
PERFORMANCE ANALYSIS OF
OPTIMIZATION METHODS IN PSE
APPLICATIONS
Mathematical Programming Versus Grid-
based Multi-parametric Genetic Algorithms

A. Ponsich1, I. Touche1, C. Azzaro-Pantel1,�, M. Daydé2, S. Domenech1 and
L. Pibouleau1

1Laboratoire de Génie Chimique, UMR 5503 CNRS/INP/UPS, Toulouse, France.
2Institut de Recherche en Informatique de Toulouse, UMR 5505 CNRS/INP/UPS ENSEEIHT, Toulouse,

France.

Abstract: Due to their large variety of applications in the PSE area, complex optimisation pro-
blems are of high interest for the scientific community. As a consequence, a great effort is made
for developing efficient solution techniques. The choice of the relevant technique for the treat-
ment of a given problem has already been studied for batch plant design issues. However,
most works reported in the dedicated literature classically considered item sizes as continuous
variables. In a view of realism, a similar approach is proposed in this paper, with discrete vari-
ables representing equipment capacities. The numerical results enable to evaluate the perform-
ances of two mathematical programming (MP) solvers embedded within the GAMS package and
a genetic algorithm (GA), on a set of seven increasing complexity examples. The necessarily
huge number of runs for the GA could be performed within a computational framework based
on a grid infrastructure; however, since the MP methods were tackled through single-computer
computations, the CPU time comparison are reported for this one-PC working mode. On the
one hand, the high combinatorial effect induced by the new discrete variables heavily penalizes
the GAMS modules, DICOPTþþ and SBB. On the other hand, the Genetic Algorithm proves its
superiority, providing quality solutions within acceptable computational times, whatever the
considered example.

Keywords: grid computing; batch plant design; genetic algorithms; mathematical programming.

INTRODUCTION

A great variety of applications drawn from the
Process System Engineering can be formu-
lated as complex optimization problems.
This large number of optimization problems
arises from models that have to enable, for
industrial requirements, a truly realistic rep-
resentation of the system they account for.
Consequently, these models tend to show
an increasing sophistication and complexity,
basically deriving from three issues: presence
of integer variables (breeding high compu-
tational times), of non-linearities (that some-
times prevent from getting a global optimum)
and of severe constraints (making the
search for feasible solutions a harsh process).
In order to face these problems, a significant

investigation effort has been carried out to
develop efficient and robust optimization
methods. But if they prove to be well-fitted
to the particular case they consider, the

performanceof these techniques isnot constant
over all the problems. Actually, method effi-
ciency for a particular example is hardly predict-
able. This feature generates a common lack of
explanation concerning the use of a method
for the solution of a particular example and
usually, no relevant justification for its choice is
given a priori. A previous work, comparing the
performance of three optimization methods for
a few instances of some specific batch plant
design problems, provided some guidelines on
the most appropriate methods: it proved the
superiority of a Branch & Bound technique on
agenetic algorithmandanouter approximation
algorithm (Ponsich et al., 2006b).
However, in the formulation adopted in the

abovementioned study, the item sizes
(volumes for batch stages and treatment
capacity for semi-continuous stages) are con-
tinuous variables. Yet, it seems obvious that
in the industrial practice, the design of items
equipments does not require such a level of

�Correspondence to:
Professor C. Azzaro-Pantel,
Laboratoire de Génie
Chimique, UMR 5503 CNRS/
INP/UPS, 5 rue Paulin
Talabot-BP 1301, 31106
Toulouse Cedex 1, France.
E-mail:
catherine.AzzaroPantel@
ensiacet.fr

/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Archive Toulouse Archive Ouverte

https://core.ac.uk/display/12039643?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

accuracy, which seems not realistic. Besides, equipment
manufacturers propose the items following defined size
ranges (volumes or treatment capacity). This means that an
item can only adopt a discrete number of predefined
values. Actually, this approach is not a new one, since it
has been already used in previous works relying
on discrete event simulation (DES) for batch plant design
problem modelling (Dietz, 2004).
With regard to the formulation given in Ponsich et al.

(2006b), the new representing mode of the variables just
involves a simple modification of the initial model: the item
sizes can adopt a value among a discrete set, defined in
the problem data. In the new problem, all the optimization
variables are now integer variables. However, the remaining
‘internal variables’ (used only within the model module: for
instance, batch sizes, or operating times . . .) are still real,
even though the new operating mode reduces their definition
set to discrete portions of the initial one. So, the problem
nature is still MINLP and a methodology similar to that devel-
oped in Ponsich et al. (2006b) can be used. Thus, the same
optimization methods can be run on the same test problems,
in order to determine if the conclusions drawn from previously
experiments with continuous item sizes are still valid.
Nevertheless, although the global problem nature does not

change, some modifications must be carried out. Basically, a
great number of executions of the stochastic algorithm will be
necessary, implying a huge computational time that a single
computer would not be able to support. The experiments
were thus performed using a computational grid. This latter
has already proved its efficiency for parallel computing and
especially for multi-parametric studies (Laforenza, 2002),
which is the case here.
This paper is divided into five sections. The following

section presents the framework of the new discretized
grid-based approach. Then, an overview is given in the
third section on the use of the Grid’5000 grid experimental
platform. Some typical results are analysed in the fourth
section. Finally, the fifth section is devoted to conclusions
and perspectives.

A NEW APPROACH FOR BATCH PLANT DESIGN
PROBLEMS

In most of the studies dealing with batch plant design
problems, the classical model traditionally accounts for the
item sizes involved in the process as continuous bounded
variables. The corresponding formulation is briefly recalled
in a first subsection. A new approach is then proposed, in
order to get a more realistic representation of the plant equip-
ment items: the new operating conditions are defined, and
the methodology of the study is given. Finally, the grid-
based approach is presented.

Classical Batch Plant Design Framework

Due to the growing interest for the batch operating mode,
a lot of studies address the batch plant design issue
(Grossmann and Sargent, 1979; Kocis and Grossmann,
1988; Modi and Karimi, 1989; Patel et al., 1991; Wang
et al., 1996, 1999; Wang and Xin, 2002). Generally, the objec-
tive consists in the minimization of plant investment cost.
The model formulation for batch plant design problems,

adopted in this paper, is based on Modi’s approach (Modi

and Karimi, 1989). It accounts for the synthesis of I products
treated in J batch stages and K semi-continuous units
(pumps, heat exchangers and so on). Each (batch or semi-
continuous) stage is made up of several out-of phase parallel
units of same type and size. Typically, the model involves the
following optimization variables:

. the size (Vj for the batch stages and Rk for the semi-con-
tinuous ones) of the items of each stage are continuous
variables;

. the number (mj and nk) of items for each stage are discrete
variables.

Moreover, S21 intermediate storage tanks, with size V�
s,

divide the whole process into S sub-processes. The main
feature is the minimization of the investment cost for all the
items of the plant:

MinCost ¼
XJ

j¼1

ajmjV
aj
j þ

XK

k¼1

bknkR
bk
k

þ
XS�1

s¼1

cs(V
�
s)

gs (1)

where aj and aj, bk and bk, gs and cs are classical cost
coefficients (a complete nomenclature is provided at the
end of the paper). This problem is submitted to one major
constraint, forcing the total production time for all products
to be lower than a given time horizon H:

H �
XI

i¼1

Hi ¼
XI

i¼1

Qi

Prodi
(2)

The values for Qi are given in the problem data, while Prodi is
inferred from equations involving the computation of batch
sizes Bi for every product i and of the processing times of
batches in both batch and semi-continuous stages (Tij and
uik). Then, the maximum value of the processing times in
the stages belonging to each sub-process provides the cor-
responding limiting cycle time Tis

L . Finally, the minimum ratio
Bi/Tis

L represents the productivity of the plant Prodi for each
product i. The complete model and equations will not be
presented here, but the reader should report to Ponsich
et al. (2006a) to get the detailed formulation.
Then, the aim of batch plant design problems is to find

the plant configuration that respects the production require-
ments within the time horizon, while minimizing the econ-
omical criterion. The resulting MINLP problem proves to
be non-convex and NP-hard (Wang et al., 1996).

New Operating Conditions

As it has been mentioned, the adopted model has one
drawback: the item sizes are represented as real variables.
This point leads to solutions involving a useless accuracy
on the equipment characteristics, which cannot be
implemented in real word. Thus, for industrial managers, it
should be really more appropriate to obtain solutions, i.e.,
plant configurations, that match the industrial requirements
and the predefined sizes proposed by the item manufac-
turers. This leads to a discretization of the corresponding
variables in the model, and raises the question of how this
discretization task should be performed.

In reported studies (Dietz, 2004), the item size of each
stage could have three possible values: a small one, a
large one and a medium one. Here, since the aim is to rep-
resent the whole initial definition range of the continuous vari-
ables, three different cases of discretization range are
considered, involving different numbers of possible values.
The bounds of the continuous variables were initially set as:

. for batch stages: Vmin ¼ 250 � Vj � Vmax ¼ 10 000 L, 8 j;

. for semi-continuous stages: Rmin ¼ 300 L h21
� Rk �

Rmax ¼ 10 000 L h21, 8 k.

Then, various discretization modes are tested:

. Large-grain discretization (LD): the interval between two
possible values is equal to 2500 L (or L h21), globally
meaning that the five possible values for batch stage size
are 250; 2500; 5000; 7500; 10 000 L. And for the semi-
continuous stages: 300; 2500; 5000; 7500; 10 000 L h21.

. Medium-grain discretization (MD): the interval between two
possible values is equal to 500 L (or L h21).

. Small-grain discretization (SD): the interval between two
possible values is equal to 10 L (or L h21).

Methodology

In a previous work (Ponsich et al., 2006b), the study was
aiming at providing some guidelines to help choose the
most relevant optimization technique, in the framework of
batch plant design problems. In a similar way, the objective
here is to evaluate and compare the performance of three
optimization techniques for the revised problem based on
an integer formulation. These methods are tested over a
set of seven increasing complexity examples, for which all
data are detailed in Ponsich et al. (2006b). The only data diff-
ering from the original MINLP model are those corresponding
to the discretization, which were defined in the previous sub-
section. Some details on each example (plant structure and
stage number) are provided in Figure 1.
The methods are two mathematical programming mod-

ules from the GAMS modelling environment (SBB and
DICOPTþþ; Brooke et al., 1998) and a stochastic tech-
nique: a genetic algorithm (GA). The detailed algorithm of

these methods are exhaustively described in Ponsich et al.
(2006b), it is just useful to recall the GA internal procedures
for this study:

. the variable coding is carried out with the so-called weight-
ing box. This coding procedure is classically used for con-
tinuous variables such as presented in previous studies
(Ponsich et al., 2006a). The variable variation range is
discretized according to some desired accuracy and a
technique similar to binary coding is used to represent
the resulting reduced variables. In the current case of
discrete variables, the accuracy is equivalent to the dis-
tance between two possible values of the variables: the
greater the number of feasible values is, the more the vari-
able behaviour gets closer to a continuous one;

. this encoding technique allows the use of classical cross-
over (one cut-point) and mutation techniques (inversion
of the bit value);

. an elimination method is used for small size examples for
constraint handling (from example 1 to 3), while a domina-
tion-based tournament technique (from example 4 to 7) is
adopted for higher-sized, more severely constrained pro-
blems (Deb, 2000; Coello Coello andMezuraMontes, 2002).

Computations are carried out for the seven examples, and
for each discretization mode, the efficiency of each method is
evaluated. Besides, from a mathematical point of view, it
should be useful to check out the influence of the discretiza-
tion function on the numerical solution. In other words, it
seems interesting to wonder if, for different possible ranges
of the item sizes (or discretization modes), different plant con-
figurations can be obtained and if these plant configurations
approach the optimum value previously determined with
continuous sizes (MINLP problem).

Adaptation to the Chosen Optimization Tools

The changes in the optimisation variable nature do not
have any spreading effect: when modelling within both
GAMS environment and GA, these changes only affect the
modules related to variable definition and handling. The initial
lower bounds are kept unchanged, while the upper ones
might be slightly modified due to discretization range.
Within the GAMS modelling environment, the discrete

values are artificially created and designed by introducing
binary variables for each possible discrete value of the vari-
ables definition set. For instance, let consider that for stage
j, an item volume can adopt P values: vjp, p ¼ f1, . . . , Pg.
Then, the associated binary variable yjp is equal to 1 if the
item size is vjp, and 0 else. Besides, an additional restriction
has to be imposed, forcing the item size to adopt only one
value, i.e., for each j, there is one and only one p� such as
yjp

� ¼ 1. The analytical expressions of the above-stated con-
cepts are formulated according the following equations:

Vj ¼
XP

p¼1

yjp � vjp with y jp [{0, 1}, j ¼ 1, Nstages (3)

XP

p¼1

yip ¼ 1 j ¼ 1, . . . , NStages (4)

In the case of the GA, the abovementioned classical encod-
ing method is used, based on the classical discretization ofFigure 1. Set of increasing complexity examples.

the continuous variables and binary-like coding. Thus, a loss
in accuracy results in an enlargement of the interval between
two consecutive size ranges: the set of discrete possible
values is created for each variable.
Some comments can be already drawn from the new

operating mode. The first one is that, obviously, this operating
mode will favour the GA. Actually, concerning the problem
modelled with GAMS, the discretization involves the introduc-
tion of additional binary variables: it has been shown yet that
this combinatorial explosion is a penalizing aspect for the
reported mathematical programming optimization methods
(Ponsich et al., 2006b). So, in the large-grain discretization
case (five possible values), the complexity increase is
about 5NStages. This means that the GAMS solvers will have
more difficulties to treat higher size examples, and also
smaller discretization modes.
On the other hand, the discretization mode favours the work

of the GA. Indeed, increasing the interval between two poss-
ible values means an important decrease in the chromosome
size, and thus, in the search space. So, the new operating
mode has opposite effects depending on the optimization
methods, giving a strong advantage to the GA.

Grid Computing Approach

A particular drawback of the above-stated methodology
should be underlined: the GA being a stochastic technique,
it is always useful to carry out many runs for the same pro-
blem, in order to get the best possible result and to evaluate
the technique repeatability. In this study, each example was
treated 100 times by the metaheuristics. Moreover, the trea-
ted instances involve problems of size up to 210 variables
and the problem is identified as an NP-hard problem. As a
consequence, these runs involve a huge computational
effort, and a classical computing infrastructure may not
manage to carry out the amount of necessary computations.
This is why we have considered the use of a computational
grid as a suitable alternative.
Grid computing is a paradigm well-adapted to two types of

applications:

. Parallel applications: an execution of the code uses
several nodes to perform the calculation. Usually, the
execution time decreases when increasing the number of
processors until a threshold volume is reached (this
maximum processor number that can be efficiently
exploited, on a given problem, gives some information on
the scalability of the code).

. Multi-parametric applications: the code is executed several
times, but with different values of some input parameters.
Using a single PC, the operating way is to run the code
with a parameter value, and when finished, to execute it
again with another value for the same parameter, and so
on. Since the grid often provides a large number of
computing nodes, it makes the user able to run the code
for all parameter values simultaneously (using one node
per parameter value).

The application we consider in this paper is multi-
parametric: GA is a serial Fortran code that does not use
any external library (which makes the installation process in
every site of grid infrastructure greatly simplified). Practically,
we solve various problem instances with a stochastic
algorithm and repeat 100 times the run for each example.

This application is multi-parametric by nature. A grid
approach is perfectly relevant to this case study.
It is to note that the possibility of using a grid-based

environment for the mathematical programming methods
might be naturally contemplated. However, the issue of the
study is not to implement a grid-based infrastructure that
would support any kind of optimization technique. Here, the
meaning of the grid use is that a lot of GA runs must be
performed to analyse GA repeatability and to provide finally
some ‘average trends’ for the stochastic technique.

GRID·5000

An Overview of Grid·5000

Grid is an active research area that provides technologies
now mature enough to be used for real-life applications. Pro-
jects like e-Science, TeraGrid, Grid3, DEISA and NAREGI, to
quote a few of them, demonstrate that large scale infrastruc-
tures can be deployed to provide scientists fairly easy access
to resources that are geographically distributed and that
belong to different administration areas. Despite its establish-
ment as a viable computing infrastructure, there are still many
issues to be solved (in terms of performance, fault tolerance,
QoS, security and fairness).
Grid’5000, is a nation-wide infrastructure for research in

grid computing (see http://www.grid5000.org, Bolze et al.,
2006). It is designed to provide a scientific tool for computer
scientists similar to the large-scale instruments used by phy-
sicists, astronomers, and biologists. The project is still under
construction but already in use in France. Grid’5000 is a
large-scale experimental tool, with a deep reconfiguration
capability, a controlled level of heterogeneity and a strong
control and monitoring infrastructure.
The reconfiguration capability allows scientists to deploy,

install, boot and run their specific software images (possibly
including all the layers of the software stack). In a typical
experiment sequence, a researcher reserves a partition of
Grid’5000, deploys its software image, reboots all the
machines of the partition, runs the experiment, collects results
and relieves the machines. This reconfiguration feature allows
all researchers to run their experiments in the software
environment exactly corresponding to their needs.
The Grid’5000 platform is distributed over nine sites in

France: Bordeaux, Grenoble, Lille, Lyon, Nancy, Orsay,
Rennes, Sophia and Toulouse. Every site hosts a cluster
and all sites are connected by the RENATER high-speed
network (all links will provide 10 Gbps). Currently, the
platform has around 2700 processors. The Toulouse site,
so-called Grid’Mip, is composed of 57 nodes, dual CPU
racks consisting of two AMD Opteron running at 2.2 Ghz,
with 2 Gb of memory.

Application to the GA Working Mode

The gridification of the GA application is straightforward.
The first step consists in modifying the code in order to be
able to schedule the 100 executions over 100 different
nodes. This code is composed of three steps:

. Initialization of the parameters

. Loop: do i from 1 to 100

. Random generation of the population

. Simulation

. i ¼ iþ 1

. Statistic calculations

To use the grid, the following phases have to be performed
on each node:

. Initialization of the parameters.

. Random generation of the population.

. Simulation.

At the end of the executions on the 100 nodes, statistic
calculations can be made. The modified code has been
deployed over five clusters of Grid’5000: Lyon, Orsay,
Sophia, Bordeaux and Toulouse. A Grid’5000 cluster is com-
posed of a frontal machine, which is used for the connexion
(where the OAR scheduler is accessible), and of the worker
nodes, where the jobs are executed. To carry out the compu-
tations, the node number required on each cluster has to be
chosen. Then, each frontal must be connected and the jobs
must be submitted using OAR. This means that, for each
example, 100 jobs have to be submitted with OAR. To
avoid that, a web interface was developed to automatically
perform the job submission.

COMPUTATIONAL RESULTS

The performed experiments are presented in three different
subsections. Firstly, a comparison is made between the two
extreme cases: the results obtained with a large-grain discre-
tization (LD) approach and those (optima) determined in
Ponsich et al. (2006b) for the original MINLP formulation,
with continuous item sizes. Subsequently, the results corre-
sponding to the other discretization modes (medium-grain
discretization—MD; and small-grain discretization—SD),
solved with the GA and with the GAMS solvers, are dis-
cussed. Each method performance will be evaluated in
both terms of quality and computational times. Finally, the
influence of the discretization mode on the results is ana-
lysed: in other words, passing from a discretization mode to
another one, do the elements of the solution vector move
towards the closest acceptable value of the new size range?
The resolution of all the considered problem instances by

the GA, which is computationally intensive, is performed
over the computational grid described previously. Getting
100 nodes over five clusters of Grid’5000 was not a problem.
Each execution required, for the largest instances, about 4 h
on a single PC, giving a total execution time of 400 h for the
100 GA runs. This global time was decreased to 4 h using
Grid’5000, corresponding to a reduction factor equal to 100.
This is a great benefit, but a major one compared to tra-
ditional large computer infrastructures is that time between
execution launching (usually through a batch system that
may limit the maximal number of processors to a lower
number and impose a long wait on a specific queue) and
result recovering is drastically reduced, allowing to carry out
more simulations.
For illustration purpose, Table 1 displays some execution

times achieved, with GA on Grid’5000 for the two instances
involving the greatest computational times, i.e., batch plants
6 and 7 for the SD mode. These two examples are presented
with the number of runs on each site and the time of the
fastest and slowest runs. The execution time corresponds
to the maximal time considering all the runs.

However, all the computational times available in the fol-
lowing section refer to runs carried out by a unique computer,
in order to be able to compare the GA times with those
required by the GAMS solvers.

Extreme Cases

The results achieved by the three methods, as well as the
corresponding computational times, are reported in Table 2.
The first lines give the optimal values of the original MINLP
problem, and the corresponding CPU time. The solutions of
this mixed-integer problem were determined with the SBB
solver: actually, this MP method provided the best results
for all instances (Ponsich et al., 2006b). It must be highlighted
that however, the MINLP optimal values are not an objective
to be reached, since the discrete problem and the mixed-
integerone are obviously different. But, they just provide a
reference point helping to evaluate the following results.
Note that the italics style for some of the SBB values points

out that the optimality conditions (intersection of the upper
and lower bounds in the Branch & Bound procedure) were
not obtained in a 24 h run, although a feasible solution can
be provided. The GA computational times refer to only one
run.
From Table 2, it first appears that DICOPTþþ is not able

to deal with the large combinatorial effect generated by the
discretization of the item sizes. Despite the good results
observed on example 1, the solver provides a solution for
example 2 that is much higher than those produced by
SBB and the GA. From example 3 to example 7, DICOPTþ

does not converge towards any feasible solution within 24 h.
Actually, beyond example 2, SBB and the GA are the only
ones that provide a solution to the LD problem. Figure 2 is
a good illustration of the gap between these results and
that of the MINLP problem (first line of Table 2). Although
presenting the same results as table 2, this representation
mode enables to visualize the three algorithm performances.
Concerning the quality of the obtained results, Figure 2

highlights that up to example 4, the solutions given by the
SBB solver and the GA are the same: they all show a gap
with the MINLP optima that never turns out to be lower
than 5.5%. This gap is explained by the LD mode, involving
that some MINLP optimal solutions are prohibited. Thus,
the structure of the optimal plant for the LD problem may
be different from that of the MINLP one, and induces a
higher cost.
However, even though the result quality is equal for both

methods, the computational times are clearly higher for
SBB: the Branch & Bound method is strongly penalized by

Table 1. Execution times on Grid’5000.

Example 6-SD

Site/nodes Toulouse/20 Sophia/20 Lyon/20 Orsay/40
Min time 02 : 32 : 57 03 : 23 : 15 03 : 18 : 16 03 : 23 : 18
Max time 02 : 41 : 34 03 : 57 : 00 03 : 43 : 25 03 : 57 : 57
Total time 03 : 57 : 57

Example 7-SD
Site/nodes Toulouse/50 Sophia/10 Lyon/20 Orsay/20
Min time 02 : 29 : 37 03 : 23 : 05 03 : 18 : 20 03 : 23 : 17
Max time 02 : 40 : 16 03 : 57 : 05 03 : 43 : 24 03 : 57 : 26
Total time 03 : 57 : 26

the problem complexity. Indeed, up to example 3, the compu-
tational time of SBB is higher than those of the GA, although
lying in a same order of magnitude. But for example 4, the
difference becomes huge: 13.3 h for SBB versus 9 s for
each GA run (or versus 4 s when solving the MINLP problem
with SBB, thus proving that the discretization penalizes heav-
ily the MP methods efficiency). Actually, it might be either the
computational time or an insufficient computing power that
causes SBB failure for example 5: the solver does not con-
verge. The maximum time accepted for a run is set to 24 h.
So, from example 5, the GA proves its superiority on the
deterministic method in terms of computational time and
solution quality.
However, SBB is able to provide feasible non-optimal sol-

utions for the highest size examples, discovered during the
search tree enumeration. But these solutions lie quite far
away from the GA ones: for instance, for example 5, the
difference between the GA result and the feasible solution
located by SBB is equal to 17%. Finally, for examples 5 to
8, the GA results keep being satisfying: the gap to the
MINLP optimal solution is steady.
To provide further information on the stochastic method

behaviour, Figure 3 reports the times related to the MINLP
and LD problems by the GA. They prove that, except for
example 3, the GA is a little more efficient for solving the
LD problem than solving the MINLP one. This general trend
is accounted by the fact that the coding procedure of continu-
ous variable requires more genes to get the required
accuracy (see remark on variable encoding, in second
section). The exception of example 3 is basically due to the
constraint handling, which imposes the generation of feasible
initial individuals. This is logically a more difficult task when
the search space is discrete but differences between the

two working modes only appear when the instance complex-
ity becomes higher (there is no difference for examples 1 and
2). For the largest examples (from example 4 to 7), the tour-
nament-based constraint handling mode does not impose
any more the respect of constraints on the first population.
Then, the influence of the chromosome size is the predomi-
nant factor, making the GA job easier for the LD problem.
Thus, the LD mode revealed the GA superiority on the

mathematical programming methods. The strong combinator-
ial effect caused prohibitive computational times, preventing
the solvers from converging beyond example 3 for
DICOPTþþ and example 5 for SBB. On the opposite, the
GA still provides good-quality solutions, close to the MINLP
optima, and within a reasonable computational effort.

Small and Medium Discretizations (SD and MD)

GA results
By considering smaller discretization modes, the number of

feasible values for the variables becomes greater; according
to the explanations given previously on the coding pro-
cedure, this is equivalent to gradually bringing the GA back
to a standard working mode for continuous variables (with
an increasing accuracy). The GA should thus show an inter-
mediate behaviour, between the two above-considered
extreme cases (MINLP and LD). Table 3 gives the best
solution found by the GA for the example set; the results
for LD are also recorded.
The gap between the MINLP optimal solutions and the

results of Table 3 are presented in Figure 4. As predicted,

Table 2. Results for the original MINLP and LD problems.

Example 1 2 3 4 5 6 7

MINLP Result 166 079 120 777 356 610 957 271 1 925 887 3 865 106 4 786 804
CPU time ,1 s ,1 s ,1 s 4 s 35 s 29 min 6.4 h

DICOPTþþ Result 180 637 208 431 — — — — —
CPU time 10 s ,1 s — — — — —

SBB Result 180 637 142 436 376 701 1 016 777 2 432 203 5 008 147 6 456 102
CPU time 1 s 25 s 33 s 13.3 h 24 h 24 h 24 h

GA Result 180637 142436 376701 1016777 2065769 4144808 5290474
CPU time ,1 s ,1 s 3 s 9 s 14 s 34.3 min 1.6 h

Figure 2. Distance from the MINLP optimum to the LD solutions.
Figure 3. Computational times for MINLP and LD problems solved
with SBB and the GA.

this figure shows that the GA keeps finding good-quality
solutions, and the gap to the MINLP optimum is, logically,
all the more satisfying when the discretization interval is
small: in these cases, the problem is clearly more similar to
the MINLP one.
Concerning the computational effort, the emerging trend is

that the required time is higher for MD mode, and even more
for the SD one: actually, for smaller discretization intervals,
the GA behaviour becomes similar to that observed for the
solution of the MINLP problem (see Figure 3). So, the SD
points are always above the MD ones, and above the LD
ones in Figure 5, except for example 3 (for this one, the
trend can be attributed to the constraint handling method,
as already discussed in the previous subsection).

MP methods
For the GAMS solvers, the MD and LD modes represent a

much more difficult challenge. Actually, considering that, in a
given discretization mode, the item sizes can adopt P poss-
ible values, the related combinatorial effect is equal to
P NStages. So, if the discretization interval gets smaller,
number P increases and the problem becomes much more
complex. Then, considering the quite poor results obtained
for the LD with SBB and especially DICOPTþþ, it is to
expect that the solvers will not be more efficient for SD and
MD. Actually, they might reach their solving ability limits.
Indeed, DICOPTþþ manages to find optimal solutions

just for the first example, and only for a MD. For the SD
problem and the larger instances, no feasible solution was
found within a 24 h run. Concerning SBB, the Branch &
Bound method shows a better efficiency for the simplest
examples. However, as soon as the complexity increases,
the solution is strongly penalized by the prohibitive
computational time.
Table 4 shows the distance between SBB results and the

GA best solution as well as the computational time required

by SBB is presented. The results prove that a threshold
exists, beyond which SBB cannot conclude on the result
optimality anymore. The algorithm cannot reach the termin-
ation criterion during the time allowed for a run: at the end
of the search, the gap between the upper and lower
bounds is still huge. SBB nevertheless gives feasible
solutions (upper bound), very far away from the GA result.
The computations with SBB were thus carried out up to
example 3. Beyond this limit, only sub-optimal solutions
would be hypothetically determined. The grey cases point
out the instances for which no optimality condition was
reached in the 24 h run.

Influence of the Discretization Mode

In order to provide a more detailed analysis of the
computational results previously presented, it is useful to
quantify the influence of the discretization mode on the
final best solution. Since the mathematical programming
optimization techniques were not able to solve instances
beyond example 4, the GA results constitute the basis of
the following analysis. Nevertheless, all the examples will
not be reported here. Actually, the discretization generates
cuts in the feasible space so that different plant structures
(i.e., item number per stage) are computed according to the
considered discretization mode. Thus, among the seven trea-
ted examples, two cases emerge: in the former (examples 1,
2, 4 and 5, for instance), the plant structure is (more or less)
unchanged whatever the considered discretization mode; in
the (example 3), the plant structure varies from a discretiza-
tion mode to another. It is thus possible to make an analysis
for each case.
For the first case, example 4 provides a representative

basis when the effect of the discretization mode has fewer
influence and some trends can be inferred from the following
study. Actually, for example 4, no change is observed in

Table 3. Solutions of the GA for SD, MD, LD problems.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5 Ex. 6 Ex. 7

SD 166 172 122 364 370 083 972 042 1 994 946 4 010 943 5 050 716
MD 167 941 123 352 373 082 974 873 2 005 608 4 015 673 5 103 457
LD 180 637 142 436 376 701 1 016 777 2 065 769 4 144 808 5 290 474

Figure 5. CPU time of GA for SD, MD, LD problems.Figure 4. Gap to the MINLP optimum.

the discrete variables of the solution for the various discreti-
zation modes, except for the LD one. For the sake of illus-
tration, Figure 6 shows the item number per batch stage,
for each discretization mode (the structure corresponding to
semi-continuous stages is identical in all cases). These
values are different only for the LD mode: stages B2 and
B3 respectively have 2 and 3 items for all cases, but 3 and
2 items for LD.
It is thus interesting to observe the volumes of the corre-

sponding stages (see Table 5). The results corresponding
to the MINLP problem are also reported, and the standard
deviation of the item volumes for each stage is computed.
The mean value of these nine standard deviations is equal
to 730 L. For semi-continuous stages, the mean value of
the standard deviation of the item volumes is presented
too. It can firstly be underlined that those two values are
very different: the variation of the sizes according to the dis-
cretization mode is much more intense for semi-continuous
stages. This can be explained by the cost coefficients in
the objective function (bk and bk), which are really lower for
semi-continuous stages, cf. equation (1). Thus, the pressure
towards minimization exerted by the stochastic optimization
method on the associated variables is weaker than that
exerted on the batch stages.
Besides, it should also be noted that in the ‘mean value of

the standard deviations’, the weight induced by the LD mode
is very important. Removing this mode from the mean value
calculation, the resulting new ‘mean value’ is equal to
230 L. This trend is also illustrated in Figure 7. The volumes
determined for the LD mode are quite different from those
found by the other modes, although they follow the global
trends. More particularly for some batch stages, the variation
is more important. This is not only due to the changes in the
item numbers per stage (B2 and B3), but also to the width of

the discretization interval, which prohibits some zones of the
MINLP problem feasible space.
These conclusions would be the same for examples 1, 2 or

5. For instance, for example 5, the volumes and item numbers
are represented in Figure 8, for different discretization modes.
It is clear that the number of item is always similar, except for
batch stages B7, B9, B16 and 18, only for the LD mode. Con-
sequently, the associated volumes follow the same trends,
except for the LD mode again for which the issues of plant
structure difference (for the mentioned batch stages) and
wide range between two feasible values appear.
Finally, as mentioned previously, a second case is observed

when the plant structure shows more definite differences
according to the considered discretization mode. Example 3
is a quite representative instance of this behaviour. In
Figure 9, the number of items per stage keeps being almost
unchanged for all the semi-continuous stages. But concerning
batch stages, the item number is a bit different for all discreti-
zation modes. Thus, the corresponding volumes, although fol-
lowing similar trends, are always different switching from a
discretization mode to another one.
In conclusion, it seems that on the one hand the discretiza-

tion mode has a great influence on the final solution, since
the plant structure may be strongly different from a mode to
another. On the other hand, when the item number per
stage does not vary that much, similar trends are observed
for all modes, when the discretization interval allows it.
Besides, these assertions are true only if the variables

Table 5. Batch stage volumes for the solutions of MINLP, SD, MD, LD
problems for example 4.

MINLP SD MD LD Stand. dev.

B1 5827 6390 6250 5000 625
B2 8511 9050 9250 7500 783
B3 7440 8050 7750 10 000 1154
B4 4052 4040 4250 5000 453
B5 5675 6120 6250 7500 782
B6 6583 6510 6750 10 000 1695
B7 8485 8340 8750 10 000 757
B8 7534 7340 7750 7500 169
B9 9949 9690 9750 10 000 150

Semi-continuous stages 2446

Figure 6. Discrete variables of example 4 solution (batch stages),
according to the discretization mode.

Figure 7. Batch stages volumes of example 4 solution, according to
the discretization mode.

Table 4. Computations carried out with SBB.

Ex. 1 Ex. 2 Ex. 3 Ex. 4 Ex. 5

SD 0% 7.3 (min) 18.3% 24 (h) — — —
MD 0% 3 (s) 5.7% 24 (h) 25.2% 24 (h) — —

have an important weight in the optimization criterion: here
for instance, the item sizes of the semi-continuous stages
might vary slightly without causing much change in the
objective function.

CONCLUSION

In this work, a variant to the classical batch plant design
problem was proposed: with a view of realism, the item
sizes are not anymore considered as real variables in the
model, but are now represented by discrete variables. The
aim is to evaluate and compare three optimisation methods
performances for this modified problem: two mathematical
programming approaches and a GA. The three techniques
are evaluated on seven test examples. The discretization

mode, i.e., the width of the interval between two authorized
values, is a parameter of the presented study.
The analysis of the behaviour of a stochastic optimization

method, on various instances, with several runs for each
instance, represents a huge computational cost that would
be prohibitive with a classical computational tool. A grid-
based approach was thus developed, in order to reduce
the computing time. Indeed, for the largest instance, the
elapsed time for simulation is reduced from 400 h down to
4 h. This is an impressive benefit, which allowed to have
the computations completed and to draw the conclusions
of this study.
The results do agree with the trends previously inferred

from the working mode and variable representation of each
method. On the one hand, mathematical programming tech-
niques are heavily penalized by this operating mode, since

Figure 8. Batch stages volumes (a) and item number per stage (b) of example 5 solution, according to the discretization mode.

Figure 9. Batch and semi-continuous stages volumes (a) and item number per stage (b) of example 3 solution, according to the
discretization mode.

the combinatorial effect induced by the discretization of the
item sizes leads to prohibitive computational times, and
sometimes prevents the solvers from converging with fulfilled
optimality conditions. DICOPTþþ proved its inefficiency,
including small size examples. However, SBB was able to
solve various instances, and when not able to converge, it
provided feasible solutions (quite far away from the optimal
ones).
On the other hand, at the same time, the GA work is made

easier by this discretization, which does not involve any
change in the variable encoding, except a great reduction
of the chromosome size. So, the GA could solve all the
tackled problems, for various discretization modes, showing
a good performance, quite similar to that related to the
original MINLP problem.
It should be underlined here that the MP methods too may

have been adapted to a grid-based environment, in order not
to be limited by the CPU time that prevents convergence.
However, this was not the case of this paper, since the
grid-based strategy was only used considering the huge
number of GA runs (for repeatability tests). Actually, all the
numerical results were provided and all the conclusions
were drawn for a single-PC computation basis.
Finally, this approach, using discrete variables to represent

item sizes, seems appropriate to treat the batch plant design
problem, in both industrial and numerical points of view. In
that context, the stochastic methods have proven to be the
most efficient one to provide good-quality and realistic
solutions.

NOMENCLATURE
aj cost factor for batch stage j
bk cost factor for semi-continuous stage k
Bi batch size of product i
cs cost factor for intermediate storage tanks
H time horizon, h
Hi production time of product i, h
i index for products
I total number of products
j index for batch stages
J total number of batch stages
k index for semi-continuous stages
K total number of semi-continuous stages
mj number of parallel out-of-phase items in batch stage j
nk number of parallel out-of-phase items in semi-continuous

stage k
prodi global productivity for product i, kg h21

Qi demand in product i kg h21

s index for sub-processes
S total number of sub-processes
Tij processing time for a batch of product i in batch stage j

Tis
L limiting cycle time of product i in sub-process i

Vj size of batch stage j, L
Vs

� size of intermediate storage tank, L

aj power cost coefficient for batch stage j
bk power cost coefficient for semi-continuous stage k
gs power cost coefficient for intermediate storage
uik processing time for a batch of product i in semi-

continuous stage k

REFERENCES
Bolze, R., Cappello, F., Caron, E., Daydé, M., Desprez, F., Jeannot, E.,

Jégou, Y., Lanteri, S., Leduc, J., Melab, N., Mornet, G., Namyst, R.,
Primet, P., Quetier, B., Richard, O., Talbi, E.L. and Touche, I., 2006,
Grid’5000: a large scale and highly reconfigurable experimental
grid testbed, International Journal of High Performance Computing
Applications, 20: 481–494.

Brooke, A., Kendrick, D., Meeraus, A. and Raman, R., 1998, GAMS
User’s Guide (GAMS Development Corporation, Washington DC,
USA).

Coello Coello, C.A. and Mezura Montes, E., 2002, Constraint-
handling in genetic algorithms through the use of dominance-
based tournament selection, Advanced Engineering Informatics,
16: 193–203.

Deb, K., 2000, An efficient constraint handling method for genetic
algorithms, Computers Methods Applied in Mechanical Engineer-
ing, 186: 311–338.

Dietz, A., 2004, Optimisation multicritère pour la conception d’ateliers
discontinus multiproduits: aspects économique et environnemen-
tal, PhD thesis, INP ENSIACET, Toulouse, France.

Grossmann, I.E. and Sargent, R.W.H., 1979, Optimum design of
multipurpose chemical plants, Industrial Engineering and Chemical
Process Design and Development, 18: 343–348.

Kocis, G.R. and Grossmann, I.E., 1988, Global optimisation of non-
convex mixed-integer non linear programming (MINLP) problems
in process synthesis, Ind Eng Chem Res, 27: 1407–1421.

Laforenza, D., 2002, Grid programming: some indications where we
are headed, Parallel Computing, 28: 1733–1752.

Modi, A.K. and Karimi, I.A., 1989, Design of multiproduct batch pro-
cesses with finite intermediate storage, Computers and Chemical
Engineering, 13: 127–139.

Patel, A.N., Mah, R.S.H. and Karimi, I.A., 1991, Preliminary design of
multiproduct non-continuous plants using simulated annealing,
Computers and Chemical Engineering, 15: 451–469.

Ponsich, A., Azzaro-Pantel, C., Domenech, S. and Pibouleau, L.,
2006a, Constraint handing strategies in genetic algorihms. Appli-
cation to optimal batch plant design, Chemical Engineering and
Processing, in press.

Ponsich, A., Azzaro-Pantel, C., Domenech, S. and Pibouleau, L.,
2006b, MINLP optimisaion strategies for batch plant design pro-
blems, Ind Eng Chem Res., 46: 854–863.

Wang, C., Quan, H. and Xu, X., 1996, Optimal design of multiproduct
batch chemical process using genetic algorithms, Ind Eng Chem
Res, 35: 3560–3566.

Wang, C., Quan, H. and Xu, X., 1999, Optimal design of multiproduct
batch chemical process using tabu search, Computers and Chemi-
cal Engineering, 23: 427–437.

Wang, C. and Xin Z., 2002, Ants foraging mechanisms in the design
of batch chemical process. Computers and Chemical Engineering,
41: 6678–6686.

	PERFORMANCE ANALYSIS OFOPTIMIZATION METHODS IN PSEAPPLICATIONSMathematical Programming Versus GridbasedMulti-parametric Genetic Algorithms
	INTRODUCTION
	A NEW APPROACH FOR BATCH PLANT DESIGNPROBLEMS
	Classical Batch Plant Design Framework
	New Operating Conditions
	Methodology
	Adaptation to the Chosen Optimization Tools
	Grid Computing Approach
	GRID·5000An Overview of Grid·5000
	Application to the GA Working Mode
	COMPUTATIONAL RESULTS
	Extreme Cases
	Small and Medium Discretizations (SD and MD)
	Influence of the Discretization Mode
	CONCLUSION
	NOMENCLATURE
	REFERENCES

