1,197 research outputs found

    Towards an HLA Run-time Infrastructure with Hard Real-time Capabilities

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. The HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to providing real-time capabilities to Run Time Infrastructures (RTI) to run real time simulation. Most of these initiatives focus on major issues including QoS guarantee, Worst Case Transit Time (WCTT) knowledge and scheduling services provided by the underlying operating systems. Even if our ultimate objective is to achieve real-time capabilities for distributed HLA federations executions, this paper describes a preliminary work focusing on achieving hard real-time properties for HLA federations running on a single computer under Linux operating systems. Our paper proposes a novel global bottom up approach for designing real-time Run time Infrastructures and a formal model for validation of uni processor to (then) distributed real-time simulation with CERTI

    Holistic debugging - enabling instruction set simulation for software quality assurance

    Get PDF
    We present holistic debugging, a novel method for observing execution of complex and distributed software. It builds on an instruction set simulator, which provides reproducible experiments and non-intrusive probing of state in a distributed system. Instruction set simulators, however, only provide low-level information, so a holistic debugger contains a translation framework that maps this information to higher abstraction level observation tools, such as source code debuggers. We have created Nornir, a proof-of-concept holistic debugger, built on the simulator Simics. For each observed process in the simulated system, Nornir creates an abstraction translation stack, with virtual machine translators that map machine-level storage contents (e.g. physical memory, registers) provided by Simics, to application-level data (e.g. virtual memory contents) by parsing the data structures of operating systems and virtual machines. Nornir includes a modified version of the GNU debugger (GDB), which supports non-intrusive symbolic debugging of distributed applications. Nornir's main interface is a debugger shepherd, a programmable interface that controls multiple debuggers, and allows users to coherently inspect the entire state of heterogeneous, distributed applications. It provides a robust observation platform for construction of new observation tools

    Assessing the impact of algorithmic trading on markets: a simulation approach

    Get PDF
    Innovative automated execution strategies like Algorithmic Trading gain significant market share on electronic market venues worldwide, although their impact on market outcome has not been investigated in depth yet. In order to assess the impact of such concepts, e.g. effects on the price formation or the volatility of prices, a simulation environment is presented that provides stylized implementations of algorithmic trading behavior and allows for modeling latency. As simulations allow for reproducing exactly the same basic situation, an assessment of the impact of algorithmic trading models can be conducted by comparing different simulation runs including and excluding a trader constituting an algorithmic trading model in its trading behavior. By this means the impact of Algorithmic Trading on different characteristics of market outcome can be assessed. The results indicate that large volumes to execute by the algorithmic trader have an increasing impact on market prices. On the other hand, lower latency appears to lower market volatility

    Performance Analysis of Optimization Methods in PSE Applications. Mathematical Programming Versus Grid-based Multi-parametric Genetic Algorithms

    Get PDF
    Due to their large variety of applications in the PSE area, complex optimisation problems are of high interest for the scientific community. As a consequence, a great effort is made for developing efficient solution techniques. The choice of the relevant technique for the treatment of a given problem has already been studied for batch plant design issues. However,most works reported in the dedicated literature classically considered item sizes as continuous variables. In a view of realism, a similar approach is proposed in this paper, with discrete variables representing equipment capacities. The numerical results enable to evaluate the performances of two mathematical programming (MP) solvers embedded within the GAMS package and a genetic algorithm (GA), on a set of seven increasing complexity examples. The necessarily huge number of runs for the GA could be performed within a computational framework basedon a grid infrastructure; however, since the MP methods were tackled through single-computer computations, the CPU time comparison are reported for this one-PC working mode. On the one hand, the high combinatorial effect induced by the new discrete variables heavily penalizes the GAMS modules, DICOPTĂŸĂŸand SBB. On the other hand, the Genetic Algorithm proves its superiority, providing quality solutions within acceptable computational times, whatever the considered example

    HLA high performance and real-time simulation studies with CERTI

    Get PDF
    Our work takes place in the context of the HLA standard and its application in real-time systems context. Indeed, current HLA standard is inadequate for taking into consideration the different constraints involved in real-time computer systems. Many works have been invested in order to provide real-time capabilities to Run Time Infrastructures (RTI). This paper describes our approach focusing on achieving hard real-time properties for HLA federations through a complete state of the art on the related domain. Our paper also proposes a global bottom up approach from basic hardware and software basic requirements to experimental tests for validation of distributed real-time simulation with CERTI

    Half a billion simulations: evolutionary algorithms and distributed computing for calibrating the SimpopLocal geographical model

    Get PDF
    Multi-agent geographical models integrate very large numbers of spatial interactions. In order to validate those models large amount of computing is necessary for their simulation and calibration. Here a new data processing chain including an automated calibration procedure is experimented on a computational grid using evolutionary algorithms. This is applied for the first time to a geographical model designed to simulate the evolution of an early urban settlement system. The method enables us to reduce the computing time and provides robust results. Using this method, we identify several parameter settings that minimise three objective functions that quantify how closely the model results match a reference pattern. As the values of each parameter in different settings are very close, this estimation considerably reduces the initial possible domain of variation of the parameters. The model is thus a useful tool for further multiple applications on empirical historical situations

    Batsim: a Realistic Language-Independent Resources and Jobs Management Systems Simulator

    No full text
    International audienceAs large scale computation systems are growing to exascale, Resources and Jobs Management Systems (RJMS) need to evolve to manage this scale modification. However, their study is problematic since they are critical production systems, where experimenting is extremely costly due to downtime and energy costs. Meanwhile, many scheduling algorithms emerging from theoretical studies have not been transferred to production tools for lack of realistic experimental validation. To tackle these problems we propose Batsim, an extendable, language-independent and scalable RJMS simulator. It allows researchers and engineers to test and compare any scheduling algorithm, using a simple event-based communication interface, which allows different levels of realism. In this paper we show that Batsim's behaviour matches the one of the real RJMS OAR. Our evaluation process was made with reproducibility in mind and all the experiment material is freely available
    • 

    corecore