915 research outputs found

    Renaming Global Variables in C Mechanically Proved Correct

    Get PDF
    Most integrated development environments are shipped with refactoring tools. However, their refactoring operations are often known to be unreliable. As a consequence, developers have to test their code after applying an automatic refactoring. In this article, we consider a refactoring operation (renaming of global variables in C), and we prove that its core implementation preserves the set of possible behaviors of transformed programs. That proof of correctness relies on the operational semantics of C provided by CompCert C in Coq.Comment: In Proceedings VPT 2016, arXiv:1607.0183

    Trustworthy Refactoring via Decomposition and Schemes: A Complex Case Study

    Get PDF
    Widely used complex code refactoring tools lack a solid reasoning about the correctness of the transformations they implement, whilst interest in proven correct refactoring is ever increasing as only formal verification can provide true confidence in applying tool-automated refactoring to industrial-scale code. By using our strategic rewriting based refactoring specification language, we present the decomposition of a complex transformation into smaller steps that can be expressed as instances of refactoring schemes, then we demonstrate the semi-automatic formal verification of the components based on a theoretical understanding of the semantics of the programming language. The extensible and verifiable refactoring definitions can be executed in our interpreter built on top of a static analyser framework.Comment: In Proceedings VPT 2017, arXiv:1708.0688

    Some Lambda Calculus and Type Theory Formalized

    Get PDF
    "This paper is about our hobby." That is the first sentence of [MP93], the first report on our formal development of lambda calculus and type theory, written in autumn 1992. We have continued to pursue this hobby on and off ever since, and have developed a substantial body of formal knowledge, including Church-Rosser and standardizationtheorems for beta reduction, and the basic theory ofPure Type Systems (PTS) leading to the strengthening theorem and type checking algorithms for PTS. Some of this work is reported in [MP93, vBJMP94, Pol94b, Pol95]. In the present paper we survey this work, including some new proofs, and point out what we feel has been learned about the general issues of formalizing mathematics. On the technical side, we describe an abstract, and simplified, proof of standardization for beta reduction, not previously published, that doesnot mention redex positions or residuals. On the general issues, we emphasize the search for formal definitions that are convenient for formal proof and convincingly represent the intended informal concepts. The LEGO Proof Development System [LP92] was used to check the work in an implementation of the Extended Calculus of Constructions(ECC) with inductive types [Luo94]. LEGO is a refinement styleproof checker, publicly available by ftp and WWW, with a User's Manual [LP92] and a large collection of examples. Section 1.3 contains information on accessing the formal development described in this paper. Other interesting examples formalized in LEGO include program specification and data refinement [Luo91], strong normalization of System F [Alt93], synthetic domain theory [Reu95, Reu96], and operational semantics for imperative programs [Sch97]

    Lazy Evaluation and Delimited Control

    Full text link
    The call-by-need lambda calculus provides an equational framework for reasoning syntactically about lazy evaluation. This paper examines its operational characteristics. By a series of reasoning steps, we systematically unpack the standard-order reduction relation of the calculus and discover a novel abstract machine definition which, like the calculus, goes "under lambdas." We prove that machine evaluation is equivalent to standard-order evaluation. Unlike traditional abstract machines, delimited control plays a significant role in the machine's behavior. In particular, the machine replaces the manipulation of a heap using store-based effects with disciplined management of the evaluation stack using control-based effects. In short, state is replaced with control. To further articulate this observation, we present a simulation of call-by-need in a call-by-value language using delimited control operations

    Towards Trustworthy Refactoring in Erlang

    Get PDF
    Tool-assisted refactoring transformations must be trustworthy if programmers are to be confident in applying them on arbitrarily extensive and complex code in order to improve style or efficiency. We propose a simple, high-level but rigorous, notation for defining refactoring transformations in Erlang, and show that this notation provides an extensible, verifiable and executable specification language for refactoring. To demonstrate the applicability of our approach, we show how to define and verify a number of example refactorings in the system.Comment: In Proceedings VPT 2016, arXiv:1607.0183

    A New Verified Compiler Backend for CakeML

    Get PDF
    We have developed and mechanically verified a new compiler backend for CakeML. Our new compiler features a sequence of intermediate languages that allows it to incrementally compile away high-level features and enables verification at the right levels of semantic detail. In this way, it resembles mainstream (unverified) compilers for strict functional languages. The compiler supports efficient curried multi-argument functions, configurable data representations, exceptions that unwind the call stack, register allocation, and more. The compiler targets several architectures: x86-64, ARMv6, ARMv8, MIPS-64, and RISC-V. In this paper, we present the overall structure of the compiler, including its 12 intermediate languages, and explain how everything fits together. We focus particularly on the interaction between the verification of the register allocator and the garbage collector, and memory representations. The entire development has been carried out within the HOL4 theorem prover.Engineering and Physical Sciences Research Counci
    • …
    corecore