63 research outputs found

    The Use of Separated Reflection Components in Estimating Geometrical Parameters of Curved Surface Elements

    Get PDF
    Iterative least-squares estimation, requires accurate reflectance models to retrieve geometrical parameters of curved surface elements from an image projection. We investigate the use of separating the diffuse (body) reflection from the specular (surface) reflection being responsible for image highlights. Experiments show that the (smooth) diffuse component yields the best convergence properties, while the (sharp) specular component can contribute to the improvement of the noise insensitivit

    On Recognizing Transparent Objects in Domestic Environments Using Fusion of Multiple Sensor Modalities

    Full text link
    Current object recognition methods fail on object sets that include both diffuse, reflective and transparent materials, although they are very common in domestic scenarios. We show that a combination of cues from multiple sensor modalities, including specular reflectance and unavailable depth information, allows us to capture a larger subset of household objects by extending a state of the art object recognition method. This leads to a significant increase in robustness of recognition over a larger set of commonly used objects.Comment: 12 page

    Specularity Removal from Imaging Spectroscopy Data via Entropy Minimisation

    Get PDF
    In this paper, we present a method to remove specularities from imaging spectroscopy data. We do this by making use of the dichromatic model so as to cast the problem in a linear regression setting. We do this so as to employ the average radiance for each pixel as a means to map the spectra onto a two-dimensional space. This permits the use of an entropy minimisation approach so as to recover the slope of a line described by a linear regressor. We show how this slope can be used to recover the specular coefficient in the dichromatic model and provide experiments on real-world imaging spectroscopy data. We also provide comparison with an alternative and effect a quantitative analysis that shows our method is robust to changes the degree of specularity of the image or the location of the light source in the scene

    Embedded polarizing filters to separate diffuse and specular reflection

    Full text link
    Polarizing filters provide a powerful way to separate diffuse and specular reflection; however, traditional methods rely on several captures and require proper alignment of the filters. Recently, camera manufacturers have proposed to embed polarizing micro-filters in front of the sensor, creating a mosaic of pixels with different polarizations. In this paper, we investigate the advantages of such camera designs. In particular, we consider different design patterns for the filter arrays and propose an algorithm to demosaic an image generated by such cameras. This essentially allows us to separate the diffuse and specular components using a single image. The performance of our algorithm is compared with a color-based method using synthetic and real data. Finally, we demonstrate how we can recover the normals of a scene using the diffuse images estimated by our method.Comment: ACCV 201

    Detection and localization of specular surfaces using image motion cues

    Get PDF
    Cataloged from PDF version of article.Successful identification of specularities in an image can be crucial for an artificial vision system when extracting the semantic content of an image or while interacting with the environment. We developed an algorithm that relies on scale and rotation invariant feature extraction techniques and uses motion cues to detect and localize specular surfaces. Appearance change in feature vectors is used to quantify the appearance distortion on specular surfaces, which has previously been shown to be a powerful indicator for specularity (Doerschner et al. in Curr Biol, 2011). The algorithm combines epipolar deviations (Swaminathan et al. in Lect Notes Comput Sci 2350:508-523, 2002) and appearance distortion, and succeeds in localizing specular objects in computer-rendered and real scenes, across a wide range of camera motions and speeds, object sizes and shapes, and performs well under image noise and blur conditions. © 2014 Springer-Verlag Berlin Heidelberg

    Single-shot layered reflectance separation using a polarized light field camera

    Get PDF
    We present a novel computational photography technique for single shot separation of diffuse/specular reflectance as well as novel angular domain separation of layered reflectance. Our solution consists of a two-way polarized light field (TPLF) camera which simultaneously captures two orthogonal states of polarization. A single photograph of a subject acquired with the TPLF camera under polarized illumination then enables standard separation of diffuse (depolarizing) and polarization preserving specular reflectance using light field sampling. We further demonstrate that the acquired data also enables novel angular separation of layered reflectance including separation of specular reflectance and single scattering in the polarization preserving component, and separation of shallow scattering from deep scattering in the depolarizing component. We apply our approach for efficient acquisition of facial reflectance including diffuse and specular normal maps, and novel separation of photometric normals into layered reflectance normals for layered facial renderings. We demonstrate our proposed single shot layered reflectance separation to be comparable to an existing multi-shot technique that relies on structured lighting while achieving separation results under a variety of illumination conditions

    Extended Intensity Range Imaging

    Get PDF
    A single composite image with an extended intensive range is generated by combining disjoining regions from different images of the same scene. The set of images is obtained with a charge-couple device (CCD) set for different flux integration times. By limiting differences in the integration times so that the ranges of output pixel values overlap considerably, individual pixels are assigned the value measured at each spatial location that is in the most sensitive range where the values are both below saturation and are most precisely specified. Integration times are lengthened geometrically from a minimum where all pixel values are below saturation until all dark regions emerge from the lowest quantization level. the method is applied to an example scene and the effect the composite images have on traditional low-level imaging methods also is examined

    Retrieving multiple light sources in the presence of specular reflections and texture

    Get PDF
    Recovering multiple point light sources from a sparse set of photographs in which objects of unknown texture can move is challenging. This is because both diffuse and specular reflections appear to slide across surfaces, which is a well known physical fact. What is seldom demonstrated, however, is that it can be taken advantage of to address the light source recovery problem. In this paper, we therefore show that, if approximate 3D models of the moving objects are available or can be computed from the images, we can solve the problem without any a priori constraints on the number of sources, on their color, or on the surface albedos

    Specular reflection removal and bloodless vessel segmentation for 3-D heart model reconstruction from single view images

    Get PDF
    Three Dimensional (3D) human heart model is attracting attention for its role in medical images for education and clinical purposes. Analysing 2D images to obtain meaningful information requires a certain level of expertise. Moreover, it is time consuming and requires special devices to obtain aforementioned images. In contrary, a 3D model conveys much more information. 3D human heart model reconstruction from medical imaging devices requires several input images, while reconstruction from a single view image is challenging due to the colour property of the heart image, light reflections, and its featureless surface. Lights and illumination condition of the operating room cause specular reflections on the wet heart surface that result in noises forming of the reconstruction process. Image-based technique is used for the proposed human heart surface reconstruction. It is important the reflection is eliminated to allow for proper 3D reconstruction and avoid imperfect final output. Specular reflections detection and correction process examine the surface properties. This was implemented as a first step to detect reflections using the standard deviation of RGB colour channel and the maximum value of blue channel to establish colour, devoid of specularities. The result shows the accurate and efficient performance of the specularities removing process with 88.7% similarity with the ground truth. Realistic 3D heart model reconstruction was developed based on extraction of pixel information from digital images to allow novice surgeons to reduce the time for cardiac surgery training and enhancing their perception of the Operating Theatre (OT). Cardiac medical imaging devices such as Magnetic Resonance Imaging (MRI), Computed Tomography (CT) images, or Echocardiography provide cardiac information. However,these images from medical modalities are not adequate, to precisely simulate the real environment and to be used in the training simulator for cardiac surgery. The propose method exploits and develops techniques based on analysing real coloured images taken during cardiac surgery in order to obtain meaningful information of the heart anatomical structures. Another issue is the different human heart surface vessels. The most important vessel region is the bloodless, lack of blood, vessels. Surgeon faces some difficulties in locating the bloodless vessel region during surgery. The thesis suggests a technique of identifying the vessels’ Region of Interest (ROI) to avoid surgical injuries by examining an enhanced input image. The proposed method locates vessels’ ROI by using Decorrelation Stretch technique. This Decorrelation Stretch can clearly enhance the heart’s surface image. Through this enhancement, the surgeon become enables effectively identifying the vessels ROI to perform the surgery from textured and coloured surface images. In addition, after enhancement and segmentation of the vessels ROI, a 3D reconstruction of this ROI takes place and then visualize it over the 3D heart model. Experiments for each phase in the research framework were qualitatively and quantitatively evaluated. Two hundred and thirteen real human heart images are the dataset collected during cardiac surgery using a digital camera. The experimental results of the proposed methods were compared with manual hand-labelling ground truth data. The cost reduction of false positive and false negative of specular detection and correction processes of the proposed method was less than 24% compared to other methods. In addition, the efficient results of Root Mean Square Error (RMSE) to measure the correctness of the z-axis values to reconstruction of the 3D model accurately compared to other method. Finally, the 94.42% accuracy rate of the proposed vessels segmentation method using RGB colour space achieved is comparable to other colour spaces. Experimental results show that there is significant efficiency and robustness compared to existing state of the art methods
    corecore