
Centrum voor Wiskunde en lnformatica
Centre for Mathematics and Computer Science

J.C.M. Baeten, J.A. Bergstra

Global renaming operators in concrete process algebra

Department of Computer Science Report CS-R8521 September

-!enlninwo~! \' i' '~< • :. '· ' a>i in:crn'll!lilca
/~tr ... :,,-::, "f?.,~~~

The Centre for Mathematics and Computer Science is a research institute of the Stichting
Mathematisch Centrum; which was founded on February 11, 1946, as a nonprofit institution aim­
ing at the promotion of mathematics, computer science, and their applications. It is sponsored by
the Dutch Government through the Netherlands Organization for the Advancement of Pure
Research (Z.W.0.).

Copyright © Stichting Mathematisch Centrum, Amsterdam

Global renaming operators in concrete process algebra

J.C.M. Baeten

J .A. Bergstra
Centre for Mathematics and Computer Science, Amsterdam.

Renaming operators are introduced in concrete process algebra (concrete means that abstraction and

silent moves are not considered). Examples of renaming operators are given: encapsulation, pre-abstraction
and localization. We show that renamings enhance the defining power of concrete process algebra by

using the example of a queue. We give a definition of the trace set of a process. see when equality of trace

sets implies equality of processes. and use trace sets to define the restriction of a process. Finally, we
describe processes with actions that have a side effect on a state space and show· how to use this for a
translation of computer programs into process algebra.

1980 Mathematics Subject Classification: 68810, 68C01, 68025, 68F20. 1
1982 CR Categories: F.1.1, F.1.2, F.3.2, F.4.3. i6] ,::: 11 , br1 f IZ. , ~ ".:> l=" > 1.. 0 ') F ~!· ~~
Key Words & Phrases: process algebra, concurrency, renaming operator, trace set.

Note: This report will be submitted for publication elsewhere. Partial support received from the European
Communities under ESPRIT project no. 432, An Integrated Formal Approach to Industrial Software Develop­
ment (Meteor).

INTRODUCTION
In this paper, we describe concrete process algebra. Concrete process algebra is an extension of ACP,
the algebra of communicating processes (see BERGSTRA & KLoP [4]). Concrete process algebra does
not consider silent moves or abstraction as is done in abstract process algebra (see BERGSTRA & KLoP
[5]). The main advantages of not considering abstraction are that it leads to a clearer, and less prob­
lematic theory, With an easy to understand axiomatization, that is amenable to a term rewriting

analysis and that can be studied using initial algebra semantics. Also, concrete process algebra is the
starting point for designing a programming language. It is very useful for specification of processes or
protocols, not so much for a verification formalism. Another article about processes without abstrac­
tion, and with essentially the same semantics, is DE BAKKER & ZUCKER [3].

In concrete process algebra, we introduce renaming operators. In §2, we define simple renaming
operators, called relabelings in CCS (see MILNER [14]), and give three examples of such operators,
namely the encapsulation operator (used to shield off a process, to prohibit communications with the
environment), the pre-abstraction operator (used to obtain a small degree of abstraction within con­
crete process algebra), and the localization operator (which allows us to 'view' a process while it is
interacting with an environment, or, in other words, allows us to focus on some actions and forget

about others).
In §3, we look at the defining power of renamings. We give a specification of a queue in concrete

process algebra with renamings, and show that a queue cannot be defined in concrete process algebra
without renamings, thus showing that the defining power of concrete process algebra is increased by

adding renamings.
In §4, we define a renaming operator with a memory, namely the restriction operator, that restricts

a process to a set of possible execution traces. Before we define the restriction operator, we first give a

short introduction to the theory of trace sets (for more information, see REM [16]), in which we prove
that two processes with identical trace sets, that do not deadlock and are deterministic, must in fact
be equal (also see ENGELFRIET [12]). Then we define the restriction operator, and use it in combina­
tion with the localization operator to show that in a context (or environment) we can restrict a pro­
cess to the set of 'localized' traces. In our view, this theorem constitutes an important interface

Report CS-R8521
Centre for f:.Aathematics and Computer Science
P.O. Box 4079, 1009 AB Amsterdam, The Netherlands

2

between trace theory and process algebra.
In §5, we introduce the state space of a process, and talk about actions that have a side effect on

the state. We implement this with a generalized renaming operator, namely the state operator (for a
different approach, see the theory of nonuniform processes in DE BAKKER & ZUCKER [3]). We use the
state operator to discuss processes having shared variables, and to (mechanically) translate a given
computer program into process algebra. We see that this operator can be very useful in the design of
a programming language that is based on concrete process algebra. We finish by giving a different
specification of the queue.

TABLE OF CONTENTS
I. Concrete process algebra
2. Renamings
3. Defining power of renamings
4. Traces and restriction
5. Processes with side effect on a state space

1. CONCRETE PROCESS ALGEBRA
In this section, we describe the axiomatic theory of concrete process algebra. This theory extends the
theory ACP (the algebra of communicating processes) as described in BERGSTRA & KLoP [4]. In this
paper, we do not consider silent moves (or T-steps) or abstraction as is done in ACP .. (see BERGSTRA
& KLOP [5]).

I.I Atomic actions:. concrete process algebra starts with a set of atomic actions A.
We will assume that A is finite, that A contains two special elements 8 (for deadlock) and t (for hid­
den step), and that a communication function y:A XA~A is given with the following properties:
1. y is commutative, 'Va,b EA y(a,b) = y(b,a)
2. y is associative, 'Va,b,c EA y(y(a,b),c) = y(a, y(b,c)).
3. 8 is a neutral element, 'Va EA y(a, 6) = 6
4. t does not communicate, 'Va EA y(a,t) = 8.
If a and b are two atomic actions, then y(a,b) is the result of the communication between a and b, the
result of executing a and b simultaneously. The communication merge I will extend y to the set of all
processes. If y(a,b) = 8, we say a and b do not communicate.

Next we define the signature l: of concrete process algebra. We have three sorts: A, the set of
atomic actions was defined in 1.1; P is the set of processes, the subject of investigation, and contains
A, and finally If, the set of subsets of A - { 6}, is the set of alphabets.
Functions +,-,II, 11_, I ,oH,.,,n, and constant 8 are discussed in BERGSTRA & KLoP [4] ('11'n is called On
there), and a and tare discussed in BAETEN, BERGSTRA & KLoP [I].

I.2 Signature l:

I. Sorts:

2. Functions:

A
p

a
+:PXP~P

·:PXP~P

ll:PXP~P
ll_:PXP~P

l:PXP~P

(see 1.1)
(set of processes; A <;;,P)
(<i=Pow(A -{6}))
(alternative composition or sum)
(sequential composition or product)
(parallel composition or merge)
(left-merge)
(communication merge)

'dn:P""'P
'll'n:P~P

a:P""'(i,
3. Constants: 8 EA

tEA

1.3. Equations

(encapsulation; H kA - { t})
(projection; n >0)
(alphabet function)
(deadlock)
(hidden step)

Concrete process algebra deals with statements of the form

x =y

called equations; x,y EP.

3

We use letters a,b,c, ... for elements of A, letters x,y,z, ... for arbitrary processes, and we use capital
letters X, Y,Z, ... for variables, ranging over P (often called formal variables, since we will use them in
specifications to define processes, not, like x,y,z, in quantified statements about processes). -e(X)

is an equation with variables among X, and

e(X}

is the same equation with processes x substituted for variables X. Often, we want to focus on one of
the variables, so writing

e(x, -)

means that equation e holds for x and a fixed set of other processes.

1. 4. Specifications
A (recursive) specification Eis a set of equations {e/}EJ} (Jan index set), with ej of the form -J0 = tj(X),

tj is a term with variables from { J0:j EJ}, and J has a distinguished element j 0 •

Process x is a solution of E if E (x, -), i.e. substituting x for Xjo (and other processes for the other
variables) gives ej(x, -) for all j EJ.
x is (recursively) definable if there is a specification E such that E(y, -) ~ x = y.
(For these definitions, also see BAETEN, BERGSTRA & KLOP [2]).

1.5. DEFINITION: The set of finite closed process expressions, FCPE, is defined inductively:
1. A k FCPE; .
2. xEFCPE & aEA ~ axEFCPE
3. x,yEFCPE ~ x +yEFCPE
The set FCPE will allow us to use induction in proofs (when combined with the limit rule) and recur­
sion in definitions (on the standard model).

Next we define a notion of guardedness (taken from BAETEN, BERGSTRA & KLoP [2]). Specifications
must be guarded in order to prove that they have unique solutions (see 1.9).

1.6. DEFINITION: Lett be an open term, possibly containing variables. An occurrence of a variable X
in t is guarded if t has a subterm of the form aM, with a EA and this X occurs in M; otherwise, the
occurrence is unguarded.
Let E = { ej :j EJ} be a specification.

4

Define X;~ ~ Xj occurs unguarded in tj (the right-hand side of ej), and
Eis guarded ~~is well-founded (i.e. there is no infinite sequence~' ~~2 ~ •••).

1.7. Axioms
The axioms for concrete process algebra are presented in table I. We use the following abbreviations:
ACP=Al-7+Cl-3+CMI-9+Dl-4; PR=PRI-4; AB=ABI-6; CPA=ACP+HA+PR
+AB+AIP+LR and CPAy = CPA+ C4, so in table 1 we have CPAy + RDP.

5

Concrete process algebra

x+y=y+x Al '1Tn(a)=a PRI
x +(y +z) = (x +y)+z A2 '1T1(ax)=a PR2
x+x = x A3 '1Tn+1(ax)=a'1Tn(x) PR3
(x +y)z = xz +yz A4 '1Tn(X +y)='1Tn(x)+'1Tn(y) PR4
(xy)z = x(yz) AS
x+8 = x A6
8x = 8 A7

alb = bla Cl a(8)= 0 ABl
(alb)lc = al(blc) C2 a(a)={a} if a=fa8 AB2
Bia= 8 C3 a(8x)= 0 AB3
xl[y = xlLy +ylLx +x[y CMI a(ax)= {a} U a(x) if a=fa8 AB4
alLx = ax CM2 a(x +y)=a(x)Ua(Y) ABS

00

(ax)ILy = a(xl[y) CM3 a(x)= U a('1Tn(x)) AB6
n=I

(x +y)ILz = xlLz +ylLz CM4
(ax)lb = (alb)x CMS
al(bx) = (alb)x CM6
(ax)l(by) = (alb)(xl[y) CM7

(x +y)iz = xlz +yiz CM8
E guarded

RDP
3x E(x, -)

xl(y+z) = x[y+xiz CM9

ou(a) =a if af!=H DI
ou(a) = 8 if a EH D2

ou(x +y) = ou(x)+ou(y) D3
'rfn '1Tn(x)='1Tn(Y)

AIP
x=y

ou(xy) = ou(x)·ou(y) D4

xlylz=8 HA
'rftEFCPE e{t, -}

limit rule (LR)
e(x, -)

a I b =y(a,b) C4

Table I

1.8. COMMENTS. For a discussion of axioms ACP, see BERGSTRA & KLoP [4]. The handshaking axiom
HA implies that all (proper) communications are binary. Axiom C4 says that the communication
merge I extends the communication function y given in 1.1. Axioms PR 1-4 define the projection
operator '1Tm for n El\l,n > 0. Their intuitive meaning is that '1Tn 'cuts off' a process at depth n, '1Tn(x)
stops after executing n steps. Axioms AB 1-6 define the alphabet of a process, and were introduced
and discussed in BAETEN, BERGSTRA & KLoP [I].
The Recursive Definition Principle (RDP) states that every guarded specification has a solution, and
the Approximation Induction Principle (AIP) states that two processes are equal if all their projections
are equal. For RDP and AIP, see BAETEN, BERGSTRA & KLOP [2]. Finally, the limit rule is new here.
It states that if an equation holds for all finite processes (more precisely, for all elements of FCPE),
then it holds for all processes. It may be, that the limit rule is derivable from the other axioms of con­
crete process algebra. The limit rule allows us to prove identities by induction, since FCPE is defined
recursively.

6

1.9. DEFINITION. The Recursive Specification Principle (RSP) is the following rule:

E(x, -) E(y, -)
E guarded

x=y

l.10. LEMMA: RSP holds in concrete process algebra.

PROOF. See BAETEN, BERGSTRA & KLOP [2].

(RSP)

Since some observations made in this proof will be used more often, we will state these here. Let
E = { e/} E J} be a guarded recursive specification with solution x (a solution always exists by
RDP). Thus, we can substitute x for variable Ej. (j0 the distinguished element of J) and other
processes { xj :j E J - U 0 }} for the other variables. Now, by repeatedly substituting terms tj for xj in
term tj.• we obtain a term t)

0
in which all xj occur guarded. Then, we see that 'lTJ (t)

0
), and therefore

'77'1 (x), does not depend on the choice of the xj (j EJ), but is equal to some term in FCPE. In general,
for each n ;;;;i: 1, we can obtain an expansion tJ

0
of tj. in which all xj are n times guarded, so that

'lTn(x) is equal to some term in FCPE. Thus, if x and y are two solutions of a guarded recursive
specification E, we find 'lTn(x) = 'lTn(Y) for all n ;;;;i: 1, so x =y by AIP.

1.11. THEOREM. The following identities hold in concrete process algebra:

Standard Concurrency Conditional Axioms

(xlLy)ILz = xlL(Yllz) SCI a{x}l{a{!:}nH}CH
CAI

an(xl[y)=an(xllan(Y))
(x ly)ILz =x l(YILz) SC2
xly=ylx SC3

xl[y =yllx SC4
a{x}nH= 0

CA3
an(x)=x

x l(y lz)=(x ly)lz SC5
x ll(y llz)=(x l[y)llz SC6

CA5

Table 2

Expansion Theorem
xillx2ll · · · llxn = ~ x;IL"i + ~ (x; lxj)IL"i'j ET

J.;;,;.;;,n i.;;,i<j.;;,n

PROOF. Identities SCI-6 are proved in BERGSTRA & KLOP [6], CAI,3,5 in BAETEN, BERGSTRA & KLOP
[I], and ET in BERGSTRA & TucKER [10] for all terms in FCPE. The general identities then follow by
applying the limit rule.

1.12. INITIAL ALGEBRA. Suppose we have a guarded finite recursive specification E = { ej: 1 :i;;;;;j :i;;;;;n}.

7.

By RDP + RSP, E has a unique solution in concrete process algebra. Now if ~ is the signature of con­

crete process algebra defined in 1.2, let ~(xJ> ... ,xn) denote the signature ~ with extra constants

XJ>···•Xn E P. Then, the initial algebra.

A = T1(~(x1>···,Xn), CPAy+E(x1>···,Xn))

will exist, because CPAy + E(x1>···,xn) is a positive conditional system.
(Of course, we could add constants for more than one specification.)

1.13. EXAMPLES: 1. Suppose y(a,b) = 8 for all a,b EA. Take a,b EA, and consider the initial alge­

bra A = T1(~(x,y,z,w), CPAy + {x = (a +b)x, y = ay, z = bz, w = yllz}). Then

CPAyl-w = yllz = yllz + zlly + y lz = (ay)llz + (bz)lly + 8 = a(yllz) + b(zl[y) =
(a +b)(Yllz) = (a +b)w (use induction plus limit rule to showy lz =8), so RSP1-x = w.

2. Suppose a EA, and consider the initial algebra A = T1(~(x,y),CPAy + {x=ay,y =ax}). Note

RSP1-x=y.

The existence of initial algebras shows that concrete process algebra is consistent. To show however,

that there exists a non-trivial model, we need a result from BAETEN, BERGSTRA & KLoP [2]:

1.14. THEOREM. G = GN. (A - { 8}, { 8,i}) / ~., the set of all finitely branching, rooted directed multi­

graphs, with edges labeled by elements of A - { 8}, and endpoints labeled by 8 or i modulo bisimulation,

is a model of concrete process algebra.
Moreover, each finite element of G is the interpretation of an element of FCP E, and each infinite element

of G is the unique solution in G of a guarded recursive specification.

1.15. COROLLARY. If A is an initial algebra of concrete process algebra as defined in 1.12, then A is a

subalgebra of G.

1.16. COROLLARY. If x E G, then for each n ;;;;;. l there is a term sEFCPE such that Gl='ll"n(x) = s.

PRooF. From the proof of 1.10.

2. RENAMINGS
In this section, we define global renaming operators in concrete process algebra, and consider three

examples of renaming operators, namely the encapsulation operator aH, the pre-abstraction operator

t1 and the localization operator"~· The localization operator will again be used in section 4.

2.1. DEFINITION. If a EA, and H<;;;;,A -{8}, then the renaming operator aH will rename all elements

of H into a. This renaming operator was introduced in process algebra in BERGSTRA, KLoP &

OLDEROG [7). To be more precise, we extend the signature with operators

aH :P ~ P (aEA, H<;;;;,A -{8}),

and add axioms

aH(b)=b
aH(b)=a
aH(x +y)=aH(x)+aH(y)
aH(xy) = aH(x)·aH(Y)

Table 3.

if bfl.H
if bEH

RNl
RN2
RN3
RN4

8

We still have the existence of initial algebras (as defined in 1.12) for this extended system.

2.2. ExAMPLE I: ENCAPSULATION The simplest example of a renaming operator is of course the encap­
sulation operator a8 = 88 (for H<;;,A -{8,t}). Its usefulness is demonstrated in every paper on the
algebra of communicating processes. Usually, we are dealing with the merge of a number of processes,
that can communicate, and we shield them off from the outside by encapsulation, i.e. we set the com­
munication 'halves' equal to 8. Thus, if x is the merge of a number of processes, set
H = {aEa(x): 3bEa(x) y(a,b)*8}, and we consider aH(x).
For example, if y(a,b) = c*8, and a*c,b*c, then a{a,b}(allb) = c.

2.3. ExAMPLE II: PRE-ABSTRACTION

We do not consider silent moves or abstraction in concrete process algebra, but using a special con­
stant t EA we can capture part of abstraction by the renaming operator t1 (for I <;;,A - { 8}), which we
call the pre-abstraction operator. Note that when we use an encapsulation operator a8 , we always
require t f£H, so that a8 (t) = t. In 2.4, we explain some notation for distributed systems, which we
use in 2.5-7 to give an example of the use of t1.

2.4. DISTRIBUTED SYSTEMS. Suppose we have a number of locations, and a number of channels link­
ing them. We assume that at each location a certain process is executed, and that these prpcesses can
communicate via the channels, thus obtaining a communication network. These communications will
consist of the transferal of a piece of data. So suppose we have a finite set of data D (in practice,
D = {O, I}), and we have communication channels 1,2, ... ,k. Then we have the following atomic
actions:
r;(d) = read d along channel i (dED, I.;;;;i.;;;;k);
s;(d) = send d along channel i (dED, 1.;;;;i.;;;;k);
c;(d) = communicated along channel i (dED, 1.;;;;i.;;;;k),
and on these atomic actions, we define the communication function as follows:
y(r;(d),s;(d)) = y(s;(d),r;(d)) = c;(d) (dED, l.;;;;i.;;;;k); y(a,b) = 8 in all other cases.

2.5. DEFINITION. We consider the following communication network:

5

fig. 1

(so we represent locations by circles, with the name of its process inside, and channels by lines).
The processes P, Q,B 1,B 2 are given by the following FCPE terms:

P = ~ r 1(d)· ~r1(e}s2(d}s2(e)
deD eeD

Q = ~r4(d)· ~r4(e)·s5(f(d,e))
deD eeD

(here f :D XD"""'D is some given function)

B; = ~r;+1(d}s;+2(d)· ~r;+1(e)·s;+2(e) (i = 1,2).
deD eeD

Thus, P is a two-place buffer that works only once, B 1 and B 2 are one-place buffers that work twice,
and Q transforms incoming data usingf. Put H = {r;(d),s;(d): dED,i = 2,3,4}, so a8 will encapsu­
late all internal communications.

9

2.6. LEMMA. aH(PllB1'IB2llQ) =
= ~ r 1(d) ~ r 1(e)c2(d)c3(d)(c2(e)c4(d)+c4(d)c2(e))c3(e)c4(e)ss(f(d,e)).

dED eED

PROOF. Since we have binary communication, we can use the expansion theorem proved in §1, so we
start with an action from one of the processes, or a communication between two of them. Only the
first step we will write out in full.

3H(PllB1 llB2llQ) =

= 3H(~ r1(d)((~ r1(e)s2(d)s2(e))llB1llB2llQ)+
dED eED

+ ~ r2(d)(Pll(s3(d) ~ ri(e)s3(e))llB2llQ)+
dED eED

+ ~ r3(d)(PllB1'l(s4(d) ~ r3(e)s4(e))llQ)+
dED eED

+ ~ r4(d)(PllB1'IB2ll(~ r4(e)ss(f(d,e))))+
dED eED

+8) =

= ~ r1(d)·3H((~ ri(e)s2(d)s2(e))llB1 llB2llQ)+8+8+8 =
dED eED

= ~ r1(d)· ~ r1(e)·3H((s2(d)s2(e))llB1'IB2llQ) =
dED eED

= ~ r1(d)· ~ ri(e)·c2(d)·3H(s2(e)ll(s3(d) ~ ri(f)s3(f))llB2llQ) =
dED eED /ED

= ~ r1(d)· ~r1(e)·c2(d)·c3(d)·3H(s2(e)ll(~ r2(f)s3(f))ll(s4(d) ~ r3(g)s4(g))llQ) =
dED . eED /ED gED

= ~ r1(d) ~ r1(e)c2(d)c3(d)(c2(e)·3H(s3(e)ll(s4(d) ~ r3(g)s4(g))llQ)+
dED eED gED

+ c4(d)-3H(s2(e)ll(~ ri(f)s3(f))ll(~ r3(g)s4(g))ll(~ r 4(h)ss(f (d,h)))) =
/ED gED hED

= ~ r1 (d) ~ r1(e)c2(d)c3(d)(c2(e)c4(d)·3H(s3(e)ll(~ r3(g)s4(g))ll(~ r 4(h)s5(f (d,h))))+
dED eED gED hED

+c4(d)c2(e)·3H(s3(e)ll(~ r3(g)s4(g))ll(~ r 4(h)ss(f (d,h))))=
gED hED

= ~ r1 (d) ~ r1 (e)c2(d)c3(d)(c2(e)c4(d)+c4(d)c2(e))·
dED eED

·c3(e)·3H(s4(e)ll(~ r4(h)ss(f(d,h)))) =
hED

= ~ r 1(d) ~ r 1(e)c2(d)c3(d)(c2(e)c4(d)+c4(d)c2(e))·c3(e)c4(e)ss(f (d,e)).
dED eED

2.7. We can simplify the expression derived in 2.6 considerably, if we use pre-abstraction. Put
I = {c;(d):d ED, i = 2,3,4}, the set of all internal communications, then

t1°3H(PllB1 llB2llQ) =

= ~ r 1(d) ~ r1(e)·t·t(t-t +t-t)·t·t·ss(f(d,e)) =
dED eED

= ~ r1(d) ~ r1(e)·t6·s5(f(d,e)).
dED eED

10

Thus, we only see the input and output actions, and we no longer see the alternatives in formula 2.6.

2.8. EXAMPLE III: LOCALIZATION

Let B CA -{8} be such that
1. for all bi.b2 EB and all ai.a2 EA, if y(b1>a 1) = y(b2,a2)=f=8, then b 1 = b2 (we express this by

saying that communication is one-to-one on B); and
2. for all b EB and all a EA y(b,a) fl B (if we put, for B1'B 2 CA,

B1 IB2 = {y(bi.b2):b1 EBi,b2 EB2}-{8},

then this requirement is equivalent to:

BIA n B = 0.

If B satisfies these two requirements, then 'Y has an 'inverse' on BIA, i.e. if c EBIA, then there is
exactly one b E B so that an a EA exists with y(b,a) = c. In this case, we put b = ,.-1(c).
Now we can define the localization operator.

2.9. DEFINITION. Let BC A -{8,t} satisfy 2.8.l and 2.8.2, and suppose BIA = {ci. ... ,cn}· We
define the localization operator v~ by:

I -1() -1() PB= 'Y C1 {c.} 0
•••

0
'{ Cn (c,} 0 tA-(AIBUBU{8})

It is easy to see that v~ has the following properties:

I.
2.
3.
4.
5.
6.

P~(y(b,a)) = b
P~(b) = b
P~(c) = t
P~(8) = 8
v~(x +y) = v~(x)+v~(y)
v~(xy) = v~(x)·v~(y).

if b EB,a EA, y(b,a)=f=8
if bEB
if cEA-(A IB UBU {8})

Intuitively, we think of v~ as the operator that 'localizes' a process to actions from B, so that, in a
context, typically a merge of communicating processes, we can focus on some actions and (pre-)
abstract from others.
We give an example of the use of localization in 2-10,l l and will discuss this example again in §4.

2.10. DEFINITION. We consider the following communication network

4

2

3

fig.2

Think of S as a sender, R as a receiver and E as an environment.
We define Sand R as the unique solutions in concrete process algebra of the following two guarded
recursive specifications:

11

S = ~ ri(d)s2(d)r3(ack)s 1(ack)S
dED

R = ~ r2(d)s4(d)s3(ack)R
dED

Here we have a special element ack denoting acknowledgement (it is easiest to take ack f/. D), so S
sends a d ED to R, receives an acknowledgement, and then sends the next d; R receives the data and
sends back an acknowledgement.
S and R also communicate with the environment E; so E can send data along 1, receive an ack­
nowledgement along 1 or receive data along 4. Thus we can put

I E = (~ s1(d) + ~ r4(d) + r1(ack))E I
_ dED dED .

2.11. But, we have the feeling that E cannot do any of these things at any time: first we must have a
s1(d), then a r4(d), and then a r 1(ack), before a next s1(d') can follow.
We can express this by using the localization operator.
We put H = {s;(d),r;(d):d E D,i E{l,2,3,4} }, and look at

j P~<E>0on(EllSllR) I
so in the process on(EllSllR) we focus on actions from E, we localize to E. It is easily seen that
a(E) = {s 1(d),r4(d): dED}U{r 1(ack)}, and that a(E) satisfies 2.8.l and 2.8.2. We see

P~<E>0on(EllSllR) =
= P~<E>(~ c1(d)·on(Ell(s2(d)r3(ack)s 1(ack)S)llR) =

dED

= ~ s1(d)·v:XCE>(c2(d)·on(Ell(r3(ack)s1(ack)Sll(s4(d)s3(ack)R)) =
dED

= ~ s 1 (d)t·v~<E>(c4(d)"on(Ell(r3 (ack)s 1 (ack)S)ll(s 3(ack)R)) =
dED

= ~ s 1 (d)"t-r4(d)·v~(E)(c 3 (ack)·on(Ell(s 1 (ack)S)llR) =
dED

= ~ s 1 (d)·t·r4(d)·t·v~<E>(ci(ack)·on(EllSllR)) =
dED

= ~ s 1 (d)·t·r4(d)·t·r1(ack)·v~(E) 0on(EllSllR),
dED

so that the actions from E indeed occur in the right order.

3. DEFINING POWER OF RENAMINGS
3.1. Suppose we want to give a recursive specification of a queue Q with input channel 1 and output
channel 2 as in fig.3.

1@) 2
fig. 3

An infinite guarded specification can be given by the following equations:

Q = Q~ = ~ r1(d)·Qd
dED

12

(for any word aED* and any dED)

(see BERGSTRA & TIURYN [9]).
Now we look for a finite recursive specification of Q, in the context of handshaking communication.

Then we may assume that r 1(d) and s2(d) are not the result of communications, for we need the fol­
lowing interactions with the environment:

y(r;(d),s;(d)) = C;(d) (i = 1,2; dED).

That is why we want to specify Q under the condition

a(Q)nran (y) = 0 (since a(Q) = {r 1(d),s2(d): dED}).

3.2. Next, we will prove two theorems:
1. we cannot define Q by a finite guarded recursive specification in concrete process algebra without

renaming under the condition a(Q)nran (y) = 0.
2 we can define Q by a finite guarded recursive specification in concrete process algebra with

renaming operators (as defined in §2) under the condition a{Q)n ran(y) = 0.
We will prove theorem I in 3.10. First we need a number of intermediate results.

We define the following axiom systems:
PA = Al-5 + Ml-4 + PRl-4
{here M I is axiom x l[y = x lly + y llx and M2-4 = CM2-4) and
P.Aa = PA + A6,7.

3.3. LEMMA. Q is not definable by a finite guarded recursive specification in PA.

PROOF. see BERGSTRA & TIURYN [9].

3.4. DEFINITION. Let x E P. We say x does not deadlock (or,DL(x)) if for each n ;;;;:,: l, there is a
term sEFCPE such that 'ITn(x) =sand 8 does not occur ins.

3.5. LEMMA. Suppose process x is definable by a finite guarded specification in P.Aa and x does not
deadlock. Then x is definable by a finite guarded specification in PA

PROOF. Let E = {ej: lo;;;;;;jo;;;;;;n} be a guarded recursive sp~ification. in PA 8 defining x (so
x = t 1(x,x 2, ••• ,xn) for some x 2, ••• ,xn). We define a theory PA , mtermediate between PA and PA 8,

as follows:
the set of PA *-terms is defined inductively:
I. any a EA -{8} and any variable Xis a PA *-term;
2. if s,t are PA *-terms, then so are s +t,s·t,sllt,sllt and s·8.
The axioms of PA• are:
PA* = PA + {a8[Lx = ax8}.
Note that applying a PA" -axiom to a PA* -term will yield a PA* -term.
Note also that CPA 1-.a8llx = ax8 (induction on FCPE plus limit rule). Now we can assume that
all right hand sides of the equations in E are PA* -terms {if some are not, apply axioms A6 and A7,
and if an equation }{_j = 8 appears, substitute 8 for occurrences of }{_j in right hand sides, and leave
out equation }{_j = 8). Let E' be the specification obtained from E by leaving out all occurring 8.
Then E' is a finite guarded specification in PA, and we claim that E' also defines x.
To see that x is a solution of E', let n ;;;;:,: 1 be given. By 1.10, there is an expansion t7 of t1 in which
all xj are n times guarded, so that we can reduce, in P.Aa, '1Tn(t7> to a term in FCPE. Likewise, for E'
there is an expansion t'7 of t'1> so that '1Tn(t'7) reduces in PA to a s'n in FCPE. Now the reduction

13

from '1Tn(t'7) to s'n in PA can be exactly transcribed to a reduction from '1Tn(t1> to a Sn E FCPE in
PA* (sometimes using the PA* -axiom instead of CM2).
Since x is a solution of Ewe have '1Tn(x) = sn. But sn is a PA* -term, and so A6 and A7 cannot be
applied to sn, so since x does not deadlock, 8 cannot occur in sn. But that means that sn = s'n• so
'1Tn(t1) = Sn = s'n = '1Tn(t'7), and x is a solution of E'.

3.6. COROLLARY. Q is not definable by afinite guarded recursive specification in PA 8•

PROOF. That Q does not deadlock can be seen using the infinitary specification given in 3.1. Now use
3.3 and 3.5.

3.7. LEMMA. Let x be a solution of the guarded recursive specification E. Then o8 (x) is a solution of
on(E), where on(E) is obtained from E by replacing each right hand side tj by o8 (tj) (where
H !: A -{8}).

PROOF. Use l.10 and the observation

CPA 1-'1Tn°on(x) = on°'1Tn(x).

3.8. LEMMA. Suppose process x is definable by a finite guarded specification in ACPy +PR and
a(x)nran(y) = 0. Then x is definable by afinite guarded specification in PAa. (ACPy = ACP+C4)

PROOF. Let E be a finite guarded recursive specification in ACPy +PR defining x. Put
H =A IA =ran y-{8}, then by 3.7 o8 (E) defines o8 (x). But o8 (x) = x, by applying rule CA3
(see 1.11). But it is not hard to see that applying a 8 to an open (ACP 'Y + PR)-term amounts to leav­
ing out (i.e. set equal to 8) all communication (sub)terms of the form x ly, and has the same effect as
having a trivial communication function y with y(a,b) = 8 for all a,b e A. The theory ACPy +PR
with trivial y is the same as theory PAa.

3.9. COROLLARY. Q is not definable by a finite guarded recursive specification in ACPy +PR. if we
require a(Q)nran(y) = 0.

3.10. THEOREM. Q is not definable by a finite guarded recursive specification in concrete process algebra,
if we require a(Q)nran(y) = 0.

PROOF. This immediately follows from 3.9, since any specification in concrete process algebra uses the
signature of ACPy +PR, so is a (ACPy + PR)-specification.

3.11. THEOREM. Q is definable by a finite guarded recursive specification in concrete process algebra with
renaming operators, such that a(Q)nran(y) = 0.

PROOF. Let A contain atoms ri(d),s2(d),l(d) and u(d), for each d eD, and suppose

y(l(d),l(d)) = u(d) (deD)

are the ollly non-trivial communications.
Suppose D = { d 1'···•dn }, and define s2{u} = s2(d 1){u(d,)} 0 s2(d2){u(d,)} 0

• • •
0 s2(dn){u(d.)}> and

l{s,} = l(di){s,(d,)} 0 • • • 0 l(dn){s,(d.)}• two renaming operators, and H = {/(d): deD}. We claim we
can define Q by:

14

Q = "" r1(d)·s2 °an(l(s }(Q)lls2(d)·Z) ~ (11) 2
dED

Z = ~ l(d)·Z
dED

To show this specification is correct, define Ra, for o ED*, inductively:
R. = Q (as given above)
Ra*d = Sz{u} 0 an(l {s,} (Ra)lls2(d)Z).
First we need the following observation:
Ra = Sz{u} 0 an(l{s2}(Ra)llZ).
We prove this by RSP, showing that both sides satisfy the same equations: we have, on the one hand

R. = ~ r1(d)·s2{u} 0 an(/{s,}(R.)lls2(d)Z) =
dED

= ~ r1 (d)·Ra, and
dED

Ra*d = S2{u} 0 an(l{s2 }(Ra)lls2(d)Z) =
= Sz{u} 0 an(l (s,}(Ra)lls2(d)Z)+ Sz{u} an(s2(d)Zlll {s,} (Ra))

(since s2(d) does not communicate) =

= Sz{u} 0an(l{s,}(~ r1(e))[l{s,J(Re•a)lls2(d)Z]+
eED

(by induction)

+ l {s,}(s2(f))[/ {s,}(Ra'•j)lls2(d)Z])

(if o = o'*f; if o = £, this term doesn't appear)+

+ s2(d)·s2{u} 0 an(/{s,J(Ra)llZ) =
= ~ r1(e)·s2{u}(an(l{s,}(Re•a)lls2(d)Z)+~)+

eED

+ s2(d)·s2{u} 0 an(/{s,J(Ra)llZ) =
= ~ r1(e)"Re•a•a+s2(d)·s2(u) 0 an(l(s,}(Ra)llZ).

eED

On the other hand, we have

Sz{u) 0 an(l{s,J(R.)llZ) =

= Sz(u) 0 an(~ r1(d)·[l{s,}(s2{u} 0 an(l{s,}(Q)lls2(d)Z))llZ]+
dED

+ l(d)·[/{s,}(R.)llZ]) =
= ~ r1(d)·s2{u} 0 an(l{s,J(Ra)llZ), and

dED

Sz{u) 0 an(l{s,}(Ra•a)llZ) =
= Sz{u} 0 an(l {s,j(S2{u) 0 an(l {s,} (Ra))lls2(d)Z)llZ) =
= Sz{u} 0 an([/ {s,} (~ r1(e)[s2{u} 0 an(l (s,J(Re•a))lls2(d)Z)])+

eED

+ l {s,}(s2(d)[s2{u} 0 an(l {s,J(Ra)llZ)])]llZ) =
= s2{u} 0an(~ r1(e)(l(s,}(Re•a•a)llZ)+

eED

+ s2{u} 0 on(u(d)(s2{u} 0 on(l{s,}(R 0)llZ)llZ)) =

= ~ r1(e)-s2{u} 0 on(l(s,}(Re•a•d)llZ)+
eED

+ s2(d)·s2{u} 0 on(s2{u} 0 on(l {s,>(Ra)llZ)llZ).

Therefore, we have shown Ra = s 2{u} 0 on(/{s,}(Ra)llZ), and so the equations for R 0 simplify to:

R(= ~ r1(d)-Rd
dED

Ra*d = ~ r1(e)·Re*a*d + s2(d)-Ra.
eED

15

But that means that the Ra satisfy the equations for Q0 in 3.1, so by RSP Ra = Qa, in particular
R(= Q0 so the equations above indeed define the queue Q. Finally, a(Q)n ran(y) = 0 is obvious.

4. TRACES AND RESTRICTION
In this section, we define the trace set (set of execution paths) of a process. It is well-known that in
concrete process algebra, two processes with identical trace sets need not be equal (consider e.g.
processes a(b +c) and ab +ac). We will define for a process, what it means that it does not
deadlock, and when it is deterministic, and then we show that if two processes have the same trace
set, do not deadlock and are deterministic, then they must be equal. Next, we define a restriction
operator, that can limit a process to a set of possible traces, and we give an example of the use of this
operator by again considering example 2.10,l l.

4.1. NOTE. From now on, our discussion will take place in the standard model G (see l.14), but
everything will work equally well in an initial algebra A as defined in l.12. The crucial property we
need is l.16: each projection must be a finite term.

4.2. DEADLOCK BEHAVIOUR. We define a predicate DL on Gas follows:
on FCPE, we define DL inductively by
I. DL(8)
2. DL(x) ~ DL(ax +y) (a EA -{8}, x,yeFCPE);

and on G, we define
3. DL(x) <=> 3n DL('ITn(x)).

4.3. LEMMA. The following hold on G:
I. ...,DL(a) if a EA -{8},
2. ...,DL(x) ~ ...,DL(ax) (aEA -{8}, xeG),
3. ...,DL(x)&...,DL(y) ~...,DL(x +y) (x,yeG).

PROOF. Easy.

4.4. THEOREM. Let a EA -{8}, H CA -{8} and xeG, then DL(an(x)) <=> DL(x).

PROOF. ~:suppose -.DL(x). Taken ;;;;:.: I. Then -,DL('ITn(x)). Let seFCPE such that 'ITn(x) = s.
Then -,DL(s), and by applying 4.3, we find -,DL(an(s)). Then -.DL(an('ITn(x))), and since by limit
rule we can easily show an°'IT'n = '1Tn°an, we have -,DL('ITn(an(x))). Since n was chosen arbitrarily, we

·have -,DL(an(x)).
~:just as simple.

4.5. NOTES.

16

I. In 4.4, we can take a = t, so pre-abstraction is safe with respect to deadlocks.
2. In 4.4, we cannot take a = 8, as the following counterexamples show.
2.1. if a,b E A - { 8} with a =/=b, then

DL(a8+b) but -,DL(d{a}(a8+b);
2.2. if a EA -{8}, then ...,DL(a) but DL(a{a}(a)).
Thus, neither of the implications

DL(x) ~ DL(dn(x))

DL(dn(x)) ~ DL(x)

holds in general.
3. By 4.2.3, the predicate DL is semi-recursive on G. In general, DL will however not be decidable.

4.6. NoTE. The following statements are easily proved:
I. DL(xl[y) ~ DL(x) V DL(y)
2. DL(x.y) ~ DL(x) V DL(y)
(the converse only holds for 1, if both x and y are finite, and the converse holds for 2, if x is finite).

We define determinism in 4.8. First we need another definition, which appeared earlier in e.g.
BERGSTRA & KLOP [4).

4.7. DEFINITION. The set of subprocesses of x is the set of all processes obtained by executing a
number of steps from x. We have the following inductive definition:
1. x ESub(x)
2. ay + z E Sub(x) ~ y E Sub(x).

4.8. DEFINITIONS. Let X EG.
I. x is root nondeterministic if there is an a EA -{8} and XJ.X 2 ,y E G such that (in G) x 1 =I= x 2

and

x = ax 1 + ax2 + y.

2. x is nondeterministic if there is a y E Sub(x) which is root nondeterministic.
3. DET(x) ~ x is not nondeterministic.
Thus, DET is also a predicate on G.

4.9. NOTES. I. Neither of the implications

DET(x) ~ DET(an(x))

DET(an(x)) ~ DET(x)

holds in general (for a EA -{8}, H k A -{8}), as the following counterexamples show.
If a,b E A -{8} with a =/=b, then
I.I. DET(aa +M) but ...,DET(a{b}(aa +M));
1.2. -,DET(aa +ab) but DET(a{b}(aa +ab)).
2. In case a = 8, the implication

DET(x) ~ DET(an(x))

does hold, as is easily shown by induction, but the implication

DET(dn(x)) ~ DET(x)

does not, as the following counterexample shows.
If a EA -{8}, then

17

DET(3(a}(aa +a8)) but -.DET(aa +a8).

4.10. It is easily seen that DET(x) & DET(y) is not a sufficient condition to conclude to DET(xl[y)
(take x = aa,y = ab), so we need some extra condition(s). Without proof, we mention the following

PROPOSITION.

DET(x) DET(y)

a(x)na(y) ~ H

(a(x)la(y))n(a(x)Ua(y))CH

DET(3n(xl[y))

4.1 l. THEOREM. Let x E G. Then

DET(x) ~for all n ;;;;.: 1 DET('ITn(x)).

PROOF. => Suppose n ;;;;.: I is such that -,DET('ITn(x)), so there is a y E Sub('ITn(x)) and a EA -{8},
XJ.X2,x3 eG with x, =:f=x2 and y = ax 1 + ax2 + x 3. Using induction, it is not hard to show that
for eachy E Sub('ITn(x)), there is ay'e Sub(x) and an m ~ n such that 'ITm(y') = y. It follows that
y' = ax'1 +ax'2 +x'3, with 'ITm-1(x'i) = x" 'ITm-dx'2) = x2 (x'1 = x, and x'2 = x2 if m = 1) and
'1Tm(x'3) = X3. Since x, =:/= X2, a fortiori x'1 =:/= x'2, whence -.DET(x).
<== Suppose -,DET(x), so there is a y E Sub(x) and aeA -{8}, XJ.X 2,x3 eG with
y = ax, +ax2+x3 and X1=:/=X2. Since x1=:f=x2, there must be an n;;;;.: 1 with '1Tn(X1)=:/='1Tn(x2) (by
AIP). Therefore we have that 'ITn+i(Y) is root nondeterministic. Now if the top ofy is 'at depth m' in
x (y is reached after executing m steps from x), then -,DET('ITn+m+i(x)).

4.12. NOTE. By 4.11, the predicate DET is co-semi-recursive on G In general, DET will however not
be decidable.

4.13. DEFINITION. Now, we will define the trace set of a process in G. A trace set is a set of words
from A - { 8}, so we will have a function

tr: G--'» Pow((A -{8})*).

On FCP E, we define tr inductively:

l. tr(a) = {t:,a} if aeA -{8}
2. tr(8) = {t:}
3. tr(ax) = {t:}U{a*a: aetr(x)} ifaeA-{8}
4. tr(x +y) = tr(x)Utr(Y)

and we extend this definition to G by:

1 s. tr(x) = n~I tr('ITn(x)) I

4.14. Definition 4.13.5 is correct, because trace sets are prefix closed, i.e. if a*p is in some trace set
(a,pe(A -{8})°, a*p is word a followed by word p), then a is too.
We define the set of trace sets '5" as the set of all prefix closed subsets of (A - { 8}) •.
Note that '5" = { 0} U ran(tr).

4.15. DEFINITIONS. On~ we define three operations:

18

1. if Z E ~
0
°a (Z) = {o: a*o E Z}, so

0
°a :'5" ~ '5"for a EA -{8}.

2. If Z E ~ first(Z) = {a : 3oE(A -{8})* a*oEZ}, so first :'5" ~ IP{=Pow(A -{8})).
3. IfZ E~andaEA-{8},a*Z = {€}U{a*o:oEZ},so*:(A-{8})X ~~~.
Note that a* 0 = {€}.

a 4.16. LEMMA. For all Z E '5"-{ 0} Z = LJ a*-(Z).
aeA -{8} oa

PROOF. This follows easily from 4.15.

Next we see when equality of trace sets implies equality of processes. A theorem similar to this one
was proved by ENGELFRIET [12], in the setting of ccs (MILNER [14]) or CSP (BROOKES, HOARE &
RoscoE [11]). Here, in the setting of concrete process algebra, we need an extra condition, because we
have both successful and unsuccessful termination (the process a vs. the process a8).

4.17. THEOREM. Let x,yEG. If DET(x)&DET(y)&-, DL(x) & -,DL(y) & tr(x) = tr(y), then x = y.

PROOF. By the limit rule, it suffices to prove this for x,y E FCPE. We use induction, but in a little
different form as in the definition of FCPE.
We will prove the following statement:
suppose DET(x)&DET(y)&-,DL(x)&-,DL(y)&tr(x) = tr(y),

n m
x = ~ a;x; + ~ bj (a;,bjEA, n +m>O)

i=l j=l

r s
y = ~. Ck)'k + ~ d1 (cbd1EA, r +s >0)

k=I /=I

and the theorem holds for all X;,Jk· Then x =y. So suppose x andy are as specified.
By applying A6 and A7, we can assume a;,bj,ck>d1 EA -{8}. By applying A3, we can assume all the
bj are distinct, and all the d1 are distinct.
Since DET(x) and DET(y), we can assume all the a; are distinct, and all the ck are distinct.
Since -,DL(x) and -,DL(y), we can assume that x; =/:= 8 (if Ios;;;;ios;;;;n) andyk=l=-8 (if Ios;;;;kos;;;;r).
Using definition 4.13, we see that this implies that there is a oEtr(x;) and a oEtr(yk) with o =/:= €.
Now {a;: los;;;;ios;;;;n}U{bj: los;;;;jos;;;;m} =first (tr(x)) =first (tr(y)) = {ck: Ios;;;;kos;;;;r}U
{d1 : los;;;;/os;;;;s}. If los;;;;ios;;;;n, then there is a o E tr(x;) with o=fa€. Then a;*o E tr(x), so a;*o E tr(y). It
follows that there must be a k (los;;;;kos;;;;r) with a; = ck and o E tr(yk). Thus

m s
{a;: Ios;;;;ios;;;;n} = {ck: Ios;;;;kos;;;;r} and also {bj: los;;;;jos;;;;m} = {d1 : Ios;;;;/os;;;;s}, whence ~ bj = ~ d1•

n m j=I /=I

Therefore, we can write y = ~ ai)'; + ~ bj (maybe after a renumbering of they;).
i=l j=I

Let Ios;;;;ios;;;;n, then tr(x;) = -:ia (tr(x)) = -f-(tr(y)) = tr(y;) (since all the a; are distinct). Since
ua; ua;

X; ESub(x), y; E Sub(y), we have DET(x;) & DET(y;) immediately from definition 4.8; we have
-,DL(x;) & -,DL(y;) from 4.2.2. Thus, applying the induction hypothesis, we have X; = y;, and there­
fore x = y.

Now we define the restriction of a process to a trace set. If x is a process, and Z a trace set, then
'V z(x) is the result of disallowing every step in x that will result in a trace outside Z. 'V z is not
strictly a renaming operator (axiom RN4 will not be satisfied), so if we formally want to define the
restriction operator in concrete process algebra, we need to extend our signature and set of axiomas.
We formulate this in 4.18.

4.18. DEFINITION. Extend signature~ with operators

\lz: P ~ P for each Z E ~

19

(~ defined ,,in 4.14, is an algebra with functions first, a:' *, defined in 4.15), and extend

CP Ay + RDP with axioms

'Vz(a) = OA-jirst(Z)(a)

\lz(ax) = OA-jirst(Z)(a)-\l a: (Z)(X)

'Vz(x +y) = 'Vz(x) + 'Vz(y)

4.19. LEMMA Let x E G and z E ~ Then:
I. tr('Vz(x)) C Z
2. tr(x) C Z ~ 'V z(x) = x.

PROOF. Use induction on x.

4.20. DEFINITION. Let I CA -{8}. For a word o in (A -{8})*, let £1(o) be the word obtained from
o by leaving out all elements from I. Then, if x E G, we define tr1(x), the set of I-abstracted traces of
x, by:

tr1(x) = {£1(o): a E tr(x)}.

The following theorem constitutes an important interface between trace theory and process algebra.

4.21. THEOREM. Letp,q E G. If z d tr{1} 0Jl~(p) 0on(pllq), then on(pllq) = on('Vz(p)llq).

PROOF. Let p,q E G, and suppose

Z d tr {i} 011~> 0on(p llq).

Note that by 2.8, communication is one-to-one on a(p) and a(p)IA n a(p) = 0. It suffices to prove
the theorem for p,q E FCPE (by limit rule). We will use simultaneous induction on p and q to prove
the following five statements:
I. on(pllq) = on('Vz(p)llq)
2. on(plLq) = on('Vz(p)lLq)
3. on(qli.p) = on(qlL 'Vz(p))
4. on(p lq) = on('Vz(p)lq).
5. on(p) = on('Vz(p)).
If 'V z(p) = p, there is nothing to prove, so we can assume 'V 2 (p) =!= p.

Case 1: p =a EA. Since 'Vz(p) =!= p, we must have a=!= 8, and 'Vz(a) = 8, so a f/. first(Z). If we
would have a f/. H, then a E jirst(tr{t} 0 v(a} 0 on(a)) C jirst(tr{t} 0 v{a} 0 on(a[Lq))
C first(tr{1}0 11(a} 0 on(allq)) C jirst(Z), which is a contradiction. Therefore a EH. Now we use
induction on q.

Case 1.1: q = b EA. Since 11(0 } 0 on(alb) =a, if alb =!= 8 and alb f/. H, and that will give a con­
tradiction as above, we must have on(a lb) = 8. But then on(allb) = on(8ilb) and 2-5 follow.

Case 1.2: q =bx, bEA. Again on(a lb) = 8, so on(allbx) = on(a)on(bx)+on(b)on(allx) +
on(a lb)on(x) = 8on(bx) + on(b)on(811x)+8on(x) (use induction for the middle term) = on(8llbx).

20

Statements 2-5 are easier.

Case 1.3: q = x +y.
(}n(all(x +y)) = (}n(a)(}n(X +y)+(}n(x!La)+(}n(y!La)+
an(a lx)+an(a ly) = Ban(x +y)+an(xlLB)+an(YILB)+
+an(Blx)+an(Bly) (induction on terms 2-5) = an(Bll(x +y), and again, 2-5 are easier.
This finishes case I.

Case 2: p = ax, a EA. If afl first(Z), we conclude as in case
an(pllq) = an(Bllq) = an(\i"z(p)llq). Therefore, we can assume a E first(Z), so a fl H.

Claim: a: (Z) ;;;;? tr {t} 0 P:.Cx) 0 (}n(x llq).

PROOF. Suppose aEtr {t} 0 P:.Cx) 0 (}n(xllq).
Then

a*a E a*tr {t} 0 P:.Cx) 0 (}n(X llq) =

= tr {t}(a·P:.Cx) 0 an(x llq)) =
= tr {t} 0 P:.Cx)U{a}(a·(}n(X llq)) =
= tr{t} 0P~(p)0an(ax1Lq) k

k tr{t} 0P~(p) 0an(pllq) k Z,

so by definition a E (}(}a (Z).

Now we use inductio.n on q.

Case 2.1. q = b E A. Then

an(axllb) = an(a)·an(xllb) + an(b)an(a)an(x) +
+ an(a lb)an(x) =
= an(a)·an('v iz(x)llb)+an(b)an(a\l iz(x)) +

aa aa
+ an(a lb)an('V iz(x)) =

aa

= an((a\l iz(x))llb) = an('Vz(ax)llb), aa
and 2-5 are easier.

Case 2.2. q =by, b E A. Then

an(axllby) = an(a)an(xllby)+an(b)an(axl[y)+an(a lb)an(xl[y) =

= an(a)an('V iz(x)llby)+an(b)an(\lz(ax)l[y) + aa

+ an(a lb)an('V iz(x)l[y) = an('Vz(ax)llby), aa
and 2-5 are easier.

Case 2.3. q =y +z. Then

an(axll(y +z)) = an(a)an(xll(y +z))+an(ylLax)+an(zlLax) +

that

+ au(ax ly)+au(ax lz) =

= au(a)au(Y'.1...z(x)ll(y+z))+au(ylLY'z(ax)) + . aa

+ au(zlL Y'z(ax))+au(Y'z(ax)ly)+au(Y'z(ax)lz) =

= au(Y'z(ax)ll(y +z)),

and 2-5 are easier.
This finishes case 2.

Case 3. p =X +y.

Claim. Z :> tr{t} 0P~x)0au(xllq) U tr{r} 0v~(v)0au(yllq).

PROOF. Suppose a E tr{i} 0P~x) 0a8(xllq). We can suppose o =I=£.
Then

If

then

o E tr{t} 0P~(x)0au(x1Lq) U tr{t} 0P~(x)0au(q1Lx) U

tr {t} 0v~<x>0au(x I q).

o E tr{t} 0P~x)0au((x +y)ILq)Ctr{t} 0P~x) 0au(pllq) C

tr {t} 011~ep> 0au(pllq) C Z.

If oEtr{r} 0"~<x> 0a8(qlLx), take a trace

TE tr0P~(x) 0 a u(q ILx)

with

£{r}(r) = o.

21

If T = t*'T', for some 'T', this !-step came from a b-step in q, i.e. q = bz +w with 'T' Etr0P~x>0a8(x llz).
In the other case, if T = a*'T', for some 'T' and a E a(x), we have q = az+w with
'f' E trop~(x) oa u(X llz).
In either case, we can conclude by using an induction argument that 'T'Etr011~<x>0a8((x +y)llz),
whence, in the first case

T = t*'T'E t*tr0P~x)0au((x +y)llz)

= tr(t·v~(x)0a8((x +y)llz)

= tr0v~(x)(b·au((x +y)llz)

= trov~(x)oa8(bzlL(x +y))

k tr0P~x) 0 a u(q lLp)

C tr011~>0au(pllq),

so o = £{r}(T)Etr{r} 0P~<p)0au(pllq)CZ.
The other case is similar.
Lastly, if oEtr {t} 0P~x)0au(x I q), then

22

<JEtr {t} op~(x)00H((x + y) I q)<;;;Jr{r} op~(p) 00H(p liq) cz.
Thus tr{1}0 v:.Cx) 0 0H(xllq)CZ. Similarly tr{r} 0P~(y) 0oH(Yllq)CZ, and the claim is proved.

Then we prove case 3 by induction on q.

Case 3.1. q =a EA. Then

aH((x +y)lla) = Off(xlLa)+oH(YlLa)+oH(a)(oH(x)+oH(Y))+

+ OH(xla)+oH(Yla) =

and 2-5 are easier.

= OH('Vz(x)[La)+oH('Vz(Y)[La)+oH(a)(oH('Vz(X))+

+ OH('Vz(Y))+oH('Vz(X)la)+oH('Vz(Y)la) =

= OH((V'z(x)+'Vz(Y))lla) = OH('Vz(X +y)lla),

Case 3.2. q =az,a EA. Then

OH((x +y)llaz) = Off(x[Laz)+oH(Y[Laz)+oH(a)·oH((x +y)llz)+

+ Off(X iaz)+oH(Y iaz) =

and 2-5 are easier.

Case 3.3. q :::::z +w. Then

= Off('ilz(x)[Laz)+oH('V z(Y)[Laz)+(}H(a)OH('V z(X +y)llz)+

+ OH('Vz(x)laz)+oH('Vz(Y)laz) = OH('Vz(X +y)llaz),

OH((x +y)ll(z +w)) = OH(x[L(z +w))+oH(Y[L(z +w))+

Off(z[L(x +y))+oH(w[L(x +y))+oH(X l(z +w))+

Off(Y l(z +w)) = OH('Vz(X +y)ll(z +w)),

and 2-5 are easier.

This finishes the proof of the theorem.

4.22. ExAMPLE. We will illustrate the use of theorem 4.21 by again considering example 2.10.
Define F = ~ s1(d)r4(d)r1(ack)F (meaning that Fis the unique solution of this guarded recursive

dED

specification), then 2.11 shows that in the context

oH(... llSllR),

F should do the same as E. We use 4.21 to prove this. Define the trace set Z inductively by:
1. for all d ED

t:,s,(d),s,(d)r4(d),s1(d)r4(d)r1(ack) E Z;

2. if o EZ, then s1(d)r4(d)r1(ack)*o E Z (for all dED).

Claim I. Z = tr{t} 0 v:.CE) 0 0H(EllSllR).

PROOF. Using 2.11, we get

tr{t} 0P~(E) 0o8(EllSllR) =
tr{i}(~ s 1(d) t r4(d) t r 1 (ack}"P~E) 0oH(EllSllR)) =

dED

= U (s1(d)*tr{t}(t r4(d) t r1(ack}"P~(E) 00H(EllSllR)) =
dED

= U (si(d)* (r4(d)*(r1(ack)*tr{t} 0P~(E) 0oH(EllSllR)))).
dED

It is not hard to finish the proof.

Thus oH(EllSllR) = oH('Vz(E)llSllR), and so we are done if we prove 'Vz(E) = F.

Claim 2. 'V z(E) = F.

PROOF. Since Z = U (s 1(d)*(r4(d)*(ri(ack)*Z))), we have, for deD,
dED

and

Then

a a a
or1(ack) (or4(d) (os 1(d) Z)) = z.

'Vz(E) = 'Vz((~ s1(d) + ~ r4(d) + r1(ack))E) =
dED dED

= ~ 'Vz(s1(d)E) + ~ 'Vz(r4(d)E) + 'Vz(r1(ack)E) =
dED dED

= ~ OA-{s,(d): dED}(s1(d))'\l_a_z(E) + 8 + 8 =
dED as,(d)

= ~ SI (d)'V r4(d)*(r1(ack)*Z)(E) =
dED

= ~ s1(d)oA-(r.(d)}(r4(d))'Vr,(ack)*Z(E) + 8 =
dED

= ~ s1(d)r4(d)oA-{r,(ack)}(r1(ack))'Vz(E) + 8 =
dED

= ~ si(d)r4(d)r1(ack)'Vz(E).
dED

Thus 'V z(E) satisfies the defining specification of F, so by RSP 'V z(E) = F.

5. PROCESSES WITH SIDE EFFECT ON A STATE SPACE

23

In this section, we introduce processes that can be in different states. In fact, we introduce an opera­
tor As (the state operator) so that As(x) is process x in states. We give some examples, and show that
we can use the state operator to translate computer programs (in some high level language) into the
language of concrete process algebra.

5.1. STATE OPERATOR. We want to define the state operator As, for seS, the state space. The princi­
pal idea is that executing a step of a process will result in a certain effect on the state, so our main
equation will look like the following:

24

As(ax) = a'As.(x),

and here a' is the action resulting from execution of a in state s, and s' is the state resulting from exe­
cution of a in state s.
In fact, when we talk about a state, what we have in mind is the state of a certain object. Therefore,
we will have a set of names M, and we will also index the state operator with a name m EM, so A':
symbolizes that the object named by m is in state s.
The action and effect functions will also depend on m. Now we are ready to give the formal
definition. The basic idea for this definition came from BERGSTRA, KLoP & TucKER [8].

5.2. DEFINITION. Let Mand S be two given finite sets, so that sets A,M,S are pairwise disjoint. Sup­
pose two functions act, eff are given:
act: A XMXS ~A,
eff: A XMXS ~ S. We will write a(m,s) for act(a,m,s) and s(m,a) for ejf(a,m,s).
We require the following:

8(m,s) = 8 s(m,8) = s (form EM, s ES).

Now we extend the signature of concrete process algebra with operators

A':: P ~ P (for m E M, s E S),

and extend the set of axioms by:

A';1(a)=a(m,s) 11

A';1(ax)=a(m,s)A~m,a)(x) 12

A';1(x +y)=A';1(x)+A';1(Y) 13

5.3. NoTE: The state operator is a generalization of the renaming operator defined in 2.1. For, if
b EA and H c;; A -{8} are given, define M = {m} and S = {s}. and

{

b if aEH
a(m,s) = a if af/.H,

then A': = bH follows.

5.4. DEFINITION. We define the alphabet of an object mEM, a(m), as the set of all actions and states
that can be changed, so
a(m) = {aEA: thereissESwitha(m,s)*a}U {sES: thereisaEA withs(m,a)*s}.

5.5. THEOREM. If there is no communication, and
a(x) n a(m 2) = a(Y) n a(mi) = 0, then
Am 10Am'(xl[y) = Am'(x)llAm'(Y). Si S2 St Sz

PROOF. The phrase 'there is no communication' can be specified by the statement

a(x)la(Y) = 0 & {a(m1>si): aEa(x)} I {a(m2,s2): aEa(Y)} = 0.

The proof consists of a simultaneous induction on x and y to prove a number of statements as in
4.21, and is straightforward, which is why it is omitted here.

5.6. REMARK. In 5.5, we have the case where we can separate the 'variables' m 1'm2. If either
a(x)n a(m2)*0 or a(Y)n a(m 1)*0, we have so-called shared variables, a situation that is also

described in GPL (in the absence of communication), see Ow1cK1 & GRIES [15].

5.7. ExAMl>LE I. Suppose we have a serial switch as depicted in fig. 4.

0 ~-------...,- 0 \ f',,
-¥ 1\ ,.JI,___ __

' 'I/
', I \ B
1 "·-------~· A

fig. 4

(For the formulation of this example, we are grateful to Jos Vrancken.)
The switches A and B are given by equations

A= aA

B = bB

(action a is the action of flipping switch A, and action bis the action of flipping switch B).

25

Define M = {m}, S = {O,l}X{O,l} (state <i,j> is the state when switch A is in position i and
switch B in position j, with i,j E {O, 1 }). Now we define functions act and ejf:

. . {on(a) if i=l=j
a(m,<1,1>)= o.ff(a) if i=j

(on(a) means that the lamp is turned on by doing a, off(a) it is turned off by a),

{

on (b) if i=l=j
b(m, <i,j>) = o.ff(b) if i =j

<i,j>(m,a) = <1-i,j>

<i,j>(m,b) = <i, 1-j>,

and functions act and e.ff are trivial otherwise. We assume there is no communication, so y(a,b) = 8.
Now suppose we start in state <0, 1 > (so the lamp is oft), then we have process P = A~o.i>(A llB).

CLAIM: P = (on(a)+on(b))(o.ff (a)+o.ff (b))P.

PRooF. We use RSP to show

A~o.1>(A llB) = A~1.o>(A llB)

and

A~o.o>(A llB) = A~1.1>(A llB).

Then

P = A~o.1>(AllB) =

26

= A~o.1>((a +b)(A llB)) =
= on(a).A~J,I>(A llB)+on(b).A~o.o>(A llB) =
= (on(a)+on(b))A~o.o>(AllB) =
= (on(a)+on(b))(off (a)A~J.o>(A llB)+

+off(b)A~o.1>(AllB)) =
= (on(a)+on(b))(off(a)+off(b))A~o.1>(AllB) =
= (on(a)+on(b))(off(a)+off(b))P.

5.8. EXAMPLE II. Random walk.

0 I 2 3 4

IA I B

fig. 5.

Suppose we have given squares as in fig.5, and processes A and Beach occupying one square. Then
both start a random walk, so

A = (IA +rA)A +hA

B = (IB+rB)B+hB

(possible actions are left, right and halt). We implement this using the following state operator: Take
M = { m} (we will omit this m in the sequel) and S = {O, 1,2,3,4} X {O, 1,2,3,4 }. Then:

. {8 if i =O or j =i -1
IA(<i,j >) = IA otherwise

{

8 if i =4 or j =i +I
rA(<i,j>) = rA otherwise

hA(<i,j >) = hA (i) (A halts at i),

. . {<i;j > if i =O or j =i -1
<i,;>(IA) = <i-I,j> otherwise

{

<i,j> ifi=4orj=i-I
<i,j >(rA) = <i + l,j > otherwise

<i,j>(hA) = <i,j>,

and we have similar definitions for B:

IB(<i,j >) = 8 if j =O or i = j-1, IB otherwise

rB(<i,j >) = 8 if j =4 or i = j + l, rB otherwise

hB(<i,j >) = hB(j)

<i,j >(IB) = <i,j > if j =O or i = j -1, <i,j - I> otherwise

<i,j >(rB) = <i,j > if j =4 or i = j +I, <i,j +I> otherwise

<i,j>(hB) = <i,j>.

Then the situation pictured in fig.5 is described by:

27

A<0,4>(A llB).

Using abstract process algebra, we can establish the following claim:

CLAIM: Process A<o,4> (A llB) terminates, and will do so in a state <i,j > with i <j. To be more pre­
cise, if we define I = {/A,rA,IB,rB}, then

3 4 4 j-1

'1)0A<0,4>(A llB) = 'T(~ hA(i)' ~ hB(j)+ ~ hB(j)· ~ hA(i)).
i=O j=i+I j=I i=O

The main tool used in proving this is Koomen's Fair Abstraction Rule (KFAR, see BAETEN, BERGS­
TRA & KLoP [2]). We will not give the proof here, since it is outside the scope of this paper.

5.9. Without proof, we mention two more propositions:
1. IfH n a(m) = 0 andifaG!:Himpliesa(m,s)G!:H(forallsES),thenA:0an(x) = dn°A:(x).
2. If a(x)na(mi)na(m2) = 0 and if aEa(x)na(mi) implies a(m1>s)G!=a(m 2) (for all sES) and

aEa(x)na(m 2) implies a(m 2 ,s)G!=a(mi) (for all sES), then A:. 10A:,2 (x) = A:,2 0A~'(x).

5.10. DEFINITION. In order to be able to give the following examples, we need to extend the notion of
a state operator a little. What we need is that executing a step in a process can result in several possi­
ble actions, i.e. a(m,s) !:: A, not a(m,s) EA. Thus act :A XMXS ~ Pow(A). The state following
will depend on the alternative chosen, so ejf :AXA XMXS ~ S, where s(m,a,b) will matter only
when b E a(m,s). We still have B(m,s) = {B} and s(m,B,B) = s, and then we can define the
extended state operator A: by the following equations:

A:(a)= ~ b LI
bEa(m,s)

A:(ax)= ~ b·A;{m,a,b)(x) L2
bEa(m,s)

A:(x +y)=A:(x)+ A:(y) L3

Note that if each a(m,s) is a singleton, we get back the (simple) state operator defined in 5.2.

5.11. EXAMPLE III: we will describe a small part of a CSP language (see HOARE [13]). We have finite
sets C (channels), X (variables) and D (data). We have atomic actions c?x (for cEC, xEX; receive)
and c!d (send d). The only non-trivial communications are c?dlc!d=c#d (dis communicated along
channel c).
We implement this as follows:
take M = X, S = D, then we define act and ejf so that

A~(c!x·Z) = c!d·A~(Z) (for any process Z, and x EX, d ED, c EC)

A~(c?x·Z) = ~ c?e·A;(Z) (any Z, xEX, dED, cEC).

(thus, in environment A~, variable x has valued).

5.12. ExAMPLE IV: We can mechanically translate any computer program into process algebra. We
illustrate this by means of the following example, a simple program to double a given number. Sup­
pose we work on data structure Zn = {O, l,. . .,n -1} with functions s (successor modulo n) and p
(predecessor modulo n), and constant 0. We have the following program P:

read(x)
y := 0
while x=t=O do y : = ss(y); x : = p(x)
write(y).

28

We translate this into process algebra as follows: all simple statements will become atomic actions,
and program constructs become process algebra constructs, for instance a while- loop will become a
recursive specification. Thus:

P = read(x)·(y:=O)·Z·write(y),

Z = (x*O)·(y:=ss(y))-(x:=p(x))·Z+(x =O).

Now we describe the state operator:

M = {x,y}, S = Zn,

1. read(x)(x,d) = {r(e): eEZn} {dEZn)
d(x, read(x),r(e)) = e (d,eEZn)

2. d(y, (y: =O),(y: =O)) = 0 (d EZn)
3. write(y)(y,d) = {w(d)} (dEZn)
4. (x*O)(x, 0) = {8}
5. d(y, (y: =ss(y)),(y: =ss(y))) = s(s(d)) (dEZn)
6. d(x, (x: =p(x)),(x: =p(x))) = p(d) (dEZn)
7. (x =O)(x,d) = {8} {dEZn-{0}).
8. The functions act and eff are trivial in all other cases.
In order to see what happens, we will use pre-abstraction as defined in 2.3.
Take I = {y: =O,x*O,y: =ss(y),x: =p(x),x =O}.

CLAIM. t1°Aa 0 A-l)(P) = ~ r(e)t2+ 3ew(2e(modn))
eeZ,

(Note: if the program contains statements of the form x: =y, we have to use an operator A:2~,{;
instead of Aa0 A{.) We will sketch the proof of the claim by taking n =2, so Zn = {O, l }.
Then

t1oAijoA-l)(P) =
= ![0 Aij(read(x)-A-l}{(y: =O)Zwrite(y)) =

= t1(r(O)·Aa((y: =0)-A-l}(Zwrite(y)))+

+ r(l)·Af((y: =0)-Afj(Zwrite(y)))) =

= r(O)t·t1(8+(x =O)·Aa0 A-l}(write(y)))+

+ r(l)t-t1((x*O)·Af 0 A-l}((y: = ss(y)(x: = p(x))-Z·write(y))) =

= r(O)·t·t·w(O) +
+ r(l)·t-t·t1((y: =ss(y))(x: =p(x))Aa0 A-l}(Z·write(y))) =

= r(O)ttw(O) +
+ r(l)ttttt1(8+(x =O)Aa 0 A-l)(write(y))) =

= r(O)ttw(O) + r(I)tttttw(O).

5.13. ExAMPLE V: Consider again the queue defined in 3.1. Looked at in a certain way, all it does is
actions read and write, so we might want to say

queue= read"'llwrite"'

where for an atom a, the process a"' is defined by the recursive specification X = aX. We can realise
this view in the following way:: take M = { <1,2>} (we have input channel land output channel 2)
and S = D* (if we want the state space to be finite, we need to limit the capacity of the queue).
Now we define act and eff:

1. read (<1,2>,o) = {r 1(d): dED}
·a(<l,2>,read,r1(d)) = o*d.

2. write (<1,2>,e) = {8}
write (<1,2>,o*d) = {s2(d)} (dED)
e(<I,2>,write,8) = £

o*d(<l,2>,write,s2(d)) = o. (dED)

CLAIM: Q = A;1·2>(read"'llwrite"').

PROOF. We define, for OED*

Ra = A;:= 1·2>(read"'llwrite"').

Then:
I. R(= A;1·2>(read(read"'llwrite"')+ write(read"'llwrite"')) =

= ~r1(d)·A,f 1 ·2>(read"'llwrite"')+8 = ~ r,(d)Rd.
deD deD

2. Ra*d = A,;;}2>(read(read"'llwrite"')+write(read"'llwrite"')) =
= ~ r 1 (e)·A,;;}..;> (read"' II write"') +s2(d)A;:= 1

•2> (read"' II write"')=
eeD

= ~r1(e)Ra*d*e+s2(d)Ra.
eeD

Therefore, the Ra satisfy the equations for the Qa in 3.1, so by RSP Ra = Qa.

REFERENCES

29

(I] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP, Conditional axioms and a/ /J calculus in process
algebra, report CS-R8502, Centre for Mathematics and Computer Science, Amsterdam, 1985.

(2] J.C.M. BAETEN, J.A. BERGSTRA & J.W. KLoP, On the consistency of Koomen's Fair Abstraction
Rule, report CS-:R8511, Centre for Mathematics and Computer Science, Amsterdam, 1985.

(3] J.W. DE BAKKER & J.I. ZUCKER, Processes and the denotational semantics of concurrency, Informa­
tion and Control 54 (1/2), pp.70-120, 1982.

[4] J.A. BERGSTRA & J.W. KLoP, Algebra of communicating processes, in: Proceedings of the CWI
symposium Mathematics and Computer Science, eds. J.W. de Bakker, M. Hazewinkel & J.K.
Lenstra, Amsterdam, 1985.

(5] J.A. BERGSTRA & J.W. KLOP, Algebra of communicating processes with abstraction, Theor. Comp.
Sci. 37 (I), pp. 77-121, 1985

(6] J.A. BERGSTRA & J.W. KLoP, Process algebra for synchronous communication, Information and
Control 60 (113), pp.109-137, 1984.

(7] J.A. BERGSTRA, J.W. KLoP & E.-R. OLDEROG, Readies and failures in the algebra of communicat­
ing processes, report CS-R85 .. , Centre for Mathematics and Computer Science, Amsterdam, 1985.

(8] J.A. BERGSTRA, J.W. KLOP & J.V. TuCKER, Process algebra with asynchronous communication
mechanisms, report CS-R8410, Centre for Mathematics and Computer Science, Amsterdam, 1984,
to appear in Proc. of the CMU workshop on concurrency.

(9] J.A. BERGSTRA & J. TIURYN, Process algebra semantics for queues, report IW 241183, Mathemati­
cal Centre, Amsterdam 1983.

(10] J.A. BERGSTRA & J.V. TucKER, Top-down design and the algebra of communicating processes, Sci.
of Comp. Prog. 5 (2), pp. 171-199, 1985.

(11] S.D. BROOKES, C.A.R. HOARE & A.W. RoscoE, A theory of communicating sequential processes, J.
Assoc. Comp. Mach., 31 (3), pp.560-599,1984.

(12] J. ENGELFRIET, Determinacy ~ (observation equivalence = trace equivalence), memo # inf-84-10,
Twente University of Technology, Enschede 1984.

[13] C.A.R. HOARE, Communicating sequential processes, Comm. Assoc. Comp. Mach. 21, pp.666-677,
1978.

30

[14) R. MILNER, A calculus of communicating systems, Springer LNCS 92, 1980.
[15) S. OWICKI & D. GRIES, An axiomatic proof technique for parallel programs, Acta lnf. 6, pp.319-

340, 1976.
[16) M. REM, Partially ordered computations, with applications to VLSI design, in: Proc. 4th Advanced

Course on Found. of Comp. Sci. part 2, eds. J.W. de Bakker & J. van Leeuwen, MC Tract 159,
Mathematical centre, pp. 1-44, Amsterdam 1983.

