974 research outputs found

    Review of medical data analysis based on spiking neural networks

    Full text link
    Medical data mainly includes various types of biomedical signals and medical images, which can be used by professional doctors to make judgments on patients' health conditions. However, the interpretation of medical data requires a lot of human cost and there may be misjudgments, so many scholars use neural networks and deep learning to classify and study medical data, which can improve the efficiency and accuracy of doctors and detect diseases early for early diagnosis, etc. Therefore, it has a wide range of application prospects. However, traditional neural networks have disadvantages such as high energy consumption and high latency (slow computation speed). This paper presents recent research on signal classification and disease diagnosis based on a third-generation neural network, the spiking neuron network, using medical data including EEG signals, ECG signals, EMG signals and MRI images. The advantages and disadvantages of pulsed neural networks compared with traditional networks are summarized and its development orientation in the future is prospected

    Spiking Neural Networks for Inference and Learning: A Memristor-based Design Perspective

    Get PDF
    On metrics of density and power efficiency, neuromorphic technologies have the potential to surpass mainstream computing technologies in tasks where real-time functionality, adaptability, and autonomy are essential. While algorithmic advances in neuromorphic computing are proceeding successfully, the potential of memristors to improve neuromorphic computing have not yet born fruit, primarily because they are often used as a drop-in replacement to conventional memory. However, interdisciplinary approaches anchored in machine learning theory suggest that multifactor plasticity rules matching neural and synaptic dynamics to the device capabilities can take better advantage of memristor dynamics and its stochasticity. Furthermore, such plasticity rules generally show much higher performance than that of classical Spike Time Dependent Plasticity (STDP) rules. This chapter reviews the recent development in learning with spiking neural network models and their possible implementation with memristor-based hardware

    Sleep-like slow oscillations improve visual classification through synaptic homeostasis and memory association in a thalamo-cortical model

    Full text link
    The occurrence of sleep passed through the evolutionary sieve and is widespread in animal species. Sleep is known to be beneficial to cognitive and mnemonic tasks, while chronic sleep deprivation is detrimental. Despite the importance of the phenomenon, a complete understanding of its functions and underlying mechanisms is still lacking. In this paper, we show interesting effects of deep-sleep-like slow oscillation activity on a simplified thalamo-cortical model which is trained to encode, retrieve and classify images of handwritten digits. During slow oscillations, spike-timing-dependent-plasticity (STDP) produces a differential homeostatic process. It is characterized by both a specific unsupervised enhancement of connections among groups of neurons associated to instances of the same class (digit) and a simultaneous down-regulation of stronger synapses created by the training. This hierarchical organization of post-sleep internal representations favours higher performances in retrieval and classification tasks. The mechanism is based on the interaction between top-down cortico-thalamic predictions and bottom-up thalamo-cortical projections during deep-sleep-like slow oscillations. Indeed, when learned patterns are replayed during sleep, cortico-thalamo-cortical connections favour the activation of other neurons coding for similar thalamic inputs, promoting their association. Such mechanism hints at possible applications to artificial learning systems.Comment: 11 pages, 5 figures, v5 is the final version published on Scientific Reports journa

    Spike-Based Classification of UCI Datasets with Multi-Layer Resume-Like Tempotron

    Get PDF
    Spiking neurons are a class of neuron models that represent information in timed sequences called ``spikes.\u27\u27 Though predominantly used in neuro-scientific investigations, spiking neural networks (SNN) can be applied to machine learning problems such as classification and regression. SNN are computationally more powerful per neuron than traditional neural networks. Though training time is slow on general purpose computers, spike-based hardware implementations are faster and have shown capability for ultra-low power consumption. Additionally, various SNN training algorithms have achieved comparable performance with the State of the Art on the Fisher Iris dataset. Our main contribution is a software implementation of the multilayer ReSuMe algorithm using the Tempotron principle. The XOR problem is solved in only 13.73 epochs on average. However, training time on four different UCI datasets is slow, and, although decent performance is seen, in most respects the accuracy of our SNN underperforms compared to other SNN, SVM, and ANN experiments. Additionally, our results on the UCI dataset are only preliminary, necessitating further tuning

    How to Solve Classification and Regression Problems on High-Dimensional Data with a Supervised Extension of Slow Feature Analysis

    Get PDF
    Supervised learning from high-dimensional data, e.g., multimedia data, is a challenging task. We propose an extension of slow feature analysis (SFA) for supervised dimensionality reduction called graph-based SFA (GSFA). The algorithm extracts a label-predictive low-dimensional set of features that can be post-processed by typical supervised algorithms to generate the final label or class estimation. GSFA is trained with a so-called training graph, in which the vertices are the samples and the edges represent similarities of the corresponding labels. A new weighted SFA optimization problem is introduced, generalizing the notion of slowness from sequences of samples to such training graphs. We show that GSFA computes an optimal solution to this problem in the considered function space, and propose several types of training graphs. For classification, the most straightforward graph yields features equivalent to those of (nonlinear) Fisher discriminant analysis. Emphasis is on regression, where four different graphs were evaluated experimentally with a subproblem of face detection on photographs. The method proposed is promising particularly when linear models are insufficient, as well as when feature selection is difficult
    corecore