partially observable Markov decision
processes. Journal of Artificial Intelligence Re-
search, 13:33–94.

David Heckerman, John S. Breese, and Koos Rom-
melse. 1995. Decision-theoretic troubleshooting.
Communications of the ACM, 38(3):49–57.

Finn V. Jensen, Uffe Kjærulff, Brian Kristiansen,
Helge Langseth, Claus Skaanning, Jiri Vomlel,
and Marta Vomlelováá. 2001. The SACSO
methodology for troubleshooting complex sys-
tems. Artificial Intelligence for Engineering, De-
sign, Analysis and Manufacturing, 15(4):321–333.

Jayant Kalagnam and Max Henrion. 1988. A com-
parison of decision analysis and expert rules for
sequential analysis. In Proceedings of 4th Con-
ference on Uncertainty in Artificial Intelligence,
pages 271–281.

Helge Langseth and Luigi Portinale. 2006. Bayesian
networks in reliability. Reliability Engineering
and System Safety, 92:92–108.

Alexandre Muller, Philippe Weber, and A. Ben
Salem. 2004. Process model-based dynamic
Bayesian networks for prognostic. In Proceed-
ings of 4th International Conference on Intelligent
Systems Design and Applications, pages 849–854.

Donald Rosenfield. 1976. Markovian deterioration
with uncertain information. Operations Research,
24(1):141–155.

Sheldon M. Ross. 1971. Quality control under
Markovian deterioration. Management Science,
17(9):587–596.

Trey Smith. 2007. ZMDP software
for POMDP and MDP planning.
http://www.cs.cmu.edu/ trey/zmdp/README.

José Gerardo Torres-Toledano and Luis Enrique Su-
car. 1998. Bayesian networks for reliability anal-
ysis of complex systems. In Proceedings of 6th
Ibero-American Conference on AI: Progress in
Artificial Intelligence, pages 195–206.

Philippe Weber and Lionel Jouffe. 2003. Reliabil-
ity modeling with dynamic Bayesian networks. In
Proceedings of 5th IFAC Symposium SAFEPRO-
CESS’03, pages 57–62.

Robert L. Welch and Travis V. Thelen. 2000. Dy-
namic reliability analysis in an operational con-
text: the Bayesian network perspective. In Pro-
ceedings of Dynamic Reliability: Future Direc-
tions, pages 277–307.

Pp. 225–233 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Reading Dependencies from Polytree-Like Bayesian Networks
Revisited

Jose M. Peña
ADIT, IDA, Linköping University, Sweden

Abstract

We present a graphical criterion for reading dependencies from the minimal directed in-
dependence map G of a graphoid p, under the assumption that G is a polytree and p
satisfies weak transitivity. We prove that the criterion is sound and complete. We argue
that assuming weak transitivity is not too restrictive.

1 Introduction

A minimal directed independence map G of an
independence model p is typically used to read
independencies holding in p. However, G can
also be used to read dependencies holding in p.
For instance, if p is a graphoid that is faithful to
G, then lack of vertex separation is a sound and
complete graphical criterion for reading depen-
dencies from G. If p is simply a graphoid, then
there also exists a sound and complete graph-
ical criterion for reading dependencies from G
(Bouckaert, 1995). In (Peña, 2007), we present
a further sound and complete graphical crite-
rion for reading dependencies from G under
the assumption that G is a polytree and p is
a graphoid that satisfies composition and weak
transitivity. In this paper, we revisit the latter
work and drop the assumption that p satisfies
composition. In general, the more assumptions
a criterion makes about G and p the more pow-
erful it is (i.e. the more dependencies it can
read from G) but the less applicable it is (i.e.
the smaller the set of independence models it
can be applied to). Then, our new criterion
may be seen as being in between the criteria in
(Bouckaert, 1995) and (Peña, 2007): It is more
(resp. less) powerful but less (resp. more) ap-
plicable than the former (resp. latter) criterion.
See Section 5 for an example.

The rest of the paper is organized as follows.
Section 2 is devoted to the preliminaries, Sec-
tion 3 to our assumptions, Section 4 to our con-
tribution, and Section 5 to the discussion.

2 Preliminaries

Let U denote a set of random variables. The
elements of U are not distinguished from single-
tons, and the union of the sets U1, . . . , Un ⊆ U
is written as the juxtaposition U1 . . . Un. When
evaluating an expression, the union of sets pre-
cedes the set difference. Let X, Y , Z and W
denote four mutually disjoint subsets of U . An
independence model p is a set of independen-
cies of the form X is independent of Y given
Z. We denote that an independence is in p by
X⊥pY |Z and that an independence is not in p
by X 6⊥pY |Z. In the latter case, we say that the
dependence X 6⊥pY |Z is in p. An independence
model is a graphoid if it satisfies the following
properties: Symmetry X ⊥ pY |Z ⇒ Y ⊥ pX|Z,
decomposition X⊥ pYW |Z ⇒ X⊥ pY |Z, weak
union X⊥ pYW |Z ⇒ X⊥ pY |ZW , contraction
X ⊥ pY |ZW ∧ X ⊥ pW |Z ⇒ X ⊥ pYW |Z, and
intersection X⊥ pY |ZW ∧X⊥ pW |ZY ⇒ X⊥
pYW |Z.

We say that a node C is a collider in a
route in a directed and acyclic graph (DAG)
if A→ C ← B is a subroute of the route. Note
that A and B may coincide since we are dealing
with a route and not with a path. A route in a
DAG is said to be superactive wrt Z when (i)
every collider node in the route is in Z, and (ii)
every non-collider node in the route is outside
Z. When there is no route in a DAG G between
a node in X and a node in Y that is superac-
tive wrt Z, we say that X is separated from
Y given Z in G and denote it as X ⊥ GY |Z.

226 Peña

This definition of separation in DAGs is equiv-
alent to other more common definitions (Stu-
dený, 1998). Given an undirected graph (UG)
G, we say that X is separated from Y given
Z in G and denote it as X ⊥ GY |Z when ev-
ery path in G between a node in X and a node
in Y contains a node in Z. An independence
model p is faithful to an UG or DAG G when
X⊥pY |Z iff X⊥GY |Z. A DAG G is a directed
independence map of an independence model p
when X⊥ pY |Z if X⊥GY |Z. Moreover, G is a
minimal directed independence (MDI) map of p
when removing any edge from G makes it cease
to be an independence map of p. If G is a MDI
map of p, then the parents of a node A in G,
Pa(A), are the smallest subset of the nodes pre-
ceding A in a given total ordering of U , Pre(A),
such that A⊥ pPre(A) \ Pa(A)|Pa(A). We de-
note the children of A in G by Ch(A). Finally,
recall that a polytree is a directed graph with-
out undirected cycles.

3 WT Graphoids

Let X, Y and Z denote three mutually disjoint
subsets of U . Let V ∈ U \ XY Z. We call
WT graphoid to any graphoid p that satisfies
weak transitivity X ⊥ pY |Z ∧ X ⊥ pY |ZV ⇒
X ⊥ pV |Z ∨ V ⊥ pY |Z. This paper stud-
ies WT graphoids. We regard WT graphoids
as worth studying because important families
of probability distributions are WT graphoids.
For instance, any probability distribution that
is Gaussian or faithful to some UG or DAG is a
WT graphoid (Pearl, 1988). The following theo-
rem implies that there also exist probability dis-
tributions that are WT graphoids although they
are neither Gaussian nor faithful to any UG or
DAG. See (Peña et al., 2009) for the proof and
examples.

Theorem 1. Let p be a probability distribution
that is a WT graphoid and let W ⊆ U . Then,
p(U \W) is a WT graphoid. If p(U \W |W = w)
has the same independencies for all value w of
W , then p(U \W |W = w) for any w is a WT
graphoid.

The following theorem introduces a new prop-
erty that every WT graphoid satisfies.

Theorem 2. Let p be a WT graphoid. Then,
p satisfies the following property: Intersectional
weak transitivity X⊥pY |Z∧X⊥pY |ZV ⇒ X⊥
pV |ZY ∨ V ⊥pY |ZX.

Proof. Assume to the contrary that X 6⊥pV |ZY
and V 6⊥pY |ZX. Then,

1. X 6⊥ pV Y |Z and V X 6⊥ pY |Z by the con-
trapositive form of weak union on X 6⊥ pV |ZY
and V 6⊥pY |ZX

2. X 6⊥pV |Z and V 6⊥pY |Z by the contrapos-
itive form of contraction on (1) and X⊥pY |ZV

3. X 6⊥ pY |ZV by the contrapositive form of
weak transitivity on (2) and X⊥pY |Z.

However, (3) contradicts the antecedent of
the property.

4 Reading Dependencies

If G is a MDI map of a WT graphoid p then we
know, by construction of G, that A(Pre(B) \
Pa(B)) 6⊥pB|Pa(B)\A for all the edges A→ B
in G. We call these dependencies the depen-
dence base of p for G. Further dependencies
in p can be derived from the dependence base
via the WT graphoid properties. For this pur-
pose, we rephrase the WT graphoid properties
in their contrapositive form as follows. Sym-
metry Y 6⊥ pX|Z ⇒ X 6⊥ pY |Z. Decomposi-
tion X 6⊥ pY |Z ⇒ X 6⊥ pYW |Z. Weak union
X 6⊥ pY |ZW ⇒ X 6⊥ pYW |Z. Contraction X 6⊥
pYW |Z ⇒ X 6⊥ pY |ZW ∨ X 6⊥ pW |Z is prob-
lematic for deriving new dependencies because
it contains a disjunction in the consequent and,
thus, we split it into two properties: Contrac-
tion1 X 6⊥ pYW |Z ∧X⊥ pY |ZW ⇒ X 6⊥ pW |Z,
and contraction2 X 6⊥ pYW |Z ∧ X ⊥ pW |Z ⇒
X 6⊥pY |ZW . Likewise, intersection gives rise to
intersection1 X 6⊥pYW |Z ∧X⊥pY |ZW ⇒ X 6⊥
pW |ZY , and intersection2 X 6⊥ pYW |Z ∧ X ⊥
pW |ZY ⇒ X 6⊥ pY |ZW . Note that intersec-
tion1 and intersection2 are equivalent and, thus,
we refer to them simply as intersection. Simi-
larly, weak transitivity gives rise to weak transi-
tivity1 X 6⊥pV |Z∧V 6⊥pY |Z∧X⊥pY |Z ⇒ X 6⊥
pY |ZV , and weak transitivity2 X 6⊥pV |Z ∧V 6⊥
pY |Z ∧ X ⊥ pY |ZV ⇒ X 6⊥ pY |Z. Finally, in-
tersectional weak transitivity gives rise to inter-
sectional weak transitivity1 X 6⊥ pV |ZY ∧ V 6⊥

Peña 227

pY |ZX ∧ X ⊥ pY |Z ⇒ X 6⊥ pY |ZV , and inter-
sectional weak transitivity2 X 6⊥ pV |ZY ∧ V 6⊥
pY |ZX ∧ X ⊥ pY |ZV ⇒ X 6⊥ pY |Z. The inde-
pendence in the antecedent of any of the proper-
ties above holds if the corresponding separation
statement holds in G. This is the best solution
we can hope for because separation is sound and
complete. Separation is sound in the sense that
it only identifies independencies in p. More-
over, separation is complete in the sense that
it identifies all the independencies in p that can
be identified by studying G alone (Peña, 2007).
We call the WT (resp. IWT) graphoid closure
of the dependence base of p for G to the set of
dependencies that are in the dependence base
of p for G plus those that can be derived from
it by applying the first eight (resp. all the ten)
properties above. The following example shows
that the WT and IWT graphoid closures of a
dependence base do not coincide in general.

Example 1. Let p be a probability distribu-
tion over U = {A,B,C} where A, B and C are
binary random variables. Let p(A,B) be uni-
form and C = XOR(A,B). Note that A⊥ pB,
A⊥pC and B⊥pC are the only independencies
in p. Then, p is a WT graphoid. Let G denote
the DAG A → C ← B. Note that G is a MDI
map of p. Now, note that A 6⊥ pB|C is in the
IWT graphoid closure of the dependence base
of p for G: The dependence base of p for G is
{A 6⊥ pC|B,B 6⊥ pC|A}, which implies A 6⊥ pB|C
by intersectional weak transitivity1 andA⊥GB.
However, the WT graphoid closure of the de-
pendence base of p for G is {A 6⊥ pC|B,B 6⊥
pC|A,A 6⊥ pBC,AB 6⊥ pC,B 6⊥ pAC,C 6⊥
pA|B,C 6⊥ pB|A,BC 6⊥ pA,C 6⊥ pAB,AC 6⊥ pB}
which does not contain A 6⊥pB|C.

Hereinafter, we use A : B to denote a route
between two nodes A and B in a DAG G. We
also use A : B to denote the nodes in the route.
It should be clear from the context which of
the two meanings is being used. We define the
parents of a route A : B as Pa(A : B) =
[∪C→D∈A:BPa(D)] \ (A : B). We say that a
route A : B is minimally superactive wrt X, Y
and Z in G if (i) A ∈ X and B ∈ Y , (ii) A : B
is superactive wrt Z, and (iii) no proper sub-

route of A : B is minimally superactive wrt X,
Y and Z in G. Finally, we introduce our graph-
ical criterion for reading dependencies from a
polytree-like MDI map of a WT graphoid.
Definition 1. Let G be a polytree. Let X, Y
and Z denote three mutually disjoint subsets of
U . We say that X∼GY |Z holds if
• there exist two nodes A ∈ X and B ∈ Y

and a single route A : B between them that is
minimally superactive wrt X, Y and Z in G,
and
• for all A′ ∈ Pa(A : B), A′ ∈ XY Z \ AB or

A′∼G\A′XY Z \AB where G\A′ is the DAG re-
sulting from removing from G the edge between
A′ and its child in A : B.

Note the recursive flavor of the definition
above: A base case (A′ ∈ XY Z \ AB) and a
recursive call (A′∼G\A′XY Z \ AB). The next
theorem proves that the criterion in Definition 1
is sound. We prove first some auxiliary lemmas.
Lemma 1. Let G be a polytree-like MDI map
of a WT graphoid p. Let A and B be two nodes
such that A∼GB|Z holds due to a route A : B
with no collider node. Let Pa(A : B) ⊆ Z.
Then, A 6⊥pB|Z.

Proof. We prove the lemma by induction over
the length of A : B. We first prove the lemma
for length one, i.e. A : B is A → B or A ← B.
Assume without loss of generality that A : B
is A → B. Let ZA denote the nodes in Z that
are in Pa(A) or connected to A by an undi-
rected path that passes through Pa(A). Let ZA
denote the nodes in Z that are in Ch(A) \ B
or connected to A by an undirected path that
passes through Ch(A) \ B. Let ZB denote the
nodes in Z that are in Pa(B) \ A or connected
to B by an undirected path that passes through
Pa(B) \A. Note that Pa(B) \A ⊆ ZB because
we have assumed that Pa(A : B) ⊆ Z. Then,

1. A(Pre(B) \ Pa(B)) 6⊥ pB|Pa(B) \ A from
the dependence base of p for G

2. A 6⊥ pB|Pa(B) \ A by contraction1 on (1)
and Pre(B) \ Pa(B)⊥GB|(Pa(B) \A)A

3. AZAZA 6⊥pB|Pa(B) \A by decomposition
on (2)

4. A 6⊥ pB|(Pa(B) \ A)ZAZA by intersection
on (3) and ZAZA⊥GB|(Pa(B) \A)A

228 Peña

5. A 6⊥ pB(ZB \ (Pa(B) \ A))|(Pa(B) \
A)ZAZA by decomposition on (4)

6. A 6⊥ pB|ZAZAZB by contraction2 on (5)
and A⊥GZ

B \ (Pa(B) \A)|(Pa(B) \A)ZAZA
7. A 6⊥pB(Z \ZAZAZB)|ZAZAZB by decom-

position on (6)
8. A 6⊥ pB|Z by intersection on (7) and A⊥

GZ \ ZAZAZB|ZAZAZBB.
Assume as induction hypothesis that the

lemma holds when the length of A : B is smaller
than l. We now prove the lemma for length l.
Let C be any node in A : B except A and B.
Recall that A : B has no collider node. Thus,
C /∈ Z because A : B is minimally superactive
wrt A, B and Z in G. Moreover, C /∈ Z im-
plies A ⊥ GB|ZC, A ∼ GC|Z, and B ∼ GC|Z.
The latter two statements imply A 6⊥ pC|Z and
B 6⊥ pC|Z by the induction hypothesis, which
together with A⊥ GB|ZC imply A 6⊥ pB|Z by
weak transitivity2.

Lemma 2. Let G be a polytree-like MDI map
of a WT graphoid p. Let A and B be two nodes
such that A∼GB|Z holds due to a route A : B of
the form A → C → . . . → D ← . . . ← C ← B
with possibly C = D. Let Pa(A : B) ⊆ Z.
Then, A 6⊥pB|Z.

Proof. Let ZD be the descendants of D that are
in Z. Note that A⊥GB|Z \ZDD as A : B is the
only route between A and B that is minimally
superactive wrt A, B and Z in G. Then,

1. A 6⊥pD|(Z \ ZDD)B by Lemma 1
2. B 6⊥pD|(Z \ ZDD)A by Lemma 1
3. A 6⊥pB|(Z \ZDD)D by intersectional weak

transitivity1 on (1), (2), and A⊥GB|Z \ ZDD
4. A 6⊥ pBZD|(Z \ ZDD)D by decomposition

on (3)
5. A 6⊥ pB|Z by contraction2 on (4) and A⊥

GZD|(Z \ ZDD)D.

Lemma 3. Let G be a polytree-like MDI map
of a WT graphoid p. Let X ∼ GY |Z hold due
to a route A : B with A ∈ X and B ∈ Y . Let
Pa(A : B) ⊆ XY Z \AB. Then, X 6⊥pY |Z.

Proof. Let W = XY Z \AB. Let D1, . . . , Dn be
the collider nodes in A : B. Then, for all i, A : B
has a subroute of the form Ai → Ci → . . . →
Di ← . . .← Ci ← Bi with Ai 6= Bi but possibly

Ci = Di. Let WDi denote the descendants of Di

that are in W . Let WCi denote the descendants
of Ci that are in W \WDiDi. Let W ′ = ∪iWCi .
We first prove A 6⊥pB|W \W ′. Note that Pa(A :
B) ⊆ W \W ′ and, thus, that A∼ GB|W \W ′
holds due to A : B. Then, we can divide A : B
into subroutes such that each of them is of the
form of the route in Lemma 1 or 2. We prove
A 6⊥ pB|W \W ′ by induction over the number
of such subroutes. If the number of subroutes is
one, then the result is immediate by Lemma 1
or 2. Assume as induction hypothesis that the
result holds when the number of subroutes is
smaller than l. We now prove the result when
this number is l. Let E be any node in A : B
where two of the subroutes meet. Note that
E is a non-collider node in A : B and, thus,
E /∈ W \W ′. Moreover, E /∈ W \W ′ implies
A⊥GB|(W \W ′)E, A∼GE|W \W ′, and E∼
GB|W \W ′. Then,

1. A 6⊥pE|W \W ′ and E 6⊥pB|W \W ′ by A∼
GE|W \W ′, E∼GB|W \W ′ and the induction
hypothesis

2. A 6⊥ pB|W \W ′ by weak transitivity2 on
(1) and A⊥GB|(W \W ′)E.

Finally, let X ′ ⊆ X \ A and Y ′ ⊆ Y \ B
contain the nodes inW ′ that are not descendant
of another node in X ′ or Y ′. Note that X ′ and
Y ′ must exist for A : B to be the only route
between A and B that is minimally superactive
wrt X, Y and Z in G. Let WX′ (resp. WY ′)
contain the descendants of X ′ (resp. Y ′) that
are in W ′. Then,

3. AX ′WX′ 6⊥ pB|W \W ′ by decomposition
on (2)

4. AX ′ 6⊥pB|(W \W ′)WX′ by intersection on
(3) and WX′⊥GB|(W \W ′)AX ′

5. AX ′ 6⊥ pBY
′WY ′ |(W \W ′)WX′ by decom-

position on (4)
6. AX ′ 6⊥pBY

′|(W \W ′)WX′WY ′ by intersec-
tion on (5) and AX ′⊥GWY ′ |(W \W ′)WX′BY ′

7. X 6⊥ pY |Z by decomposition and weak
union on (6).

If a route A : B in a DAG has a subroute of
the form C → D → . . . → E ← . . . ← D ← F
with C 6= F but possibly D = E, the subroute
D → . . .→ E ← . . .← D is called a rope.

Peña 229

Theorem 3. Let G be a polytree-like MDI map
of a WT graphoid p. If X ∼ GY |Z, then
X 6⊥ pY |Z is in the IWT graphoid closure of
the dependence base of p for G.

Proof. Let X∼GY |Z hold due to a route A : B
with A ∈ X and B ∈ Y . Let W = XY Z \ AB.
We prove the theorem by induction over the to-
tal number of recursive calls performed by X∼
GY |Z. If this number is zero, then the theorem
is immediate by Lemma 3. Assume as induction
hypothesis that the theorem holds when the to-
tal number of recursive calls is smaller than l.
We now prove the theorem when this number is
l. Let A′ ∼ G\A′W with A′ ∈ Pa(E) for some
E ∈ A : B be any recursive call performed by
X∼GY |Z. Let A′∼G\A′W hold due to a route
A′ : B′ with B′ ∈ W . We consider two sce-
narios. The first scenario is when E is outside
every rope in A : B. Then, A : B must have
a subroute of the form C → E or E ← D for
the recursive call A′∼G\A′W to be performed.
Assume without loss of generality that the sub-
route is of the form C → E. Let WE denote
the descendants of E that are in W . Note that
X ∼GY |Z implies that A∼GA

′|(W \WEB
′)E

holds. To see it, note that the subroute of A : B
between A and E followed by E ← A′, here
denoted A : A′, is the only route between A
and A′ that is minimally superactive wrt A, A′

and (W \WEB
′)E in G. Moreover, every recur-

sive call that A∼ GA
′|(W \WEB

′)E performs
is of the form A′′ ∼ G\A′′ (W \ WEB

′)E with
A′′ ∈ Pa(A : A′). This recursive call holds be-
cause A′′ ∈ Pa(A : B) and, thus, X∼GY |Z per-
forms the recursive call A′′ ∼ G\A′′W and WE ,
B′ and E are not used in it. By a similar rea-
soning, one can prove that A′∼ G\A′W implies
that A′∼GB

′|(W \WEB
′)E holds. Then,

1. A 6⊥ pA
′|(W \WEB

′)E by A ∼ GA
′|(W \

WEB
′)E and the induction hypothesis

2. A′ 6⊥ pB
′|(W \WEB

′)E by A′∼GB
′|(W \

WEB
′)E and the induction hypothesis

3. A 6⊥ pB
′|(W \WEB

′)E by weak transitiv-
ity2 on (1), (2), and A⊥GB

′|(W \WEB
′)EA′

4. A 6⊥pB
′E|W \WEB

′ by weak union on (3)
5. A 6⊥pE|W \WE by contraction2 on (4) and

A⊥GB
′|W \WEB

′

6. A 6⊥ pEWE |W \WE by decomposition on
(5)

7. A 6⊥ pE|W by intersection on (6) and A⊥
pWE |(W \WE)E

8. E 6⊥pB|W by E∼GB|W and the induction
hypothesis

9. A 6⊥ pB|W by weak transitivity2 on (7),
(8), and A⊥GB|WE

10. X 6⊥pY |Z by weak union and decomposi-
tion on (9).

The second scenario that we consider in the
proof is when E is in a rope in A : B. In this
case, A : B has a subroute of the form C →
D → . . . → E → . . . → F ← . . . ← E ←
. . .← D ← H with C 6= H but possibly D = E
and/or E = F . Let WF denote the descendants
of F that are in W . Let W ′ be as in the proof
of Lemma 3. Note that C ⊥ GH|W \W ′WFF
because A : B is the only route between A and
B that is minimally superactive wrt X, Y and
Z in G. Then,

11. C 6⊥ pF |(W \W ′WFF)H by considering
the first scenario for C∼GF |(W \W ′WFF)H

12. H 6⊥ pF |(W \W ′WFF)C by considering
the first scenario for H∼GF |(W \W ′WFF)C

13. C 6⊥ pH|(W \ W ′WFF)F by intersec-
tional weak transitivity1 on (11), (12), and
C⊥GH|W \W ′WFF

14. C 6⊥pHWF |(W \W ′WFF)F by decompo-
sition on (13)

15. C 6⊥ pH|W \W ′ by contraction2 on (14)
and C⊥GWF |(W \W ′WFF)F

16. A 6⊥ pC|W \W ′ by A∼ GC|W \W ′ and
the induction hypothesis

17. A 6⊥ pH|W \W ′ by weak transitivity2 on
(15), (16), and A⊥GH|(W \W ′)C

18. H 6⊥ pB|W \W ′ by H ∼GB|W \W ′ and
the induction hypothesis

19. A 6⊥ pB|W \W ′ by weak transitivity2 on
(17), (18), and A⊥GB|(W \W ′)H

20. X 6⊥ pY |Z follows from (19) by repeating
the steps (3)-(7) in the proof of Lemma 3.

Finally, note that we have derived (20) from
the dependence base of p for G by using only
the ten properties introduced at the beginning
of Section 4. Thus, X 6⊥ pY |Z is in the IWT
graphoid closure of the dependence base of p
for G.

230 Peña

The theorem below proves that the criterion
in Definition 1 is complete in certain sense.

Theorem 4. Let G be a polytree-like MDI map
of a WT graphoid p. If X 6⊥pY |Z is in the IWT
graphoid closure of the dependence base of p for
G, then X∼GY |Z.

Proof. Clearly, all the dependencies in the de-
pendence base of p for G are identified by the
criterion in Definition 1. It only remains to
prove that the criterion satisfies the ten proper-
ties introduced at the beginning of Section 4.
• Symmetry Y ∼GX|Z ⇒ X∼GY |Z.
Trivial.
• Weak union X∼GY |ZW ⇒ X∼GYW |Z.
We prove a simplified version of the property:

We assume that W contains a single node. Re-
peated application of this simplified property
proves the original property. Let X ∼ GY |ZW
hold due to a route A : B with A ∈ X and
B ∈ Y . We prove the simplified property by
induction over the number of collider nodes in
A : B. If this number is zero, then the proof is
immediate because W cannot be in A : B for
A : B to be minimally superactive wrt X, Y
and ZW in G. Assume as induction hypothe-
sis that the simplified property holds when the
number of collider nodes in A : B is smaller
than l. We now prove the simplified property
when this number is l. The proof is immedi-
ate unless W is in A : B. If the latter occurs,
then X ∼GYW |Z holds due to A : W , i.e. the
subroute of A : B between A and W . To see
it, note that A : W is the only route between
A and W that is minimally superactive wrt X,
YW and Z in G. Note also that W must be a
collider node in A : B for A : B to be minimally
superactive wrt X, Y and ZW in G. Thus,
A : B has a subroute of the form C → D →
. . .→W ← . . .← D ← E with C 6= E but pos-
sibly D = W . Then, every recursive call that
X ∼ GYW |Z performs belongs to one of the
following two groups. The first group consists
of the recursive calls A′ ∼ G\A′XY ZW \ AW
with A′ ∈ Pa(A : W) \ E. These recur-
sive calls hold because A′ ∈ Pa(A : B) and,
thus, X ∼ GY |ZW performs the recursive calls
A′ ∼ G\A′XY ZW \ AB and B and W are not

used in them. The second group consists of
the recursive call E ∼ G\E

XY ZW \ AW . We
prove that E ∼ G\E

Y |XZW \ A holds, which
implies that E ∼ G\E

XY ZW \ A holds by re-
peated application of the induction hypothesis
and, since W is not used in the recursive call,
E∼G\E

XY ZW \AW holds too. To see it, note
that the subroute of A : B between E and B,
here denoted E : B, is the only route between E
and B that is minimally superactive wrt E, Y
and XZW \ A in G\E . Moreover, every recur-
sive call that E∼G\E

Y |XZW \A performs is of
the form A′ ∼ (G\E)\A′XY ZW \ AB with A′ ∈
Pa(E : B). This recursive call holds because
A′ ∈ Pa(A : B) and, thus, X ∼ GY |ZW per-
forms the recursive call A′∼G\A′XY ZW \AB.

• Decomposition X∼GY |Z ⇒ X∼GYW |Z.

We prove a simplified version of the property:
We assume that W contains a single node. Re-
peated application of this simplified property
proves the original property. Let X ∼ GY |Z
hold due to a route A : B with A ∈ X and
B ∈ Y . The proof is immediate unless W is in
A : B. If the latter occurs, then, X ∼ GYW |Z
holds due to A : W , i.e. the subroute of A : B
between A and W . To see it, note that A : W
is the only route between A and W that is min-
imally superactive wrt X, YW and Z in G.
Now, consider the following two scenarios. The
first scenario is when W is outside every rope
in A : B. In this case, every recursive call
that X ∼GYW |Z performs is of the form A′∼
G\A′XY ZW \ AW with A′ ∈ Pa(A : W). This
recursive call holds because A′ ∈ Pa(A : B)
and, thus, X∼GY |Z performs the recursive call
A′∼G\A′XY Z \AB and B and W are not used
in it. The second scenario is when W is in some
rope in A : B. In this case, A : B has a sub-
route of the form C → D → . . .→ W → . . .→
E ← . . . ← W ← . . . ← D ← F with C 6= F
but possibly D = W and/or W = E. How-
ever, in this case, X∼GY |ZW holds due to the
route (A : B) \ (W → . . . → E ← . . . ← W),
here denoted ρ. To see it, note that ρ is the
only route between A and B that is minimally
superactive wrt X, Y and ZW in G. More-
over, every recursive call that X∼GY |ZW per-

Peña 231

forms is of the form A′∼G\A′XY ZW \AB with
A′ ∈ Pa(ρ). This recursive call holds because
A′ ∈ Pa(A : B) and, thus, X∼GY |Z performs
the recursive call A′∼G\A′XY Z \AB and W is
not used in it. Finally, note that if X∼GY |ZW
holds, then X∼GYW |Z holds by weak union.
• Contraction1X∼GYW |Z∧X⊥GY |ZW ⇒

X∼GW |Z.
In the proof of this property, we make use

of the fact that separation in DAGs is a WT
graphoid (Pearl, 1988) and, thus, it satisfies
the ten properties introduced at the beginning
of Section 4. Let X ∼ GYW |Z hold due to
a route A : B with A ∈ X and B ∈ YW .
Then, A 6⊥ GB|XY ZW \ AB and, thus, X 6⊥
GB(Y \ B)|WZ \ B by weak union. This im-
plies that B /∈ Y because, otherwise, it would
contradict X ⊥GY |ZW . Likewise, for all A′ ∈
Pa(A : B), A 6⊥ GA

′|XY ZW \ AA′ and, thus,
X \ A′ 6⊥ GA

′(Y \ A′)|WZ \ A′ by weak union.
This implies that A′ /∈ Y because, otherwise,
it would contradict X⊥GY |ZW . Furthermore,
note that every recursive call that X∼GYW |Z
performs is of the form A′∼G\A′XY ZW \ AB
with A′ ∈ Pa(A : B) and A′ /∈ XY ZW . As-
sume that this recursive call holds due to a route
A′ : B′ with B′ ∈ XY ZW \AB. By reasoning as
above, we can conclude that A′ 6⊥GB

′|XY ZW \
ABB′ and A′ 6⊥ GA

′′|XY ZW \ ABA′′ with
A′′ ∈ Pa(A′ : B′). Then,

1. A 6⊥ GA
′|XY ZW \ AB′ by A 6⊥

GA
′|XY ZW \ AA′, A′ /∈ XY ZW , and B′ is

not involved
2. A′ 6⊥ GB

′|XY ZW \ AB′ by A′ 6⊥
GB
′|XY ZW \ABB′ and B is not involved

3. A 6⊥GB
′|XY ZW \AB′ by weak transitivity

on (1), (2), and A 6⊥GB
′|(XY ZW \AB′)A′

4. X \ B′ 6⊥ GB
′(Y \ B′)|WZ \ B′ by weak

union on (3).
Note that (4) implies that B′ /∈ Y because,

otherwise, it would contradict X ⊥ GY |ZW .
Moreover,

5. A 6⊥ GA
′|XY ZW \ AA′′ by A 6⊥

GA
′|XY ZW \ AA′, A′ /∈ XY ZW , and A′′ is

not involved
6. A′ 6⊥ GA

′′|XY ZW \ AA′′ by A′ 6⊥
GA
′′|XY ZW \ABA′′ and B is not involved

7. A 6⊥GA
′′|XY ZW \AA′′ by weak transitiv-

ity on (5), (6), and A 6⊥GA
′′|(XY ZW \AA′′)A′

8. X \ A′′ 6⊥ GB
′(Y \ A′′)|WZ \ A′′ by weak

union on (7).
Note that (8) implies that A′′ /∈ Y because,

otherwise, it would contradict X ⊥ GY |ZW .
Therefore, we have proven that X ∼ GW |Z
holds if the recursive calls performed by X ∼
GYW |Z do not perform other recursive calls be-
cause, in this case, none of the key nodes is in
Y and, thus, Y can be dropped. When a recur-
sive call performed by X ∼ GYW |Z performs
another recursive call and this possibly another
and so on, one just needs to repeat the reason-
ing above for each of these recursive calls.
• Contraction2 X∼GYW |Z ∧X⊥GW |Z ⇒

X∼GY |ZW .
Let X∼GYW |Z hold due to the route A : B

with A ∈ X and B ∈ YW . We prove that
X ∼ GY |ZW holds due to A : B. Since A : B
is minimally superactive wrt X, YW and Z in
G, no node in XYW \ AB can be in A : B.
Then, B ∈ Y by X⊥GW |Z and, thus, A : B is
minimally superactive wrt X, Y and ZW in G.
Moreover, A : B is the only such route between
A and B. To see it, assume to the contrary that
there is a second such route between A and B.
Note that this second route must have some col-
lider node in C ∈ W for A : B to be the only
route between A and B that is minimally su-
peractive wrt X, YW and Z in G. Then, this
second route must also have some collider node
D ∈ Y between A and C by X⊥GW |Z. How-
ever, this is a contradiction. Finally, note that
every recursive call that X∼GY |ZW performs
holds because X ∼ GYW |Z also performs that
recursive call because, as shown, B ∈ Y .
• Intersection X∼GYW |Z ∧X⊥GY |ZW ⇒

X∼GW |ZY .
Let X∼GYW |Z hold due to the route A : B

with A ∈ X and B ∈ YW . We prove that
X∼GW |ZY holds due to A : B. Since A : B is
minimally superactive wrt X, YW and Z in G,
no node in XYW \AB can be in A : B. Then,
B ∈ W by X ⊥ GY |ZW and, thus, A : B is
minimally superactive wrt X, W and ZY in G.
Moreover, A : B is the only such route between
A and B. To see it, assume to the contrary that

232 Peña

there is a second such route between A and B.
Note that this second route must have some col-
lider node in C ∈ Y for A : B to be the only
route between A and B that is minimally su-
peractive wrt X, YW and Z in G. Then, this
second route must also have some non-collider
node D ∈W between A and C by X⊥GY |ZW .
However, this is a contradiction. Finally, note
that every recursive call that X∼GW |ZY per-
forms holds because X∼GYW |Z also performs
that recursive call because, as shown, B ∈W .
• Intersectional weak transitivity1 X ∼

GV |ZY ∧ V ∼ GY |ZX ∧ X ⊥ GY |Z ⇒ X ∼
GY |ZV .

Let X ∼ GV |ZY and V ∼ GY |ZX hold
due to the routes A : V with A ∈ X and
V : B with B ∈ Y , respectively. We prove
that A ∼ GB|XY ZV \ AB holds, which im-
plies X ∼ GY |ZV by weak union and decom-
position. Note first that X ⊥ GY |Z implies
that A : V followed by V : B, here denoted
A : B, is the only route between A and B
that is minimally superactive wrt A, B and
XY ZV \ AB in G. Note also that every re-
cursive call that A ∼ GB|XY ZV \ AB per-
forms is of the form A′∼G\A′XY ZV \AB with
A′ ∈ Pa(A : B). Note also that A′ ∈ Pa(A : V)
or A′ ∈ Pa(V : B). In the former case, we
know that X ∼ GV |ZY performs the recursive
call A′∼G\A′XY Z \A which does not use B or
V and, thus, A′∼G\A′XY ZV \AB holds. In the
latter case, we know that V ∼GY |ZX performs
the recursive call A′∼G\A′XY Z \B which does
not use A or V and, thus, A′∼G\A′XY ZV \AB
holds.
• Intersectional weak transitivity2 X ∼

GV |ZY ∧ V ∼ GY |ZX ∧ X ⊥ GY |ZV ⇒ X ∼
GY |Z.

Let X ∼ GV |ZY and V ∼ GY |ZX hold due
to the routes A : V with A ∈ X and V : B
with B ∈ Y , respectively. We prove that A∼
GB|XY Z \ AB holds, which implies X∼GY |Z
by weak union and decomposition. Note first
that X ⊥ GY |ZV implies that A : V followed
by V : B, here denoted A : B, is the only route
between A and B that is minimally superactive
wrt A, B and XY Z \ AB in G. Note also that

every recursive call that A ∼ GB|XY Z \ AB
performs is of the form A′∼G\A′XY Z\AB with
A′ ∈ Pa(A : B). Note also that A′ ∈ Pa(A : V)
or A′ ∈ Pa(V : B). In the former case, we
know that X ∼ GV |ZY performs the recursive
call A′ ∼ G\A′XY Z \ A which does not use B
and, thus, A′ ∼ G\A′XY Z \ AB holds. In the
latter case, we know that V ∼GY |ZX performs
the recursive call A′∼G\A′XY Z \B which does
not use A and, thus, A′∼G\A′XY Z \AB holds.
•Weak transitivity1 X∼GV |Z ∧V ∼GY |Z ∧

X⊥GY |Z ⇒ X∼GY |ZV .
1. X∼GV Y |Z and V X∼GY |Z by decompo-

sition on X∼GV |Z and V ∼GY |Z
2. X ∼GV |ZY and V ∼GY |ZX by contrac-

tion2 on (1) and X⊥GY |Z
3. X∼GY |ZV by intersectional weak transi-

tivity1 on (1), (2), and X⊥GY |Z.
•Weak transitivity2 X∼GV |Z ∧V ∼GY |Z ∧

X⊥GY |ZV ⇒ X∼GY |Z.
Just replace (3) in the proof of weak transi-

tivity1 by
3. X ∼ GY |Z by intersectional weak transi-

tivity2 on (1), (2), and X⊥GY |ZV .

5 Discussion

As discussed in Section 1, the new criterion
introduced in this paper is more (resp. less)
powerful but less (resp. more) applicable than
the criterion in (Bouckaert, 1995) (resp. (Peña,
2007)). To see it, consider Example 1. The new
criterion and the criterion in (Bouckaert, 1995)
can be applied but the criterion in (Peña, 2007)
cannot, because p does not satisfy composition
X ⊥ pY |Z ∧ X ⊥ pW |Z ⇒ X ⊥ pYW |Z. How-
ever, the new criterion reads A 6⊥ pB|C from G
but the criterion in (Bouckaert, 1995) does not,
because A and B are not adjacent in G and this
is necessary for that criterion to be conclusive.

References
Bouckaert, R. R. Bayesian Belief Networks: From Construction to Infer-

ence. PhD Thesis, University of Utrecht, 1995.
Pearl, J. Probabilistic Reasoning in Intelligent Systems: Networks of

Plausible Inference. Morgan Kaufmann, 1988.
Peña, J. M. Reading Dependencies from Polytree-Like Bayesian Net-

works. In UAI 2007, 303-309.
Peña, J. M., Nilsson, R., Björkegren, J. and Tegnér, J. An Algorithm

for Reading Dependencies from the Minimal Undirected Indepen-
dence Map of a Graphoid that Satisfies Weak Transitivity. Journal
of Machine Learning Research, 10, 1071-1094.

Studený, M. Bayesian Networks from the Point of View of Chain
Graphs. In UAI 1998, 496-503.

Pp. 233–241 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Bayesian Network Sensitivity to Arc-Removal

Silja Renooij
Department of Information and Computing Sciences, UtrechtUniversity

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
silja@cs.uu.nl

Abstract

Arc-removal is usually employed as part of an approximate inference scheme for Bayesian net-
works, whenever exact inference is intractable. We consider the removal of arcs in a different
setting, as a means of simplifying a network under construction. We show how sensitivity func-
tions, capturing the effects of parameter variation on an output of interest, can be employed to
describe detailed effects of removing an arc. In addition, we provide new insights related to the
choice of parameter settings upon arc removal, and the effect of this choice on the quality of the
simplified model as an approximation of the original one.

1 Introduction

Arc removal is a model simplification technique
most often employed as part of an approximate in-
ference scheme for Bayesian networks. Whenever
exact inference is intractable, a set of “weak” links
is selected and removed to arrive at an approx-
imate network in which exact inference is feasi-
ble (Kjærulff, 1994; Engelen, 1997; Choi, Chan &
Darwiche, 2005).

In this paper, we consider the removal of arcs in a
different setting, where we are interested in simpli-
fying a model that is being constructed with the help
of domain experts. A sparser model has the compu-
tational benefits of having fewer arcs and, hence, a
smaller number of probability parameters. Further-
more, a sparser model may be easier to understand
for the domain experts. Our focus is now on gaining
detailed insight into the possible impact of remov-
ing a single, pre-selected arc on the behaviour of the
network, both with and without evidence.

We will demonstrate that by interpreting arc re-
moval as a constrained form of varying multiple pa-
rameters in the original network, we can study the
effects of such a removal by means of so-calledsen-
sitivity functions. More specifically, a sensitivity-
to-arc-removal function will describe the effects of
any choice of setting the new parameters after arc
removal, on some output probability of interest. For
establishing these functions, we assume that infer-

ence in the original network is possible.
The quality of the new network can be assessed

by evaluating its behaviour. Alternatively, when the
quality of the new network as anapproximationof
the original one is of concern, the sensitivity-to-arc-
removal functions can be plugged into some quality
measure. In the context of arc removal, the quality
of the approximation is usually measured in terms
of the KL-divergence between the prior joint dis-
tributions of the original network and the approxi-
mate network (Kjærulff, 1994; Engelen, 1997). The
KL-divergence has the convenient property that the
change in prior joint distribution occasioned by the
removal of an arcA → B can be computed lo-
cally from the probabilities for variableB and its
parents (Kjærulff, 1994). This property does not
necessarily hold, however, if we consider the KL-
divergence between marginal distributions, or be-
tween posterior distributions. We will show that in
this setting, such KL-divergences can be computed
with our sensitivity functions.

The paper is structured as follows. Section 2
briefly reviews Bayesian networks and sensitivity
functions. In Section 3 we derive the sensitivity-
to-arc-removal functions. Section 4 demonstrates
the use of these functions for computing KL-
divergence; in doing so, some novel insights into the
effect on KL-divergence of different choices of new
parameters are given. The paper ends with conclu-
sions and directions for future research in Section 5.

234 Renooij

2 Preliminaries

A Bayesian network compactly represents a joint
probability distributionPr over a set of stochastic
variablesW (Jensen & Nielsen, 2007). It com-
bines an acyclic directed graphG, that captures
the variables and their dependencies as nodes and
arcs respectively, with conditional probability dis-
tributions ΘWi|π(Wi) for each variableWi and its
parentsπ(Wi) in the graph, such thatPr(W) =∏

i ΘWi|π(Wi).
We will refer to ΘWi|π(Wi) as the conditional

probability table (CPT) ofWi; entriesθ of Θ are
called parameter probabilities, or parameters for
short. In the remainder of this paper we will as-
sume all variables to be binary-valued. Variables
are denoted by capital letters and their values or in-
stantiations by lower case; bold face is used for sets.

Probabilities computed from a Bayesian network
are affected by the inaccuracies in the network’s pa-
rameters. To investigate the extent of these effects, a
sensitivity analysis can be performed in whichn ≥
1 network parameters are varied simultaneously and
the effect on an output probability of interest is stud-
ied. The effects of so-calledn-wayparameter vari-
ation are described by asensitivity function. This
is a multilinear function in the varied parameters
in case of a prior probability of interest, and a ra-
tional function in the posterior case (Coupé & Van
der Gaag, 2002). For example, the2-way sensitiv-
ity function fPr(a|e)(x, y) describing the posterior
probability Pr(a | e) as a function of two parame-
tersx andy is given by

fPr(a e)(x, y)
fPr(e)(x, y)

=
c11xy + c01x + c10y + c00

d11xy + d01x + d10y + d00

where the constantscij , dij , i, j ∈ {0, 1}, are built
from the non-varied parameters1 in the network
under study; feasible algorithms are available for
their computation (Kjærulff & Van der Gaag, 2000;
Couṕe & Van der Gaag, 2002). Parameters from the
same CPTΘWi|π(Wi), but for different condition-
ing contexts, are independent; this results in zero
interaction terms (Chan & Darwiche, 2004). In the
above example this entails thatc11 = d11 = 0.

1When a parameterθ varies asx, its complementθ = 1 −
θ from the same distribution varies as1 − x. If θ concerns
an k-valued variable,k > 2, then thek − 1 complementing
parameters are co-varied proportionally.

3 Sensitivity Functions for Arc Removal

Sensitivity analysis typically refers to the study of
effects of changes in network parameters on some
outcome of interest. We can, however, also exploit
it to study the effects of structural changes to the
network’s digraph, such as the removal of arcs.

Arc removal is most often employed as part of an
approximate inference scheme, where arcs are re-
moved until an approximate network is obtained in
which exact inference is feasible (Kjærulff, 1994;
Engelen, 1997; Choi, Chan & Darwiche, 2005). In
this paper, we consider the removal of arcs in a dif-
ferent setting. We assume that we are constructing a
Bayesian network with the help of domain experts,
who are known to have the tendency of adding too
many arcs into the model (Van der Gaag & Helsper,
2002). Our focus now is on studying the effects of
removing a single arc, which we suspect may be su-
perfluous, for the purpose of arriving at a simpler
model that still suffices for the domain of applica-
tion. We assume that inference in the original net-
work is possible and, since we are still in a construc-
tion phase, that we have ample time to spend on it.

In this section, we propose the first approach for
exactly studying the possible effects of arc removal
on a probability of interest; the approach exploits
the sensitivity function describing this probability
in relation to the new parameters.

3.1 Implementing Arc Removal

Throughout this paper we consider the removal of
an arcA → B from a Bayesian networkB, where
π(B) = {A} ∪ Z. Removing an arc can be imple-
mented in various ways (Choi, Chan & Darwiche,
2005). The approach we adopt in this paper is to
simulate the removal by changes in the CPTΘB|AZ.
More specifically, for each combination of valuesb
andz the parametersθb|az are set to be equal for all
valuesa; we will refer to these new parameters as
θ′
b|.z, since the value ofA is irrelevant.
The more or less standard approach to setting the

new parameter values is by marginalising out vari-
ableA, or by approximating this process if it is in-
feasible to perform the exact computations (Enge-
len, 1997; Choi, Chan & Darwiche, 2005). More
recent approaches focus on the addition of auxil-
iary nodes and parameters that compensate for the

Renooij 235

lost dependency, together with iterative or varia-
tional methods that optimise these parameters as
part of the arc-removal procedure (Choi & Dar-
wiche, 2010; Choi & Darwiche, 2006). Rather than
choosing a new parameter setting in advance, how-
ever, we can study the effects of all possible settings.

3.2 Sensitivity to Arc Removal

We study the effects of arc removal using a sen-
sitivity analysis in which we vary all parameters
θb|az until, for eachb and contextz, the parame-
ters are equivalent for alla. Let m be the num-
ber of different instantiationsz for Z, then arc re-
moval requires the simultaneous variation of2m pa-
rameters2. Generally, determining a2m-way sensi-
tivity function is computationally demanding. The
following proposition shows, however, that in the
context of arc removal anm-way function suffices.
Moreover, this function can be obtained from2m 1-
way sensitivity functions, whichcanbe established
efficiently (Kjærulff & Van der Gaag, 2000).

Proposition 1. Let i index the values of variableA
and j the instantiations ofZ. Let xij = θb1|aizj

and 1 − xij = θb2|aizj
denote the2 ·2m parame-

ters inΘB|AZ, and letΘ′
B|.Z be the result of setting

x1j = x2j for all j. Letx′
j and1−x′

j denote the pa-
rameters inΘ′. Then, them-way sensitivity function
which captures the effects of any possible choice for
the parameters inΘ′

B|.Z on an output probability of
interestPr(v) equals:

fPr(v)(x
′
1, . . . , x

′
m) =

(m∑
j=1

(2∑
i=1

c1
ij

)
·x′

j

)
+

+
(2∑

i=1

m∑
j=1

c0
ij

)
− (2·m− 1)·Pr(v)

wherec0
ij andc1

ij equal the constants from the1-way
sensitivity function describingPr(v) as a function
of parameterxij , fPr(v)(xij) = c1

ij ·xij + c0
ij .

Proof: First we will detail the probabilistic se-
mantics of the constants of a sensitivity function for
Pr(v). Each of the2m terms in the summation

Pr(v) =
2∑

i=1

m∑
j=1

Pr(v aizj)

2Another2m parameters, for the other value ofB, are co-
varied.

depends only on parametersθB|aizj
with a corre-

sponding conditioning context, and is constant with
respect to other parameters in the CPT ofB. More
specifically, eachPr(v aizj) relates to parameter
θb1|aizj

as follows:

Pr(v aizj) =

=
2∑

k=1

Pr(v | bkaizj)·Pr(bk | aizj) · Pr(aizj)

= Pr(v | b1aizj)·θb1|aizj
·Pr(aizj)

+ Pr(v | b2aizj)·(1− θb1|aizj
)·Pr(aizj)

Pr(v) in terms of a singleθb1|aizj
thus equals

Pr(v) =
(
c1
ij ·θb1|aizj

+rij

)
+

(
Pr(v)−Pr(v aizj)

)
where

c1
ij =

(
Pr(v | b1aizj)−Pr(v | b2aizj)

)
·Pr(aizj)

and rij = Pr(v | b2aizj) ·Pr(aizj). For Pr(v)
in relation toxij = θb1|aizj

we therefore have a1-
way sensitivity function of the formfPr(v)(xij) =
c1
ij ·xij + c0

ij with

c0
ij = rij + Pr(v)− Pr(vaizj)

Consequently, upon varying all2m parameters
x1j = θb1|a1zj

andx2j = θb1|a2zj
, j = 1, . . . ,m,

we find from

Pr(v) =
2∑

i=1

m∑
j=1

(
c1
ij ·θb1|aizj

+ rij

)

=
2∑

i=1

m∑
j=1

(
c1
ij ·θb1|aizj

+ c0
ij

)

−
2∑

i=1

m∑
j=1

(
Pr(v)− Pr(v aizj)

)
the function,fPr(v)(x11, x21, . . . , x1m, x2m) =

=
(2∑

i=1

m∑
j=1

fPr(v)(xij)
)
− (2·m− 1)·Pr(v)

=
2∑

i=1

m∑
j=1

c1
ij ·xij + c0

236 Renooij

B C

D

A
θa1 = 0.8 θd1|b1c1 = 0.1

θd1|b1c2 = 0.3
θb1|a1

= 0.8 θd1|b2c1 = 0.9
θb1|a2

= 0.4 θd1|b2c2 = 0.8

θc1|a1
= 0.5

θc1|a2
= 1.0

Figure 1: The example Bayesian network, taken
from Choi & Darwiche (2010).

with c0 =
(2∑

i=1

m∑
j=1

c0
ij

)
− (2·m− 1)·Pr(v)

The above2m-way sensitivity function describes
all possible effects of varying the2m parameters on
Pr(v). To study the effects of arc removal, how-
ever, variation of these parameters is constrained
in the sense thatx1j = x2j should hold for each
j = 1, . . . ,m. That is, rather than a2m dimen-
sional parameter space, we are actually dealing with
an m dimensional space and anm-way sensitivity
function. Usingx′

j to denote the parametersθ′
b1|.zj

resulting from settingx1j = x2j , we conclude

fPr(v)(x
′
1, . . . , x

′
m) =

(m∑
j=1

(2∑
i=1

c1
ij

)
·x′

j

)
+ c0

2

Note that in the above proposition we have not as-
sumedPr(v) to be a marginal over a single variable.
The proposition is therefore more generally appli-
cable, but most algorithms for computing the con-
stants of sensitivity functions assume that we are in-
terested in a single-variable marginal (prior or pos-
terior). Generalisation of the proposition to a pos-
terior probability of interest, such asPr(v | e) =
Pr(ve)
Pr(e) , is also straightforward, as we demonstrate

in the following example.

Example 1. Consider the Bayesian network in
Figure 1, which will serve as a running example
throughout the paper. We assume that variableA
can take on two values, represented bya1 anda2,
respectively. A similar assumption holds for the
other variables in the network. We are interested
in studying the effects of removing arcA → B, and
therefore consider the parametersx1 = θb1|a1

and
x2 = θb1|a2

, and their complements.

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

f Pr
(c

1
| d

1)

0.22/0.38

0.49 θ'b1|.

Figure 2: Pr(c1 | d1) as a function of the new pa-
rametersθ′

b1|. andθ′
b2|. = 1− θ′

b1|..

SupposePr(c1 | d1) is our probability of interest,
with original valuePr(c1d1)/Pr(d1) = 0.22/0.38.
The relevant1-way sensitivity functions are:

fPr(c1|d1)(x1) =
−0.32·x1 + 0.48
−0.52·x1 + 0.80

fPr(c1|d1)(x2) =
−0.16·x2 + 0.28
−0.16·x2 + 0.44

Following Proposition 1, simultaneous variation of
x1 andx2 results in:fPr(c1|d1)(x1, x2) =

=
−0.32·x1 − 0.16·x2 + 0.48 + 0.28− 0.22
−0.52·x1 − 0.16·x2 + 0.80 + 0.44− 0.38

=⇒ −0.48·x′ + 0.54
−0.68·x′ + 0.86

= fPr(c1|d1)(x
′)

wherex′ results from settingx1 = x2. This func-
tion, shown in Figure 2, now describes the possible
effects of removing arcA → B on the probability
Pr(c1 | d1). From the function we can, for example,
compute which new parameter setting will result in
the original value of the probability of interest:

fPr(c1|d1)(x
′) =

0.22
0.38

⇐⇒ x′ = 0.49 2

Although we assumed all variables to be binary,
Proposition 1 trivially extends to non-binary vari-
ablesA andZ. If variable B can take onn > 2
values, however, the sensitivity function describing
the effects of arc removal can no longer be obtained
from 1-way sensitivity functions. In that case, vary-
ing the parametersθb1|aiz until they become equal
for all ai, no longer ensures that all proportionally

Renooij 237

co-varying parametersθb2|aiz . . .θbn|aiz, n > 2, be-
come equal for allai. To enforce such equalities,
(n−1)-way analyses are necessary.

By studying the sensitivity functions that describe
the effects of arc removal on an output of interest
for various outputsand forvarious combinations of
observations, we can determine whether there ex-
ists a parameter setting that results in acceptable be-
haviour of the simplified model. From the sensi-
tivity functions we can, for example, immediately
determine if a specific case entered into the network
would result in the same most likely value of our
output variable in both the original and the simpli-
fied network. Another way to compare the models,
is by comparing the distributions they define.

4 Arc Removal and KL-divergence

Empirical evidence shows that arc removal can lead
to quite a speedup in inference, at the cost of only
little deterioration in quality (Choi, Chan & Dar-
wiche, 2005; Santana & Provan, 2008; Choi & Dar-
wiche, 2010). In this context, quality is measured
in terms of the Kullback-Leibler (KL) divergence
between the original distributionPr and the distri-
bution Pr′ for the approximate network (Cover &
Thomas, 1991); it is defined by

KL(Pr(V),Pr′(V)) def
=

∑
v

Pr(v)·log Pr(v)
Pr′(v)

The KL-divergence has the convenient property that
the change inprior joint distribution occasioned by
the removal of an arcA → B can be computed lo-
cally from the probabilities for variableB and its
parents (Kjærulff, 1994). This property does not
necessarily hold, however, if we consider the KL-
divergence between marginal distributions, or be-
tween posterior distributions, which are typically of
interest for practical applications. Recently, it was
argued that arc-removal methods should take avail-
able evidence into account, in order to tailor the ap-
proximation to the evidence at hand (Choi, Chan &
Darwiche, 2005; Choi & Darwiche, 2010). In this
section we will consider KL-divergence as a func-
tion of the new parameter settings, and demonstrate
that we can plug in our sensitivity-to-arc-removal
functions in order to compute this divergence, both
between joint and marginal distributions, with and
without evidence.

4.1 Joint Prior and Joint Posterior Divergence

If, upon arc removal, we wish to choose the new
parameter settings such that they minimise the KL-
divergence between the original and the simplified
network, then under some conditions this choice is
evident. The clear-cut cases concern joint (prior or
posterior) distributions and are given by the propo-
sition below.

In the remainder of this section we let network
B′ be the result of removing arcA → B from the
original networkB. The distribution defined byB′

is denotedPr′.

Proposition 2. Consider the two joint prior distri-
butionsPr(V) andPr′(V), and two joint posterior
distributionsPr(V | e) andPr′(V | e) conditioned
on evidencee. Then

• KL(Pr(V),Pr′(V)) is minimised by setting,
for all b andz combinations,θ′

b|.z = Pr(b | z);

• KL(Pr(V | e),Pr′(V | e)) is minimised by
setting, for all b and z combinations,
θ′
b|.z = Pr(b | ze), if Pr(e) = Pr′(e).

Proof: The factorisation of the joint distribu-
tion is exploited to reduce the KL-divergence
to terms involving the CPT of variableB
(see Kjærulff (1994) or Engelen (1997) for the prior
situation and Choi, Chan & Darwiche (2005) for
the posterior case):

KL(Pr(V | e),Pr′(V | e)) =

=
∑
v

Pr(v | e)·log Pr(v | e)
Pr′(v | e)

= log
Pr′(e)
Pr(e)

+
∑
abz

Pr(abz | e)·log θb|az
θ′
b|.z

The term
∑

abz Pr(abz | e)·log θb|az is determined
by the original network only. The remaining terms
are a function of the new parameters and equals:

log
Pr′(e)
Pr(e)

−
∑
abz

Pr(abz | e)·log θ′
b|.z =

= log
Pr′(e)
Pr(e)

+
∑
z

Pr(z | e)·

·
(
−

∑
b

Pr(b | ze)·log θ′
b|.z

)

238 Renooij

The bracketed summation equals the cross-entropy
between the two distributions overB and is known
to be minimal if the distributions are the same, i.e.
θ′
b|.z = Pr(b | ze).
In the prior situation, we get the same formula

but without thelog(Pr′(e)/Pr(e)) term, and with
the e’s removed from the conditioning contexts.
In that case, minimising cross-entropy, i.e. set-
ting θ′

b|.z = Pr(b | z), serves to minimise the
KL-divergence. In the posterior case, however,
minimising cross-entropy is onlyguaranteed to
minimise the KL-divergence ifPr′(e) = Pr(e),
i.e. if the probability of evidence is insensitive to
changes in the parameters forB. 2

The first property in the above proposition, although
to the best of our knowledge never explicitly proven,
must be well-known: the optimal parameter setting
stated amounts exactly to marginalising out variable
A, which is a standard approach to implementing
arc removal.

For the two cases stated in Proposition 2, we
have an expression defining the KL-divergence in
relation to the new parameter settings. In case
Pr(e) 6= Pr′(e), we can now plug in the sensi-
tivity function fPr′(e)(θ′

b|.z) and again get the KL-
divergence as a function of the new parameters. For
low-dimensional functions it is then easy to com-
pute the parameter settings that minimise the diver-
gence.

Example 2. Reconsider the example Bayesian
network in Figure 1. We will use the termsprior
KL-divergence and posterior KL-divergenceto
refer to the divergence between (joint) prior and
posterior distributions, respectively. The prior
KL-divergence as a function ofx′ = θ′

b1|. equals

KL(Pr(ABCD),Pr′(ABCD))(x′) =

=
2∑

i=1

2∑
j=1

Pr(aibj)·log θbj |ai
+

− Pr(b1)·log x′ − Pr(b2)·log(1− x′)
= −0.77− 0.72·log x′ − 0.28·log(1− x′)

and is shown in Figure 3 (dashed). We can indeed
verify from the figure that the values of the new pa-
rameters that correspond with the marginal proba-
bilities for B, i.e. θ′

b1|. = 0.80·0.8 + 0.4·0.2 = 0.72
andθ′

b2|. = 0.28, result in a minimal KL-divergence

 1

 2

 3

 4

 0 0.2 0.4 0.6 0.8 1

K
L

(P
r(

A
B

C
D

 | .
.)

, P
r'(

A
B

C
D

 | .
.)

)

θ'b1| .

Figure 3: The prior KL-divergence (dashed), and
the posterior divergence, given evidenced1, as a
function of the new parametersθ′

b1|. and θ′
b2|. =

1− θ′
b1|. (zero and one excluded).

of 0.08. Figure 3 also shows the jointposteriorKL-
divergence in the context of evidenced1 (solid); this
can be written in terms ofx′ by using the sensitivity
functionfPr′(d1)(x

′):

KL(Pr(ABC | d1),Pr′(ABC | d1))(x′) =

= log
−0.68·x′ + 0.86

0.38
+ 0.52

− 0.28·log x′ − 0.24·log(1− x′)
Taking the first derivative, we find that this function
is minimised forx′ = 0.73. This same value for
Pr(b1) follows from the auxiliary parameters estab-
lished, for thissameexample network, by the iter-
ative procedure in Choi & Darwiche (2010). Note
that this optimal value is found for a much higher
value ofx′ than would be found through marginali-
sation, i.e.θ′

b|.z =
∑

a Pr(b | aze)·Pr(a | ze):

θ′
b1|. = 0.48·0.69 + 0.07·0.31 = 0.36

This is caused by the fact thatPr(d1) is sensitive
to the parameter changes. The parameter setting
used in (Choi, Chan & Darwiche, 2005),θ′

b|.z =∑
a θb|az ·Pr(a | e), results in:

θ′
b1|. = 0.8·0.69 + 0.4·0.31 = 0.68

Remarkably, these settings are closer to the opti-
mum, despite their use of the invalid independence
assumption thatB is independent ofD givenA. 2

4.2 Marginal Prior and Posterior Divergence

Suppose we wish to choose the new parameter set-
tings such that they minimise the KL-divergence be-
tween marginal rather than joint distributions. The

Renooij 239

 1

 2

 3

 4

 0 0.2 0.4 0.6 0.8 1

K
L

(P
r(

V
),

 P
r'(

V
))

θ'b1| .

V=B
V=D

Figure 4: Prior marginal KL-divergences, per vari-
able, as a function of the new parametersθ′

b1|. and
θ′
b2|. = 1 − θ′

b1|.. For variablesA andC the diver-
gence is zero.

KL-divergence between marginal distributions is
hardly ever considered, since in that case we cannot
exploit the factorisation of the joint distribution to
reduce the divergence to local terms. Using the sen-
sitivity functions for arc removal introduced in the
previous section, however, we can define the KL-
divergence as a function of the new parameters un-
der consideration.

Corollary 1. Let Pr, Pr′ and x′
1, . . . x

′
m be as

before, then

KL(Pr(V | e),Pr′(V | e))(x′
1, . . . x

′
m) =

=
∑
v

Pr(v | e)·log Pr(v | e)
fPr′(v|e)(x′

1, . . . x
′
m)

Note that the above corollary applies to both joint
and marginal distributions; in the prior situation, the
above holds with all occurrences ofe removed. Its
formula in fact was used to create the graphs of Fig-
ures 3, 4 and 5.

The following example illustrates, for each vari-
ableV in our example network, the KL-divergence
between the original marginal distributionPr(V)
and the new marginal distributionPr′(V), for dif-
ferent choices of the new parameters for variableB.
We will refer to these divergences asmarginal KL-
divergences.

Example 3. Reconsider the example Bayesian net-
work in Figure 1, from which we remove arc
A → B. Figure 4 now shows the prior marginal
KL-divergences for each variable and all possible
choices for the new parametersθ′

bi
(zero and one

 0.5

 1

 1.5

 2

 0 0.2 0.4 0.6 0.8 1

K
L

(P
r(

V
 |

d 1
),

 P
r'

(V
 |

d 1
))

θ'b1| .

V=A
V=B
V=C

Figure 5: Posterior marginal KL-divergences per
variable, given evidenced1, as a function of the new
parametersθ′

b1|. andθ′
b2|. = 1− θ′

b1|. .

excluded). Since the values in the CPT for variable
B affect only the marginal distributions ofB andD,
the KL-divergences forA andC are zero. In addi-
tion, we see that the parameter settings that optimise
the marginal KL-divergence forB, also optimise the
divergence for its descendantD.

Figure 5 similarly shows the various marginal
KL-divergences in the context of evidenced1. We
see that the parameter setting for which the KL-
divergence is optimal, now varies per variable: this
is due to the fact that the marginal KL-divergence
for a certain variable is optimal, if the new parame-
ters are chosen such that the new marginal probabil-
ities equal the original ones.

As an illustration, suppose we are interested in
variableC, in the context of evidenced1. Recall
that the sensitivity function forc1 is given by

fPr′(c1|d1)(x
′) =

−0.48·x′ + 0.54
−0.68·x′ + 0.86

The original value forPr(c1 | d1) equals 0.22
0.38 ,

which we can obtain in our new network by setting
x′ = θ′

b1|. = 0.49. Figure 5 indeed suggests that
this choice is optimal in terms of KL-divergence.2

From the previous examples we have that the op-
timal choice for the new parameter settings, in terms
of minimising the KL-divergence, differs between
prior and posterior distributions, both for joint and
marginal distributions. In the example network,
however, setting the new parameterθ′

b1|. to a value
somewhere in the range[0.6, 0.8] seems to result in
a small KL-divergence in all situations considered.

240 Renooij

5 Conclusion

In this paper we introduced sensitivity functions as a
means of studying the exact impact of removing an
arc from a Bayesian network on some output of in-
terest. These functions provide insight into whether
or not removing the arc can result in an acceptable
simplified model, and they can support our choice
for setting the new parameters upon removal. If
the simplified network should be a good quality ap-
proximation of the original one, then the sensitivity
functions can also be used to find new parameters
that minimise the KL-divergence between various
distributions of interest.

In addition, we provided some insights concern-
ing arc removal and KL-divergence. More specif-
ically, we showed that arc removal by means of
marginalisation is in fact optimal in terms of min-
imising the KL-divergence between prior joint dis-
tributions. Secondly, we provided a condition un-
der which marginalisation results in an optimal KL-
divergence between posterior joint distributions.

We assumed that all variables are binary-valued.
As mentioned, extension to non-binary variables is
trivial, except for variableB. For non-binaryB,
proportional co-variation of its values no longer en-
sures that all parameters that should be equated for
arc removal in fact are. As a result, multi-way func-
tions with non-zero interaction terms are necessary.
Further research is required to establish the exact
implications of this increased complexity.

Although our interest in arc removal is not in ap-
proximating networks to make inference feasible,
our results can be put to use in situations where the
complexity of a network is such that exact infer-
ence is possible, but too time-consuming for prac-
tical purposes. In such a case, detailed insights con-
cerning the effects of arc removal can be obtained
prior to deploying the network, and then exploited
to construct efficient approximations for certain sets
of observable variables, or for varying output vari-
ables of interest.

Acknowledgement

I would like to thank Linda van der Gaag for our
inspiring discussions and the anonymous reviewers
for useful comments.

References

H. Chan, A. Darwiche (2004). Sensitivity analysis in
Bayesian networks: from single to multiple parame-
ters. Proceedings of the 20th Conference on Uncer-
tainty in Artificial Intelligence, AUAI Press, pp. 67 –
75.

A. Choi, H. Chan, A. Darwiche (2005). On Bayesian net-
work approximation by edge deletion.Proceedings of
the 21st Conference on Uncertainty in Artificial Intel-
ligence, AUAI Press, pp. 128 – 135.

A. Choi, A. Darwiche (2006). A variational approach for
approximating Bayesian networks by edge deletion.
Proceedings of the 22nd Conference on Uncertainty
in Artificial Intelligence, AUAI Press, pp. 80 – 89.

A. Choi, A. Darwiche (2010). An edge deletion seman-
tics for belief propagation.Submitted for publication.
Available ashttp://reasoning.cs.ucla.edu/
fetch.php?id=98&type=pdf

V.M.H. Couṕe, L.C. van der Gaag (2002). Properties of
sensitivity analysis of Bayesian belief networks.An-
nals of Mathematics and Artificial Intelligence, 36, pp.
323 – 356.

Th.M. Cover, J.A. Thomas (1991).Elements of Informa-
tion Theory, Wiley-Interscience.

R.A. van Engelen (1997). Approximating Bayesian be-
lief networks by arc removal.IEEE Transactions on
Pattern Analysis and Machine Intelligence, 19, pp.
916 – 920.

F.V. Jensen, T.D. Nielsen (2007).Bayesian Networks and
Decision Graphs, Springer-Verlag.

U. Kjærulff (1994). Reduction of computational com-
plexity in Bayesian networks through removal of weak
dependencies.Proceedings of the 10th Conference on
Uncertainty in Artificial Intelligence, Morgan Kauf-
mann, pp. 374 – 382.

U. Kjærulff, L.C. van der Gaag (2000). Making sensitiv-
ity analysis computationally efficient.Proceedings of
the 16th Conference on Uncertainty in Artificial Intel-
ligence, Morgan Kaufmann, pp. 317 – 325.

A. Santana, G. Provan (2008). An analysis of Bayesian
network model-approximation techniques.Proceed-
ings of the 18th European Conference on Artificial In-
telligence, IOS Press, pp. 851 – 852.

L.C. van der Gaag, E.M. Helsper (2002). Experiences
with modelling issues in building probabilistic net-
works.Knowledge Engineering and Knowledge Man-
agement: Ontologies and the Semantic Web, LNCS
2473, Springer-Verlag, pp. 21 – 26.

Pp. 241–249 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Efficient Sensitivity Analysis in Hidden Markov Models

Silja Renooij
Department of Information and Computing Sciences, UtrechtUniversity

P.O. Box 80.089, 3508 TB Utrecht, The Netherlands
silja@cs.uu.nl

Abstract

Sensitivity analysis in a Hidden Markov model (HMM) usuallyamounts to applying a change to
its parameters and re-computing its output of interest. Recently it was shown that, as in Bayesian
networks, a simple mathematical function describes the relation between a model parameter and
a probability of interest in an HMM. Up till now, however, no special purpose algorithms existed
for determining this function. In this paper we present a newand efficient algorithm for doing so,
which exploits the recursive properties of an HMM.

1 Introduction

Hidden Markov models (HMMs) are frequently ap-
plied statistical models for capturing processes that
evolve over time. An HMM can be represented
by the simplest type of Dynamic Bayesian network
(see for details Smyth, Heckerman & Jordan, 1997;
Murphy (2002)), which entails that all sorts of algo-
rithms available for (Dynamic) Bayesian networks
can be straightforwardly applied to HMMs.

HMMs specify a number of parameter probabil-
ities, which are bound to be inaccurate to at least
some degree. Sensitivity analysis is a standard tech-
nique for studying the effects of parameter inac-
curacies on the output of a model. An analysis
in which a single parameter is varied, is called a
one-waysensitivity analysis; in ann-way analysis
n > 1 parameters are varied simultaneously. For
Bayesian networks, a simple mathematical function
exists that describes the relation between one or
more network parameters and an output probabil-
ity of interest. Various algorithms are available for
computing the constants of this so-called sensitivity
function (see Couṕe et al. (2000) for an overview
and comparison of existing algorithms). Recently,
it was shown that similar functions describe the re-
lation between model parameters and output proba-
bilities in HMMs (Charitos & Van der Gaag, 2004).
For computing the constants of these functions, it
was suggested to represent the HMM as a Bayesian
network, unrolled for a fixed number of time slices,

and to use the above mentioned algorithms for com-
puting the constants of the sensitivity function. The
drawback of this approach is that the repetitive char-
acter of the HMM, with the same parameters occur-
ring for each time step, is not exploited in the com-
putation of the constants. As such, using standard
Bayesian network algorithms may not be the most
efficient approach to determining sensitivity func-
tions for HMMs.

In this paper we present a new and efficient al-
gorithm for computing the constants of the sensitiv-
ity function in HMMs, which exploits the recursive
properties of an HMM. After presenting some pre-
liminaries concerning HMMs and sensitivity func-
tions in Section 2, we review the known recursive
expressions for different probabilities of interest in
Sections 3 and 4; more specifically, we focus on so-
called filter and prediction probabilities in Section 3
and on smoothing in Section 4. In these sections,
we subsequently translate the recursive expressions
into functions of model parameters and present al-
gorithms for computing the constants of the associ-
ated sensitivity functions. We discuss relevant re-
lated work in Section 5 and conclude the paper with
directions for future research in Section 6.

2 Preliminaries

For each timet, an HMM consists of a single hid-
den variable whose state can be observed by some
test or sensor. The uncertainty in the test or sensor

242 Renooij

X1 X2 X3

Y 1 Y 2 Y 3

Γ A A

O O O

Figure 1: A Bayesian network representation of an
HMM unrolled for three time slices.

output is captured by a set of observation probabil-
ities; the transitions among the states in subsequent
time steps, ortime slices, are captured by a set of
transition probabilities. In this paper we concentrate
on HMMs with discrete observable variables. We
further assume that the model is time-invariant, i.e.
the probability parameters do not depend on time.
More formally, an HMM now is a statistical model
H = (X,Y,A,O,Γ), where for each timet ≥ 1:

• Xt is the hidden variable; its states are denoted
by xt

i, i = 1, . . . , n, n ≥ 2;

• Y t is the observable variable, with states de-
noted byyt

j , j = 1, . . . ,m, m ≥ 2; the nota-
tion yt

e is used to indicate actual evidence;

• A is the transition matrix with entriesai,j =
p(xt+1

j | xt
i), i, j = 1, . . . , n;

• O is the observation matrix with entriesoi,j =
p(yt

j | xt
i), i = 1, . . . , n, j = 1, . . . ,m;

• Γ is the initial vector forX1 with entriesγi =
p(x1

i), i = 1, . . . , n.

Figure 1 shows a Bayesian network representation
of an HMM unrolled for three time slices.

Inference in temporal models typically amounts
to computing the marginal distribution overX at
time t, given the evidence up to and including time
T , that isp(Xt | y1:T

e), wherey1:T
e is short for the

sequence of observationsy1
e , . . . , y

T
e . If T = t,

this inference task is known asfiltering, T < t
concernsprediction of a future state, andsmooth-
ing is the task of inferring the past, that isT >
t. For exact inference in an HMM, the efficient
Forward-Backward algorithm is available (see for
details Russel & Norvig (2003, chapter 15)). This
algorithm computes for all hidden statesi at timet,
the following two probabilities:

• forward probabilityF (i, t) = p(xt
i, y1:t

e), and

• backward probabilityB(i, t) = p(yt+1:T
e | xt

i)

resulting in

p(xt
i | y1:T

e) =
p(xt

i, y1:T
e)

p(y1:T
e)

=
F (i, t)·B(i, t)∑n
i=1 F (i, t)·B(i, t)

Alternatively, the HMM can be represented as
a Bayesian network unrolled formax{t, T} time
slices, upon which standard Bayesian network in-
ference algorithms can be used.

The outcomep(xt
i | y1:T

e) depends on the proba-
bility parameters specified for the model. To study
the effects of possible inaccuracies in these param-
eters on the computed output, asensitivity analysis
can be done. To this end, we establish thesensitiv-
ity functionp(xt

i | y1:T
e)(θ) that describes our output

of interest in terms of parameterθ, whereθ can be
any model parameter, i.e. an initial probability, an
observation probability or a transition probability.1

In the context of Bayesian networks,
sensitivity analysis has been studied ex-
tensively by various researchers (see
Van der Gaag, Renooij & Coupé (2007) for an
overview and references). In the context of HMMs,
sensitivity analysis is usually performed by means
of a perturbation analysis where a small change is
applied to the parameters, upon which the output of
interest is re-computed (Mitrophanov, Lomsadze &
Borodovsky, 2005). The main difference between
sensitivity analysis in Bayesian networks and in
Hidden Markov models in essence is that a single
parameter in an HMM may occur multiple times. A
one-way sensitivity analysis in an HMM, therefore,
amounts to ann-way analysis in its Bayesian
network representation, wheren equals the number
of time slices under consideration. It is therefore
no surprise that for HMMs sensitivity functions are
similar to those for Bayesian networks (Charitos
& Van der Gaag, 2004). The difference with the
generaln-way function for Bayesian networks is,
however, that then parameters are constrained to

1If a parameterθ = p(vj | π) for a variableV is varied,
we must ensure that still

P
i p(vi | π) = 1. To this end, all

probabilitiesp(vi | π), i 6= j, are co-varied proportionally:
p(vi | π)(θ) = p(vi | π)· 1−θ

1−p(vj |π)
. For binary-valuedV this

simplifies top(vi | π)(θ) = 1 − θ.

Renooij 243

all be equal, which reduces the number of required
constants. We now summarise the known results for
sensitivity functions in HMMs (Charitos & Van der
Gaag, 2004; Charitos, 2007). For the probability of
evidence as a function of a model parameterθ, we
have the following polynomial function:

p(y1:T
e)(θ) = dT

N ·θN + . . . + dT
1 ·θ + dT

0

whereN = T if θ = or,s, N = T − 1 if θ = ar,s,
N = 1 for θ = γr, and coefficientsdT

N , . . . , dT
0

are constants with respect to the various parame-
ters. For the joint probability of a hidden state and
evidence, as a function of a model parameterθ, we
have the following polynomial function:

p(xt
v, y1:T

e)(θ) = ct
v,N ·θN + . . . + ct

v,1·θ + ct
v,0

where

N =

t− 1 if θ = ar,s andt ≥ T ;
T θ = or,s andv = r;
T − 1 θ = or,s andv 6= r, or

θ = ar,s, t < T andv = r;
T − 2 θ = ar,s, t < T andv 6= r;
1 θ = γr;

and coefficientsct
v,N , . . . ,ct

v,0 are constants with re-
spect to the various parameters. The same general
forms apply to prior marginals overX, by taking
T = 0. Note that prior probabilities are not affected
by variation in observation parametersor,s.

Up till now, no special purpose algorithms for
establishing the coefficients of the sensitivity func-
tions in an HMM were available, which means that
Bayesian network algorithms need to be used to this
end. In the next sections, we present a new and ef-
ficient algorithm for computing the coefficients for
sensitivity functions in HMMs. To this end, we ex-
ploit the repetitive character of the model parame-
ters and knowledge about the polynomial form of
the sensitivity functions presented above. We will
discuss the inference tasks filtering/prediction and
smoothing separately.

3 Filter and Prediction Coefficients

In this section we establish the coefficients of the
sensitivity functionp(xt

v | y1:T
e)(θ), t ≥ T , for var-

ious model parametersθ. Note that the sensitivity

function for a probabilityp(xt
v | y1:T

e) is a quo-
tient of the sensitivity functions forp(xt

v, y1:T
e) and

for p(y1:T
e), and thatp(y1:T

e) =
∑n

z=1 p(xt
z, y1:T

e).
Therefore, given the polynomial form of the func-
tions, the coefficients for the sensitivity functions
for p(xt

v, y1:T
e) provide enough information to es-

tablish all required coefficients. The remainder of
this section is therefore devoted to obtaining the co-
efficients forp(xt

v, y1:T
e) as a function ofθ.

3.1 Filter and Prediction Recursions

We will now review the recursive expres-
sion for filter probabilities (see for de-
tails Russel & Norvig (2003, chapter 15)) and
make explicit the relation between filter and pre-
diction probabilities. Starting with the latter, we
find by conditioning onXT and exploiting the
independenceXt ⊥ Y 1:T | XT for T < t, that

p(xt
v, y1:T

e) =
n∑

z=1

p(xt
v | xT

z)·p(xT
z , y1:T

e) (1)

The second factor in this summation is a filter prob-
ability; the first can be computed from similar prob-
abilities in time slicet− 1 for t > T + 1:

p(xt
v | xT

z) =
n∑

w=1

aw,v ·p(xt−1
w | xT

z) (2)

and equals fort = T + 1:

p(xt
v | xT

z) = az,v (3)

Now consider the filter probability, i.e. the case
whereT = t. Exploiting the conditional indepen-
dencesY t ⊥ Y 1:t−1 | Xt andXt ⊥ Y 1:t−1 | Xt−1,
and conditioning onXt−1, we have the follow-
ing relation between probabilitiesp(xt

v, y1:t
e) and

p(xt−1
v , y1:t−1

e) for two subsequent time slicest−1
andt, t > 1:

p(xt
v, y1:t

e) = ov,et ·
n∑

z=1

az,v ·p(xt−1
z , y1:t−1

e) (4)

whereet corresponds to the value ofY observed at
time t. For time slicet = 1, we have that

p(x1
v, y1

e) = p(y1
e | x1

v)·p(x1
v) = ov,e1 ·γv (5)

Note that for a prior marginalp(xt
i) we find the same

expressions withov,et omitted.

244 Renooij

Finally, consider the case whereT < t. Equa-
tions 1 and 2 show that we now basically need to
prolong the recursion in Equation 4 from timeT to
timet, except that for the time slicesT +1 up to and
includingt no evidence is available. The absence of
evidence can be implemented by multiplying with1
rather thanov,et . In the remainder of this section,
we will therefore assume, without lack of general-
ity, thatT = t.

We will now translate the above relations into
functions of the three types of model parameter. We
already know that those functions are polynomial in
the parameter under consideration, and we know the
degree of the functions. However, we have yet to
establish what the coefficients are and how to com-
pute them. For ease of exposition concerning the co-
variation of parameters, we assume in the remainder
of this section that all variables are binary-valued,
i.e. n = m = 2.

3.2 Initial Parameters

We consider the sensitivity functionp(xt
v, y1:t

e)(θγ)
for model parameterθγ = γr. Note thatγv, the pa-
rameter associated with the state of interest forXt,
corresponds either toθγ (v = r) or its complement
1−θγ (v 6= r). From Equation 4 it now follows that
for t = 1:

p(x1
v, y1

e)(θγ) =

{
ov,e1 ·θγ + 0 if v = r

−ov,e1 ·θγ + ov,e1 if v 6= r

and from Equation 5 we have fort > 1:

p(xt
v, y1:t

e)(θγ) =

=
2∑

z=1

ov,et ·az,v ·p(xt−1
z , y1:t−1)(θγ)

The polynomial p(xt
v, y1:t

e)(θγ) requires two
coefficients: ct

v,1 and ct
v,0. Since each initial

parameter is used only in time step 1, as the above
expressions demonstrate, the coefficients fort > 1
can be established through a simple recursion for
eachN = 0, 1:

ct
v,N =

2∑
z=1

ov,et ·az,v ·ct−1
z,N

with c1
v,0 = 0 if v = r, andov,e1 otherwise; in addi-

tion c1
v,1 = ov,e1 if v = r, and−ov,e1 otherwise.

3.3 Transition Parameters

We consider the sensitivity functionp(xt
v, y1:t

e)(θa)
for model parameterθa = ar,s. From Equations 4
and 5 it follows that fort = 1 we find a constant,
p(x1

v, y1
e)(θa) = ov,e1 ·γv, and fort > 1,

p(xt
v, y1:t

e)(θa) = (6)

= ov,et ·
n∑

z=1

az,v(θa)·p(xt−1
z , y1:t−1

e)(θa)

= ov,et ·ar,v(θa)·p(xt−1
r , y1:t−1

e)(θa) +

+ ov,et ·ar,v(θa)·p(xt−1
r , y1:t−1

e)(θa)

wherer denotes the state ofX other thanr. In the
above formula,ar,v(θa) equalsθa for v = s and
1− θa for v 6= s; ar,v is independent ofθa.

The polynomialp(xt
v, y1:t

e)(θa) requirest coeffi-
cients: ct

v,N , N = 0, . . . , t − 1. To compute these
coefficients, building upon Equation 6 above, we
designed a procedure which constructs a set of ma-
trices containing the coefficients of the polynomial
sensitivity functions for each hidden state and each
time slice. We call this procedure theCoefficient-
Matrix-Fill procedure.

3.3.1 The Coefficient-Matrix-Fill Procedure

The Coefficient-Matrix-Fill procedure constructs
a matrix for each time slice under consideration, and
fills this matrix with the coefficients of the polyno-
mial functions relevant for that time slice. In this
section, we will detail the procedure for computing
the coefficients ofp(xt

v, y1:t
e)(θa). In the sections

following, we demonstrate how a similar procedure
can be used to compute the coefficients given an ob-
servation parameter, and in caseT 6= t.

The basic idea For each time slicek = 1, . . . , t
we construct ann × k matrix F k. A row i in
F k contains exactly the coefficients for the function
p(xk

i , y1:k
e)(θa), so the procedure in fact computes

the coefficients for the sensitivity functions forall n
hidden states andall time slices up to and including
t. A columnj in F k contains all coefficients of the
(j − 1)th-order terms of then polynomials. More
specifically, entryfk

i,j equals the coefficientck
i,j−1

of the sensitivity functionp(xk
i , y1:k

e)(θa). The en-
tries of matrixF 1 are set to their correct values in

Renooij 245

the initialisation phase of the procedure. Matrices
F k for k > 1 are built solely from the entries in
F k−1, the transition matrixA and the observation
matrix O.

Fill operations The recursive steps in the vari-
ous formulas are implemented by transitioning from
matrixF k to F k+1 for k ≥ 1. To illustrate this tran-
sition, consider an arbitrary(k − 1)th-degree poly-
nomial inθ, p(θ) = ck−1·θk−1 + . . .+c1·θ+c0, and
let this polynomial be represented in rowi of ma-
trix F k, i.e. fk

i,. = (c0, . . . , ck−1). In transitioning
from matrix F k to F k+1, three types of operation
(or combinations thereof) can be applied top(θ):

• summation with another polynomial(−)p∗(θ)
of the same degree: this just requires summing
the coefficients of the same order, i.e. summing
entries with the same column number;

• multiplication with a constantd: the result-
ing polynomial is represented in rowi of ma-
trix F k+1 by fk+1

i,. = (d · c0, . . . , d · ck−1, 0).
Note thatF k+1 has an additional columnk+1,
which is unaffected by this operation.

• multiplication withθ: the resultingkth-degree
polynomial is represented in rowi of matrix
F k+1 by fk+1

i,. = (0, c0, . . . , ck−1). This oper-
ation basically amounts to shifting entries from
F k one column to the right.

Fill contents: initialisation Matrix F 1 is ini-
tialised by settingf1

i,1 = oi,e1 ·γi for i = 1, 2. Ma-
tricesF 2, . . . , F t are initialised by filling them with
zeroes.

Fill contents: k = 2, . . . , t We will now provide
the details for filling matrixF k, k > 1. Following
Equation 6, positionj in row i of matrix F k, fk

i,j ,
k > 1, is filled with:

if i = s then for1 < j < k:

oi,ek
·(fk−1

r,j−1 + ar,i ·fk−1
r,j)

if i 6= s then for1 < j < k:

oi,ek
·(−fk−1

r,j−1+fk−1
r,j +ar,i ·fk−1

r,j)

Forj = 1, the general cases above are simplified by
settingfk−1

r,j−1 = 0. This boundary condition cap-
tures that entries in the first column correspond to
coefficients of the zero-order terms of the polyno-
mials and can therefore never result from a multi-
plication with θa. Similarly, since the coefficients
for columnj = k, k > 1, canonly result from mul-
tiplication byθa, we setfk−1

. ,j = 0 in that case.

Complexity In each of thek steps, ann×k matrix
is filled. This matrix contains the coefficients for
the functionsp(xk

i , y1:k
e)(θa) for all i, so the pro-

cedure computes the coefficients for the sensitivity
functions for all hidden states and all time slices up
to and includingt. If we are interested in only one
specific time slicet, then we can save space by stor-
ing only two matrices at all times. The runtime com-
plexity for a straightforward implementation of the
algorithm isO(n2 · t2), which ist times that of the
forward-backward algorithm. This is due to the fact
that per hidden state we need to computek numbers
per time step rather than one.

Example 1. Consider an HMM with binary-valued
hidden stateX and binary-valued evidence variable
Y . LetΓ = [0.20, 0.80] be the initial vector forX1,
and let transition matrixA and observation matrix
O be as follows:

A =
[
0.95 0.05
0.15 0.85

]
andO =

[
0.75 0.25
0.90 0.10

]
Suppose we are interested in the sensitivity func-
tions for the two states ofX3 as a function of pa-
rameterθa = a2,1 = p(xt

1 | xt−1
2) = 0.15, for all

t > 1. Suppose the following sequence of observa-
tions is obtained:y1

2 , y2
1 andy3

1. To compute the co-
efficients for the sensitivity functions, the following
matrices are constructed by the Coefficient-Matrix-
Fill procedure:

F 1 =
[
o1,2 ·γ1

o2,2 ·γ2

]
=

[
0.25·0.20
0.10·0.80

]
=

[
0.05
0.08

]

F 2 =

[
o1,1 ·a1,1 ·f1

1,1 o1,1 ·f1
2,1

o2,1 ·(f1
2,1 + a1,2 ·f1

1,1) −o2,1 ·f1
2,1

]

=
[

0.75·0.95·0.05 0.75·0.08
0.90·(0.08 + 0.05·0.05) −0.90·0.08

]

246 Renooij

=

[
0.03563 0.06
0.07425 −0.072

]
+

0.10988 − 0.012

and finally,F 3 =

=
[

o1,1 ·a1,1 ·f2
1,1

o2,1 ·(f2
2,1 + a1,2 ·f2

1,1)

o1,1 ·(f2
2,1 + a1,1 ·f2

1,2)

o2,1 ·(−f2
2,1 + f2

2,2 + a1,2 ·f2
1,2)

o1,1 ·f2
2,2

−o2,1 ·f2
2,2

]

=

[
0.02538 0.09844 −0.054
0.06843 −0.12893 0.0648

]
+

0.09381 − 0.03049 0.0108

From which we can conclude, for example:

p(x3
1 | y1:3

e)(θa) =
−0.054·θ2

a + 0.098·θa + 0.025
0.011·θ2

a − 0.030·θa + 0.094

and also,

p(x2
2 | y1:2

e)(θa) =
−0.072·θa + 0.074
−0.012·θa + 0.110

Note that the coefficients for the probability of evi-
dence function follow from summing the entries in
each column ofF t (see e.g.F 2 andF 3 above). �

3.4 Observation Parameters

We consider the sensitivity functionp(xt
v, y1:t

e)(θa)
for model parameterθo = or,s. From Equation 4 it
follows that fort = 1:

p(x1
v, y1

e)(θo) = (7)

=

ov,e1 ·γv if v 6= r;
θo ·γr if v = r ande1 = s;
(1− θo)·γr if v = r ande1 6= s;

and from Equation 5 we have fort > 1:

p(xt
v, y1:t

e)(θo) =

= ov,et(θo)·
2∑

z=1

az,v ·p(xt−1
z , y1:t−1)(θo) (8)

whereov,et(θo) equalsov,et for v 6= r, θo for v = r
andet = s, and1− θo for v = r andet 6= s.

The polynomial functionp(xt
v, y1:t

e)(θo) requires
t + 1 coefficients:ct

v,N , N = 0, . . . , t. We compute
these coefficients, building upon the Equations 7
and 8, again using our Coefficient-Matrix-Fill pro-
cedure. The contents and size of the matrices dif-
fer from the case with transition parameters and are
specified below.

Fill contents: initialisation F 1 is an n × 2 ma-
trix, initialised in accordance with Equation 7. All
F k, k = 2, . . . , t, aren × (k + 1) matrices and are
initialised by filling them with zeroes.

Fill contents: k = 2, . . . , t Following Equa-
tion 8, positionj in row i of matrix F k, fk

i,j , k > 1,
is filled with the following forj = 2, . . . , k:

∑2
z=1 az,i ·fk−1

z,j−1 if i = r, et = s;∑2
z=1 az,i ·(fk−1

z,j − fk−1
z,j−1) if i = r, et 6= s;

or,ek
·∑2

z=1 az,r ·fk−1
z,j if i 6= r;

For j = 1 and j = k + 1 we again simplify the
above formulas where necessary, to take into ac-
count boundary conditions.

4 Smoothing Coefficients

In this section we consider establishing the coeffi-
cients of the sensitivity functionp(xt

v | y1:T
e)(θ) for

various model parametersθ, in the situation where
t < T . We again focus only onp(xt

v, y1:T
e)(θ).

4.1 Recursion for Smoothing

Recall from Section 2 thatp(xt
v, y1:T

e) = B(i, t) ·
F (i, t), or

p(xt
v, y1:T

e) = p(yt+1:T
e | xt

v)·p(xt
v, y1:t

e) (9)

The second term in this product is again a filter
probability, so we now further focus on the first
term. By conditioning onXt+1 and exploiting
independences (see for details (Russel & Norvig,
2003, chapter 15)), we have the following re-
lation between probabilitiesp(yt+1:T

e | xt
v) and

p(yt+2:T
e | xt+1

v) for t + 1 < T :

p(yt+1:T
e | xt

v) =

=
n∑

z=1

oz,et+1 ·av,z ·p(yt+2:T
e | xt+1

z) (10)

Renooij 247

For t + 1 = T , this reduces to

p(yT :T
e | xT−1

v) =
n∑

z=1

oz,eT
·av,z ·1 (11)

Again we translate the above relations into func-
tions of the various model parameters. From
Equations 10 and 11 it follows that the func-
tion p(yt+1:T

e | xt
v)(θ) is polynomial in each

model parameter.2 Moreover, from Equation 9
we have that the degree ofp(xt

v, y1:T
e)(θ) equals

the sum of the degrees ofp(yt+1:T
e | xt

v)(θ)
and p(xt

v, y1:t
e)(θ). Since the degrees of both

p(xt
v, y1:T

e)(θ) and p(xt
v, y1:t

e)(θ) are known (see
Section 2), the degree ofp(yt+1:T

e | xt
v)(θ) can be

established as their difference. We thus have that

p(yt+1:T
e | xt

v)(θ) = dt
v,N·θN + . . .+dt

v,1·θ+dt
v,0

where

N =
{

T − t if θ = or,s or θ = ar,s;
0 if θ = γr

and coefficientsdt
v,N , . . . ,dt

v,0 are constants with re-
spect to the various parameters. The coefficients of
the polynomial functionp(xt

v, y1:T
e)(θ), T > t, can

thus be established by standard polynomial multi-
plication ofp(xt

v, y1:t
e)(θ) andp(yt+1:T

e | xt
v)(θ).

In the following we will establish exactly what
the coefficients ofp(yt+1:T

e | xt
v)(θ) are and how

to compute them. For ease of exposition, we again
taken = m = 2.

4.2 Initial Parameters

We consider the functionp(yt+1:T
e | xt

v)(θγ), t < T ,
for model parameterθγ = γr. The degree of this
polynomial is0. Indeed, from Equations 10 and 11
it follows that this function is constant with respect
to an initial parameter. This constant is simply a
probability which can be computed using standard
inference.

4.3 Transition Parameters

The functionp(yt+1:T
e | xt

v)(θa), t < T , with
parameterθa = ar,s requiresT − t + 1 coeffi-
cients. We again compute these coefficients using

2Note that this may seem counter-intuitive as it concerns the
function for aconditionalprobability; sinceXt is an ancestor
of Y t+1 . . . Y T , however, the factorisation ofp(yt+1:T

e , xt
v)

includesp(xt
v).

our Coefficient-Matrix-Fill procedure, where con-
tents is now determined by Equations 10 and 11,
and depends on the relation betweenav,z andθa: if
v = r thenav,z equalsθa for z = s, and1 − θa for
z = s̄; otherwiseav,z is constant.

To distinguish between computations that move
forward in time, and the current ones which move
backward in time, we will use matricesBk, t ≤ k ≤
T , wherek = T is used purely as initialisation.

Fill contents: initialisation BT is ann × 1 ma-
trix, initialised with1’s. All Bk, k = t, . . . ,T − 1,
aren × (T − k + 1) matrices which are initialised
with zeroes.

Fill contents: k = T − 1 down to t Following
Equations 10 and 11, positionj in row i of matrix
Bk, bk

i,j , k < T , is filled with the following forj =
2, . . . , T − k:

if i = r:
(∑2

z=1 oz,ek+1
·bk+1

z,j−1

)
+ os̄,ek+1

·bk+1
s,j

if i 6= r:
∑2

z=1 oz,ek+1
·ai,z ·bk+1

z,j

For j = 1 andj = T − k + 1 we again have to take
into account boundary conditions.

4.4 Observation Parameters

The functionp(yt+1:T
e | xt

v)(θo), t < T , with
parameterθo = or,s requiresT − t + 1 coeffi-
cients. We again compute these coefficients using
our Coefficient-Matrix-Fill procedure in a similar
way as for the transition parameters above. The only
difference is in the fill contents determined by Equa-
tions 10 and 11. This now depends on the relation
betweenoz,et+1 andθo: for z = r, oz,et+1 equalsθo

if et+1 = s, and1 − θa if et+1 6= s; for z = r̄,
oz,et+1 is constant.

Fill contents: k = T − 1 down to t Following
Equations 10 and 11, positionj in row i of matrix
Bk, bk

i,j , k < T , is filled with the following forj =
2, . . . , T − k:

if ek+1 = s: ai,r ·bk+1
r,j−1 + or,ek+1

·ai,r ·bk+1
r,j

if ek+1 6= s: −ai,r ·bk+1
r,j−1 + ai,r ·bk+1

r,j +
+or,ek+1

·ai,r ·bk+1
r,j

For j = 1 andj = T − k + 1 we again take into
account the boundary conditions.

248 Renooij

5 Related Work

Varying a transition or observation parameter in an
HMM corresponds to varying multiple parameters
in its Bayesian network representation, one for each
time slice under consideration. Sensitivity analy-
sis in HMMs is therefore a constrained form ofn-
way analysis in Bayesian networks, with all var-
ied parameters having the same value at all times.
As a result, a sensitivity function in an HMM re-
quires a number of coefficients linear in the num-
ber of parameters varied, whereas in Bayesian net-
works in general ann-way sensitivity function re-
quires an exponential number of coefficients, one
for each possible subset of then varied parame-
ters. For Bayesian networks,n-way sensitivity anal-
ysis, with parameters fromdifferentCPTs, has been
studied by only few (see Coupé et al. (2000) for an
overview and comparison of research). For com-
puting the coefficients ofn-way sensitivity func-
tions roughly three approaches, or combinations
thereof, are known: symbolic propagation, solv-
ing systems of linear equations, and propagation
of tables with coefficients. The approach taken
by Couṕe et al. (2000) resembles our Coefficient-
Matrix-Fill procedure in the sense that a table or
matrix of coefficients is constructed; their approach
extends the junction-tree architecture to propagate
vector tables rather than potential functions and de-
fines operations on vectors to this end. Each vector
table contains the coefficients of the corresponding
potential function is terms of the parameters under
study. Our approach, on the contrary, does not de-
pend on a specific computational architecture nor
does it necessarily require a Bayesian network rep-
resentation of the HMM. In addition, the operations
we use are quite different, since we can exploit the
fact that we have a polynomial function in a single
parameter.

6 Conclusions and Further Research

In this paper we introduced a new and efficient al-
gorithm for computing the coefficients of sensitivity
functions in Hidden Markov Models, for all three
types of model parameter. Earlier work on this
topic suggested to use the Bayesian network repre-
sentation of HMMs and associated algorithms for
sensitivity analysis. In this paper we have shown

that exploiting the repetitive character of HMMs re-
sults in a simple algorithm that computes the co-
efficients of the sensitivity functions for all hidden
states and all time steps. Our procedure basically
mimics the forward-backward inference algorithm,
but computes coefficients rather than probabilities.
Various improvements of the forward-backward al-
gorithm for HMMs exist that exploit the matrix for-
mulation (Russel & Norvig, 2003, Section 15.3);
further research is required to investigate if our pro-
cedure can be improved in similar or different ways.

The presented work can be extended quite
straightforwardly to sensitivity functions which
concern the prediction of future observations, i.e
p(yt

e | y1:T
e)(θ), T < t. More challenging will be

to extend current research to sensitivity analysis in
which different types of model parameter are varied
simultaneously, and to extensions of HMMs.

References
Th. Charitos, L.C. van der Gaag (2004). Sensitivity prop-

erties of Markovian models.Proceedings of Advances
in Intelligent Systems - Theory and Applications Con-
ference (AISTA). IEEE Computer Society.

Th. Charitos (2007).Reasoning with Dynamic Networks
in Practice. PhD Thesis, Utrecht University, The
Netherlands.

V.M.H. Couṕe, F.V. Jensen, U. Kjærulff, L.C. van der
Gaag (2000).A computational architecture for n-way
sensitivity analysis of Bayesian networks.Technical
Report: Department of Computer Science, Aalborg
University

L.C. van der Gaag, S. Renooij, V.M.H. Coupé (2007).
Sensitivity analysis of probabilistic networks. In:Ad-
vances in Probabilistic Graphical Models, Springer
Series: Studies in Fuzziness and Soft Computing, Vol.
213, pp. 103-124.

A.Yu. Mitrophanov, A. Lomsadze, M. Borodovsky
(2005). Sensitivity of hidden Markov models.Journal
of Applied Probability, 42, pp. 632–642.

K.P. Murphy (2002).Dynamic Bayesian Networks: Rep-
resentation, Inference and Learning.PhD Thesis,
University of California, Berkeley.

S. Russel, P. Norvig (2003)Artificial Intelligence: A
Modern Approach, Prentice Hall, Second Edition.

P. Smyth, D. Heckerman, M.I. Jordan (1997). Probabilis-
tic independence networks for hidden Markov proba-
bility models.Neural Computation, 9, pp. 227–269.

Pp. 249–257 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Learning undirected graphical models from multiple datasets
with the generalized non-rejection rate

Alberto Roverato
Università di Bologna, Italy
alberto.roverato@unibo.it

Robert Castelo
Universitat Pompeu Fabra, Barcelona, Spain

robert.castelo@upf.edu

Abstract
Learning graphical models from multiple datasets constitutes an appealing approach to learn

transcriptional regulatory interactions from microarray data in the field of molecular biology. This
has been approached both in a model based statistical approach and in an unsupervised machine
learning approach where, in the latter, it is common practice to pool datasets produced under dif-
ferent experimental conditions. In this paper, we introduce a quantity called the generalized non-
rejection rate which extends the non-rejection rate, introduced by Castelo and Roverato (2006), so
as to explicitly keep into account the different graphical models representing distinct experimen-
tal conditions involved in the structure of the dataset produced in multiple experimental batches.
We show that the generalized non-rejection rate allows one to learn the common edges occurring
throughout all graphical models, making it specially suited to identify robust transcriptional inter-
actions which are common to all the considered experiments. The generalized non-rejection rate
is then applied to both synthetic and real data and shown to provide competitive performance with
respect to other widely used methods.

1 Introduction

In the field of molecular biology, an important pro-
cess that takes place within the cell is gene expres-
sion, where the DNA sequence of a gene is tran-
scribed into a functional RNA molecule which, in
the case of protein-coding genes, is translated into a
protein. When, where and how often a gene is ex-
pressed is determined by the requirements imposed
by the cell in order to fulfill the corresponding cellu-
lar functions. The control exerted on the expression
of every gene is known as gene regulation and takes
place through a wide range of mechanisms acting at
different levels of the gene expression pathway in a
coordinated manner. One such mechanisms is the
initiation of the synthesis of the RNA molecule, or
transcription initiation, which, among other things,
requires the presence of a specific combination of
proteins that belong to a class of genes called tran-
scription factors. Transcription factor proteins play

their role in the initiation of transcription by bind-
ing to the upstream genomic region of the regulated
gene and then promoting the initiation of transcrip-
tion (up-regulation) or repressing that step (down-
regulation).

The interactions between transcription factors
and the genes they target under specific cell environ-
mental conditions, constitute one of the key pieces
of information in the cellular program that governs
gene expression. Therefore, identifying transcrip-
tional regulatory interactions is a fundamental step
towards reverse-engineering this cellular program
which potentially contains clues to understanding
biological processes like cell division, cell fate or
disease.

Microarray technology in molecular biology en-
ables measuring gene expression simultaneously for
thousands of genes across a moderate number of
samples corresponding to technical or biological
replicates of one or more distinct experimental con-

250 Roverato & Castelo

ditions. The resulting gene expression data ma-
trix conveys a snapshot of the expression level of
genes under the essayed experimental conditions
and efforts have been made in the last years in or-
der to develop computational and statistical pro-
cedures that aid to infer, from these data, tran-
scriptional regulatory interactions suitable of being
followed-up by further functional experimental val-
idation. Among those procedures, we shall distin-
guish in this paper between model based statistical
learning methods and unsupervised machine learn-
ing methods. In unsupervised machine learning it
is common practice to apply the learning algorithm
to pooled datasets constructed by merging samples
from smaller datasets generated under different ex-
perimental conditions (Wang et al., 2006; Steele
and Tucker, 2008). The performance of different
learning algorithms is then assessed with respect to
benchmark problems for which the set of regulatory
interactions between genes is (partially) known and
available from the biological literature.

Castelo and Roverato (2006) introduced a quan-
tity that they called the non-rejection rate and used
it in the model based learning of transcriptional net-
works. Furthermore, Castelo and Roverato (2009)
showed that the non-rejection rate provides satisfy-
ing results also in an unsupervised machine learn-
ing approach. In this paper, we introduce a gener-
alized version of the non-rejection rate that can be
naturally used as a meta-analysis approach when the
available data are a compendium of microarray ex-
periments. We show that it is suited for the unsu-
pervised machine learning of robust transcriptional
interactions, that is transcriptional interactions that
are common to all the experimental conditions con-
sidered. We apply the proposed method to synthetic
and experimental data from one of the best charac-
terized organisms in terms of its transcriptional reg-
ulatory relationships, the bacterium Escherichia coli
(E. coli), and compare it with some widely used un-
supervised learning procedures.

The paper is organized as follows. In Section 2
we review the theory related to structural learning
of biological networks. Section 3 addresses the is-
sue of meta-analysis and introduces the generalized
non-rejection rate. In Section 4 an analysis based on
simulated data is carried out whereas in Section 5
the generalized non-rejection rate is compared with

other unsupervised learning procedures on a mi-
croarray dataset from the E. coli system. Finally,
Section 6 contains a brief discussion.

2 Background

2.1 Unsupervised machine learning of
biological networks

There is a substantial amount of recent work
on high-dimensional and computationally tractable
procedures for learning of biological networks.
These can be grouped into two main families: model
based and unsupervised machine learning proce-
dures.

Model based procedures mainly rely on graphical
models (see, for instance, Friedman, 2004). Graph-
ical models are well-defined statistical models and
the associated network has a precise probabilistic
interpretation in terms of conditional independen-
cies. Several procedures are available for learning
an independence graph from data (Edwards, 2000),
however, structural learning in this context poses
new challenges because in microarray data the sam-
ple size n is smaller than the number of variables
p. This has led to the development of specific struc-
tural learning procedures which try to overcome the
small n and large p problem by exploiting specific
biological background knowledge on the structure
of the network. From this viewpoint, the most rel-
evant feature of biological networks is that they are
sparse, that is the direct regulatory interactions be-
tween genes represent a small proportion of all pos-
sible interactions in the network (see Junker, 2008).

With the term unsupervised machine learning ap-
proach, shortly unsupervised learning, we mean
a set of methods that distinguish themselves from
the model based statistical learning procedures both
for the assumptions underlying the analysis and for
the interpretation of the results (see d’Alché-Buc,
2006). More specifically, unsupervised learning
procedures aim at identifying some “direct”, to be
read as “non-spurious”, associations with high con-
fidence (see, for instance, Faith et al., 2007) and,
usually, no underlying statistical model is assumed.
In this framework, the most popular procedures be-
long to the family of relevance networks. One of
the first applications of relevance networks was by
Butte and Kohane (2003) who proposed to consider

Roverato & Castelo 251

some pairwise measure of association between two
expression profiles (e.g., Pearson correlation coeffi-
cient or mutual information), compute it for every
pair of genes of interest (e.g., transcription-factor
gene vs. target gene) and output those gene pairs
with an association strength above a given thresh-
old. Widely used enhancements to this pairwise
approach aimed at reducing the number of identi-
fied spurious associations are the ARACNE proce-
dure (Margolin et al., 2006) and the CLR procedure
(Faith et al., 2007).

In order to validate and compare different un-
supervised learning procedures it may be useful to
make use of a benchmark set of transcriptional in-
teractions, hereafter benchmark set for short, that
can be obtained by mining existing literature on
functional experiments that essay the actual activa-
tion or inhibition of a gene by a transcription fac-
tor. The benchmark set can be used to construct sev-
eral measures of performance of the procedure. In
particular, specificity and sensitivity can be used to
produce ROC curves; however, because of the spar-
sity of biological networks, and of the consequent
large skew in the class distribution, ROC curves
present an overly optimistic view of an algorithm’s
performance (see Fawcett, 2006). In this case, ROC
analyses are usually replaced by a precision-recall
curve where the fraction of the interactions in the
benchmark set that the procedure successfully iden-
tifies (recall) is plotted against the fraction of iden-
tified interactions that are true positives (precision).
We also provide a summary value associated to
a precision-recall curve obtained by computing its
Area Under the Curve (AUC).

The connection between the model based and the
unsupervised learning approaches comes from the
fact that model based learning procedures which
provide a measure of association of the edges of the
complete graph can also be applied in unsupervised
learning; see, for instance, Soranzo et al. (2007).
This is the case, for instance, of the shrinkage es-
timator (Schäfer and Strimmer, 2005) implemented
in the R package GeneNet. Furthermore, Castelo
and Roverato (2006) introduced a quantity that they
called the non-rejection rate to be applied in a model
based approach but they then showed (Castelo and
Roverato, 2009) that it provides satisfying results
also in an unsupervised learning approach.

2.2 The non-rejection rate

For a finite set V = {1, . . . , p} let G = (V,E) be
an undirected graph with vertex set V and edge set
E. Furthermore, let XV be a multivariate normal
random vector, indexed by V , with mean vector µ
and covariance matrix Σ. The probability distribu-
tion of XV is said to belong to a Gaussian graphical
model with graph G if every missing edge in the
graph, (i, j) 6∈ E, implies that Xi is conditionally
independent of Xj given the remaining variables
XV \{i,j}. We refer to Lauritzen (1996) for a com-
prehensive account on Gaussian graphical models,
but it is worth recalling here that such conditional
independence relationship holds if and only if the
partial correlation coefficient ρij.V \{i,j} is equal to
zero.

Led D be a random sample of n observations
i.i.d. from XV . The non-rejection rate is a quantity,
introduced by Castelo and Roverato (2006), that can
be used in structural learning of Gaussian graph-
ical models when p > n and the network has a
sparse structure. It is based on q-order partial cor-
relations, that is on partial correlations ρij.Q where
Q ⊂ V \{i, j} is such that |Q| = q.

In the rest of this section we review the theory of
the non-rejection rate required for this paper and re-
fer to Castelo and Roverato (2006) for a more com-
plete discussion. The non-rejection rate is a measure
associated with every pair of vertices i, j ∈ V and
depends on the particular value of q < (n − 2) be-
ing used. It can be described as follows: let Qij be
the set made up of all subsets Q ∈ V \{i, j} such
that |Q| = q. Let Tij be a binary random variable
associated to the pair of vertices i and j that takes
values from the following two-stage experiment:

1. An element Q is sampled from Qij according
to a (discrete) uniform distribution;

2. using the available data D the null hypothesis
H0 : ρij.Q = 0 is verified on the basis of a
statistical test of level α. If H0 is rejected then
Tij takes value 0, otherwise it takes value 1.

Thus Tij is a Bernoulli random variable and the non-
rejection rate is defined as its expectancy; formally

NRR(i, j |q,D) := E[Tij] = Pr(Tij = 1).

252 Roverato & Castelo

It is shown in Castelo and Roverato (2006) that the
non-rejection rate can be written as

NRR(i, j |q,D) = βij(1− πij) + (1− α)πij
= βij + (1− α− βij)πij (1)

where α is the probability of the first type error of
the used statistical test, πij is the proportion of sub-
sets Q in Qij that separate i and j in G and βij is
the mean value of the second type errors βij.Q for
all the subsets Q ∈ Qij such that Q does not sep-
arate i and j in G; see Lauritzen (1996, p. 6) for
a formal definition of separator. It follows that the
non-rejection rate is a probability that takes a value
between 0 and (1 − α). If a pair of vertices i and j
are adjacent, that is (i, j) ∈ G, (in our context this is
as much as saying that a transcription factor directly
binds to the promoter region of a target gene) then
πij = 0 and equation (1) makes clear that the theo-
retical non-rejection rate equals exactly βij . Hence,
since the statistical power of the tests for zero par-
tial correlation with null hypothesis H0 : ρij.Q = 0
equals 1 − βij.Q, then the non-rejection rate of an
edge (i, j) ∈ G corresponds to the one minus the
average statistical power to detect that association.
It follows that for (i, j) ∈ G the non-rejection rate
NRR(i, j |q,D) converges to 0 as n− q goes to in-
finity whereas for finite sample size it is a summary
measure of the strength of the linear association rep-
resented by the edge (i, j) over all the marginal dis-
tributions of size q + 2, with 0 representing maxi-
mum strength.

3 Meta-analysis

In unsupervised learning it is common practice to
overcome the difficulties related to the small sample
size by applying the procedures in a meta-analysis
approach. More specifically, a pooled dataset is ob-
tained by merging smaller datasets generated un-
der different experimental conditions. We remark
that this practice would make little sense in a model
based approach, whereas in a unsupervised learn-
ing approach it is justified whenever it leads to an
improvement of the precision-recall performance of
the procedure.

In this section we formally approach this is-
sue and assume that the data involve a common
set of genes V but are obtained from m batches

of microarray experiments, possibly under differ-
ent experimental conditions. Formally, set M =
{1, . . . ,m} and for every microarray experiment
s ∈ M let X(s)

V be a random vector, indexed by
V , corresponding to the expression level of genes in
the experimental condition s ∈M . Furthermore, let
D(s) be a random sample of n(s) i.i.d. observations
from X

(s)
V so that D∗ = {D(1), . . . , D(m)} is the

pooled dataset made up of n =
∑m

s=1 n
(s) indepen-

dent, but not identically distributed, observations.
Our standpoint is that biological networks are dy-

namic objects which modify their interaction struc-
ture to allow the cell to respond effectively to
changes of its internal and external environments.
This is formalized by assuming that a different
graph is associated with every experimental con-
dition and, specifically, by assuming that for ev-
ery s ∈ M the probability distribution of X(s)

V be-
longs to an undirected Gaussian graphical model
with graph G(s) = (V,E(s)).

In the following section we introduce the gener-
alized non-rejection rate which keeps into explicit
account the pooled structure of the dataset.

3.1 The generalized non-rejection rate
The non-rejection rate is defined in Section 2.2 with
respect to a set D of i.i.d. observations as the ex-
pected value of a Bernoulli random variable gen-
erated by means of a two stage experiment. Sim-
ilarly, the generalized non-rejection rate between
two variables, Xi and Xj is defined with respect to
the dataset D∗ as the expected value of a Bernoulli
random variable T ∗ij ,

gNRR(i, j |q,D∗) := E[T ∗ij] = Pr(T ∗ij = 1),

where T ∗ij is defined by adding a third step to the
two stage experiment as follows:

1. A random value s is generated from S, where
S is a discrete random variable that takes val-
ues in M with probability Pr(S = s) =
n(s)/n;

2. an element Q is sampled from Qij according
to a (discrete) uniform distribution;

3. using the dataset D(s) the null hypothesis H0 :
ρij.Q = 0 is verified on the basis of a statistical

Roverato & Castelo 253

test of level α. If H0 is rejected then T ∗ij takes
value 0, otherwise it takes value 1.

The value q is chosen so that q < min{(n(s) −
2); s ∈M}.

We use the generalized non-rejection rate values
to produce a ranking of all possible pair of genes,
i.e., of all possible edges of the graph, and its useful-
ness will be assessed by means of a precision-recall
analysis; nevertheless, in the following we shortly
discuss the interpretation of this quantity.

As well as the non-rejection rate, also the gen-
eralized non-rejection rate is a probability. Fur-
thermore, it can be written as weighted average of
the non-rejection rates for the single datasets with
weights proportional to sample sizes,

gNRR(i, j |q,D∗)=
m∑
s=1

NRR(i, j |q,D(s))P (S = s)

=
1
n

m∑
s=1

NRR(i, j |q,D(s))n(s).

It follows that if (i, j) ∈ G(s) for every s ∈
M , then the generalized non-rejection rate is the
weighted average of the mean second type er-
rors β

(s)
ij for all the datasets D(s) ∈ D∗, for-

mally gNRR(i, j |q,D∗) = β̄ij where β̄ij :=∑m
s=1 β

(s)
ij P (S = s). Since for all s ∈ M the

quantity β
(s)
ij converges to zero as n(s) increases,

it follows that the generalized non-rejection rate is
specially useful to identify edges that belong to all
graphs. These are robust transcriptional interactions
that are common to all the experiments considered.

4 Assessment with simulated data

In order to empirically show the behavior of the gen-
eralized non-rejection rate we considered m = 2
and two different graphs G(1) and G(2) and repeat
the following simulation 100 times.

1. Generate randomly G(1) and G(2) with p = 50
vertices each of them with an average number
of adjacent vertices equal to 3.

For each of these two graphs build a random
precision matrix whose zero structure reflects
the conditional independencies encoded in the
graph (i.e., the pattern of missing edges) and

sample n = 30 observations from the Gaussian
distribution with that precision matrix and zero
mean vector. This step provides us with two
datasets, D(1) and D(2), with p = 50 and n =
30 belonging to two different joint multivariate
Gaussian distributions.

2. Estimate the non-rejection rate with q = 4 and
the Pearson correlation coefficient for each pair
of variables, separately from D(1) and D(2).
Apply methods GeneNet, ARACNE and CLR
separately to D(1) and D(2).

3. Build the collection of datasets D∗ =
{D(1), D(2)}. By using D∗ estimate the gen-
eralized non-rejection rate, the non-rejection
rate and the Pearson correlation for each pair of
variables. Apply methods GeneNet, ARACNE
and CLR to D∗.

4. For each method and dataset, calculate a
precision-recall curve with respect to the union
graph G∗ = (V,E(1) ∪ E(2)). For each
precision-recall curve calculate the area under
this curve (AUC).

5. In order to have a baseline comparison method
we have generated three sets of random corre-
lations sampling values uniformly from (-1,+1)
for each pair of the p = 50 variables. This will
be referred to as the Random method.

In Figure 1 we show the AUC values across the
100 simulations for each of the methodologies fol-
lowed where the larger the value, the better the per-
formance. The two panels on top correspond to us-
ing D(1) and D(2) separately in order to try to infer
all the edges in the union of the two graphs. The
panel at the bottom shows the performance when
using a meta-analysis approach in which all datasets
in D∗ are used together. We can observe that only
the generalized non-rejection rate provides a clear
improvement over the use of any of the methods on
one single dataset. GeneNet also achieves a small
increase in its median AUC value.

We have previously pointed out that the general-
ized non-rejection rate is specially useful to identify
edges that belong to all graphs. In the previous sim-
ulations those correspond to edges in both G(1) and
G(2) in each simulation. We have used the previous

254 Roverato & Castelo

NRR PCC GeneNet ARACNE CLR Random

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Using only data set 1

Method

A
re

a
un

de
r

th
e

cu
rv

e
(A

U
C

)

NRR PCC GeneNet ARACNE CLR Random

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Using only data set 2

Method

A
re

a
un

de
r

th
e

cu
rv

e
(A

U
C

)

gNRR NRR PCC GeneNet ARACNE CLR Random

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Meta−analysis

Method

A
re

a
un

de
r

th
e

cu
rv

e
(A

U
C

)

Figure 1: AUC value comparison (the larger the
value the better the performance).

results to empirically verify this fact by grouping
together the generalized non-rejection rate values in
the following four subsets: edges in G(1) and G(2),
edges in G(1) but not in G(2), edges in G(2) but not
in G(1) and missing edges in both G(1) and G(2).
Then, we have examined the distribution of general-
ized non-rejection rates separately for each of these
subsets and we may see those values from the 100
simulations in Figure 2. Clearly, generalized non-
rejection rates are most of the time smaller for edges
that belong to the two graphs than for edges that be-
long to one of the two graphs only or edges that are
missing in both graphs.

5 Assessment with microarray data

In order to assess with real microarray experimen-
tal data whether the generalized non-rejection rate
increases our accuracy when trying to identify tran-
scriptional regulatory relationships through a meta-

edges in edges in G1 edges in G2 missing

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

G
en

er
al

iz
ed

 N
R

R

G1 and G2 but not in G2 but not in G1 edges

Edge subset

Figure 2: Behaviour of the generalized non-
rejection rate for different kind of edges in graphs
G(1) and G(2).

analysis approach, we have used experimental and
functional annotation data from the E. coli sys-
tem. These bacteria are the free-living organism
for which the largest part of its transcriptional reg-
ulatory network has undergone some sort of ex-
perimental validation. The database RegulonDB
(Gamma-Castro et al., 2008) contains a set of tran-
scription factor and target gene relationships cu-
rated from the literature, and we have used those
as benchmark set of regulatory interactions. The
E. coli microarray dataset that we have used to
assess our meta-analysis approach corresponds to
the oxygen deprivation data from Covert, et al.
(2004), available from the Gene Expression Om-
nibus (GEO) database (Barrett, 2007) with acces-
sion number GDS680, which monitors the response
of E. coli during the transition from aerobic to
anaerobic conditions which are essayed in two
groups of 21 and 22 experiments, respectively. In
order to obtain the necessary variability on the ex-
pression levels of genes that form part of the tran-
scriptional network relevant to these experiments,
Covert, et al. (2004) used six E. coli strains with
knockouts of key transcriptional regulators in the
oxygen response (∆arcA, ∆appY, ∆fnr, ∆oxyR,
∆soxS and the double knockout ∆arcA∆fnr). Both,
the microarray oxygen deprivation data where we
are going to assess our approach and the Regu-
lonDB interactions which we are going to use as

Roverato & Castelo 255

benchmark set, were pre-processed by Castelo and
Roverato (2009) and are available as part of the
qpgraph package from the Bioconductor project
website (http://www.bioconductor.org).
These pre-processed datasets consist, in one hand,
of 3283 transcriptional regulatory interactions in
RegulonDB involving 1428 genes and, on the other
hand, p = 4205 genes and n = 43 experiments in
the oxygen deprivation microarray expression data
matrix. From these latter dataset, we have dis-
carded one of the aerobic experiments (GSM18237)
which showed a very dissimilar profile to the rest of
the aerobic experiments. More concretely, we have
used only those genes involved in the regulatory
modules of the five transcription factors knocked-
out in the experiments of Covert, et al. (2004) ac-
cording to the RegulonDB database. This subnet-
work is formed by 378 genes out of which 22 are
transcription factors involved in 681 transcriptional
interactions. In the bottom panel of Figure 3 we
may see the resulting precision-recall curves where
we compare the generalized non-rejection rate with
q = 10 (gNRR) with other methods applied to
the union of the aerobic and anaerobic datasets in-
cluding the non-rejection rate with q = 15 (NRR),
the absolute Pearson correlation coefficient (PCC),
ARACNE, CLR, GeneNet and the assignment of a
uniformly random correlation between every tran-
scription factor and target gene (Random). The
gNRR improves the rest of the meta-analysis ap-
proaches up to a 40% larger AUC with respect to
the second best-performing approach (NRR).

An issue in the computation of the non-rejection
rate concerns the choice of the parameter q. In this
application, q may take any value between 1 and
18 and there is a trade-off between larger values of
q, which increase the probabilities πij , and smaller
values of q, which improve the power of statistical
tests. In the bottom panel of Figure 3 we set q = 10
for gNRR which is the median of the possible values
of q within a sensible range bounded by the number
of available samples but, in fact, our procedure is
not very sensitive to the choice of q as shown in
the top panel of Figure 3 where the precision-recall
curves of gNRR for different values of q are drawn.

Recall (% RegulonDB interactions)

P
re

ci
si

on
 (

%
)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
10

20
30

40
50

60
70

80
90

10
0

0 14 27 41 54 68 82 95 123 150 177 204

Recall (# RegulonDB interactions)

q = 16 (0.19)
q = 14 (0.21)
q = 12 (0.21)
q = 10 (0.20)
q = 8 (0.22)
q = 6 (0.20)
q = 4 (0.20)
q = 2 (0.20)
Random (0.09)

Recall (% RegulonDB interactions)

P
re

ci
si

on
 (

%
)

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

0
10

20
30

40
50

60
70

80
90

10
0

0 14 27 41 54 68 82 95 123 150 177 204

Recall (# RegulonDB interactions)

gNRR w/ q=10 (0.20)
NRR w/ q=15 (0.14)
ARACNE (0.14)
GeneNet (0.13)
CLR (0.12)
PCC (0.12)
Random (0.09)

Figure 3: Comparison of precision-recall curves
through the first 30% fraction of the recall. The
top panel shows curves from the generalized non-
rejection rate for a wide range of possible q val-
ues. The bottom panel shows curves for different
unsupervised machine learning methods. The AUC
value is the number enclosed within brackets.

6 Discussion

The idea at the basis of the generalized non-
rejection rate is that of exploiting the information
provided by the different microarray experiments on
the common part of the underlying regulatory net-
works in a way that does not require pooling the
datasets. We believe that this is the crucial aspect
that makes the generalized non-rejection rate out-
perform other procedures, but it is worth pointing
out that it also has the drawback that the power and
efficiency of the applied statistical procedures de-
pend on the samples sizes of the single experiments,
n(s), rather than the overall sample size n.

256 Roverato & Castelo

Acknowledgments

This work is supported by the Spanish Ministe-
rio de Ciencia e Innovación (MICINN) [TIN2008-
00556/TIN] and the ISCIII COMBIOMED Net-
work [RD07/0067/0001]. The first author acknowl-
edges support from the Ministero dell’Università
e della Ricerca [PRIN-2007AYHZWC, FISR MIT-
ICA]. Robert Castelo is a research fellow of
the “Ramon y Cajal” program from the Spanish
MICINN [RYC-2006-000932].

References
Barrett, T., Troup, D.B., Wilhite, S.E., Ledoux,

P., Rudnev, D. Evangelista, C. Kim, I.F., Sobol-
eva, A., Tomashevsky, M. and Edgar, R. 2007.
NCBI GEO: mining tens of millions of expres-
sion profiles–database and tools update. Nucleic
Acids Research, 35 D760-D765.

Butte, A.S. and Kohane,I.S., 2003. Relevance net-
works: a first step toward finding genetic reg-
ulatory networks within microarray data. In G.
Parmigiani, E.S. Garett, R.A. Irizarry and S.L.
Zeger (Ed.s), The Analysis of Gene Expression
Data, Springer, New York, 428-446.

Castelo, R. and Roverato, A., 2006. Gaussian graph-
ical model search from microarray data with p
larger than n. Journal of Machine Learning Re-
search, 7 2621-2650.

Castelo, R. and Roverato, A., 2009. Reverse engi-
neering molecular regulatory networks from mi-
croarray data with qp-graphs. Journal of Compu-
tational Biology, 16(2):213-227.

Covert, M.W., Knight, E.M., Reed, J.L., Her-
rgard, M.J. and Palsson, B.O. 2004. Integrating
high-throughput and computational data eluci-
dates bacterial networks. Nature, 429 92-96.

d’Alché-Buc, F., 2006. Inference of biological reg-
ulatory networks: machine learning approaches.
In: F. Képès, (Ed.). Biological networks, World
Scientific, 41-82.

Edwards, D.E., 2000. Introduction to graphical
modelling. Springer-Verlag, New York.

Fawcett, T., 2006. An introduction to ROC analysis.
Pattern recognition letters, 27 861-874.

Faith, J.J., Hayete, B., Thaden, J.T., Mogno, I.,
Wierzbowski, J., Cottarel, G., Kasif, S., Collins,

J.J. and Gardner, T.S., 2007. Large-scale mapping
and validation of Escherichia coli transcriptional
regulation from a compendium of expression pro-
files. PLoS Biol, 5(1) e8.

Friedman. N., 2004. Inferring cellular network us-
ing probabilistic graphical models. Science, 33
799-805.

Junker, B.H., 2008. Networks in biology. In: B.H.
Junker and F. Schreiber (Ed.s). Analysis of Bio-
logical Networks, Wiley, 3-12.

Lauritzen, S.L., 1996. Graphical models. Oxford
University Press, Oxford.

Margolin, A.A., Nemenman, I., Basso, K., Wiggins,
C. Stolovitzky, G., Favera, R.D. and Califano, A.,
2006. ARACNE: an algorithm for the reconstruc-
tion of gene regulatory networks ina mammalian
cellular context. BMC Bioinformatics, 7(Suppl 1)
S7.

Schäfer, J. and Strimmer, K., 2005. A shrinkage
approach to large-scale covariance matrix esti-
mation and implications for functional genomics.
Statistical Applications in Genetics and Molecu-
lar Biology, 4(1) article 32.

Gama-Castro, S. et al. 2008. RegulonDB (Version
6.0): gene regulation model of Escherichia coli
K-12 beyond transcription, active (experimental)
annotated promoters and textpresso navigation.
Nucleic Acids Research, vol 36, D120-D124.

Soranzo, N., Bianconi, G. and Altafini, C., 2007.
Comparing association network algorithms for
reverse engineering of large-scale gene regula-
tory networks: synthetic versus real data. Bioin-
formatics, 23(13) 1640-1647.

Steele, E. and Tucker, A., 2008. Consensus and
meta-analysis regulatory networks for combin-
ing multiple microarray gene expression datasets.
Journal of Biomedical Informatics, 41(6), 914-
926.

Wang, Y., Joshi, T., Zhang, X., Xu, D. and
Chen, L. 2006. Inferring gene regulatory net-
works from multiple microarray datasets. Bioin-
formatics, 22(19), 2413-2420.

Pp. 257–265 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Characteristic imset: a simple algebraic representative of a
Bayesian network structure

Milan Studený
Institute of Information Theory and Automation of the ASCR, Czech Republic

studeny@utia.cas.cz

Raymond Hemmecke
TU Munich, Germany
hemmecke@ma.tum.de

Silvia Lindner
University of Magdeburg, Germany

lindner@mail.math.uni-magdeburg.de

Abstract

First, we recall the basic idea of an algebraic and geometric approach to learning a Bayesian
network (BN) structure proposed in (Studený, Vomlel and Hemmecke, 2010): to represent
every BN structure by a certain uniquely determined vector. The original proposal was
to use a so-called standard imset which is a vector having integers as components, as an
algebraic representative of a BN structure. In this paper we propose an even simpler
algebraic representative called the characteristic imset. It is 0-1-vector obtained from the
standard imset by an affine transformation. This implies that every reasonable quality
criterion is an affine function of the characteristic imset. The characteristic imset is much
closer to the graphical description: we establish a simple relation to any chain graph
without flags that defines the BN structure. In particular, we are interested in the relation
to the essential graph, which is a classic graphical BN structure representative. In the end,
we discuss two special cases in which the use of characteristic imsets particularly simplifies
things: learning decomposable models and (undirected) forests.

1 Introduction

The score and search method for learning
Bayesian network (BN) structure from data
consists in maximizing a quality criterion Q,
also named a scoring criterion or simply a score
by other authors. It is a real function of the
(acyclic directed) graph G and the observed
database D. The value Q(G,D) measures how
well the BN structure defined by G fits the
database D.

Two important technical requirements on the
criterion Q emerged in the literature in con-
nection with computational methods dealing
with this maximization task: Q should be score
equivalent (Bouckaert, 1995) and (additively)

decomposable (Chickering, 2002).
Another important question is how to rep-

resent the BN structure in the memory of a
computer. It could be the case that differ-
ent acyclic directed graphs are Markov equiv-
alent, i.e., they define the same BN structure.
A classic graphical characterization of equiva-
lent graphs (Verma and Pearl, 1991) states that
they are equivalent iff they have the same adja-
cencies and immoralities, which are special in-
duced subgraphs. Representing a BN structure
by any of the acyclic directed graphs defining it
leads to a non-unique description causing later
identification problems. Thus, researchers call-
ing for methodological simplification proposed
to use a unique representative for each individ-

258 Studený et al.

ual BN structure. The classic unique graphical
representative is the essential graph (Andersson,
Madigan and Perlman, 1997).

The idea of an algebraic approach, introduced
in Section § 8.4 of (Studený, 2005), is to use an
algebraic representative, called the standard im-
set. It is a vector whose components are inte-
gers indexed by subsets of the set of variables (=
nodes) N . Moreover, it is a unique BN struc-
ture representative and the memory demands
for its computer representation are polynomial
in |N |. The most important point, however, is:
Every score equivalent and decomposable crite-
rion Q is an affine function (= linear function
plus a constant) of the standard imset. Specif-
ically, given an acyclic directed graph G (over
N) and a database D, we have

Q(G,D) = sQD − 〈tQD, uG〉 , (1)

where sQD is a constant depending on the
database and where 〈tQD, uG〉 is the scalar prod-
uct of a vector depending on the database,
called the data vector (relative to Q), and of
the standard imset uG (for G). Note that there
is a polynomial-time algorithm (in |N |) for the
reconstruction of the essential graph from the
standard imset (Studený and Vomlel, 2009).

The geometric view was introduced in the pa-
per (Studený, Vomlel and Hemmecke, 2010),
where it was shown that the set of standard im-
set (over a fixed set of variables N) is the set
of vertices (= extreme points) of a certain poly-
tope. In particular, the maximization of Q over
acyclic directed graphs can be re-formulated as
a classic linear programming problem, that is,
optimizing a linear function over a polyhedron.1

In this paper, we propose an alternative al-
gebraic representative of a BN structure, called
the characteristic imset. It is a vector obtained
from the standard imset by a one-to-one affine
transformation that maps lattice points to lat-
tice points (in both directions). Thus, every
score equivalent and decomposable criterion is
an affine function of the characteristic imset and
the set of characteristic imsets is the set of ver-
tices of a polytope. The characteristic imset has

1Note that a polytope is simply a bounded polyhe-
dron.

only zeros and ones as its components. More-
over, it is very close to the graphical description:
some of its components with value one corre-
spond to adjacencies. Immoralities can also be
recognized in the graph(s) on the basis of the
characteristic imset. We establish a simple re-
lation of the characteristic imset to any chain
graph (without flags) defining the BN structure.
In particular, this makes it possible to get im-
mediately the characteristic imset on the basis
of the essential graph. We also consider the con-
verse task of reconstructing the essential graph
from the characteristic imset.

If we restrict ourselves to decomposable mod-
els (= BN structures defined by acyclic directed
graphs without immoralities), then the charac-
teristic imset has a quite simple form. The sit-
uation is particularly transparent in the case
of (undirected) forests: the edges of the for-
est are in one-to-one correspondence with 1’s in
the characteristic imset. The polytope spanned
by these special characteristic imsets has al-
ready been studied in matroid theory (Schrijver,
2003). Consequently, we can easily learn (undi-
rected) tree structures, which give an elegant
geometric interpretation to a classic heuristic
procedure proposed by Chow and Liu (1968).

The structure of this paper is as follows. In
Section 2 we recall some of the definitions and
relevant results. In Section 3 we introduce the
characteristic imset and derive the above men-
tioned observations on it. Section 4 is devoted
to the reconstruction of the essential graph
from the characteristic imset. Section 5 briefly
outlines our results about learning undirected
forests from (Hemmecke et al., 2010). In Con-
clusions we discuss further perspectives.

2 Basic concepts

2.1 Graphical concepts

Graphs considered in this paper have a finite
non-empty set of nodes N and two types of
edges: directed edges, called arrows, denoted
like i → j or j ← i, and undirected edges. No
multiple edges are allowed between two nodes.
If there is an edge between nodes i and j, we
say they are adjacent.

Studený et al. 259

Given a graph G over N and a non-empty
set of nodes A ⊆ N , the induced subgraph of
G for A has just those edges in G having both
end-nodes in A. An immorality in G is an in-
duced subgraph (of G) for three nodes {a, b, c}
in which a → c ← b and a and b are not ad-
jacent. A flag is another induced subgraph for
{a, b, c} in which a→ b, b and c are adjacent by
an undirected edge and a and c are not adjacent.

A set of nodes K ⊆ N is complete in G if
every pair of distinct nodes in K is adjacent by
an undirected edge. A maximal complete set is
called a clique. A set C ⊆ N is connected if
every pair of distinct nodes in C is connected
via an undirected path. Maximally connected
sets are called components.

A graph is directed if it has no undirected
edges. A directed graph G over N is called
acyclic if it has no directed cycle, that is,
a sequence of nodes a1, . . . , an, n ≥ 3 with
ai → ai+1 for i = 1, . . . n, under the conven-
tion an+1 ≡ a1. An equivalent definition is the
existence of an ordering b1, . . . , bm, m ≥ 1, of
all nodes in N which is consistent with the di-
rection of arrows, that is, bi → bj in G implies
i < j.

A graph is undirected if it has no arrow. An
undirected graph is called chordal, or decompos-
able, if every (undirected) cycle of length at least
4 has a chord, that is, an edge connecting two
non-consecutive nodes in the cycle. There is a
number of equivalent definitions for a decom-
posable graph (Lauritzen, 1996); one of them
says that it is an undirected graph which can
be acyclically directed without creating an im-
morality. A special case of a chordal graph is
a forest, which is an undirected graph without
undirected cycles. A forest over N in which N
is connected is called a (spanning) tree.

A chain graph is a graph G (allowing both di-
rected and undirected edges) whose components
can be ordered into a chain, which is a sequence
C1, . . . , Cm, m ≥ 1 such that if a→ b in G then
a ∈ Ci and b ∈ Cj with i < j. An equivalent
definition is: It is a graph without semi-directed
cycles. Of course, every acyclic directed graph
and every undirected graph is a special case of
a chain graph (without flags).

Given a connected set C in a chain graph G,
the set of parents of C is

paG(C) ≡ { a ∈ N ; a→ b in G for some b ∈ C }.

Clearly, in a chain graph, paG(C) is disjoint
with (a connected set) C.

2.2 Bayesian network structures

Let N be a finite set of variables; to avoid the
trivial case assume |N | ≥ 2. For each i ∈ N
consider a finite individual sample space Xi (of
possible values); to avoid technical problems as-
sume |Xi| ≥ 2, for each i ∈ N . A Bayesian net-
work can be introduced as a pair (G,P), where
G is an acyclic directed graph having N as the
set of its nodes and P a probability distribution
on the joint sample space

∏
i∈N Xi that recur-

sively factorizes according to G. Note that a
factorization of P is equivalent to the condition
that P is Markovian with respect to G mean-
ing that it satisfies conditional independence re-
strictions determined by the respective separa-
tion criterion (Lauritzen, 1996).

BN structure (= Bayesian network structure)
defined by an acyclic directed graph G is for-
mally the class of probability distributions (on a
fixed joint sample space) being Markovian with
respect to G. Different graphs over N can be
Markov equivalent, which means they define the
same BN structure. The classic graphical char-
acterization of (Markov) equivalent graphs is
as follows (Verma and Pearl, 1991): they are
equivalent if the have the same underlying undi-
rected graph (= adjacencies) and the same im-
moralities. Of course, a BN structure can be
described by any acyclic directed graph defin-
ing it, but there are other representatives (see
below).

A complete database D of length ` ≥ 1 is a
sequence x1, . . . , x` of elements of the joint sam-
ple space. By learning BN structure (from data)
is meant to determine the BN structure based
on an observed database D. A quality crite-
rion is a real function Q of two variables: of
an acyclic directed graph G and of a database
D. The value Q(G,D) evaluates quantitatively
how good the BN structure defined by G is to

260 Studený et al.

explain the occurrence of the database D. How-
ever, we will not repeat the formal definition of
the relevant concept of statistical consistency of
Q; see (Neapolitan, 2004). Since the aim is to
learn a BN structure, a natural requirement is
Q to be score equivalent, i.e., for fixed D, we
have

Q(G,D) = Q(H,D),

for any pair of Markov equivalent acyclic di-
rected graphs G and H over N .

An additively decomposable criterion (Chick-
ering, 2002) is a criterion which can be written
as follows:

Q(G,D) =
∑
i∈N

qi|paG(i)(D{i}∪paG(i)),

where DA for ∅ 6= A ⊆ N is the projection of
the database D to

∏
i∈A Xi and qi|B for i ∈ N ,

B ⊆ N \ {i} are real functions.
Statistical scoring methods are typically

based on the likelihood function. For example,
evaluating each BN structure by a maximized
log-likelihood (MLL) leads to a score equivalent
and additively decomposable criterion. How-
ever, this criterion is not statistically consistent
in the sense of (Neapolitan, 2004), because it
does not take the complexity of statistical mod-
els into consideration. Therefore, subtracting
a penalty term evaluating the dimension of the
statistical model and the length of the database
may solve the problem. A standard example of
such a criterion which is statistically consistent,
score equivalent and decomposable is Schwarz’s
Bayesian information criterion (BIC) (1978).

2.3 Essential graph

The essential graph G∗ of an equivalence class
G of acyclic directed graphs over N is defined
as follows:

• a→ b in G∗ if a→ b in every G from G,

• a and b are adjacent by an undirected edge
in G∗ if there are graphs G1 and G2 in G
such that a→ b in G1 and a← b in G2.

The first graphical characterization
of essential graphs was provided by

Andersson, Madigan and Perlman (1997).
It follows from this characterization that every
essential graph is a chain graph without flags.

Actually, chain graphs without flags can serve
as convenient graphical representatives of BN
structures. As explained in Section 2.3 of (Stu-
dený, Roverato and Štěpánová, 2009), every
chain graph defines a class of Markovian dis-
tributions, a statistical model, through the re-
spective (generalized) separation criterion. As
in case of acyclic directed graphs, they are called
Markov equivalent if they define the same statis-
tical model. Lemma 3 in (Studený, 2004) states
that a chain graph H without flags is equiva-
lent to an acyclic directed graph if the induced
subgraphs for its components are chordal (undi-
rected) graphs. Moreover, we can extend the
graphical characterization of equivalence: two
chain graphs without flags are Markov equiva-
lent iff they have the same adjacencies and im-
moralities; see Lemma 2 in (Studený, 2004).

In this paper, we exploit the following charac-
terization of essential graphs: Given an acyclic
directed graph G, let G be the equivalence class
of acyclic directed graphs containing G and H
the (wider) equivalence class of chain graphs
without flags containing G. The class H can
be naturally (partially) ordered: if H1, H2 ∈ H
and a → b in H1 implies a → b in H2 we call
H1 to be larger than H2. With this partial or-
dering, the essential graph G∗ (of G) is just the
largest graph in H; see Corollary 4 in (Studený,
2004).

Moreover, there is a graphical procedure for
getting G∗ on the basis of any G in G. It is
based on a special graphical operation. Let H
be a chain graph without flags. Consider two of
its components, U called the upper component
and L called the lower component. Provided the
following two conditions hold:

• paH(L) ∩ U 6= ∅ is a complete set in H,

• paH(L) \ U = paH(U),

we say that the components can be legally
merged. The result of merging is a graph ob-
tained from H by replacing the arrows directed

Studený et al. 261

from U to L into undirected edges. By Corol-
lary 26 in (Studený, Roverato and Štěpánová,
2009), the resulting graph is also a chain graph
without flags equivalent to H. Moreover, Corol-
lary 28 in (2009) says: If G and H are equivalent
chain graphs without flags and H is larger than
G, then there exists a sequence of legal merging
operations which successively transforms G into
H. Of course, this is applicable to an acyclic
directed graph G and the essential graph G∗ in
place of H.

2.4 Algebraic approach

In this paper, we consider vectors whose compo-
nents are ascribed to (= indexed by) subsets of
the set of variablesN . Let P(N) ≡ {A; A ⊆ N}
denote the power set of N . Every element of
R|P(N)| can be written as a (real) combina-
tion of basic imsets vectors δA ∈ {0, 1}|P(N)|,
A ⊆ N , where δA(A) = 1 and δA(B) = 0 for
A 6= B ⊆ N .

Given an acyclic directed graph G over N ,
the standard imset for G in R|P(N)| is defined
by the formula

uG = δN −δ∅+
∑
i∈N

{
δpaG(i) − δ{i}∪paG(i)

}
, (2)

where the basic vectors can cancel each other.
An important fact is that two acyclic directed
graphs G and H over N are Markov equiva-
lent iff uG = uH ; see Corollary 7.1 in (Studený,
2005). The crucial fact, however, is: Every score
equivalent and decomposable criterion Q has
the form (1), where sQD ∈ R and tQD ∈ R|P(N)|

only depend on the data (and Q); see Lemmas
8.3 and 8.7 in (2005). Moreover, (the constant
sQD and) the data vector tQD is uniquely deter-
mined under additional standardization condi-
tions tQD(A) = 0 for A ⊆ N with |A| ≤ 1.

For example, the standardized data vector for
the MLL criterion can be computed as follows;
see Proposition 8.4 in (2005). Let P̂ denote the
empirical measure on

∏
i∈N Xi computed from

D and P̂A its marginal for A ⊆ N . The mul-
tiinformation of P̂A (for A 6= ∅) is its relative
entropy H(P̂A|

∏
i∈A P̂{i}) with respect to the

product of its own one-dimensional marginals.
Then tMLL

D (A) = ` ·H(P̂A|
∏
i∈A P̂{i}), where ` is

the length of the database D. A formula for the
data vector relative to the BIC criterion can be
found in Section 8.4.2 of (Studený, 2005).

3 Characteristic imset

The characteristic imset is formally an element
of Z|P∗(N)|, where P∗(N) ≡ {A ⊆ N ; |A| ≥ 2}
is the class of sets of cardinality at least 2.

Definition 1. Given an acyclic directed graph
G over N , the characteristic imset for G is given
by the formula

cG(A) = 1−
∑

B,A⊆B⊆N
uG(B) , (3)

for A ⊆ N , |A| ≥ 2.

Clearly, the characteristic imset is obtained
from the standard one by an affine transforma-
tion of R|P(N)| to R|P∗(N)| (we only add and
subtract entries of uG). This mapping is invert-
ible: We can compute back the standard imset
by the formula

uG(B) =
∑

A,B⊆A⊆N
(−1)|A\B| · (1− cG(A)) (4)

for B ⊆ N , |B| ≥ 2. The remaining values
of uG can then be determined by the formulas∑

S⊆N uG(S) = 0 and
∑

S,i∈S⊆N uG(S) = 0 for
i ∈ N . Since the transformation is one-to-one,
two acyclic directed graphs G and H are equiv-
alent iff cG = cH (cf. Section 2.4). Thus, the
characteristic imset is also a unique BN struc-
ture representative.

The basic observation is as follows; see also
Theorem 3.2 in (Hemmecke et al., 2010):

Theorem 1. For any acyclic directed graph G
over N we have cG(A) ∈ {0, 1} for any A ⊆ N ,
|A| ≥ 2. Moreover, cG(A) = 1 iff there exists
i ∈ A with A \ {i} ⊆ paG(i).

Proof. First, we substitute (2) into (3) and get
for fixed A ⊆ N , |A| ≥ 2:

cG(A) = −
∑

i∈N,A⊆paG(i)

1 +
∑

i∈N,A⊆{i}∪paG(i)

1

=
∑

i∈N,A⊆{i}∪paG(i) & i∈A

1 =
∑

i∈A,A\{i}⊆paG(i)

1 .

262 Studený et al.

Assume for a contradiction there exist distinct
i, j ∈ A with A \ {i} ⊆ paG(i) and A \ {j} ⊆
paG(j). Then, however, both j → i and i → j
are in G contradicting its acyclicity. In partic-
ular, cG(A) ∈ {0, 1}.

The consequence is the characterization of ad-
jacencies and immoralities in terms of the char-
acteristic imset.

Corollary 1. Let G be an acyclic directed graph
over N and a, b (and c) are distinct nodes. Then

(i) a and b are adjacent in G iff cG({a, b}) = 1.

(ii) a → c ← b is an immorality in G iff
cG({a, b, c}) = 1 and cG({a, b}) = 0. The
latter two conditions imply cG({a, c}) = 1
and cG({b, c}) = 1.

Proof. Part (i) directly follows from Theorem
1: cG({a, b}) = 1 iff either b ∈ paG(a) or
a ∈ paG(b). The necessity of the condition in
(ii) also follows from Theorem 1. Conversely,
if cG({a, b, c}) = 1, three options may occur:
{b, c} ⊆ paG(a), {a, c} ⊆ paG(b) and {a, b} ⊆
paG(c). But cG({a, b}) = 0 means by (i) that a
and b are not adjacent in G, which excludes the
first two options and implies that a→ c← b is
an immorality in G.

Now we show that any reasonable quality cri-
teria is an affine function of the characteristic
imset.

Definition 2. Given a score equivalent, addi-
tively decomposable criterion Q and a database
D, let tQD denote the standardized data vector
relative to Q. Introduce the revised data vector
(relative to Q) as an element of R|P∗(N)|:

rQD(A) =
∑

B,B⊆A,|B|≥2

(−1)|A\B| · tQD(B) (5)

for A ⊆ N , |A| ≥ 2.

Lemma 1. Every score equivalent and addi-
tively decomposable criterion Q has the form

Q(G,D) = Q(G∅, D) + 〈rQD, cG〉 , (6)

where G∅ is the graph over N without edges.

Proof. We substitute (4) into (1):

Q(G,D) = sQD−

∑
B⊆N,|B|≥2

tQD(B) ·
uG(B)︷ ︸︸ ︷∑

A,B⊆A

(−1)|A\B| · (1− cG(A)) .

Now, change the order of summation in the sum:∑
A⊆N,|A|≥2

(1− cG(A)) ·
∑

B⊆A,|B|≥2

(−1)|A\B| · tQD(B)

︸ ︷︷ ︸
rQ

D
(A)

.

Thus, we get by (5):

Q(G,D) = sQD −
∑

A⊆N,|A|≥2

(1− cG(A)) · rQD(A)

= constant +
∑

A⊆N,|A|≥2

cG(A) · rQD(A) .

The observation that the characteristic imset for
the empty graph G∅ is identically zero implies
that the constant above is simply Q(G∅, D).

Finally, we establish the relation of the char-
acteristic imset to any chain graph without flags
defining the BN structure.
Theorem 2. Let H be a chain graph without
flags equivalent to an acyclic directed graph G.
For any A ⊆ N , |A| ≥ 2 one has cG(A) = 1 iff

∃ ∅ 6= K ⊆ A complete in H, with A\K ⊆ paH(K). (7)

Proof. In an acyclic directed graph G, the only
non-empty complete sets are singletons. Thus,
by Theorem 1, cG(A) = 1 iff (7) holds with G
(in place of H).

The next step is to observe that if H̃ is ob-
tained from a chain graph H without flags by
legal merging of components (see Section 2.3),
then for any A ⊆ N , |A| ≥ 2, (7) holds with H
iff it holds with H̃. To verify this observe that
any set A satisfying (7) has a uniquely deter-
mined component C with K ⊆ C in H. More-
over, paH(K) = paH(C), since H has no flags.
The validity of (7) then depends on the induced
subgraph of H for C ∪ paH(C). However, if H̃
is obtained from H by legal component merg-
ing, then most of these induced subgraphs are
kept and the only change concerns the merged
components U and L. We leave the reader to
evidence that this change satisfies condition (7)
in both directions.

Studený et al. 263

Finally, we use the result mentioned in Sec-
tion 2.3 which implies the existence of sequences
of legal merging operations transforming G into
G∗ and H into G∗. In particular, for A ⊆ N ,
|A| ≥ 2, (7) with G is equivalent to (7) with G∗,
and this is equivalent to (7) with H.

Of course, Theorem 2 applied to the essential
graph G∗ in place of H gives a direct method
for obtaining the characteristic imset from the
essential graph.

4 Back to the essential graph

Corollary 1 allows us to reconstruct the essen-
tial graph from the characteristic imset. Indeed,
conditions (i) and (ii) determine both the ad-
jacencies and immoralities (in every acyclic di-
rected graph G defining the corresponding BN
structure). Thus, we can directly get the pattern
(of G) being the underlying undirected graph in
which only the edges belonging to an immoral-
ity are directed.

This graph neither has to be the essential
graph nor a chain graph. However, there is a
simple (polynomial-time) procedure for trans-
forming the pattern into the corresponding es-
sential graph G∗. It consists of an (repeated)
application of three orientation rules. Specif-
ically, Theorem 3 in (Meek, 1995) states that
the exhaustive application of rules from Figure
1 to the pattern of an acyclic directed graph G
results in the essential graph (of the equivalence
class containing G).

5 Learning undirected forests

Decomposable models (Lauritzen, 1996) can be
viewed as BN structures whose essential graphs
are (chordal) undirected graphs.

Corollary 2. Let H be a chordal undirected
graph over N . Then the corresponding char-
acteristic imset cH is specified as follows:
cH(A) = 1 iff A is a complete set in H.

Proof. Consider the equivalence class G of
acyclic directed graphs equivalent to H and ap-
ply Theorem 2. Since H has no arrow, (7) is
equivalent to the above requirement.

A special case of a chordal graph is an undi-
rected forest. The only complete sets of cardi-
nality at least 2 in it are its edges:

Corollary 3. Let H be an undirected forest.
Then the corresponding characteristic imset cH
vanishes for sets of cardinality 3 and more, and
for distinct a, b ∈ N we have cH({a, b}) = 1 iff
a and b are adjacent in H.

In particular, the characteristic imset for a
forest can be identified with a vector of polyno-
mial length

(|N |
2

)
, which simplifies many things.

For example, if maximizing a quality criterionQ
over (undirected) forests is of interest, then, by
Lemma 1, the function H 7→ cH ∈ Z|P∗(N)| 7→
〈rQD, cH〉 =

∑
A edge in H r

Q
D(A) should be maxi-

mized, that is, H 7→∑
A edge in H t

Q
D(A) by (5).

In particular, in case of the MLL cri-
terion this means maximizing the sum of
weights

∑
{a,b} edgew{a,b}, where w{a,b} =

H(P̂{a,b}|P̂{a} × P̂{b}) is the (empirical) mutual
information between a and b; see Section 2.4.

The polytope spanned by (restricted) charac-
teristic imsets for forests has already been stud-
ied in matroid theory (Schrijver, 2003). It ap-
pears to be quite nice from an algorithmic point
of view – for details see (Hemmecke et al., 2010).
One important observation is the existence of a
simple polynomial-time procedure based on the
greedy algorithm for finding maximum-weight
forest, where forests are weighted by the sums
of weights of their edges.

This gives an elegant geometric interpretation
to a classic (heuristic) procedure for approxi-
mating probability distributions with trees pro-
posed by Chow and Liu (1968). Taking into
account what was said above, it can be inter-
preted as the maximization of the MLL crite-
rion over trees (= connected forests) using the
greedy technique.

Conclusions

Our geometric interpretation of the classic
learning procedure (for trees) may lead to use-
ful generalizations. First, the application of the
greedy algorithm is not limited to the MLL cri-
terion and can be applied to maximize other

264 Studený et al.

r
r

r? r
r

r?
=⇒ r

r
r-?

@
@@ r

r
r-?

=⇒ r
r
r

r��

@@

@@R

���
r

r
r

r��

@@

@@R

���
=⇒

-
@

@@R

-

Figure 1: Orientation rules for getting the essential graph.

reasonable criteria like the BIC criterion. Sec-
ond, we are not limited to trees and can ap-
ply the method to learning undirected forests,
actually, to learning sub-forests of a prescribed
undirected graph. Future research topics could
be whether characteristic imsets can be applied
to learning decomposable models, for example,
with limited cardinality of cliques.

There are some related open questions. It
follows from Section 4 that the components of
the characteristic imset for sets of cardinalities
2 and 3 determine the remaining components.
However, is there any direct method for de-
termining them? Another question is whether
Meek’s (1995) orientation rules can be avoided
in the reconstruction of the essential graph on
the basis of the characteristic imset. We hope
that a modification of the procedure from (Stu-
dený and Vomlel, 2009) leads to such an algo-
rithm.

Acknowledgments

This research has been supported by the grants
GAČR n. 201/08/0539 and MŠMT n. 1M0572.

References

Steen A. Andersson, David Madigan and Michael D.
Perlman. 1997. A characterization of Markov
equivalence classes for acyclic digraphs. Annals of
Statistics, 25(2):505–541.

Remco R. Bouckaert. 1995. Bayesian belief networks:
from construction to evidence. PhD thesis, Uni-
versity of Utrecht.

David M. Chickering. 2002. Optimal structure iden-
tification with greedy search. Journal of Machine
Learning Research, 3:507–554.

C. K. Chow, C. N. Liu. 1968. Approximating dis-
crete probability distributions with dependence
trees. IEEE Transactions on Information Theory,
14(3):462–467.

Raymond Hemmecke, Silvia Lindner, Milan Stu-
dený, and Jǐŕı Vomlel. 2010. Characteristic im-
sets for learning Bayesian network structures. In
preparation.

Steffen L. Lauritzen. 1996. Graphical Models,
Clarendon Press.

Chris Meek. 1995. Causal inference and causal expla-
nation with background knowledge. In 11th Con-
ference on Uncertainty in Artificial Intelligence,
pages 403–410.

Richard E. Neapolitan. 2004. Learning Bayesian
Networks, Pearson Prentice Hall.

Alexander Schrijver. 2003. Combinatorial Opti-
mization - Polyhedra and Efficiency, volume B,
Springer Verlag.

Gideon E. Schwarz. 1978. Estimation of the dimen-
sion of a model. Annals of Statistics, 6:461–464.

Milan Studený. 2004. Characterization of essential
graphs by means to the operation of legal merging
of components. International Journal of Uncer-
tainty, Fuzziness and Knowledge-Based Systems,
12:43–62.

Milan Studený. 2005. Probabilistic Conditional In-
dependence Structures, Springer Verlag.

Milan Studený and Jǐŕı Vomlel. 2009. A reconstruc-
tion algorithm for the essential graph. Interna-
tional Journal of Approximate Reasoning, 50:385–
413.

Milan Studený, Alberto Roverato and Šárka
Štěpánová. 2009. Two operations of merging and
splitting components in a chain graph. Kyber-
netika, 45(2):208–248.

Milan Studený, Jǐŕı Vomlel and Raymond Hem-
mecke. 2010. A geometric view on learning
Bayesian network structures. International Jour-
nal of Approximate Reasoning, 51(5):578–586.

Thomas Verma and Judea Pearl. 1991. Equivalence
and synthesis of causal models. In 6th Conference
on Uncertainty in Artificial Intelligence, pages
220–227.

Pp. 265–273 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Multilabel Classification of Drug-like Molecules
via Max-margin Conditional Random Fields

Hongyu Su
University of Helsinki, Finland

hongyu.su@cs.helsinki.fi

Markus Heinonen
University of Helsinki, Finland
markus.heinonen@cs.helsinki.fi

Juho Rousu
University of Helsinki, Finland

juho.rousu@cs.helsinki.fi

Abstract

We present a multilabel learning approach for molecular classification, an important task
in drug discovery. We use a conditional random field to model the dependencies between
drug targets and discriminative training to separate correct multilabels from incorrect ones
with a large margin. Efficient training of the model is ensured by conditional gradient
optimization on the marginal dual polytope, using loopy belief propagation to find the
steepest feasible ascent directions. In our experiments, the MMCRF method outperformed
the support vector machine with state-of-the-art graph kernels on a dataset comprising of
cancer inhibition potential of drug-like molecules against a large number cancer cell lines.

1 Introduction

Machine learning has become increasingly im-
portant in drug discovery, where viable molecu-
lar structures are searched or designed for ther-
apeutic efficacy. In particular, the costly pre-
clinical in vitro and in vivo testing of drug can-
didates can be focused to the most promising
molecules, if accurate in silico models are avail-
able (Trotter et al., 2001).

Molecular classification has been tackled with
a variety of methods, including inductive logic
programming (King et al., 1996) and artificial
neural networks (Bernazzani et al., 2006). Dur-
ing the last decade kernel methods (Ralaivola
et al., 2005; Swamidass et al., 2005; Trotter et
al., 2001; Ceroni et al., 2007) have emerged as
a computationally effective way to handle the
non-linear properties of chemicals. In numer-
ous studies, SVM-based methods have obtained
promising results (Byvatov et al., 2003; Trot-

ter et al., 2001; Zernov et al., 2003). However,
classification methods focusing on a single tar-
get variable are probably not optimally suited
to drug screening applications where large num-
ber of target cell lines are to be handled.

Multilabel classification, where the objects
can be classified into more than one category
at a time, have received a significant atten-
tion in recent years both in hierarchical (Silla
and Freitas, 2010) and Bayesian network set-
tings (de Waal and van der Gaag, 2007; Ro-
driguez and Lozano, 2008). In this paper we
propose, to our knowledge, the first applica-
tion of multilabel learning to molecular classi-
fication. Our learning method belongs to the
structured output prediction family (Taskar et
al., 2003; Tsochantaridis et al., 2004; Rousu et
al., 2006; Rousu et al., 2007); the drug targets
(cancer cell lines) are organized in a Markov net-
work, drug molecules are represented by kernels
and max-margin training is used to learn the

266 Su et al.

parameters. Loopy belief propagation over the
Markov network is used both in learning the
model and in extracting the predicted multil-
abel.

2 Multilabel learning with MMCRF

The model used in this paper is an instantiation
of the Max-Margin Conditional Random Field
(MMCRF) framework (Rousu et al., 2007) for
associative Markov networks and can also seen
as a sibling method to HM3 (Rousu et al., 2006),
which is designed for hierarchies. Here we give
an overview of the method for transparency, the
interested reader may check the details from the
above references.

We consider data from a domain X ×Y where
X is a set and Y = Y1 × · · · × Yk is a Cartesian
product of the sets Yj = {+1,−1}, j = 1, . . . , k.
A vector y = (y1, . . . , yk) ∈ Y is called the mul-
tilabel and the components yj are called the mi-
crolabels.

We assume that a training set {(xi,yi)}mi=1 ⊂
X ×Y has been given. In addition, a pair (xi,y)
where xi is a training pattern and y ∈ Y is ar-
bitrary, is called a pseudo-example, to denote
the fact that the pair may or may not be gener-
ated by the distribution generating the training
examples. As the model class we use the expo-
nential family

P (y|x) ∝
∏
e∈E

exp
(
wT
e ϕe(x,ye)

)
defined on the edges of a Markov network G =
(V,E), where node j ∈ V corresponds to the
j’th component of the multilabel and the edges
e = (j, j′) ∈ E correspond to a microlabel de-
pendency structure given as input. By ye =
(yj , yj′) we denote the pair of microlabels of the
edge e = (j, j′) and ϕ(x,y) = (ϕe(x,ye))e∈E
is a joint feature map for inputs and outputs.
The joint feature map is given by the tensor
product ϕ(x,y) = φ(x)⊗ψ(y) of input features
φ(x) computed from the molecules (see Section
3) and output features ψ(y) = (ψeu(y)) corre-
sponding to possible labelings u ∈ {+1,−1}2 of
the edges e ∈ E: ψeu(y) = Jye = uK. The ten-
sor product then contains all pairs φr(x)·ψeu(y)

of input and output features. The benefit of the
tensor product representation is that context
(edge-labeling) sensitive weights can be learned
for input features and no prior alignment of in-
put and output features need to be assumed.

2.1 Max margin learning

To learn the parameters of the model we ap-
ply margin-based structured output prediction
(c.f. (Taskar et al., 2003; Tsochantaridis et al.,
2004)). The primal optimization problem takes
the form

minimize
w

1
2
||w||2 + C

m∑
i=1

ξi (1)

s.t. wT∆ϕ(xi,y) ≥ `(yi,y)− ξi,
for all i and y,

where ∆ϕ(xi,y) = ϕ(xi,yi) − ϕ(xi,y), `(yi,y)
is the loss of the pseudo-example, ξi is the slack
and the parameter C controls the amount of
regularization in the model. The corresponding
Lagrangian dual problem takes the form:

maximize
α≥0

αT `− 1
2
αTKα (2)

s.t.
∑
y

α(i,y) ≤ C,∀i,y,

where K =
(
∆ϕ(xi,y)T∆ϕ(xj ,y′)

)
is the joint

kernel matrix for pseudo-examples (xi,y) and
` = (`(yi,y))i,y encodes the loss for each (xi,y).

2.2 Marginal dual problem

The above optimization problems are challeng-
ing due to the exponential number of con-
straints or dual variables. A more manageable
sized problem is obtained by considering the
edge-marginals of dual variables

µ(i, e, u) =
∑
y∈Y

ψeu(y)α(i, y), (3)

where e ∈ E is an edge in the output network
and u ∈ {+1,−1}2 is a possible labeling for the
edge. Using the marginal dual representation,
we can state the dual problem (2) in equivalent
form as (for details, see (Rousu et al., 2007)):

max
µ∈Mm

µT `− 1
2
µTKEµ, (4)

Su et al. 267

where M denotes the marginal polytope1 (c.f.
(Wainwright et al., 2005)), the set of all com-
binations of marginal variables (3) of an exam-
ple that have a counterpart in the dual feasi-
ble set in (2), KE = diag(Ke)e∈E contains the
joint kernel values pertaining to the edges, µ =
(µ(i, e, v)) is the vector of marginal dual vari-
ables and ` = (`(i, e, v)) is the vector of losses
between edge-labelings, `(i, e, v) = `(yie, v).
This problem is a quadratic programme with
a number of variables linear in both the size of
the output network and the number of training
examples. Thus, there is an exponential reduc-
tion in the number of dual variables from the
original dual (2).

2.3 Conditional gradient optimization

The marginal dual problem is solved by an itera-
tive optimization algorithm where the marginal
dual variables of each example in turn are op-
timized using conditional gradient algorithm
whilst keeping the other training examples
fixed. The conditional gradient step (Algorithm
1) iteratively finds the best feasible direction
given the current subgradient gi = `i − Ki·µ
of the objective

µ∗i = argmax
v∈M

gTi v (5)

and uses exact line search to locate the optimal
point in that direction.

The feasible ascent directions in (5) corre-
spond to vertices2 of the marginal dual polytope
M which via (3) are images of the vertices of the
original dual set and thus have one to one cor-
respondence to the set of possible multilabels.

Consequently, for each solution µ∗i of (5) there
is a corresponding multilabel y∗ which, compar-
ing equations (5) and (1), can be seen as the
pseudo-example (xi,y) that violates its margin
maximally. Instead of (5) we can thus solve the

1We use the same probabilistic interpretation of dual
variables as (Taskar et al., 2003).

2In the presence of ties, there is a set of vertices with
optimum score; ties can be broken arbitrarily.

multilabel with maximum gradient

y∗ = argmax
y

gTi µ
∗
i (y)

= argmax
y

∑
e∈E

g(i, e,ye)µ(i, e,ye) (6)

and return the corresponding vertex µ∗ = µ(y∗)
of the marginal dual polytope. The problem (6)
is readily seen as an inference problem on the
Markov network G: one must find the configu-
ration y∗ that maximizes the sum of the ‘edge
potentials’ g(i, e,ye)µ(i, e,ye).

Inference on a general graph is known to be
hard. However, for our purposes, an approxi-
mate solution suffices: within an iterative algo-
rithm it does not pay to spend a lot of time look-
ing for optimal ascent direction when a reason-
able ascent direction can be found fast. Here we
opt to use loopy belief propagation with early
stopping: we only compute a few iterations
(given by the user parameter maxLBPiter) of
the inference before returning (row 3 in Algo-
rithm 1).

In addition to being the workhorse for op-
timizing the classification model, loopy belief
propagation is also used in the prediction phase
to extract the model’s prediction given the
learned parameters.

Algorithm 1 Conditional gradient inference
for single example.
Input: Initial dual variable vector µi, gradient

gi, a joint kernel block Kii for the subspace
Output: New values for dual variables µi.
1: iter = 0;
2: while iter < maxcgiter do
3: µ∗i = feasibleDir(gi, E,maxLBPiter);
4: τ = lineSearch(µ∗i , µi,Kii);
5: if τ ≤ 0 then
6: break; % no progress, stop
7: else
8: µi = µi + τ(µ∗ − µi); % new solution
9: gi = gi−τKii(µ∗−µi); % new gradient

10: end if
11: iter = iter + 1;
12: end while

268 Su et al.

3 Kernels for drug-like molecules

Prediction of bioactivity is typically based on
the physico-chemical and geometric properties
of the molecules. Kernels computed from the
structured representation of molecules extend
the scope of the traditional approaches by al-
lowing complex derived features to be used
while avoiding excessive computational cost
(Ralaivola et al., 2005). In this section, we
will review the main approaches to construct
a graph kernel for classification of drug-like
molecules.

3.1 Walk Kernel

The classic way to represent the structure of a
molecule is to use an undirected labeled graph
G = (V,E), where vertices V = {v1, v2, . . . , vn}
corresponds to the atoms and edges E =
{e1, e2, . . . , em} to the covalent bonds. Vertex
labels correspond to atom types (e.g. “oxy-
gen”, “carbon”, etc.), and edge labels corre-
spond to bond types (e.g. “single”, “double”,
“aromatic”, etc.). The n × n adjacency matrix
E of graph G is defined such that its (i, j)’th
entry Eij equals to one if and only if there is an
edge between vertices vi and vj .

Walk kernels (Kashima et al., 2003; Gärtner,
2003) compute the sum of matching walks in a
pair of graphs. The contribution of each match-
ing walk is downscaled exponentially according
to its length. A walk of length m in a graph G
is denoted by w = {v1, v2, ..., vm} such that for
i = 1, 2, ...,m− 1 there exists an edge for each
pair of vertices (vi, vi+1).

A direct product graph between two undi-
rected graphs G1 = (V1, E1) and G2 = (V2, E2)
is denoted by G×(G1, G2). Vertices of a product
graph G×(G1, G2) are defined as

V×(G1, G2) ={(v1, v2) ∈ V1 × V2,

label(v1) = label(v2)},

and edges are defined as

E×(G1, G2) ={((v1, v2), (u1, u2)) ∈ V× × V×,
(v1, u1) ∈ E1 ∧ (v2, u2) ∈ E2}.

The walk kernel can be defined as

Kwk(G1, G2) =
|v×|∑
i,j=1

[∞∑
n=0

λnEn×

]
ij

,

where v× is the vertex in product graph, λn is
the positive downscaling factor that is strictly
less than one and n is the length of walk.

Since longer walks are downscaled by λn, the
contribution of longer walks are ofter negligible.
Therefore, we consider finite-length walk kernel
where only walks of length p are explicitly con-
structed:

Kwkp(G1, G2) =
∑
vi∈V×

Dp(vi),

where Dp(vi) is calculated in a dynamic pro-
gramming fashion by

D0(vi) = 1,

Dn(vi) =
∑

vi,vj∈E×
Dn−1(vj).

3.2 Weighted decomposition kernel

The weighted decomposition kernel is an ex-
tension of the substructure kernel by weighting
identical parts in a pair of graphs based on con-
textual information (Ceroni et al., 2007).

A weighted decomposition kernel on a labeled
graph G is based on a decomposition Dr(G) =
{(s, z) : s ∈ V, z = Nr(s)}, where Nr(s) is the
neighborhood subgraph of radius r of vertex s.
The s is called selector, and z is the subgraph
around it called contextor. A kernel function
between two graphs G1 and G2 is defined as

Kwdk(G1, G2) =
∑

v,z∈Dr(G1)
v′,z′∈Dr(G2)

Jv = v′KKs(z, z′),

where Ks(z, z′) is the kernel function between a
pair of contextors. The function Ks(z, z′) uses
the subgraph histogram intersection kernel dis-
carding subgraph structure information defined
as

Su et al. 269

Ks(z, z′) =
∑
l∈L

Kr(z, z′),

Kr(z, z′) =
ml∑
j=1

min{pl(j), p′l(j)},

where L is total number of attributes labeled
on each vertex, ml is the number of possible val-
ues of the l’th property, and pl(j), p′l(j) are the
observed frequencies of value j for l’th attribute
for subgraphs z and z′, respectively.

3.3 Molecular fingerprints and the
Tanimoto kernel

Molecular fingerprints are designed to encode a
molecular structure into a fixed width binary bit
vector that represents the presence or absence
of substructures or fragments in the molecule.
Molecular fingerprints are extensively used in
chemical informatics.

There are two main types of fingerprints.
Hash fingerprints enumerate all linear frag-
ments of length n in a molecule. Parame-
ter n is usually bounded from three to seven.
A hash function assigns each fragment a hash
value, which determines its position in descrip-
tor space.

Another major fingerprint type is substruc-
ture keys, which is based on a pattern matching
of a molecular structure to a set of pre-defined
substructures. Each substructure becomes a
key and has a fixed position in descriptor space.
These substructures are considered to be inde-
pendent functional units identified by domain
experts as prior knowledge.

Once the molecules have been represented as
fingerprints, the Tanimoto kernel (Ralaivola et
al., 2005) is usually employed to measure the
similarity between a pair of molecules. Given
two molecular fingerprints fp1 and fp2, the
Tanimoto kernel is defined as

Ktk(fp1, fp2) =
Nfp1,fp2

Nfp1 +Nfp2 −Nfp1,fp2

,

where Nfp1 is the number of 1-bits in finger-
print fp1, Nfp2 is the number of 1-bits in finger-

print fp2, and Nfp1,fp2 is the number of 1-bits
in both of the fingerprints.

4 Experiments

4.1 NCI-Cancer dataset

In this paper we use the NCI-Cancer dataset
obtained through PubChem Bioassay3 (Wang
et al., 2009) data repository. The dataset ini-
tiated by National Cancer Institute and Na-
tional Institutes of Health (NCI/NIH) con-
tains bioactivity information of large num-
ber of molecules against several human cancer
cell lines in 9 different tissue types, including
leukemia, melanoma and cancers of the lung,
colon, brain, ovary, breast, prostate, and kid-
ney. For each molecule tested against a cer-
tain cell line, the dataset provides the bioactiv-
ity outcome that we use as the classes (active,
inactive).

However, molecular activity data are highly
biased over the cell lines. Figure 1 shows the
molecular activity distribution over all 59 cell
lines. Most of the molecules are inactive in all
cell lines, while a relatively large proportion of
molecules are active against almost all cell lines,
which can be taken as toxics. These molecules
are less likely to be potential drug candidates
than the ones in the middle part of the his-
togram.

In order to circumvent the skewness and to
concentrate on the most interesting molecules,
we adopted the preprocessing suggested in
(Shivakumar and Krauthammer, 2009), and se-
lected molecules that are active in more than 10
cell lines and inactive in more than 10 cell lines.
As a result, 544 molecules remained and were
employed in our experiments.

4.2 Experiment setup and measures of
success

To circumvent the skewness of the multilabel
distribution, we use the following stratified
cross-validation scheme to compare the meth-
ods: we divide examples into pools by the num-
ber of cell lines each molecule is active in (c.f.
Figure 1). Then, we divide each pool into five

3http://pubchem.ncbi.nlm.nih.gov

270 Su et al.

Number of active cell lines

F
re

qu
en

cy
 o

f m
ol

ec
ul

es

0 10 20 30 40 50 60

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Figure 1: Skewness of the multilabel distribu-
tion.

folds and finally merge the corresponding pool-
specific folds into five global folds.

To compare the performace of SVM and MM-
CRF in the multilabel prediction tasks we use
microlabel accuracy and microlabel F1 score:
we pool together individual microlabel predic-
tions over all examples and all cell lines, and
count accuracy and F1 from the pool.

4.3 Markov network generation for
cancer cell lines

There are many ways one can build the Markov
network in between the cell lines to be used
as input to the MMCRF algorithm. For the
dataset used in this paper, a large set of aux-
iliary data is available on the cancer cell lines
from the NCI database4. Based on prelimi-
nary tests we opted to use RNA Radiation Ar-
ray data. The basic approach is to construct
from this data a correlation matrix between the
pairs of cell lines and extract the Markov net-
work from the matrix by favoring high-valued
pairs. The following methods of network ex-
traction were considered:

SPT.Maximum weight spanning tree. Take
the minimum number of edges that make a

4http://discover.nci.nih.gov/cellminer/home.do

Table 1: MMCRF Accuracy and F1 score with
different Markov network extraction methods

RNA Rad. array
SPT CTh Rnd

Accuracy 67.6% 65.1% 66.3%
F1 Score 56.2% 52.8% 53.5%

Table 2: Accuracies and microlabel F1 scores
from different kernels in MMCRF and SVM.
Methods Accuracy F1 score

SVM + WK 64.6% 49.0%
SVM + WDK 63.9% 51.6%
SVM + Tanimoto 64.1% 52.7%
MMCRF + Tani-
moto

67.6% 56.2%

connected network whilst maximizing the
edge weights.

CTh.Correlation thresholding. Take all edges
that exceed fixed threshold. This ap-
proach typically generates a general non-
tree graph.

Rnd.Random graph. Draw edges uniformly at
random.

In our experiments, the spanning tree ap-
proach on RNA radiation array data turned
out to be best approach on average (Table
1). Suprisingly, correlation thresholding fails
to meet the accuracy of random graph. How-
ever, the predictive performance of MMCRF
surpasses SVM (c.f. Table 2) regardless of the
network generation method.

4.4 Effect of molecule kernels

We conducted experiments to compare the ef-
fect of various kernels, as well as the perfor-
mances of support vector machine (SVM) and
MMCRF. We used the SVM implementation of
the LibSVM software package written in C++5.
We tested SVM with different margin C param-
eters, relative hard margin (C = 100) emerging

5http://www.csie.ntu.edu.tw/ cjlin/libsvm/

Su et al. 271

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

0.2 0.4 0.6 0.8

0.
2

0.
4

0.
6

0.
8

SVM

M
M

C
R

F

p−value from sign test is 0.018

Figure 2: Microlabel F1 score of MMCRF
against SVM classifier in each cell line.

as the value used in subsequent experiments.
The same value was used for MMCRF classifier
as well.

For the three kernel methods, walk kernel
(WK) was constructed using parameters λ =
0.1 and p = 6 as recommended in (Gärtner,
2003). The Weighted decomposition kernel
(WDK) used context radius r = 3 as in (Ceroni
et al., 2007), and a single attribute (atom type)
was sufficient to give the best performance. We
also used hash fragments as molecular finger-
prints generated by OpenBabel6 (using default
value n = 6 for linear structure length), which is
a chemical toolbox available in public domain.
All kernels were normalized.

In Table 2, we report overall accuracies and
microlabel F1 scores using SVM with different
kernel methods. The kernels achieve almost
the same accuracy within SVM, while Tanimoto
kernel is slightly better than others in microla-
bel F1 score. We further compared MMCRF
and SVM classifiers with Tanimoto kernel. MM-
CRF turned out to outperform SVM in both
overall accuracy and microlabel F1 score.

Figure 2 gives the F1 score in each cell line
from MMCRF classifier against SVM classifier
in the same experiment. Points above the di-

6http://openbabel.org

0 200 400 600 800 1000 1200

60
00

65
00

70
00

75
00

80
00

85
00

90
00

Time (sec)

O
bj

ec
tiv

e
va

lu
e

Iteration = 100
Iteration = 50
Iteration = 19
Iteration = 11
Iteration = 3

Figure 3: Effect of loopy belief propagation it-
eration.

agonal line correspond to improvements in F1
scores by MMCRF classifier. MMCRF im-
proves microlabel F1 scores of 39 out of 59 cell
lines with sign test giving the p-value of 0.018.
The statistics for accuracy were similar (data
not shown).

4.5 Effect of loopy belief propagation

Finally, we tested different loopy belief propaga-
tion iteration parameters to see the their effects
on convergence (Figure 3). The best loopy be-
lief propagation iteration limit turned out to be
maxLBPiter = 11, Smaller values were not suf-
ficient for MMCRF to reach a global optimum,
while larger values caused the convergence to
need more time. The optimal value turned out
to be close to the diameter of the Markov net-
work (10 in this case), indicating that propaga-
tion of messages through the whole network is
required for best performance.

5 Conclusions

We presented a multilabel classification ap-
proach to drug activity classification using the
Max-Margin Conditional Random Field algo-
rithm. In experiments against a large set of can-
cer lines the method significantly outperformed
SVM.

272 Su et al.

Acknowledgements

This work was financially supported by
Academy of Finland grant 118653 (ALGODAN)
and in part by the IST Programme of the Euro-
pean Community, under the PASCAL2 Network
of Excellence, IST-2007-216886. This publica-
tion only reflects the authors’ views.

References

L. Bernazzani, C. Duce, A. Micheli, V. Mollica,
A. Sperduti, A. Starita, and M.R. Tine. 2006.
Predicting physical-chemical properties of com-
pounds from molecular structures by recursive
neural networks. J. Chem. Inf. Model., 46:2030–
2042.

E. Byvatov, U. Fechner, J. Sadowski, and G. Schnei-
der. 2003. Comparison of support vector ma-
chine and artificial neural network systems for
drug/nondrug classification. J. Chem. Inf. Com-
put. Sci., 43:1882–1889.

A. Ceroni, F. Costa, and P. Frasconi. 2007. Clas-
sification of small molecules by two- and three-
dimensional decomposition kernels. Bioinformat-
ics, 23:2038–2045.

P. de Waal and L. van der Gaag. 2007. Infer-
ence and Learning in Multi-dimensional Bayesian
Network Classifiers. Symbolic and Quantitative
Approaches to Reasoning with Uncertainty, pages
501–511.

T. Gärtner. 2003. A survey of kernels for structured
data. SIGKDD Explor. Newsl., 5(1):49–58.

H. Kashima, K. Tsuda, and A. Inokuchi. 2003.
Marginalized kernels between labeled graphs. In
Proceedings of the 20th International Conference
on Machine Learning (ICML), Washington, DC,
United States.

R. King, S. Muggleton, A. Srinivasan, and M. Stern-
berg. 1996. Structure-activity relationships de-
rived by machine learning: the use of atoms and
their bond connectivities to predict mutagenicity
by inductive logic programming. PNAS, 93:438–
442.

L. Ralaivola, S. Swamidass, H. Saigo, and P. Baldi.
2005. Graph kernels for chemical informatics.
Neural Networks, 18:1093–1110.

JD Rodriguez and J.A. Lozano. 2008. Multi-
objective learning of multi-dimensional bayesian
classifiers. In Eighth International Conference on
Hybrid Intelligent Systems, 2008. HIS’08, pages
501–506.

J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-
Taylor. 2006. Kernel-Based Learning of Hier-
archical Multilabel Classification Models. The
Journal of Machine Learning Research, 7:1601–
1626.

J. Rousu, C. Saunders, S. Szedmak, and J. Shawe-
Taylor. 2007. Efficient algorithms for max-
margin structured classification. Predicting
Structured Data, pages 105–129.

P. Shivakumar and M. Krauthammer. 2009. Struc-
tural similarity assessment for drug sensitivity
prediction in cancer. Bioinformatics, 10:S17.

C.N. Silla and A.A. Freitas. 2010. A survey of hier-
archical classification across different application
domains. Data Mining and Knowledge Discovery,
pages 1–42.

S.J. Swamidass, J. Chen, J. Bruand, P. Phung,
L. Ralaivola, and P. Baldi. 2005. Kernels for
small molecules and the prediction of mutagenic-
ity, toxicity and anti-cancer activity. Bioinfor-
matics, 21:359–368.

B. Taskar, C. Guestrin, and D. Koller. 2003. Max-
margin markov networks. In Neural Information
Processing Systems 2003.

M. Trotter, M. Buxton, and S. Holden. 2001. Drug
design by machine learning: support vector ma-
chines for pharmaceutical data analysis. Comp.
and Chem., 26:1–20.

I. Tsochantaridis, T. Hofmann, T. Joachims, and
Y.n Altun. 2004. Support vector machine learn-
ing for interdependent and structured output
spaces. In Proc. 21th International Conference
on Machine Learning, pages 823–830.

M.J. Wainwright, T.S. Jaakkola, and A.S. Will-
sky. 2005. MAP estimation via agreement
on trees: message-passing and linear program-
ming. IEEE Transactions on Information The-
ory, 51(11):3697–3717.

Y. Wang, E. Bolton, S. Dracheva, K. Karapetyan,
B.A. Shoemaker, T.O. Suzek, J. Wang, J. Xiao,
J. Zhang, and S.H. Bryant. 2009. An overview
of the pubchem bioassay resource. Nucleic Acids
Research, 38:D255–D266.

V. Zernov, K. Balakin, A. Ivaschenko, N. Savchuk,
and I. Pletnev. 2003. Drug discovery using sup-
port vector machines. The case studies of drug-
likeness, agrochemical-likeness, and enzyme inhi-
bition predictions. J. Chem. Inf. Comput. Sci.,
43:2048–2056.

Pp. 273–281 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Reinforcing the Object-Oriented Aspect of Probabilistic Relational Models
Lionel Torti - Pierre-Henri Wuillemin - Christophe Gonzales

LIP6 - UPMC - France
firstname.lastname@lip6.fr

Abstract
Representing uncertainty in knowledge is a common issue in Artificial Intelligence. Bayesian
Networks have been one of the main models used in this field of research. The simplicity of their
specification is one of the reason for their success, both in industrial and in theoretical domains.
The widespread use of Bayesian Networks brings new challenges in the design and use of large-
scale systems, where this very simplicity causes a lack of expressiveness and scalability. To fill
this gap, an increasing number of languages emerged as extensions of Bayesian Networks with
many approaches: first-order logic, object-oriented, entity-relation, and so on. In this paper we
focus on Probabilistic Relational Models, an object-oriented extension. However, Probabilistic
Relational Models do not fully exploit the object-oriented paradigm, in particular they lack class
inheritance. Using Object-Oriented Bayesian Networks as a basis, we propose to lightly extend
PRMs framework resulting in stronger object-oriented aspects in probabilistic models.

Probabilistic graphical models (Koller and Fried-
man, 2009) are a general purpose framework for
dealing with uncertainty. Their applications to
many different domains has stimulated an uninter-
rupted process of creation of new frameworks based
on probability theory. Bayesian Networks (Pearl,
1988) are among the most popular framework for
uncertainty in AI.

In recent years, the Statistical Learning commu-
nity has actively proposed new probabilistic frame-
works, closing the gap between first-order logic
and probability theory (Getoor and Taskar, 2007).
New models such as Object-Oriented Bayesian
Networks (Koller and Pfeffer, 1997; Bangsø and
Wuillemin, 2000a), Multiply-Sectioned Bayesian
Networks (Yang, 2002), Probabilistic Relational
Models (Getoor et al., 2007) and Multi-Entity
Bayesian Networks (Laskey, 2008) have extended
Bayesian Networks and widen their range of appli-
cation.

In many situations, these new first-order logic-
based networks can be efficiently learned from
databases and used for answering probabilistic
queries. However, there are situations like nuclear
plant safety problems where the scarcity of data
available prevents such learning. For such prob-
lems, oriented graphical models such as Probabilis-

tic Relational Models (PRMs) are often more suit-
able than the aforementioned first-order models be-
cause they can often be modeled by interactions
with experts of the domain.

PRMs have an object-oriented basis, but they
lack fundamental mechanisms related to class in-
heritance. In software engineering, such object-
oriented designs has proved very useful for creating
complex software. In this paper, we illustrate why
these mechanisms are necessary for practical de-
sign of large-scale systems and we show how light
extensions can enforce strong object-oriented fea-
tures into the PRMs framework. In addition, we
propose a representation of PRMs with such mech-
anisms using parfactors, the state-of-the-art frame-
work for first-order probabilistic inference (Poole,
2003). All the concepts we present here are imple-
mented in our open source C++ framework called
aGrUM and can be represented in the SKOOL lan-
guage (http://agrum.lip6.fr).

Throughout this paper, we will use an analogy
with oriented-object programming in order to ease
the presentation of our framework. It is organized as
follows: after briefly introducing the classical PRM
framework, we define the notions of attribute typ-
ing and type inheritance. Then we extend the no-
tion of class inheritance with interfaces, to conclude

274 Torti et al.

X1

Y1

U1 V1

W1

U2 V2

W2

U3 V3

W3

Y2

X2

(a) A Bayesian network. The gray areas do not
belong to the BN specification

E

X

Y

U V

W

ρ

F

(b) Two connected classes E
and F .

S

E e1, e2;
F f1, f2, f3;

f1.ρ = e1;
f2.ρ = e1;
f3.ρ = e2;

e1

f1 f2

e2

f3

(c) The system declaration and the in-
stance diagram corresponding to the BN
of figure 1(a).

Figure 1: Representation of a BN as a PRM: analysis of the BN (a) reveals the use of two recurrent patterns,
which are confined in two classes (b). Hence, a system equivalent to the BN may be built (c).

our contribution with the mechanisms for attribute
and reference overloading. Finally we describe how
PRMs with strong object-orientedness can be de-
scribed using parfactors.

1 Description of PRMs

Fig. 1(a) shows a Bayesian Network (BN) encod-
ing relations between two different kinds of patterns
(variables Xi, Yi on one hand and Uj , Vj ,Wj on the
other hand). We assume that the conditional prob-
ability tables (CPT) associated with variables with
the same capital names are identical. When using
PRMs, the main idea is to abstract each pattern as a
generic entity, called a class, which encapsulates all
the relations between the variables of the pattern.
So, in Fig.1(b), E encapsulates precisely variables
Xi and Yi as well as their probabilistic relations (arc
(Xi, Yi)) and conditional probability distributions.
The pattern of variables Uj , Vj ,Wj cannot be di-
rectly encapsulated in a class since the CPTs of vari-
ables Uj are conditional to some variables Yk (e.g.,
the CPT of U3 is P (U3|Y2) according to Fig.1(a)).
Hence classes must have a mechanism allowing to
refer to variables outside the class. In PRMs, this
mechanism is called a reference slot. Basically, the
idea is to create some function ρ connecting two
classes and allowing both classes to access the vari-
ables of the other class. Now, as shown in Fig.1(c),
the original BN can be built up from the PRM: it
is sufficient to create two instances, say e1 and e2,
of class E as well as three instances f1, f2, f3 of F

and connect them using one edge per reference slot.
Note that there is no limit to the number of times an
instance can be referenced (see e1 in Fig.1(c)).

1.1 PRM-related definitions

In this section, we present the minimal set of defi-
nitions needed for the rest of the paper. The reader
may refer to (Pfeffer, 2000) and (Getoor et al., 2007)
for a more detailed presentation.

Definition 1 (Class). A class C is defined by a
Directed Acyclic Graph (DAG) over a set of at-
tributes, i.e. random variables, A(C), a set of ref-
erences (slots) R(C), and a probability distribution
over A(C). To refer to a given random variable X
(resp. reference ρ) of class C, we use the standard
Object Oriented notation C.X (resp. C.ρ).

Definition 2 (Instance). An instance c is the use (the
instantiation) of a given class C in a BN. There are
usually numerous instances of a given class C in a
BN. Notation c.X (resp. c.ρ) refers to the instantia-
tion of C.X ∈ A(C) (resp. C.ρ ∈ R(C)) in c. By
abuse of notation, we denote the sets of such instan-
tiations as A(c) and R(c) respectively.

Fig. 1(b) shows two classes, E and F , with at-
tributesA(E) = {X, Y } andA(F) = {U, V, W}.
There is also one reference in class F denoted by ρ
which is used to define the dependencies between
E .Y and F .U . Such dependency is defined using a
path, called a reference chain, from one attribute to
another. In Fig. 1(b), the path representing the de-
pendency between E .Y and F .U is F .ρ.Y . More

Torti et al. 275

Attribute Simple reference

canPrint
works

hasInk hasPaper

works

works

power

PowerSupply

printers

exists

roomroom

Computer

Room

Printer

Figure 2: The printer example.

simply, ρ.Y is said to be a parent of U in class F .

Definition 3 (System, grounded net). A system S
is the representation of a BN as a set of class in-
stances in which each reference has been linked to
another instance. Conversely, the grounded network
of a system S is the BN represented by S .

As a consequence, in a system, each random vari-
able c.X is a copy of a random variable C.X ∈
A(C) and is assigned a copy of the CPT assigned
to C.X in C. The difference between a system
and a grounded net is that all structural informa-
tion (classes, instances, references, . . .) are lost
when reasoning with a grounded net. Finally,
PRMs are considered as an object-oriented formal-
ism due to the encapsulation of attributes inside
their classes. This feature is inherited from Object-
Oriented Bayes Nets. Exploiting this encapsulation
is the core of structured inference (Pfeffer, 2000).

1.2 Real Object-Oriented PRMs

The following discussion provides insight about
how PRMs lack fundamental concepts of the object-
oriented paradigm and how such concepts can
greatly improve the representative power of PRMs.
We will illustrate our point with a simple exam-
ple of a printer breakdown diagnosis illustrated in
Fig. 2. We consider a network with a power supply,
black & white printers, color printers and comput-
ers. Printer’s types, brands and ages vary from one
printer to another. Printers and computers are placed

in rooms and each computer is connected to every
printer in the same room. All printers and comput-
ers are connected to the same power supply. Our
main objective is to answer the following query: us-
ing a given computer, can I print? We can also think
of other queries, not asked by a user but rather by
an intervening technician: is a paper jam respon-
sible for the printer’s breakdown? Is the magenta
cartridge of a color printer empty? Etc.

From the computer point of view, our system
needs to take into account: (i) the fact that a printer
prints in color is irrelevant for black & white print-
ings; (ii) breakdowns can have different causes, but
we only need to know whether printing is possible
or not. From the technician perspective, we shall
consider that: (i) different printers have different
types of breakdowns, which can sometimes be par-
tial, e.g. a color printer with no more cyan ink can
still print in black & white; (ii) different types or
brands imply different probabilities of breakdowns;
(iii) the printer’s features shall be taken into account
since specific queries can be asked for each printer,
e.g., can I print in color? Is the A3-tray empty? Etc.

These points of views force our system to be
both generic (the computer’s perspective) and spe-
cific (the technician’s perspective). This is precisely
why a strong object-oriented framework is needed.
Let us do an analogy with computer programming.
A class defines general concepts common to a fam-
ily of objects. It is possible to define new concepts
using inheritance: if class B inherits from class A,
it inherits A’s properties but can also specialize the
concepts represented by A. Either by overloading
A’s attributes and methods (behavior specialization)
or by adding new attributes and methods (function-
ality specialization). The next section proposes an
extension of PRMs which will serve as a basis to
strengthen class inheritance and we will show that
this can be done with small and intuitive changes.

2 Attribute typing and type inheritance

Attribute typing arises naturally when using PRMs
as a modeling framework: similarly to classes that
represent repeated patterns in a system, an attribute
type describes a family of random variables sharing
the same domain. For instance, types Boolean and
state would be the types of all the random variables

276 Torti et al.

=DBoolean { false, true }

=Dstate { OK, NOK }

=Dmalfunction { OK, broken, malfunctioning }

Figure 3: An illustration of type inheritance with
attribute types Boolean, state and malfunction.

with domains {false, true} and {OK,NOK}, re-
spectively.

Definition 4 (Attribute typing). An attribute type τ
describes a family of distinct discrete random vari-
ables sharing the same domain Dτ = {l1, . . . , ln},
where n is the domain size of τ .

Types such as Boolean and state are frequently
encountered when dealing with experts. For in-
stance, they can be used to describe the states of
equipments subject to breakdowns. In this case,
type state enables a finer description of the possi-
ble failures than just the OK/NOK state. This can
prove critical for some industrial applications: con-
sider an air conditioner in a computer server room
working improperly; then, assigning it state mal-
function may help diagnose the servers malfunc-
tions. Type state can be viewed as a specializa-
tion of type Boolean. Specializing general concepts
into more specific ones is the goal of inheritance.
Type inheritance is the process of decomposing la-
bels into a partition of more specific and precise de-
scriptions of a domain. To properly define this con-
cept, we will need an additional notion, that of Do-
main Generalization Function (DGF):

Definition 5 (Domain Generalization Function). A
Domain Generalization Function (DGF) is a surjec-
tive function Φ : Dτ → Dλ where τ and λ are two
distinct attribute types.

Obviously, given two distinct attribute types τ
and λ, there exists a DGF Φ : Dτ → Dλ if and
only if |Dτ | ≥ |Dλ|. DGFs will be used to define
type inheritance in PRMs:

Definition 6 (Type inheritance). An attribute type τ
inherits from another attribute type λ if it is defined
using a DGF Φ : Dτ → Dλ.

Fig.3 illustrates type inheritance: in this figure,
arcs represent the specialization of concepts. For

works

room
hasPaper

hasInk

Printer

(a) Dependencies of the Printer class.

works

room hasPaper hasInk

black
magenta

cyan

yellow

ColorPrinter

(b) Dependencies of the ColorPrinter class, which is a sub-
class of Printer.

Figure 4: Example of class inheritance. Dashed
arcs represent dependencies with attributes in an-
other class.

instance, attribute type malfunction has two labels,
broken and malfunction, which are specializations
of label NOK of attribute type state. As is, attribute
inheritance is only a semantic relation: state’s label
OK is a sort of true, broken is a sort of false, etc.
We will show how to exploit such concepts proba-
bilistically in the following sections.

3 Classes and interfaces

As in oriented-object programing, class inheritance
in PRMs starts by a copy of the super class into
its subclass. This implies that all attributes, refer-
ences, dependencies, i.e. arcs, and CPTs are copied
into the subclass. However, the content of the su-
per class is only a basis for the subclass, as new at-
tributes, references and dependencies can be added
to the inherited structure. The first definitions of
class inheritance for probabilistic models can be
found in (Koller and Pfeffer, 1997) and (Bangsø and
Wuillemin, 2000b). Note that these definitions dif-
fer greatly. In this paper, we propose some exten-
sions of the work by Bangsø and Wuillemin.

Torti et al. 277

3.1 Class inheritance

Fig. 4 illustrates class inheritance on the printer ex-
ample of Fig. 2. Here, we introduced a new class,
namely ColorPrinter, which is a subclass of Printer.
Fig. 4(b) is a representation of the ColorPrinter
class dependencies. This example suggests several
remarks: (i) all the attributes and references belong-
ing to class Printer also belong to ColorPrinter; (ii)
new attributes have been added; (iii) attribute Col-
orPrinter.hasInk has additional parents (and thus a
new CPT).

The first remark is similar with oriented-object
programming languages: a subclass inherits the at-
tributes and references of its super class. This im-
plies that when an element is not overloaded, it is
not necessary to redeclare it. The second remark
is the functionality specialization of class inheri-
tance: by adding new attributes, a subclass becomes
more specific and offers new possibilities for enter-
ing evidence and submitting queries. In Fig. 4(b),
attributes black, magenta, cyan and yellow represent
the different kinds of inks used in a color printer, a
feature that is not necessarily present in all print-
ers. The third and fourth remarks are examples of
attribute overloading, which consist of: (i) enabling
changes in the values of the attribute’s CPTs; (ii)
adding or removing parents; (iii) overloading an at-
tribute’s type (this point is explained below).

3.2 Interface implementation

In modern programming languages, interfaces are
used to handle multiple inheritance and to manip-
ulate objects at a high abstract level. They define
a set of methods which are guaranteed to exist in
any class implementing them. Note that interfaces
do not provide the bodies (the execution codes) of
these methods but only their signatures. An inter-
face in a PRM follows the same principle: it is a set
of attributes and references; it defines neither proba-
bilistic dependencies nor CPTs. As in programming
languages, a PRM interface cannot be instantiated.

A PRM interface can be used to define dependen-
cies between classes using abstraction: given two
classes X and Y , if Y has an attribute depending on
an attribute of X , then the only information needed
is the type of X’s attribute. As a consequence, the
minimal set of information required to define proba-

Printer
<<interface>>

room: Room
hasInk: Boolean
hasPaper: Boolean
works: state

BWPrinter
room: Room
hasInk: inkState
hasPaper: paperState
works: malfunction

ColorPrinter
room: Room
black: inkState
magenta: inkState
cyan: inkState
yellow: inkState
hasInk: Boolean
hasPaper: paperState
works: malfunction

Figure 5: Two implementations of an interface.

bilistic dependencies is composed of references and
attribute’s types.

Fig. 5 shows an example of an interface imple-
mentation, where the two classes BWPrinter and
ColorPrinter implement interface Printer (which is
no longer a class for this example). The Printer in-
terface defines the minimal set of attributes and ref-
erences any printer must declare: a reference to its
room, whether it has ink, paper and whether it is
working.

Fig. 5 is an alternative representation of classes
using a UML syntax. Such syntax is necessary to
point out attribute’s and reference’s types. It is more
concise than the traditional representation of PRMs,
i.e., the class dependency graph, see (Getoor et al.,
2007). As already said, when creating a class, there
is no need to know the dependency structure of the
other classes to which it is related: only attribute
and reference types are necessary for this task.

3.3 Multiple inheritance

Multiple inheritance is one of the major issues when
defining an object-oriented formalism. The problem
arises when diamond-shaped inheritance appears, as
illustrated in Fig. 6. An ambiguity results from how
the properties of class A are inherited by class D
since two distinct paths exist from A to D (through
B or C). Furthermore, if some properties of A are
overloaded in B and C, which one should be inher-
ited by D? Such issue can be dealt by using inter-

278 Torti et al.

A

BC

D

Figure 6: A diamond-shaped inheritance graph.

<state>works OK Broken malfunction
OK 1 0 0

NOK 0 1 1

Table 1: The CPT of BWPrinter.works cast descen-
dant which is of type state.

faces: since an interface only declares the existence
of properties, each class implementing a given inter-
face must declare and define itself those properties.
The major drawback of this approach is that there is
no reuse of properties definitions, i.e. there is code
duplication. Another solution consists of explicitly
declaring from which superclass a given property is
inherited. But this proves to be cumbersome and
bug prone. For this reason, we chose to use the
interface-based solution. In addition, the notion of
an interface is well suited for the PRM framework.
Note that a class can implement as many interfaces
as it designer wants to.

4 Attribute and reference overloading

In object-oriented programming languages, over-
loading is used to modify inherited properties. This
is exactly what PRM attribute overloading and ref-
erence overloading do. In section 3.1, we showed
how attribute overloading could be performed using
inheritance. Now, by adding attribute typing, it be-
comes possible to also overload attribute’s types.

4.1 Type overloading

People familiar with PRMs will remark that,
in Fig. 5, if a class has a dependency over
Printer.works it expects an attribute of type state
and defines its conditional probability tables accord-
ingly. However, connecting such a class to an in-
stance of BWPrinter results in an incoherent prob-
ability distribution since the attribute referenced is
of type malfunction. To fix this kind of problem we
need the concept of cast descendants.

Cast Descendants are automatically generated at-
tributes which are used to cast beliefs of an attribute
into one of its super type. By exploiting Domain
Generalization Functions (DGFs), it is possible to
use deterministic tables to obtain beliefs with the
correct domain size. Tab. 1 shows the conditional
probability table of BWPrinter.works cast descen-
dant, which casts type malfunction into type state.
Algorithm 1 illustrates more formally how cast de-
scendants are generated. The goal variable is the
overloaded type and a the attribute whose type is a
subtype of goal. The algorithm simply adds chil-
dren to a until the goal type is reached. Procedure
generateCastCPT() uses DGFs to generate deter-
ministic tables as shown in Table 1.

Data: Type goal, Attribute a
Type t = a.type;
Attribute current = a;
while t 6= goalType do

Attribute child = new Attribute();
child.type = t.super;
child.cpt = generateCastCPT(t.super, t);
current.addChild(child);
current = child;
t = t.super;

end

Algorithm 1: Cast descendant generation.

4.2 Reference overloading and instantiation

As seen previously, it is possible to define refer-
ences in classes as well as in interfaces. We have
shown how interfaces can be used to define proba-
bilistic dependencies and since we introduced class
inheritance and interface implementation, we can
obviously use reference overloading. Given two
classesX and Y , if Y is a subclass ofX and if there
exists a reference ρ in X referencing a class Z (or
an interface I), then Y can overload ρ with a refer-
ence referencing any subclass of Z (or referencing
any implementation of I).

Instantiating a reference amounts to linking it to
an instance of the correct class in a given system.
Given an instance x of class X and a reference x.ρ
referencing a class Z (or an interface I) x.ρ can
be instantiated in any instance of a subclass of Z
(or any instance of a class implementing I). Class
inheritance, interface implementation and cast de-
scendants guarantee the existence of attributes de-

Torti et al. 279

fined in a class (or interface) in any of its subclass
(or implementation), which is sufficient to ensure a
coherent probabilistic distribution.

5 Parfactor representation of PRMs

A large part of the statistical relational learn-
ing community has chosen first-order probabilis-
tic models as their main framework. Actually, the
only exact inference algorithm for first-order proba-
bilistic models is lifted probabilistic inference (de
Salvo Braz et al., 2005) and (Brian et al., 2008).
Parfactors are the common formalization used in
these approaches. It is important to note that, like
most first-order probabilistic models, parfactors are
more generic than PRMs: they can be used to repre-
sent complex systems impossible to represent using
PRMs. However, they are less suited for modeling
large-scale systems. Hence it is useful to be able to
express PRMs in such a formalism. We will give a
short definition of parfactors, or parametric factors,
as they are given in (Poole, 2003).

Definition 7 (Parfactor). A parfactor is a triple
〈C, V, t〉 where C is a set of constraints on param-
eters, V is a set of parametrized random variables
and t is a table representing a factor from random
variables of V to <+.

Algorithm 2 details formally how an attribute can
be converted into a set of parfactors. We will detail

Input: Class c, Attribute attr
Output: Parfactor fctr
Parfactor fctr;
Add a isA() constraint over c’s type;
Add a parametrized variable named by attr and prefixed
by attr’s type;
foreach parent prt of attr do

if prt not in A(c) then
Add a isA() constraint over prt’s class type;
foreach reference ρ in the slot chain from attr to
prt do

Add a relational constraints in fctr
matching ρ;
Add a isA() constraint over ρ range type;

end
end
Add a parametrized variable named by prt and
prefixed by prt’s type;

end
Copy in fctr’s table attr’s CPT;
return fctr

Algorithm 2: Parfactor generation of an at-
tribute.

this algorithm using attribute ColorPrinter.works of
Fig. 4(b). Since we represent PRMs, a parfactor’s
table will always be the conditional probability ta-
ble of an attribute. Classes and instances are rep-
resented as parameters of parametric random vari-
ables, which are the equivalent of attributes in the
PRM formalism. To ensure the exact representation
of the structure encoded by the classes of a PRM, it
is necessary to use two different types of constraints.

To represent classes, class inheritance and in-
terface implementation we will use isA()-like con-
straints (e.g. isAPrinter(X)). Relations can be ex-
pressed as binary constraints in which each param-
eter has a isA() constraint (e.g. room(X,R) ∧
isAPrinter(X) ∧ isARoom(R)). The Color-
Printer.works attribute in Fig. 4 can be represented
by the following parfactor:

〈 {isAColorPrinter(X) ∧ isARoom(Y)∧
isAPowerSupply(Z) ∧ room(X,Y) ∧ power(Y,Z)},
{malfunction works(X), paperType hasPaper(X),
Boolean hasInk(X), state works(Z)}, t 〉

The first part of this parfactor is composed of type
constraints (isAColorPrinter(), isARoom() and is-
APowerSupply()) and relational constraints (room()
and power()). The second part contains the depen-
dencies of the parfactor, which are the parametrized
random variables malfunction works(X), pa-
perType hasPaper(X), Boolean hasInk(X) and
state works(Z). The Cartesian product of their
values is mapped to the values in t, which represent
the CPT of ColorPrinter.works.

The isA() constraints encode the inheritance
scheme of a PRM if, for each instance i of a sys-
tem, a grounded variable is declared for each type
of i, i.e. for all of its super classes and imple-
mented interfaces. For example, an instance colo-
ria of the ColorPrinter class will be represented
with the following grounded variables: isAColor-
Printer(coloria) and isAPrinter(coloria).

Finally, cast descendants can be represented by
including types names in the parametric variables
declarations. For example malfunction works(X)
stands for the attribute ColorPrinter.works of type
malfunction. Then, by generating parfactors for
each cast descendant, the constraints names will en-
sure the correct structure. For example, the cast de-
scendant ColorPrinter.works will be declared as:

280 Torti et al.

〈 {isAColorPrinter(X)}
{state works(X), malfunction works(X)}, t 〉

At first sight, such a representation seems cum-
bersome but it illustrates the expressive power of
parfactors and of first-order probabilistic models.
First-order logic can be used to express very com-
plex relations: only two types of constraints are nec-
essary to represent all the notions presented in this
paper. However such expressive power has a ma-
jor flaw as semantics and relations are hidden in
the mass of constraints declarations. When deal-
ing with large-scale systems, creating and maintain-
ing such knowledge base can be extremely diffi-
cult. PRMs with the strengthened object-oriented
aspect we proposed here are a proposition to man-
age such knowledge with a formalism less expres-
sive but much more scalable.

6 Conclusion

We proposed a strong object-oriented representation
of PRMs by introducing interfaces, attribute typing,
type inheritance, attribute and reference overload-
ing. Such notions strengthen the expressive power
of PRMs when dealing with structured and known
systems. In addition, we have shown how PRMs
with these features can easily be represented as par-
factors, closing a gap between PRMs and more re-
cent first-order probabilistic models. Strengthening
the object-oriented features of PRMs enables a bet-
ter representation of complex systems as well as
the creation of new models in fields such as trou-
bleshooting, reliability and risk management, where
such models were often difficult to represent until
now. Parfactors are used in the state-of-the-art lifted
probabilistic inferences. Enabling the expression of
PRM models into such formalisms will help com-
paring different first-order probabilistic implemen-
tations. However there is still room for improve-
ments, especially for the graphical representation of
PRMs and the implementation of user-friendly tools
for model design and maintenance. Finally, the per-
spective of exploiting hierarchical knowledge can
lead to new inference algorithms in PRMs.

Acknowledgments: this work has been supported
by the DGA and has benefited comments, sugges-
tions and ideas from the SKOOB consortium mem-
bers (http://skoob.lip6.fr).

References
O. Bangsø and P.-H. Wuillemin. 2000a. Top-down

construction and repetitive structures representation in
Bayesian networks. In Proc. of FLAIRS 2000, pages
282–286.

Olav Bangsø and Pierre-Henri Wuillemin. 2000b. Ob-
ject Oriented Bayesian Networks: A framework for
topdown specification of large Bayesian networks and
repetitive structures. Technical report, Department
of Computer Science, Aalborg University., Aalborg,
Denmark.

Milch Brian, Luke S. Zettlemoyer, Kristian Kersting,
Michael Haimes, and Leslie Pack Kaelbling. 2008.
Lifted probabilistic inference with counting formulas.
In Proceedings of the 23rd AAAI Conference on Arti-
ficial Intelligence, pages 1062–1068.

R. de Salvo Braz, E. Amir, and D Roth. 2005. Lifted
first- order probabilistic inference. In Proceedings of
the 19th International Joint Conference on Artificial
Intelligence, pages 1319–1325.

L. Getoor and B. Taskar. 2007. Introduction to Statisti-
cal Relational Learning. The MIT Press.

Lise Getoor, Nir Friedman, Daphne Koller, Avi Pfeffer,
and Benjamin Taskar. 2007. Probabilistic relational
models. In L. Getoor and B. Taskar, editors, An Intro-
duction to Statistical Relational Learning. MIT Press.

Daphne Koller and Nir Friedman. 2009. Probabilistic
Graphical Models. The MIT Press.

D. Koller and A. Pfeffer. 1997. Object-oriented
Bayesian networks. In Proceedings of the 13th An-
nual Conference on Uncertainty in AI, pages 302–313.

K.B. Laskey. 2008. MEBN: A language for first-order
Bayesian knowledge bases. Artificial Intelligence,
172:140–178.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufman.

A.J. Pfeffer. 2000. Probabilistic Reasoning for Complex
Systems. Ph.D. thesis, Stanford University.

David Poole. 2003. First-order probabilistic inference.
In Proceedings of the 18th International Joint Confer-
ence on Artificial Intelligence, pages 985–991.

Xiang Yang. 2002. Probabilistic Reasoning in Multi-
Agent Systems: A Graphical Models Approach. Cam-
bridge University Press.

Pp. 281–289 in Proceedings of the Fifth European Workshop on Probabilistic Graphical Models (PGM-2010),
edited by Petri Myllymäki, Teemu Roos and Tommi Jaakkola. HIIT Publications 2010–2.

Acquisition and Computation Issues with NIN-AND Tree Models

Yang Xiang
University of Guelph, Canada

Abstract

Most techniques to improve efficiency of conditional probability table (CPT) acquisition
for Bayesian network (BN) can only represent reinforcing causal interactions. The non-
impeding noisy-AND (NIN-AND) tree is the first causal model that explicitly expresses
reinforcement, undermining, and their mixture, while its acquisition is of linear complexity.
We address three issues on acquisition and computation with these models. In particular,
we propose methods to improve computation of conditional probability from a model, to
improve the efficiency of CPT computation from these models, and to address NIN-AND
tree acquisition by elicitation of pairwise causal interactions.

1 Introduction

To acquire a BN, for each non-root node, a CPT
needs to be specified. When the BN is con-
structed along the causal direction, a CPT is
the distribution of an effect conditioned on its
n causes. In general, the complexity of CPT
assessment is exponential on n. A number of
techniques have been proposed to make the as-
sessment more efficient. Noisy-OR (Pearl, 1988)
is the most well known that reduces this com-
plexity to linear. A number of extensions have
also been proposed such as (Heckerman and
Breese, 1996; Galan and Diez, 2000; Lemmer
and Gossink, 2004). However, noisy-OR, noisy-
AND (Galan and Diez, 2000), as well as related
techniques, can only represent causal interac-
tions that are reinforcing (Xiang and Jia, 2007).

The NIN-AND tree (Xiang and Jia, 2007)
is a recently proposed technique for efficiently
modeling and acquiring CPT.1 It inherits the
reinforcing behavior of noisy-OR (Pearl, 1988).
It inherits some features of noisy-AND (Galan
and Diez, 2000) while moves away from its im-
peding behavior (see (Xiang and Jia, 2007)) to
allow modeling of undermining. It also inher-
its the flexibility of recursive noisy-OR (Lem-
mer and Gossink, 2004) to allow probabilities

1Being unaware of this work and its precursor (Xiang
and Jia, 2006), (Maaskant and Druzdzel, 2008) indepen-
dently presented special cases of NIN-AND tree models.

of multi-causal events as input. As the result,
NIN-AND tree provides the first causal model
that explicitly expresses reinforcing and under-
mining causal interactions, as well as their mix-
ture. Its acquisition involves elicitation of prob-
ability parameters whose number is linear on n,
and a tree topology whose size is linear on n.

This paper addresses three technical issues
regarding acquisition of NIN-AND tree models
and computations performed on them. First,
given an NIN-AND tree model for an effect
and some of its present causes, the probability
of the effect can be computed, conditioned on
that these causes are present and the remain-
ing causes are absent . We propose a new algo-
rithm to compute this probability from an NIN-
AND tree model, that improves upon the alter-
native in (Xiang and Jia, 2007). The new al-
gorithm takes advantage of minimal NIN-AND
tree models and enables more efficient CPT
computation.

Second, according to a method in (Xiang and
Jia, 2007), the exponential number of probabil-
ity parameters in a CPT can each be computed
from a suitable NIN-AND tree model. Although
all such models can be obtained by modifying a
common base model, an exponential number of
alternative NIN-AND tree models must be cre-
ated in the process. We propose a new method
that can directly compute all probability pa-
rameters of a CPT from the base model, sav-

282 Xiang

ing the computation of creating the exponential
number of NIN-AND trees.

Third, acquisition of the tree topology is a
critical step in specifying an NIN-AND tree
model. Three methods have been proposed: di-
rect specification (Xiang and Jia, 2007), two-
step menu selection (Xiang et al., 2009b), and
identification by pairwise causal interaction (Xi-
ang et al., 2009a). An expert-specified pairwise
causal interaction function may have no corre-
sponding NIN-AND tree model. We propose a
technique to address this issue.

In this paper, we focus on binary effect and
causes. For generalization of NIN-AND tree
models to multi-valued effect and cause vari-
ables, see (Xiang, 2010).

The remainder of the paper is organized as
follows: The background on NIN-AND tree
models is introduced in Section 2. Computa-
tion of conditional probability from an NIN-
AND tree model is addressed in Section 3. The
method for computing CPT without exponen-
tial generation of NIN-AND trees is presented in
Section 4. How to facilitate expert in NIN-AND
tree acquisition by pairwise causal interaction is
described in Section 5.

2 Background
This section is mostly based on (Xiang and Jia,
2007). An uncertain cause is a cause that can
produce an effect but does not always do so.
Denote a binary effect variable by e and a set of
binary cause variables of e by X = {c1, ..., cn}.
Denote e = true by e+ and e = false by e−.
Similarly, for each cause ci, denote ci = true by
c+
i and ci = false by c−i . Denote the set of all

causes (including a leaky cause) of e by C.
A singular causal event refers to an event that

a cause ci caused its effect e to occur successfully
when all other causes of e are absent. Denote
this causal event by e+ ← c+

i and its probability
by P (e+ ← c+

i). The singular causal failure
event, where e is false when ci is true and all
other causes of e are false, is denoted by e+ 6←
c+
i . Denote the multi-causal event that a set

X = {c1, ..., cn} (n > 1) of causes caused e by
e+ ← c+

1 , ..., c+
n or e+ ← x+.

Causes reinforce each other if collectively they
are at least as effective in causing the effect

as some acting by themselves. If collectively
they are less effective, then they undermine each
other. For C = {c1, c2}, if c1 and c2 undermine
each other, all the following hold:

P (e+|c−1 , c−2) = 0, P (e+|c+
1 , c−2) > 0, P (e+|c−1 , c+

2) > 0,

P (e+|c+
1 , c+

2) < min(P (e+|c+
1 , c−2), P (e+|c−1 , c+

2)).

Reinforcement and undermining occur between
individual as well as sets of variables. Variables
within each set can be reinforcing, while the sets
can undermine each other. Hence, Wi in Def. 1
is not necessarily a singleton.
Definition 1. Let R = {W1, W2, ...} be a parti-
tion of a set X of causes, R′ ⊂ R be any proper
subset of R, and Y = ∪Wi∈R′Wi. Sets of causes
in R reinforce each other, iff ∀R′ P (e+ ←
y+) ≤ P (e+ ← x+). Sets of causes in R un-
dermine each other, iff ∀R′ P (e+ ← y+) >
P (e+ ← x+).

Disjoint sets of causes W1, ..., Wm satisfy
failure conjunction iff e+ 6← w+

1 , ..., w+
m =

∧m
i=1(e

+ 6← w+
i). That is, collective failure is

attributed to individual failures. They also
satisfy failure independence iff P (∧m

i=1(e
+ 6←

w+
i)) =

∏m
i=1 P (e+ 6← w+

i). Disjoint sets of
causes W1, ..., Wm satisfy success conjunction iff
e+ ← w+

1 , ..., w+
m = ∧m

i=1(e
+ ← w+

i). That is,
collective success requires individual effective-
ness. They also satisfy success independence iff
P (∧m

i=1(e
+ ← w+

i)) =
∏m

i=1 P (e+ ← w+
i).

Causes are reinforcing whenever they satisfy
failure conjunction and independence, and they
are undermining whenever they satisfy success
conjunction and independence. Hence, under-

+ ++ +

+ + +e c ,...,c1 n

1 n...
e ce c + ++ +

+ + +e c ,...,c1 n

1 n...
e ce c

Figure 1: Direct (left) and dual (right) NIN-
AND gates
mining can be modeled by a direct NIN-AND
gate (Fig. 1, left), and reinforcement by a dual
NIN-AND gate (right). Complex mixture of re-
inforcement and undermining can be modeled
by an NIN-AND tree defined below.

Xiang 283

Definition 2. An NIN-AND tree T is a directed
tree for effect e and a set X = {c1, ..., cn} of
occurring causes.

1. There are two types of nodes, event nodes
(a black oval of in-degree ≤ 1 and out-
degree ≤ 1) and gate nodes (a NIN-AND
gate) of in-degree ≥ 2 and out-degree 1.

2. There are two types of links, each connect-
ing an event and a gate along input-to-
output direction of gates, forward links (a
line) and negation links (with a white oval
at gate end).

3. Each terminal node is an event labelled by a
causal event e+ ← y+ or e+ 6← y+. There
is a single leaf (no child) with y+ = x+,
connecting to the leaf gate. For each
root (no parent; indexed by i), y+

i
⊂ x+,

y+
j
∩ y+

k
= ∅ for j 6= k, and

⋃
i y+

i
= x+.

4. For inputs to a direct gate g, each is either
connected by a forward link to a node la-
belled e+ ← y+, or by a negation link to a
node labelled e+ 6← y+. Gate g outputs by a
forward link to a node labelled e+ ← ∪iy

+
i
.

5. For inputs to a dual gate g, each is either
connected by a forward link to a node la-
belled e+ 6← y+, or by a negation link to a
node labelled e+ ← y+. Gate g outputs by a
forward link to a node labelled e+ 6← ∪iy

+
i
.

Fig. 2 shows an NIN-AND tree, where X =
{c1, ..., c5}. The leaf gate g1 is dual, and so is g3.
The remaining gates are direct. Causes c2 and
c5 are undermining each other, but they rein-
force c3 (and vice versa). Collectively, the three
undermines c4. The four of them reinforces c1.

A root node may be labelled by a singular or
multi-causal event. In this paper, we assume
that it is singular. When we refer to a node in
T by v, we overload the symbol v to refer also
to the causal event that labels the node.

Definition 3. An NIN-AND tree model M is a
quadruple (X, e, T, B). X is a set of uncertain
causes of effect e. T is an NIN-AND tree for e
and X. B is a set of parameters, one for each

root in T and being a potential in (0, 1] over the
corresponding causal event.

g4

g1

g2

g3

e c , c 2 5
+ + +

e c+ +
5

e c+ +
1

4e c+ +

e c+ +
3

+ + + +
2 3 5e c , c , c

+ + + + +e c , c , c , c

+ + + + + +
1 2 3 4 5e c , c , c , c , c

2 3 4 5

2e c+ +

Figure 2: An NIN-AND tree
For a root v in T , when parameter B(v) < 1,

it represents probability P (v). When B(v) = 1,
it plays a special role to be described below. T

is a full NIN-AND tree if X = C, otherwise T is
partial. Model M is defined to be full or partial
similarly.

Model M = (X, e, T,B) can be obtained by
eliciting tree T plus |X | singular causal proba-
bilities. Probability P (e+|x+, y−), where C =
X ∪ Y and X ∩ Y = ∅, can then be derived as
P (e+ ← x+).
Definition 4. An NIN-AND tree T is minimal
if, whenever a gate g feeds directly into another
gate g′, the types (direct or dual) of g and g′

differ.

The NIN-AND tree in Fig. 2 is minimal.
Model M = (X, e, T,B) is minimal if T is min-
imal.

3 Probability of Leaf Causal Event

Algorithm 1 below computes probability of the
leaf event of a minimal NIN-AND tree model
M . All nodes mentioned are event nodes. We
refer to the number of gate nodes from an event
node v to the leaf as the level of v. If event node
w feeds into a gate that connects to event node
v, we simply refer to w as the parent of v.
Algorithm 1. GetLeafEventProb(M)
Input: A minimal NIN-AND tree model M ;

284 Xiang

1 for each non-root node v, set B(v) = 1;
2 L = max level of any root in T ;
3 for lev = L− 1 to 0, do
4 for each non-root node v at level lev, do
5 for each parent w of v, do
6 if w is a root, B(v) = B(v) ∗B(w);
7 else if B(w) < 1,
8 B(v) = B(v) ∗ (1−B(w));
9 return B(x) where x is the leaf;

Consider model M = (X, e, T,B), where T is
shown in Fig. 2 and B is defined as follows:

P (e+ 6← c+
1) = 0.2, P (e+ ← c+

2) = 0.85,

P (e+ 6← c+
3) = 0.3, P (e+ ← c+

4) = 0.65,
P (e+ ← c+

5) = 0.75

GetLeafEventProb(M) returns P (e+ 6←
c+
1 , ..., c+

5) = 0.0841375, that is, P (e+ ←
c+
1 , ..., c+

5) = 0.9158625.
The following proposition shows that if all

parameters in M are root event probabilities,
GetLeafEventProb(M) computes the leaf event
probability exactly.

Proposition 1. Let M be a minimal NIN-
AND tree model with the leaf node x and with
B(v) = P (v) < 1 for each root v. Then B(x)
returned from GetLeafEventProb(M) is equal
to P (x) as determined by root event probabili-
ties and causal interactions encoded in the tree
topology of M .

Proof: We prove by induction on the maximal
level L of any root. If L = 1, all parents of the
leaf x are roots. The loop beginning at line 3
iterates exactly once and so does the loop at line
4 (relative to x). Each parent w of leaf x has
B(w) = P (w) from specification of M . Hence,
we have B(x) =

∏
w P (w) from line 6. Since

each P (w) < 1, we have B(x) < 1.
If the leaf gate g is direct, by Def. 2 (4), each

w is a causal success and so is x. T implies that
causes satisfy success conjunction and indepen-
dence. Hence, B(x) correctly models their un-
dermining relation, and B(x) = P (x). If g is
dual, by Def. 2 (5), each w is a causal failure
and so is x. T implies that causes satisfy fail-
ure conjunction and independence. Hence, B(x)
correctly models their reinforcing relation, and
B(x) = P (x).

Assuming that the proposition holds with
L ≤ k for k ≥ 1, consider the case L = k + 1.
Let y be a node at level 1. If y is a root, we
have B(y) = P (y) from specification of M .

If y is a non-root, it defines a subtree T ′

of T with the leaf being y, and a correspond-
ing submodel M ′. The loop at line 3 iter-
ates k+1 times during GetLeafEventProb(M).
The computation in the first k iterations that
involves nodes in T ′ is exactly the same compu-
tation performed by GetLeafEventProb(M ′).
Since for M ′, L′ ≤ k, by inductive hypothe-
sis, B(y) returned by GetLeafEventProb(M ′)
is exactly P (y). Hence, at the end of k’th iter-
ation during GetLeafEventProb(M), we have
B(y) = P (y) < 1.

The above argument holds for each node y at
level 1. At the k+1’th iteration (loop at line 3)
of GetLeafEventProb(M), node v is the leaf
x. If y is a root, B(y) affects B(x) through line
6. This is correct since y and x are either both
causal successes or both causal failures. If y is
a non-root, since B(y) < 1, test in line 7 will
succeed, and B(y) affects B(x) through line 8.
This is correct since M is minimal. Either y is a
causal failure and x is a causal success, or y is a
causal success and x is a causal failure. Hence,
B(x) is computed by the correct product ac-
cording to the type of leaf gate (and its implied
causal interaction), and we have B(x) = P (x).

2

Computation of leaf event probability is an
essential component of NIN-AND tree model-
ing. The algorithm above improves upon that
in (Xiang and Jia, 2007). It takes advantage of
a minimal model, while the latter does not. It
is iterative while the latter is recursive. Hence,
when the number of input events of a gate is
upper bounded, its complexity is O(n), while
that of the latter is O(n2). This saving is am-
plified during CPT computation, as it needs to
be preformed O(2n) times, as shown below.

4 CPT Computation without
Model Regeneration

NIN-AND tree models can be used to acquire a
CPT P (e|C) efficiently. As proposed in (Xiang

Xiang 285

and Jia, 2007), the model M = (C, e, T, B) is
elicited first, from which P (e+|c+) can be com-
puted as P (e+ ← c+). For each P (e+|x+, y−),
where X ⊂ C and Y = C \ X , a model
M ′ = (X, e, T ′, B′) is created by modifying T

into T ′. The modification involves removing
roots corresponding to absent causes as well
as downstream event and gate nodes, and ar-
rives at a significantly different tree structure.
P (e+|x+, y−) is then computed from M ′ as
P (e+ ← x+). Hence, this method requires gen-
eration of O(2|C|) NIN-AND tree models M ′.

For instance, suppose C = {c1, ..., c5}
and T is as shown in Fig. 2. To com-
pute P (e+|c+

1 , c+
2 , c+

3 , c−4 , c+
5) = P (e+ ←

c+
1 , c+

2 , c+
3 , c+

5), T is modified by deleting event
node e+ ← c+

4 and gate g2 to create T ′ as shown
in Fig. 3 (a). T ′ is not minimal. To use the
equivalent minimal NIN-AND tree, the model
shown in (b) needs to be created.

g3

g4

g4

g3
e c+ +

1

(a)

+ + + + +e c , c , c , c1 2 3 5

5
+ +e c

+ + +
2 5 e c , c

(b)

e c , c 2 5
+ + +

e c+ +
5

e c+ +
3

+ + + +
2 3 5e c , c , c

+ + + + +e c , c , c , c1 2 3 5

g1

2e c+ +

2e c+ +

e c+ +
1

e c+ +
3

Figure 3: NIN-AND trees modified from Fig. 2
when c4 is absent

We propose an alternative method below for
CPT computation which does not require gen-

eration of an exponential number of models.

Algorithm 2. GetCPTByNinAndTree(M)
Input: A minimal, full NIN-AND tree model M ;

1 M’ = M;
2 P (e+|c+) = GetLeafEventProb(M ′);
3 P (e+|c−) = 0;
4 for each non-empty X ⊂ C, do
5 Y = C \X;
6 for each root v in T , do
7 if causal event at v involves z ∈ X,
8 set B′(v) = B(v);
9 else set B′(v) = 1;
10 P (e+|x+, y−) = GetLeafEventProb(M ′);
11 return P (e+|C);

GetCPTByNinAndTree(M) uses a dupli-
cated model M ′ of M for computing all proba-
bilities in P (e+|C). P (e+|c+), where all causes
are present, is derived from unmodified M ′.
P (e+|c−), where all causes are absent, is triv-
ially set, as C is the entire set of causes of e.

All other probabilities in P (e+|C) are in the
form P (e+|x+, y−), and are computed by the
loop started in line 4, one per iteration. In the
iteration relative to a given P (e+|x+, y−), the
potential for each root in M ′ is reset by the loop
started in line 6. For each root whose causal
event concerns the cause z, if x+ includes z,
the potential associated with the root is set to
the potential in the corresponding root in M .
Otherwise, y− must include z, and the potential
of the root is set to 1. We consider the effect of
this assignment below.

According to Algorithm 1, root potentials are
not modified. From line 6 of Algorithm 1, if the
potential of a root v is 1, it has no impact to
the potential of its child node, and hence has no
impact to the value of P (e+|x+, y−). When a
cause z is included in y−, it is absent. Hence,
this is exactly the effect expected.

Furthermore, consider the child node u of the
root v. If all its parents of u are roots like v,
B(u) will remain at the value 1 due to line 1 of
Algorithm 1. Hence, B(u) will have no impact
to the value of P (e+|x+, y−). This is exactly
the effect expected when causes appearing up-
stream to u are all absent.

On the other hand, if any root parent w of

286 Xiang

u involves a cause z that is included in x+, it
must be the case B(w) < 1 (Algorithm 2, line
8). By line 6 of Algorithm 1, B(w) affects B(u)
correctly as a factor.

By an inductive argument, any non-root w
with ancestors that involve causes in x+, it must
be the case B(w) < 1. By lines 7 and 8 of
Algorithm 1, B(w) will affect B(u) correctly as
a factor, where u is the child of w. This leads
to the following theorem whose proof can be
phrased based on the above analysis.

Theorem 1. Let M be a minimal, full NIN-
AND tree model with B(v) = P (v) < 1 for each
root v. Then P (e+|C) returned by GetCPT-
ByNinAndTree(M) is exact relative to root event
probabilities and causal interactions encoded in
the tree topology of M .

Note that GetCPTByNinAndTree(M)
needs only modify the root potentials of M ′ for
the computation of each P (e+|x+, y−). Hence,
the computation to generate an exponential
number of NIN-AND tree models is saved
without affecting exactness.

5 Tree Structure Acquisition by
Pairwise Causal Interaction

To acquire a minimal NIN-AND tree model
M = (C, e, T, B), the tree structure T must
be obtained. It has been shown (Xiang et al.,
2009a) that T defines a pairwise causal inter-
action function pci from pairs of distinct causes
{ci, cj} ⊂ C, where i 6= j, to the set {rif, udm},
where rif stands for reinforcing and udm stands
for undermining. Table 1 shows an example.

Table 1: The pci function defined by NIN-AND
tree in Fig. 2

ci cj pci(ci, cj) ci cj pci(ci, cj)
c1 c2 rif c2 c4 udm
c1 c3 rif c2 c5 udm
c1 c4 rif c3 c4 udm
c1 c5 rif c3 c5 rif
c2 c3 rif c4 c5 udm

Furthermore, for |C| ≤ 10, it has been com-
putationally verified (Xiang et al., 2009a) that,

the pci function of T is unique among pci func-
tions of alternative minimal NIN-AND trees
over C and e. Therefore, given the pci func-
tion of T , the tree structure can be identified
uniquely. For instance, given Table 1, Fig. 2
is the unique full minimal NIN-AND tree. This
fact suggests that, instead of eliciting T directly
from expert, it can be obtained alternatively by
eliciting the corresponding pci function. Denote
n = |C|, the number of pairwise causal interac-
tions to be elicited is n(n−1)/2. We investigate
this approach below.

First of all, does every pci function corre-
spond to a NIN-AND tree? Since given n = |C|,
the number of pairwise causal interactions is
n(n− 1)/2, the number of alternative pci func-
tion for n causes is 2n(n−1)/2.

On the other hand, every NIN-AND tree de-
fines the same pci function as its minimal NIN-
AND tree. Hence, it is sufficient to count the
number of minimal NIN-AND trees. Unfortu-
nately, no closed formula is known for the num-
ber of minimal NIN-AND trees over n causes.
Instead, the number can be obtained by enu-
meration of minimal NIN-AND trees given n
(Xiang et al., 2009b; Xiang et al., 2009a).

Table 2 compares the number of alternative
pci functions and that of minimal NIN-AND
trees given n. The rows are indexed by n. The
second column lists the number of pci functions.
The third column lists the number of minimal
NIN-AND trees. The last column is the ratio of
the number in the second column over that in
the third column.

Table 2: Comparison of the number of pci func-
tions and that of minimal NIN-AND trees

n No. pci func No. trees Ratio
3 8 8 1
4 64 52 1.2
5 1024 472 2.2
6 32768 5504 6
7 2097152 78416 26.7
8 268435456 1320064 203
9 68719476736 25637824 2680

We refer to a pci function that can be imple-

Xiang 287

mented by an NIN-AND tree as feasible. Oth-
erwise, it is infeasible. Hence, Table 2 shows
that other than n = 3, there are more infea-
sible pci functions than feasible ones. It fol-
lows that in acquisition of an NIN-AND tree by
elicitation of the corresponding pci function, an
expert could specify an infeasible pci function.
This could happen for at least two reasons. The
expert could misspecify some pairwise interac-
tion (human error), or the specified function is
not expressible by an NIN-AND tree model.

From the human error perspective, having
more infeasible pci functions is desirable, be-
cause a misspecified pci function can thus be
detected rather than being regarded as feasible
and causing an unintended NIN-AND tree to be
returned unnoticed.

Furthermore, as n grows, the ratio between
number of pci functions and number of minimal
NIN-AND trees grows very rapidly. This is also
desirable because, as n grows, a misspecified pci
function is even more likely to be detected. This
counter-balances the increased chance of human
error due to the increased number of pairwise
causal interactions to be elicited as n grows.

Next, we consider what an NIN-AND tree ac-
quisition software should do when expert spec-
ifies an infeasible pci function. Rejecting the
function is a simple measure. However, it would
be more helpful to assist expert in correcting
the mistake in the case of human error, and in
providing an approximation in the case of inex-
pressibility. We propose such a method below.

Definition 5. Let C be a set of causes and Pci
be a pci function over C. Let ρ be an ordering of
pairs of causes in C. Let Pciρ be the sequence
of Pci values ordered according to ρ. Let BPciρ
be the binary string obtained from Pciρ by re-
placing each rif value with 1 and each udm value
with 0. Then BPciρ is the binary string expres-
sion of Pci relative to ordering ρ.

Definition 6. Let C be a set of causes, and Pci

and Pci′ be two pci functions over C. Let BPciρ
and BPci′ρ be the binary string expressions of
Pci and Pci′, relative to ordering ρ of causes
in C. Then the following sum is the distance

between Pci and Pci′:

Dist(Pci, Pci′) =
n(n−1)/2∑

i=1

|BPciρ[i]−BPci′ρ[i]|,

where BPciρ[i] refers to the ith bit of BPciρ.

Definition 7. Let Pci be a pci function over
C. The minimum distance of Pci from feasible
pci functions over C is

MinDist(Pci) = min
T

Dist(Pci, PciT),

where PciT is the pci function defined by an
NIN-AND tree T .

Note MinDist(Pci) = 0 if Pci is feasible.
Otherwise, we have MinDist(Pci) > 0, and
there exists a set of minimal NIN-AND trees
whose pci functions differ from Pci by distance
MinDist(Pci). When an expert-specified Pci

is detected as infeasible, we propose to return
in response either this set of minimal NIN-AND
trees or the pairwise interactions implied by
them with those interactions that differ from
Pci highlighted. This response should be useful
for interactive error correction by expert and for
choosing the best approximate NIN-AND tree.

For example, suppose that expert speci-
fied the pci function in Table 1 with an er-
ror pci(c2, c4) = rif . The resultant func-
tion Pci is infeasible. It can be shown that
MinDist(Pci) = 1 and there are six minimal
NIN-AND trees whose pci functions differ from
Pci by distance 1. One of them is Fig. 2.

We exhaustively tested all pci functions for
4 ≤ n ≤ 7 (Test for n = 7 took about 50 hours
on a 8-core workstation). For each n value, we
define the following maximal minimum distance
between individual pci function and feasible pci
functions over n causes:

MaxMinDist(n) = max
Pci

MinDist(Pci),

where Pci is a pci function over n causes. Ta-
ble 3 shows this distance for 4 ≤ n ≤ 7.

This result shows that for n = 7, if a func-
tion Pci is infeasible, a minimal NIN-AND tree
exists whose pci function differs from Pci by
no more than four pairwise causal interactions.

288 Xiang

Table 3: Maximal minimum distance between
individual pci function and feasible ones

n 4 5 6 7
MaxMinDist(n) 1 2 2 4

Our experiments also show that for many in-
feasible pci functions, a minimal NIN-AND tree
exists whose pci function differs from the infea-
sible pci function by one pairwise interaction.

For an infeasible pci function Pci, there ex-
ist generally multiple minimal NIN-AND trees
whose pci functions differ from Pci by distance
MinDist(Pci). We define the maximum num-
ber of minimum distance trees for pci functions
over n causes as follows:

MaxNumMinDistTree(n) = max
Pci

|MinDistTree(Pci)|,

where Pci is a pci function over n causes, and
MinDistTree(Pci) is the set of minimal NIN-
AND trees whose pci functions differ from Pci
by distance MinDist(Pci). Table 3 shows this
number for 4 ≤ n ≤ 7.

Table 4: Maximum number of minimum dis-
tance trees for pci functions over n causes

n 4 5 6 7
MaxNumMinDistTree(n) 6 10 15 49

Our experiments also show that for many in-
feasible pci functions, |MinDistTree(Pci)| is a
small number (less than 10).

These results suggest that acquisition of min-
imal NIN-AND trees through elicitation of pci
function is feasible.

6 Conclusion

We presented an algorithm that improves the
efficiency for computing conditional probability
from an NIN-AND tree model. We proposed an-
other algorithm that computes CPT from a full
minimal NIN-AND tree model without having
to generate an exponential number of models.
Finally, we presented a technique that allows
interactive acquisition of NIN-AND trees from
pairwise causal interactions.

Future work includes suitability of NIN-AND
trees as approximations of arbitrary CPTs,
their exploitation in inference, human acquisi-
tion testing, and acquisition from learning.

Acknowledgement

Financial support from NSERC Discovery
Grant is acknowledged. I thank anonymous re-
viewers for their comments.

References

S.F. Galan and F.J. Diez. 2000. Modeling dynamic
causal interaction with Bayesian networks: temporal
noisy gates. In Proc. 2nd Inter. Workshop on Causal
Networks, pages 1–5.

D. Heckerman and J.S. Breese. 1996. Causal indepen-
dence for probabilistic assessment and inference using
Bayesian networks. IEEE Trans. on System, Man and
Cybernetics, 26(6):826–831.

J.F. Lemmer and D.E. Gossink. 2004. Recursive noisy
OR - a rule for estimating complex probabilistic in-
teractions. IEEE Trans. on System, Man and Cyber-
netics, Part B, 34(6):2252–2261.

P.P. Maaskant and M.J. Druzdzel. 2008. An indepen-
dence of causal interactions model for opposing in-
fluences. In M. Jaeger and T.D. Nielsen, editors,
Proc. 4th European Workshop on Probabilistic Graph-
ical Models, pages 185–192, Hirtshals, Denmark.

J. Pearl. 1988. Probabilistic Reasoning in Intelligent
Systems: Networks of Plausible Inference. Morgan
Kaufmann.

Y. Xiang and N. Jia. 2006. Modeling causal rein-
forcement and undermining with noisy-and trees. In
L. Lamontagne and M. Marchand, editors, Advances
in Artificial Intelligence, LNAI 4013, pages 171–182.
Springer-Verlag.

Y. Xiang and N. Jia. 2007. Modeling causal rein-
forcement and undermining for efficient cpt elicita-
tion. IEEE Trans. Knowledge and Data Engineering,
19(12):1708–1718.

Y. Xiang, Y. Li, and J. Zhu. 2009a. Towards effec-
tive elicitation of NIN-AND tree causal models. In
L. Godo and A. Pugliese, editors, Inter. Conf. on Scal-
able Uncertainty Management (SUM 2009), LNAI
5785, pages 282–296. Springer-Verlag Berlin Heidel-
berg.

Y. Xiang, J. Zhu, and Y. Li. 2009b. Enumerating unla-
beled and root labeled trees for causal model acquisi-
tion. In Y. Gao and N. Japkowicz, editors, Advances
in Artificial Intelligence, LNAI 5549, pages 158–170.
Springer.

Y. Xiang. 2010. Generalized non-impeding noisy-AND
trees. In Proc. 23th Inter. Florida Artificial Intelli-
gence Research Society Conf., pages 555–560.

Author Index

Agosta, John Mark, 1
Ahmadi, Babak, 9
Ammar, Sourour, 17

Bielza, Concha, 25
Bilgiç, Taner , 217
Blockeel, Hendrik, 193
Borchani, Hanen, 25
Buntine, Wray, 33
Butz, Cory, 41

Cano, Andrés, 49
Cartella, Francesco, 169
Castelo, Robert, 249
Cattaneo, Marco, 57
Choi, Arthur, 65, 113
Chopin, Morgan, 73
Claassen, Tom , 81
Cobb, Barry, 89, 97
Codetta-Raiteri, Daniele, 105

Darwiche, Adnan, 65, 113
Du, Lan, 33

Eberhardt, Frederick, 153
Entner, Doris, 121
Evers, Sander, 129

Fernández, Antonio, 137

Gómez-Olmedo, Manuel, 49
Gómez-Villegas, Miguel A., 145
Gatti, Elena, 161
Gonzales, Christophe, 273

Hadiji, Fabian, 9
Hansen, Eric A., 177
Heinonen, Markus, 265
Hemmecke, Raymond, 257
Heskes, Tom , 81
Hommersom, Arjen, 185
Hoyer, Patrik, 121, 153
Hyttinen, Antti, 153

Jensen, Finn, 161

Kerstin, Kristian, 9
Khan, Omar Zia, 1

Langseth, Helge, 137
Larrañaga, Pedro, 25
Lemeire, Jan, 169
Leray, Philippe, 17
Lim, Heejin, 177
Lindner, Silvia, 257
Lucas, Peter, 129, 185

Main, Paloma, 145
Meert, Wannes, 193
Meganck, Stijn, 169
Moral, Serafin, 49

Navarro, Hilario, 145
Nielsen, Thomas, 137
Nurmi, Petteri, 33

Ottosen, Thorsten, 201, 209
Özgür-Ünlüakin, Demet, 217

Pérez-Ariza, Cora, 49
Peña, Jose M., 225
Portinale, Luigi, 105
Poupart, Pascal, 1

Renooij, Silja, 233, 241
Rousu, Juho, 265
Roverato, Alberto, 249

Salmerón, Antonio, 49, 137
Schnitzler, François, 17
Struyf, Jan, 193
Studený, Milan, 257
Su, Hongyu, 265
Susi, Rosario, 145

Torti, Lionel, 273

Vomlel, Jǐŕı, 201, 209

Wehenkel, Louis, 17
Wuillemin, Pierre-Henri, 73, 273

Xiang, Yang, 281

Yan, Wen, 41
Yuan, Changhe, 177

