View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Open Archive Toulouse Archive Ouverte

OATAO

Open Archive Toulouse Archive Ouverte

OATAO is an open access repository that collects the work of Toulouse researchers and
makes it freely available over the web where possible.

This is an author-deposited version published in: http://oatao.univ-toulouse.fr/
Eprints ID: 4972

To cite this document: Chaudron, Jean-Baptiste and Adelantado, Martin and
Noulard, Eric and Siron, Pierre HLA high performance and real-time simulation
studies with CERTI. (2011) In: 25th European Simulation and Modelling
Conference- ESM'2011, 24-26 Oct 2011, Guimaraes, Portugal. (published)

Any correspondence concerning this service should be sent to the repository
administrator: staff-oatao@inp-toulouse.fr

https://core.ac.uk/display/12042649?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://oatao.univ-toulouse.fr/
mailto:staff-oatao@inp-toulouse.fr

HLA high performance and real-time simulation studies with CERTI

Jean-Baptiste Chaudron, Martin Adelantado et Eric Noulard
Office National d’Etudes et de Recherches Aérospatiales
email: name.lastname@onera.fr

Pierre Siron
Institut Supérieur de I’Aéronautique et de ’Espace
email: name.lastname@Qisae.fr

KEYWORDS
Real-time simulation, HLA, RTT, embedded systems.

ABSTRACT

Our work takes place in the context of the HLA standard
and its application in real-time systems context. Indeed,
current HLA standard is inadequate for taking into con-
sideration the different constraints involved in real-time
computer systems. Many works have been invested in
order to provide real-time capabilities to Run Time In-
frastructures (RTT). This paper describes our approach
focusing on achieving hard real-time properties for HLA
federations through a complete state of the art on the
related domain. Our paper also proposes a global bot-
tom up approach from basic hardware and software ba-
sic requirements to experimental tests for validation of
distributed real-time simulation with CERTL.

Introduction

Modern systems become more and more complex with
an increasing number of both components and inter-
actions between them. These different applications of-
ten require their services to be delivered within a given
amount of time (deadline). This focus is the problematic
of real-time system which are defined as those systems in
which the correctness of the system not only depends on
the logical results of computation, but also on the time
at which these results are produced (1). Real-time sys-
tems are broadly classified into two categories based on
the nature of the deadline, namely, hard real-time sys-
tems, in which the consequences of not executing a task
before its deadline may be catastrophic and soft real-
time systems, in which the utility of results produced
by a task with a soft deadline decreases over time after
the deadline expires. Examples of typical hard real-time
systems are flight control and nuclear power-plant con-
trol. Telephone switching system and image processing
applications are examples of soft real-time systems.

Distributed computing paradigm proposes a high perfor-
mance solution thanks to advances in network technolo-
gies. Different programs located on several computers
interact all together in order to achieve a global common

goal. However, designers and developers of distributed
software applications have to face several problems such
as heterogeneity of the various hardware components
as well as both operating systems and communication
protocols. Development of middleware standards like
CORBA (2) allows to consistently face these problems.
The term middleware describes a software agent oper-
ating as an intermediary between distributed processes
(Cf. Figure 1). This software must be considered in
the domain of interoperability; it is a connectivity soft-
ware which enables the execution of several interacting
applications on one or more linked computers.

Application 1 Application 2

Middleware

Operating
System

Operating
System

Protocols and Protocols and
Hardware Hardware

I)

Network
Figure 1: illustration of Middleware

Indeed, real-time experts investigate distributed com-
puting solutions to ensure real-time behavior for com-
plex systems (3). However, traditional distributed stan-
dards and middleware architectures could not yet take
into account real-time constraints. Real-time aircraft
software and hardware embedded components intercon-
nected with middleware have led to some particulars re-
search projects like ARMADA (4) and MIDART? (5)
and also some advances in current standards to in-
clude real-times properties, like Real-time CORBA (6)
or more recently DDS (7). The main objective of our
work is to use an HLA middleware, compliant with cur-
rent HLA IEEE 1516-2010 standard (8)(9)(10), to de-
velop, interconnect and maintain real-time simulations
of embedded system (hardware-in-the-loop system or

I MIDdleware and network Architecture for Distributed Real-
Time systems

fully simulated system). This article explains how we
proceed to ensure real time behavior for our simula-
tions. The use of a distributed simulation architecture
to study distributed embedded systems should provide a
more natural and flexible framework for new researches
in the domain.

The paper is structured as follows: Section 2 describes
the problem statement. We present the targeted ap-
plications, a background on HLA use for real-time and
we describe in detail the CERTI architecture. Section
3 outlines our global approach for real-time simulation
purpose. We describe all the techniques and methods
used to ensure the correct temporal behavior of the sim-
ulator. Different experimental results obtained on our
specific platform are illustrated in Section 4. Finally, a
discussion of results, as well as currently planned exten-
sions of the infrastructure, is proposed in conclusion.

Problem Statement
Targeted applications

Our work takes place in a global project named PRISE?.
The main focus of this project is to study new embedded
system concepts and techniques through a special hard-
ware and software environment (Cf. Part). All these
simulations could also be Hardware-in-the-loop simula-
tions by connecting real actors: actuators, sensors or
real embedded computers in the simulation loop. Ob-
viously, these simulations could also be Human-in-the-
loop simulations but we are focusing here on real-time
aspects.

A collaborative study between Onera and CNES labo-
ratory gave first elements to understand the use of the
HLA standard and CERTI run-time infrastructure for
real-time simulations (12). The case study, is a satel-
lite formation flying simulation that is made up by four
components that are embedded systems simulators for
two satellites as depicted by figure 2: Federate 1 is a
simulator of the board computer on satellite 1; Feder-
ate 2 is a simulator of the board computer on satellite
2; Federate 3 is a simulator of the dynamics of the
satellite 1 and finally Federate 4 is a simulator of the
dynamics of the satellite 2;

HLA real time background

Simulation is a well established technique used in the
man-machine system area for training, evaluation of per-
formance and research. However, works to include real-
time specifications and properties to HLA standard are
less advanced than others ones (13). We claim that the
choice of a distributed computing standard and its un-
derlying middleware is an important starting point to

2 Plate-forme de Recherche et d’Ingénierie des Systémes Em-
barqués

Bocrd Coanguter |

Board Coryguter

20 Kz 20 Hg

SO0 bies 300 bizs

(@RI

() w0oH:

304 bits

Figure 2: CNES Satellites formation flying simulation

obtain high fidelity, valid and scalable real-time sim-
ulations. This choice implies which operating system,
which programming language and which hardware could
be used for compliance with the middleware. Many
studies and integration simulations are elements of the
Airbus industrial process (14) but the different mod-
els are proprietary (and sometimes certified) as well as
the Run Time Infrastructure (RTT, the HLA underlying
middleware). The RTI is the distributed software for
interconnecting various federates to a global federation
execution. The RTI-NG (15) was the first run-time in-
frastructure developed and used by the US Department
of Defense; this RTT is no longer maintained. Since then,
several approaches have been investigated to add real-
time properties to HLA standard and underlying soft-
ware RTT:

1. Multi-threaded
RTI (16)(17)(18);

synchronous process for

2. Global scheduling services in RTI (16)(17)(18);

3. Real-time Optimized RTI services like time Man-
agement from Fujimoto and McLean (16) or
Data Distribution Management for Boukerche
works (18);

4. Quality of service communication with, for ex-
ample, RSVP? (13) or specific protocols like
VRTP* (19);

5. Use a real-time operating system to allow preemp-
tive priority scheduling (20).

These different techniques allow an improved use of sys-
tem resources, better scalability and also a higher re-
activity of services provided by the RTI. However, no
work proposes a complete analysis from simulation re-
quirements to implementation. Most of all, the run-time
infrastructure used is never clearly presented (except for
(13)(17) by using RTI-NG).

3 Ressource ReSerVation Protocol
4 Virtual Reality Transfer Protocol

Bottom-Up approach (Actions Levels)

The temporal properties of distributed real-time simula-
tion are obtained from a complex combination of the ap-
plication structure, the used HLA middleware and spe-
cific distributed algorithms, the software infrastructure
(operating systems and communication protocols) and
finally the physical infrastructure (type of computers,
type of networks and distribution topology). The spe-
cific PRISE platform architecture is composed of:
Hardware: 4 real-time nodes with Opteron 6 core pro-
cessors, 2 Graphical HP station computer with Intel
Xeon processors and high performance GP-GPU, an
ethernet Gigabit switch on a dedicated network and also
two input organs (Yoke/Throttle/Pedal systems). This
global system also proposes a particular advantage, a
distributed clock technology allowing same clock refer-
ence to each node (21).

Software: Linux Red Hawk (22) Operating system
compliant with POSIX Real time standard (23). This
RTOS has been already used in the simulation domain
by TNO laboratory which uses this OS to run their own
RTT implemented in C++4. Their experiments have con-
cluded that this operating system is suitable for real-
time computing (20).

Middleware: In our approach, we will rely on our
Open Source RTI called CERTI because we have a com-
plete control on its implementation.

CERTI

For years, the French Aerospace Laboratory (ONERA)
has been developing his own Open-Source middleware
RTT compliant with HLA standard called CERTT (24).
This RTT runs under several operating systems includ-
ing Linux and Windows. It is recognizable through
its original architecture of communicating processes
(Cf. Figure 3). Each federate process interacts locally
with an RTI Ambassador process (RTIA) through a
Unix-domain socket (equivalent to LRC®). The RTIA
processes exchange messages over the network, in
particular with the RTIG process equivalent to CRCY),
via TCP (and also UDP) sockets, in order to run the
distributed algorithms associated with the RTT services.

The CERTI has, originally, no mechanism for taking
into account quality of service and no tools to provide
an end to end predictability. In this sense, it does not
handle events differently according to a priority and it
uses no predictability mechanism whatsoever at the net-
work or the operating system. In our case, a key benefit
is to master the implementation of RTT used and thus
able to incorporate changes in the source code to ensure
temporal predictability of CERTI.

5 Local Run-time Component
6 Central Run-time Component

[Federate 1] [Federate 2] [Federate 3]
[HLA Intertace | |

(_LbrRT] (LibIRTI) (LibIRTI)

(eai) (7az) (s)

() TcP socket

Figure 3: CERTI architecture

Our approach
Towards periodic federates

The concept of periodic federates, named ” repeatability
within simulations” has been introduced by Fujimoto
and McLean (25) (26) with their works on real-time and
distributed simulations. Federates, involved in this kind
of simulation, repeat the same pattern of execution pe-
riodically with a time step noted A;. During each step,
federates carry four phases: a reception phase, a com-
putation phase, a transmission phase and a slack time
phase. ONERA and CNES studies (12) show the ne-
cessity of explicitely adding a synchronization phase to
ensure the global coherent run time of the whole simu-
lation (Cf. Figure 4).

Messages Messages
are delivered are sent

Slack time (5)

Synchronization (1)

~

Execution step At

Figure 4: Periodic federate scheme

Historically, in DIS simulation standard (27), this syn-
chronization phase is made (for each federate) by con-
sulting global wall clock time (WCT) available for
each simulator. ONERA and CNES works present
a new original synchronization mechanism by sending
an interaction from the fastest federate, called pulse,
which rhythms the whole simulation run-time. In Fuji-
moto and McLean works, synchronization and reception
phases are made in the same time by time management
mechanisms. To summarize, the synchronization phase
can be done either by three different methods:

1. Consult the hardware clock on a mono-processor
system or use a distributed hardware clock like
Real-Time Clock and Interrupt Module (RCIM)

system for distributed applications available on our
Linux Red Hawk platforms;

2. The federate which has the highest speed cycle
sends an interaction to all others in order to rhythm
the execution of all others federates involved in the
federation;

3. Use of Time Management HLA mechanisms to en-
sure messages delivery in all federation and syn-
chronize every federates steps. Note that, these
time steps could be different according to applica-
tion requirements.

Execution modes

We distinguish two different run-time modes based on
periodic federates. The first one is the Data flow model.
This kind of execution mode is only scheduled by the
communication flow between each federate. Each fed-
erate waits for a data to run its local algorithm and
computes its own new data for the rest of the federa-
tion. This approach could only be used on synchronous
distributed systems like PRISE Red Hawk RCIM syn-
chronized nodes. Federates communicate using HLA
basic publish and subscribe principles through RTT ser-
vices calls like updateAttributeValues() (Cf. Figure
5). We assume that the receiver federate is waiting
for a reflectAttributesValues() callback in recep-
tion phase. Each federate then runs its own algorithm
when it receives an available input data. The main in-
terest of this run-time execution mode is the simplicity
of modeling its behavior with a formal model compli-
ant with real-time scheduling policies and techniques.
However, the developers have to ensure by programming
which cycle receives which data. This approach is not
very suitable for adding new federate or to plug exist-
ing federates to another federation execution. Most of
all, there is no safety guarantee during the run time. If
the application was not well scheduled, a federate could
always be blocked (waiting for an expected data). So
one needs to be accurate with the formal model and its
implementation to ensure good execution of the whole
federation.

Other execution mode use time-management mecha-
nisms provided by HLA standard (28)(Cf. Figure
6). During the run-time, each federate computations
and communications are scheduled by time manage-
ment principles and algorithms. A suitable deployment
of these techniques ensures a consistent temporal be-
haviour on a common time reference : the simulated
time axis. This approach is the best way to maintain
consistency between federates located on asynchronous
computers (no common Wall Clock Time). The main
advantage of time management is the possibility to eas-
ily add some new federates. The temporal behavior and
consistency of the whole simulation is based on simu-
lated time coherence. The time advance could also be

RTI

tick()

UAV(DataSent)

Synchronization

Federate

Consulting

WCT

Figure 5: Data Flow execution mode

correlated to an hardware clock to ensure the respect of
real time constraints. Accordingly with the HLA stan-
dard, all federates are both regulators and constrained.
Two kinds of services allow the federate to express its
requests for advancing its local logical time:

e nextEventRequest(?) service (noted NER(?)):
This service allows to receive the next event avail-
able for asked simulated time NER() and then
a timeAdvanceGrant (') callback (noted TAG(t'))
given by the RTI with a time stamp equal to the
time stamp ¢’ of the simulation message (¢’ could be
less than t). This kind of federate is called Fvent-
Driven federates;

e timeAdvanceRequest (¢) service (noted TAR(t)):
This service ensures the delivery of all available
messages. The RTI grants this logical time ad-
vance (guaranteeing causality constraints) by in-
voking all the available reflectAttributeValue ()
callbacks (noted RAV()) and finally by accepting
the time advance through the invocation of the
timeAdvanceGrant (¢) callback. This kind of fed-
erate is called Time-Driven federates.

RTI L

TAR() or NER()
UAV(DataSent)

Federate

onsulting

Figure 6: Time management execution mode

Necessity of formal proof for real-time

To our knowledge, no related work from simulation com-
munity has linked any formal model from scheduling
theory with concepts of distributed simulations (espe-
cially with HLA standard). Thus real-time simulations
are usualy validated by experiments rather than formal
models and schedulability analysis. But, we claim that
some formal models compliant with schedulability tech-
niques are essential to validate real-time behavior of our
simulations. For example, research on RT CORBA stan-
dard have investigate the validation of the global end
to end behaviour by combining scheduling techniques
Deadline Monotonic algorithm, DPCP” (29) and an al-
gorithm to map priorities founded by formal results to
local priorities provided by local operating systems on
each node.

Figure 2 shows that each federate (each computation
made by a federate) is illustrated by a box. Each CERTI
communication between federate is represented by a an
arrow. These data dependencies could be modelized
by using differents techniques. In previous paper (30),
we show the feasibility to formally validate basic Data
Flow simulations on monoprocessor system by combin-
ing Deadline monotonic techniques and simple prece-
dence constraints. We extend this formalism to describe
our distributed Data Flow applications by using Tindell
and Clark holistic method (31).

In order to add determinism to first generation time
management technics involved in CERTI software
(based on Chandy-Misra-Bryant algorithm (32)), we re-
cently propose an analytical methodology to formally
quantify the number of null messages exchanged be-
tween each time-driven real-time periodic federates (fed-
erates which use timeAdvanceRequest() service) in-
volved in a real time simulation (33). We also add a new
algorithm called NULL MESSAGE PRIME adapted
to event-driven real-time periodic federates (federates
which use nextEventRequest () service) which exhibits
very interesting properties, including a solution to the
time creep problem. We currently investigate some
model checking by using UPPAAL tool (34) in order to
exhibit formal proofs and have better evaluation of time
management services and their implementation. The
formal validation part of our works is not described in
present paper, we here focusing on experimental aspects.

Experimentals results

WCET and WCTT measurements

The execution time of a program usually depends on
the input data. In the context of real-time systems, it is

necessary to be able to estimate the Worst-Case Execu-
tion Time or WCET. For hard real-time systems, it is

7 Distributed Priority-Ceiling Protocol

necessary to assess the execution time in the worst case
to properly size the system and find the best allocation
of tasks among the processors. In our case, we have
made some measurements of execution time for a given
temporal complexity of algorithm (Cf. Table 1). We
assume that spatial complexity (memory) is properly
dimensionned according to embedded systems require-
ments.

o(n™) m=1| m=2| m=3 m =4
(ms) (ms) (ms) (ms)

n =10 0.001 0.003 0.007 0.065
n =20 0.001 0.005 0.052 1.182
n = 30 0.001 0.008 0.181 5.838
n = 40 0.001 0.010 0.386 18.240
n = 50 0.001 0.015 0.803 44.077

Table 1: Execution time of an algorithm with O(n™)
complexity

Calculation Worst Case Transit Time values for all mes-
sages through CERTI must take into account three
phases (Cf. Figure 7). Phase 1 is the copy on local
host Unix domain socket and the local computation of
the Sender Federate associated RTTA process. Phase 2
describes the time to read and write on different com-
munication TCP (or UDP) sockets over the network or
on the local host, and the time needed for RTIG local
computation. Phase 3 is the copy on local host Unix do-
main socket and the local compute of Receiver Federate
associated RTIA process.

RECEIVER
FEDERATE

Figure 7: CERTI communication steps

We have developed a benchmark called PING_PONG
used to measure CERTI communication latency. Two
federates PING and PONG exchange messages (with a
given size specified by user) through CERTI RTI. Ta-
ble 2 gathers experimental measurements (given in mil-
liseconds) of CERTI transit time with respect to three
configurations:

e Configuration 1: Federate PING, federate PONG,
both RTIAs and RTIG run on one single PRISE
Red Hawk node;

o Configuration 2: Federate PING, its RTTA and
RTIG run on a single PRISE Red Hawk node and
Federate PONG and its RTTA run on another node;

e Configuration 3: Federate PING, its RTTA run on
a single PRISE Red Hawk node, Federate PONG
and its RTIA run on another node and finally RTIG
run also on its own PRISE node;

Message Conf 1 Conf 2 Conf 3
size (ms) (ms) (ms)
100 bytes 0.293 0.252 0.236
500 bytes 0.315 0.263 0.256
1000 bytes 0.353 0.281 0.286
5000 bytes 0.406 0.411 0.422
10000 bytes 0.422 0.478 0.522
50000 bytes 1.066 1.372 1.607

Table 2: CERTI WCTT Measurements

Data Flow execution mode

As illustrated in Figure 2, federate 1 and federate 4 run
a loop of 50 ms (20 Hz) and federate 2 and federate 3
run a loop of 10 ms (100 Hz). The data flow execution
model have a good behavior for real-time purpose on
our specific plat-form. Federate 1 and 4 compute an
algorithm in O(30*) and Federate 2 and 3 compute an
algorithm with complexity equal to O(10%). Table 3
show that all cycles respect corresponding period (10
ms and 50 ms) and the global behavior is stable for all
cycles.

H Min ‘ Mean ‘ Max ‘Std. Dev.

Federate 1 49.394 | 49.449 49.585 0.059
Federate 2 9.056 9.119 9.458 0.127
Federate 3 9.058 9.131 9.501 0.146
Federate 4 49.01 49.077 | 49.150 0.058

Table 3: Federates Cycle Duration (Data Flow Periodic)

We also focus on the accleration of the application
rhythm to allow the federation to run as fast as possible.
For these experiments, we keep the speed ratios between
the different federates cycles. Thus federates 1 and 4 are
five times slower than federates 2 and 3 (and also cor-
responding communications). We retain the complexity
of the algorithms computed by each federate. Table 4
show that, with corresponding algorithms complexities,
faster federates (2 and 3) could respect a computational
period equal 2 ms and slower federates could ensure
the respect of a period less than 10 ms. These results
show that CERTI could ensure high frequency commu-
nicating processes with Data Flow execution mode.

H Min ‘ Mean ‘ Max ‘ Std. Dev.

Federate 1 6.108 6.136 6.292 0.0558
Federate 2 1.041 1.176 2.119 0.267
Federate 3 1.045 1.213 2.082 0.354
Federate 4 6.048 6.158 6.355 0.092

Table 4: Federates Cycle Duration (Data Flow As Fast
as Possible)

Time Management execution mode

For time management model, classical null message al-
gorithm implemented in CERTI seems to have a good
behavior to ensure real-time properties to our simulator
(refer to table 5). Indeed, all computed cycles are re-
spected (10 ms and 50ms); the global behavior is also
very regular.

’ [Min [Mean [Max [Std. Dev. |

Federate 1 48.64 49.765 50.807 0.532
Federate 2 9.514 9.592 10.618 0.172
Federate 3 9.372 9.624 10.959 0.248
Federate 4 48.029 | 49.474 50.787 0.841

Table 5: Federates Cycle Duration (Time Management
Periodic)

One more time, we acclerate the application rhythm to
allow the federation to run as fast as possible by us-
ing classical CERTI time management implementation.
The use of TAR() (HLA services calls) for each feder-
ate steps seems to generate some overhead (compared
with Data flow model). In this case, the number of
NULL messages generated by original algorithm is ac-
ceptable for real-time specification (hard real time dead-
line). Table 6 show that, with corresponding algorithms
complexities, faster federates (2 and 3) could respect a
computational period equal 6 ms and slower federates
could ensure the respect of 15 ms period. These results
show that CERTI could ensure high frequency commu-
nicating processes as well with Time management exe-
cution. As a conclusion, time management mechanisms
provided by CERTI middleware enforce a good synchro-
nization for our kind of real-time federates.

’ H Min ‘ Mean ‘ Max ‘ Std. Dev. ‘

Federate 1 13.266 13.376 13.607 0.100
Federate 2 1.582 2.676 6.487 1.883
Federate 3 1.544 2.678 6.587 1.875
Federate 4 13.293 13.427 13.766 0.139

Table 6: Federates Cycle Duration (Time Management
As Fast As Possible)

Perpectives and Conclusion

We propose, in this paper, experimental results from
our work on real-time simulations with our CERTI
middleware. However, real-time analysis required the
modelization of several aspects of a distributed simula-
tion. Different static scheduling and run time analysis
have been studied under different hypothesis (single pro-
cessor, distributed synchronous processors, distributed
asynchronous processors, ...). Interested reader could
refer to previous papers (30) (33) to get a more com-
plete description of formal part of our work.

This paper shows that current CERTT performances are
very good for real-time and/or high performance simula-
tions. We have also develop and updated a lot of tools to
manage the allocation of both federate and CERTT pro-
cesses over PRISE processors and modify the priority of
each one for compliance with scheduling technique used.
These new implementations, that are not described in
present paper, help to ensure better responsiveness of
HLA services. Indeed, we pursue our efforts and we
currently work on HP-CERTT approach (35) to replace
Unix and TCP communication sockets through shared
memories (for exchange on the same node). In addition,
we will evaluate the use of multi-threading for process
RTIG and ensure real-time properties for all messages
passing through it. As well, we plan to use real-time
dynamic memory allocators from TLSF library (36) and
first experiments show promising results.

We have recently implemented and tested an HLA air-
craft component-based federation composed by nine fed-
erates, each representing a specific part of the aircraft or
environment (37). This simulation is human-in-the-loop
and the operator could interact with the simulation by
a federate which acquires the user orders transmitted by
a real yoke/throttle/pedals system. Now, we think that
our work on real-time simulations is mature (as well as
our middleware CERTI). Indeed, hard real-time proper-
ties of our architecture (and both techniques to manage
it) could allow the connection of simulators with real
physical actuators and sensors and/or real embedded
systems to run hardware-in-the-loop simulations with
high-frequency requirements.

REFERENCES

[1] J.A. Stankovic, Misconceptions about real-time
computing, IEEE Computer Journal, 1988.

[2] Object Management Group, Minimum CORBA-
Joint Revised, OMG Document, orbos/98-08-04,
1998.

[3] J.A. Stankovic, Distributed real-time comput-
ing: the next generation, Technical report, Uni-
versity of Massachussets Amherst, 1992.

[4] T. Abdelzaher, S. Dawson, W.C. Feng, F. Jaha-

nian, S. Johnson, A. Mehra, T. Mitton, A. Shaickh,
K. Shin, Z. Wang, H. Zou, ARMADA Middle-
ware Suite, Proceedings of the IEEE Workshop on
Middleware for Distributed Real-Time Systems and
Services, San Francisco, December 1997.

[5]) O. Gonzalez, C. Shen, I Mizunuma,
M. Takegaki, Implementation and Perfor-
mance of MidART, Proceedings of the IEEE
Workshop on Middleware for Distributed Real-Time
Systems and Services, San Francisco, December
1997.

[6] Object Management Group, Real-time CORBA
Specifications, OMG Document formal/05-01-04,
Version 1.2, 2005.

[7] Object Management Group, Data Distribution
Service for Real-time Systems, OMG Document
formal/07-01-01, Version 1.3, 2007.

[8] The Institute of Electrical and Electronics Engineers
(IEEE) Computer Society, IEEE Standard for
Modeling and Simulation (MES) High Level
Architecture (HLA) - Framework and Rules,
Simulation Interoperability Standards Committee,
2010.

[9] The Institute of Electrical and Electronics Engineers
(IEEE) Computer Society, IEEE Standard for
Modeling and Simulation (MES) High Level
Architecture (HLA) - Object Model Template
(OMT) Specification, Simulation Interoperability
Standards Committee, 2010.

[10] The Institute of Electrical and Electronics En-
gineers (IEEE) Computer Society, IEEE Stan-
dard for Modeling and Simulation (MES)
High Level Architecture (HLA) - Federate In-
terface Specification, Simulation Interoperability
Standards Committee, 2010.

[11] K.W.Arthur, K.S.Booth, Evaluating 3D Task
Performance for Fish Tank Virtual Worlds,
ACM Trasactions of Information Systems, Vol. 11,
N3, pages 239-265, July 1993.

[12] E.Noulard, B.D’Ausbourg, P.Siron, Running
Real Time Distributed Simulations under
Linux and CERTI, Furopean Simulation Interop-
erability Workshop, 2007.

[13] H.Zao, HLA Streaming and Real-Time Ex-
tensions, Phd thesis, School of Information Tech-
nology Engineering, University of Ottawa, 2001.

[14] Airbus Avionics & Simulation Organisa-
tion, Awvionics and Simulation Products,
EDYY presentation for engineer schools, May 2008.

[15] S. Bachinsky, J. Noseworthy, F.Hodum, Imple-
mentation of the Next Generation RTI, Pro-
ceedings of the Spring Simulation Interoperability
Workshop, Orlando, Florida, USA, 1999.

[16] T.McLean, R.Fujimoto, B.Fitzgibbons, Middle-
ware for real-time distributed simulationsl,
Concurrency and Computation: Practice and Ex-
perience, 2004.

[17]) H.Zao, N.D.Georganas, Architecture proposal
for Real-Time RTI, Proceedings of the Simula-
tion Interoperability Standards Organization (SISO)
Simulation Interoperability Workshop, 2000.

[18] A.Boukerche, L.Kaiyuan, A Novel Approach to
Real-Time RTI Based Distributed Simulation
System, Proceedings of the 38th annual Symposium
on Simulation, 2005.

[19] D.Bruzman, M.Zyda, K.Watsen,
M.Macedonia, Virtual Reality Transfer Pro-
tocol design rational, Proceedings of the sixth
IEEE Workshop on Enabling Technologies, 1997.

[20] R.Jansen, W.Huiskamp, J.Boomgaardt, M.
Brassé, Real-time Scheduling of HLA Simula-
tor Components, Euro Simulation Interoperability
Workshop, 2004.

[21] Concurrent Computer Corporation, Real-Time
Clock and Interrupt Module Users Guide,
User Guide, August 2001.

[22] J.Baietto, Real-Time linuxz: The RedHawk
Approach, Concurrent Computer Corporation,
White Paper.

[23] B.O.Gallmeister, POSIX.4: programming for
the real world, O'Reilly & Associates, Inc. 1995.

[24] P. Siron, E. Noulard, J.-Y. Rousselot, CERTI : an
open Source RTI, why and how, Fall Simulation
Interoperability Workshop, 2009.

[25] R.M.Fujimoto, Zero Lookahead And Repeata-
bility In The High Level Architecture, Proceed-
ings of the 1997 Spring Simulation Interoperability
Workshop, 1997.

[26] R.M.Fujimoto, T. McLean, Repeatability in real-
time distributed simulation executions, Pro-
ceedings of the fourteenth workshop on Parallel and
distributed simulation, 2000.

[27] DIS Steering Commitee, The DIS Vision, A
Map to future of Distributed Simulation,Tech.
Report from Institute for Simulation and Training,
1994.

[28] R.M.Fujimoto, Time Management in the High
Level Architecture, Simulation, 71, pp 388-400.
December 1998.

[29] L,Dipippo, L.Cingiser, V.F.Wolfe, L.Esibov,
G.B.Bethmangalkar, Scheduling and Priority
Mapping for Static Real-Time Middleware,
Real-Time Systems, Vol 20, Kluwer Academic
Publishers, 2001.

[30] J-B.Chaudron, P.Siron, M.Adelantado, Towards
an HLA Run-time Infrastructure with Hard
Real-time Capabilities, Proceedings of the Euro-
pean Simulation Interoperability Workshop, 2010.

[31] K.Tindell, J.Clark, Holistic Schedulability
Analysis for Distributed Hard real-time sys-
tems, Microprocessing & Microprogramming, 1994.

[32] K.M.Chandy, J.Misra, Distributed Simulation:
A Case Study in Design and Verification
of Distributed Programs, Software Engineering,
IEEE Transactions, 1979.

[33] J-B.Chaudron, P.Siron, E.Noulard, Design and
model-checking techniques applied to real-
time RTI time management, Proceedings of the
Spring Simulation Interoperability Workshop, 2011.

[34] G.Behrmann, A.David, K.G.Larsen, A Tuto-
rial on UPPAAL, White Paper, Department of
Computer Science, Aalborg University, Denmark,
November 2004.

[35] M.Adelantado, J.L.Bussenot, Jean-Loup,
J.Y .Rousselot, P.Siron, M.Betoule, Marc, HP-
CERTI : Towards a high Performance, high
Avwailability Open Source RTI for Compos-
able Simulations, Fall Simulation Interoperability
Workshop, 2004.

[36) M.Masmano, I.Ripoll, A.Crespo, J. Rea, TLSF:
A New Dynamic Memory Allocator for Real-
Time Systems, Real-Time Systems, Euromicro
Conference on, 2004.

[37] J-B.Chaudron, D.Saussie, P.Siron, M. Adelan-
tado, Real-ttme Aircraft Simulation using
HLA standard: An owverview, Simulation in
Aerospace Conference, Toulouse, June 2011.

