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Abstract Successful identification of specularities in an
image can be crucial for an artificial vision system when
extracting the semantic content of an image or while inter-
acting with the environment. We developed an algorithm that
relies on scale and rotation invariant feature extraction tech-
niques and uses motion cues to detect and localize specu-
lar surfaces. Appearance change in feature vectors is used
to quantify the appearance distortion on specular surfaces,
which has previously been shown to be a powerful indicator
for specularity (Doerschner et al. in Curr Biol, 2011). The
algorithm combines epipolar deviations (Swaminathan et al.
in Lect Notes Comput Sci 2350:508–523, 2002) and appear-
ance distortion, and succeeds in localizing specular objects
in computer-rendered and real scenes, across a wide range
of camera motions and speeds, object sizes and shapes, and
performs well under image noise and blur conditions.
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1 Introduction

Surface reflectance estimation is a fundamental problem in
computer vision. Not only is known surface reflectance a pre-
requisite for the successful recovery of 3D shape [3–8], but it
also provides crucial information about the semantic identity
of objects (Fig. 1). For an artificial agent, visual extraction of
reflectance properties may be a crucial prerequisite for prop-
erly planning interactions with the environment, for example
in the biomedical context [9], or in real-time, real-world 3D
reconstruction scenarios [10,11].

Visual estimation of surface reflectance properties is math-
ematically under-constrained since the object’s reflectance
properties, its 3D shape and the illumination have to be esti-
mated simultaneously from the 2D patterns of light arriv-
ing at the sensor. Thus, the majority of previous work on
reflectance classification has relied on specific assumptions
about the spectral BRDF [13–15], knowledge of camera
motion [16,17] or has been made under specific conditions,
such as specialized sensing or lighting [18].1 Previously, we
showed that reflectance can be rapidly classified based on the
statistical differences between the image motion generated by
moving diffuse and specular surfaces without any restrictive
assumptions [20]. Our approach was inspired by the human
visual system which is able to extract surface material proper-
ties from single [21–36] and multiple images [1,37–39] with
ease, despite the simultaneous shape–material–illumination
estimation challenge. More recent evidence suggests that
one particular powerful image motion cue that the human
visual system seems to be sensitive to when estimating sur-
face reflectance is the distortion of appearance that moving
specular surfaces give rise to [1] (Figs. 2, 5).

1 But see [19] who use only minimal assumptions about the scene,
motion and 3D shape.
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Fig. 1 Surface reflectance, appearance and identity. The shape in these
three photographs is the same but the identity of the object changes as
a function of its surface reflectance characteristics. Semantic labeling
would be impossible on the basis of shape alone. From left to right
ping-pong ball, chrome ball bearing, black plastic sphere. To optimally

interact with these objects, e.g., to pick them up without breaking or
dropping them, visual estimation of surface reflectance is crucial. This
figure has been re-printed with permission from [12], copyright John
Wiley and Sons, 2013

Fig. 2 Appearance distortion on specular objects. a As the object
rotates on the platform, the pattern reflected from its surface varies
markedly across frames. Appearance distortions tend to be more pro-
nounced at low curvature region [5,40] where the pattern of distortion
varies with the sign of the curvature. Examples of appearance distor-
tions on this object are highlighted in red squares in a and extracted

and magnified in b. Appearance distortion is a powerful cue that the
human visual system uses to distinguish specular from diffusely reflect-
ing surfaces [1]. In this paper, we utilize this motion feature to develop
an algorithm that detects and localizes specular surfaces in real-world
scenes. Photographs by Maarten Wijntjes

Appearance distortion is an attractive motion feature to
be extracted by a specularity detecting algorithm because it
does not require any assumptions about the object, the illu-
mination or the camera trajectory, it can be computed from
just two images of a motion sequence, and it is a robust fea-
ture: it consistently occurs on specular surfaces, regardless
of object shape, motion, or the reflected environment. These
are significant advantages over previous approaches which
classified objects as matte or specular solely on the basis of
the bi-modality of the image velocity histogram [20]. We
show below (Fig. 3) that bi-modality does not predict sur-
face reflectance for complex objects rotating around arbitrary
axes, thus its applicability is limited.

We developed an algorithm that relies on scale and rotation
invariant feature extraction techniques and uses motion cues
to detect and localize specular surfaces in both computer-
rendered and real image sequences. Appearance change in
feature vectors is used to quantify the appearance distortion
on specular surfaces. Our algorithm combines a novel appear-
ance distortion cue and epipolar deviations [2] and succeeds

in localizing specular objects across a wide range of camera
motions and speeds, object sizes and shapes, and performs
well under image noise and blur conditions.

The paper is organized as follows: in Sect. 2 we review
related work and introduce the concept of appearance distor-
tion. In Sect. 3 we introduce the algorithm for detection and
localization of specularities in image sequences. Section 4
describes the test sets and in Sect. 5 we present the exper-
imental results for various camera motions, camera speeds,
object sizes, object shapes, surface reflectance properties in
computer-generated scenes, as well as for real indoor and
outdoor videos. We end with a brief discussion in Sect. 6.

2 Related work

2.1 Surface reflectance estimation

Surface reflectance is a major factor contributing to an
object’s appearance (see Fig. 1). To obtain a full description
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Detection and localization of specular surfaces 1335

Fig. 3 Velocity and motion histograms. We computed image velocity
and motion direction histograms, two potential sources of information
which may vary systematically with surface material for two test scenar-
ios: a complex shape rotating about an oblique axis and a duck rotating
around the viewing axis. Each object was rendered with diffuse (tex-
tured) and specular reflectances. b There is no apparent difference in
the bi-modality of the velocity histograms of shiny and matte surfaces.
Velocity corresponds to the magnitude of a flow vector. c Also no char-
acteristic differences emerge from for the motion direction histograms

of how an object of a particular material interacts with the
illumination one could estimate the bidirectional reflectance
distribution function (BRDF) for each point on an object’s
surface. Apart from systems that require special acquisi-
tion devices, there exist image-based acquisition techniques
that simultaneously estimate 3D shape and reflectometry
from multiple images without the need of special hardware
(see [41] for a review). These approaches estimate high-
dimensional functions for each point on the object and require
very large number of images, hence long computation time.
Although these techniques are very useful for model-based
rendering and 3D photography, there are robotic vision prob-
lems, such as object recognition, or grip force estimation,
where a matte–specular binary decision about the object of
interest would be sufficient. For such cases, computation-
ally less demanding and more robust techniques would be
necessary.

2.1.1 Specular highlight detection

Specular highlights, a special instance of specular reflections,
pose problem for methods that use the intensity distribution
across an object to recover its 3D shape, since they introduce
abrupt and large changes in image intensity around the high-

light region. Thus a large body of research has focused on
highlight identification and its segregation from the diffusely
reflecting components, which we briefly review.

Assuming different spectral distributions of diffusely
and specular reflecting surface material components has
proven to be particularly successful in highlight-removal
approaches. Shafer [13] introduced the Dichromatic Reflec-
tion Model, which approximates the light reflected by a sur-
face point as a linear combination of diffuse and specular
components to model this two-spectral component reflection
function. The model has been used in several ‘flavors’ for
highlight identification and removal, e.g., by Klinker [42]
in combination with a sensor model, by Bajcsy et al. [43] to
also segment highlights arising from interreflections between
objects, or by Tan et al. [44] and Mallick et al. [45] using a
pixel-based techniques to allow highlight segregation for tex-
tured surfaces—to name a few.

Light reflected by specular regions is highly polarized
while that reflected by diffuse body color is not, thus, an alter-
native approach to using color information has been to iden-
tify specular highlights by looking at the amount of polariza-
tion in the reflected light, e.g., [14] and more recently [46].
Nayar et al. [15] combines color and polarization profiles,
and Chung et al. [47] proposed an integrative feature-based
technique that does not rely on the color signature of diffuse
and specular reflectance components.

What this literature has in common is that the specular
highlight is treated as a disruption to the 3D shape recovery
of a matte object. Specularities, however, can be valuable
source of information and constrain, for example, 3D shape
recovery if image motion is taken into account2[48]. Specular
feature motion can also be a particularly useful cue for surface
reflectance classification, as discussed next.

2.2 Image motion and specular surfaces

Image motion has been beneficial in many computer vision
problems: structure from motion, image stitching, 3D shape
recovery, stereo correspondence, recognition, or pose esti-
mation (see [49] for a review), and has recently received
increasing attention in 3D specular shape reconstruction [50–
52], specularity detection [2,53], and reflectance classifica-
tion [1,20].

Bi-modality Previous research suggested that movies of
rotating shapes could be classified into specularly-, or dif-
fusely reflecting3 objects solely on the basis of the shape
of the image velocity histogram [20]. This work showed
that specular and matte objects give rise to material-specific
image velocities. Moreover, for specular objects, the pat-

2 Also see [28] specular shape perception in human observers.
3 When referring to matte or diffusely reflecting objects, we imply that
these objects also have a 2D texture.
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Fig. 4 Epipolar deviation vs.
appearance distortion:
specificity. Moving, diffusely
reflecting objects, such as the
photograph of the house in the
above scene, will distort the
optic flow field solely due to
camera motion. This will cause
epipolar deviations, which a
specularity detection algorithm,
that is solely based on this cue,
may label as specular. a An
office scene. In addition to
camera motion the photograph,
located on the desk, moves. b
Left this causes large epipolar
deviations (purple overlay), thus
this region would incorrectly be
labeled as specular. Right
appearance distortion (purple
overlay) is not affected by this
manipulation and correctly
labels the specular object. c
Epipolar deviation and
appearance distortion for this
sequence

tern of image velocities—in particular the bi-modality of the
velocity histogram—strongly depends on the 3D curvature
variability of the object. While the classification results cor-
related well with human performance, the test set used in
this study consisted only of simple, cuboidal 3D shapes that
rotated from right to left around the vertical axis. Thus, the
question arises as to what extent these findings generalize
to more generic scenarios. Figure 3 demonstrates that bi-
modality of the image velocity distribution does not predict
surface reflectance for complex objects rotating around arbi-
trary axes, thus its applicability may be limited to simple
shapes4.

Epipolar deviations For rigid, diffusely reflecting objects the
optic flow due to camera motion obeys epipolar geometry.
Swaminathan et al. [2] showed that specular motion violates

4 It may be that bi-modality does not work well as a global parameter;
however, at a particular spatial scale it may continue to correctly predict
surface reflectance.

the epipolar constraint. While these epipolar deviations may
signal the existence of specularities [2,53], their usefulness in
specular object detection is restricted to linear camera motion
and convex shapes. Moreover, problems may arise—due to
the global nature of this cue5—that diminish its specificity.
For example, moving matte, textured objects will distort the
optic flow field solely due to camera motion, and would thus
cause epipolar deviations (Fig. 4). Moreover, slowly moving,
near-planar, specular objects will have negligible epipolar
deviations, and may thus not be identified as specular [1]).

2.3 Appearance distortion

As a specular object rotates about its axis (Fig. 5a) specu-
lar features, ‘rush’ towards high curvature points, and appear
to become ‘absorbed’ due to the compression at these loca-
tions [28] (Fig. 5b). Additionally, “feature genesis” occurs

5 At the fundamental matrix estimation stage, motion vectors from the
entire image contribute.

123



Detection and localization of specular surfaces 1337

Fig. 5 Appearance distortion and appearance change. a A complex
shiny (left) and a matte, textured object (right) are rotating about the
horizontal axis. b This rotation gives rise to distinct flow pattern for
each surface material. The shiny object exhibits a marked amount of
appearance distortion, i.e., feature absorption and genesis, whereas the
appearance of the diffusely reflecting (matte), textured object does not
change substantially. c In order to assign a motion vector pixels need
to be tracked for a period of time. Although increasing integration time

reduces noise, it also decreased trackability. Optic flow computed over
a 2-frame distance and optic flow computed over a 3-frame distance
are shown. Here, trackability diminishes dramatically for the shiny, but
not for the matte object. These figures have been reprinted with per-
mission from [1], Copyright 2011 by Cell Press. Because of the current
limitations of the applicability of optic algorithms to scenes containing
specular flow [51] (see Sect. 5.8), we propose here to measure appear-
ance distortion directly using SIFT features [56]

at local concavities on the object’s surface (see also [54]
for an analysis on parabolic points, and [55] for specular
stereo analyses). Previously, we have shown that the result-
ing distortion of appearance during object motion impairs
the trackability of these features by optic flow mechanisms,
i.e., when image features change in appearance too rapidly,
they cannot be tracked for a sufficient time interval to esti-
mate their motion. We computed a metric that captures the
proportion of image features that are trackable as function
of lengthening the frame interval (Fig. 5c), and showed that
this metric—which we called coverage change was highly
predictive of surface specularity6.

Although Doerschner et al. [1] found coverage change to
be consistently larger for specular objects than matte, tex-
tured ones, it is only an indirect measure of appearance dis-
tortion and relies on optic flow computations. Adato et al.
[51] point out that existing optic flow algorithms are incom-
patible with fundamental properties of specular flows such
as occasional, large specular flow magnitudes which is in
direct disagreement with a global smoothness constraint [57].
Changing to a polar representation of optical flow [58] sub-
stantially improves the quality of specular flow computation.
Alternatively, Adato et al. [48] proposed to estimate specular
flow and 3D shape simultaneously, rather than sequentially,
thereby improving the estimation of both aspects.

Our aim here is to detect specularities, irrespective of 3D
shape. Thus, to avoid the above-mentioned problems in spec-

6 Note that the aim in [1] was to predict human perception. Thus
this measure predicts apparent or perceived shininess not physical
reflectance.

ular flow estimation, we propose to directly capture appear-
ance distortion using SIFT features [56]. We compute a SIFT
feature descriptor that captures local appearance and quan-
tify appearance distortion with the change in matching fea-
ture descriptors in consecutive frames. In order to directly
compare our SIFT method to an optic flow-based approach,
we conducted a control experiment in Sect. 5.8. Our results
confirm that an optical flow based-method—although per-
forming sufficiently for classification tasks [1]—is unable to
reliably and efficiently detect specular objects.

Appearance distortion vs. epipolar deviation Epipolar devi-
ations are related to localization errors in SIFT features.
Other than by specular motion, these are primarily caused
by perspective effects, illumination and camera gain changes
[59]. Appearance distortion, as it would occur independent
of specular motion, primarily arises from errors in the SIFT
descriptor [56] which are caused by imaging non-linearities,
such as illumination changes, sensor saturation, gamma cor-
rection [60,61] as well as perspective effects [62]. While the
origins of errors in specularity detection for the two measures
overlap, the effects of these variables (illumination, perspec-
tive) may alter each cue differently since epipolar deviation
is related to the feature detector [56]; whereas, appearance
is related to the feature descriptor [56]. Thus, by combin-
ing both cues we would significantly boost detection per-
formance (see Fig. 14). In general, however, we find that
appearance distortion performs better under conditions that
are problematic for epipolar deviations such as independently
moving objects (Fig. 4), or image degradations, e.g., added
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Fig. 6 Flowchart of the algorithm. After applying SIFT, matching out-
lier and appearance distortion fields are obtained. These two fields are
multiplied pixel by pixel to yield the specularity field. A specularity
mask is created by thresholding the specularity field. Connected com-

ponent labeling is used to compute connected regions and these are
thresholded according to their sizes. The components that have large
regions define bounding box(es)

noise and motion blur (Fig. 12a, b). Lastly, unlike previous
approaches to specular detection [2,53,63] appearance dis-
tortion is not limited to work with linear camera motion and
convex surfaces, i.e., would successfully detect also concave
specular regions (see inset Fig. 7b), and perform well under
non-linear camera trajectories.

3 Algorithm

The specular region detection algorithm that we propose
takes a pair of images and outputs bounding boxes of detected
specularities. SIFT features [56,64] not only provide scale
and rotation invariance in image analysis, but also feature
vectors that quantify local appearance. This makes them a
perfect tool to directly capture the appearance distortions7

that occur on specular surfaces, without relying on optical
flow.

A flowchart of the algorithm is shown in Fig. 6 and
it involves two stages: in stage 1 epipolar deviations and
appearance distortion are computed using SIFT features.
These two data are combined in the second stage to yield
the specularity field. This field is thresholded and specu-
lar image regions are extracted using connected component
labeling. We evaluate the algorithm’s performance by com-
puting precision-recall curves as defined below.

3.1 Stage 1

Epipolar deviations

1. Extract SIFT features for each frame.
2. Eliminate features with low average feature vectors

(Appendix A)8.
3. SIFT nearest neighbor feature matching [66].

7 SIFT features have also been used for sparse specular surface recon-
struction [65].
8 This is crucial since appearance distortion critically depends on the
change in feature vectors.

4. Apply 2000 RANSAC [67] iterations with 8-point DLT
fundamental matrix estimation [68] to matching features.

5. Accept features with Sampson error [69] more than a
selected threshold as outliers (Appendix A).

6. Initializing a zero magnitude field (same size as the
image).

7. Assign high intensity to outlier pixels and convolve with
Gaussian kernel (Appendix A).

This field quantifies the density of epipolar deviations in the
image. See Fig. 7a.

Appearance distortion

1. Compute L1 norm of the change in matching feature vec-
tors for consecutive frames (inliers only). L1 norm is cho-
sen over L2 norm, for its relative sensitivity to smaller
distances.

2. Initializing a zero magnitude field (same size as the
image).

3. Assign appearance distortion values to inlier pixel loca-
tions and convolve with the same Gaussian kernel as
above.

The resulting field quantifies the appearance distortion in the
image; see Fig. 7b. Note that appearance changes for outlier
features are not used in order to avoid false high appear-
ance distortion values. The latter arise from errors in feature
matching.

3.2 Stage 2

Combination The specularity field is obtained through
pixel-by-pixel multiplication of the epipolar deviation and
appearance distortion fields (Fig. 7c). Multiplication of two
fields acts as an AND operation, but it is more quantitative
and flexible since a threshold can be defined on the com-
bined field. This field has high intensity only if both epipolar
deviation and appearance distortion exist.
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Fig. 7 Sample Scene. The
camera motion is a rotation in
azimuth, a single specular object
is located on the desk. A sample
frame from the image sequences
we used in our experiments with
epipolar deviation (outlier) field
(a), appearance distortion field
(b), and the combined
specularity field (c) overlaid in
purple. Inset figure in b
illustrates that appearance
distortion, and therefore or
algorithm also detects concave
specular regions. Purple squares
indicate specular regions that
were detected by the appearance
distortion measure. The white
bounding box in c denotes the
image region that was labeled as
specular by the algorithm

Region extraction A binary specularity mask image is
obtained after thresholding, and the bounding box of the spec-
ular surface is computed after connected component label-
ing. Size thresholding is applied on connected components to
reject small spurious regions. The bounding box is shown in
Fig. 7c, as a white rectangular outline overlaid on the office
scene.

3.3 Performance evaluation

We first determined the intersection I of the area delimited
by the detected bounding box D with the area delimited by
the ground truth bounding box G.

I = D ∩ G (1)

Precision P is the ratio of the intersection area I to the
detected area D.

P = I

D
(2)

Recall is the ratio of the intersection area to the ground
truth bounding box area.

R = I

G
(3)

Precision is equal to one if the detected bounding box D is
completely inside the ground truth bounding box G (Fig. 8b).
In this case, a region on the specular object is labeled as
specular which is considered sufficient to label the object
as specular. Therefore, we will primarily use precision to
evaluate the performance of the algorithm for the localization
of specular surfaces.

4 Test set

Computer-rendered scenes In order to compare algorithm
performance with ground truth we rendered (3ds Max, Copy-
right 2012 Autodesk, Inc.) 10 frames, 1,600 × 1,200 pixel
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Fig. 8 Performance evaluation.
Shown are hypothetical
detection results. a Precision P
is the ratio of the intersection
area I to the detected area D
(white bounding box), i.e., how
much of the detected region is
actually specular. Recall R is the
ratio of I to the ground truth
bounding box area G, i.e., how
much of the specular object has
been detected. b P = 1 if D is
completely contained in G

image sequences of a scene set in a study room, that contained
a fully specular (Blinn BRDF [70]), novel object with a mod-
erately undulated 3D surface structure (containing concavi-
ties and convexities, Fig. 7a). We used a computer-rendered
image set in order to have control over all environmental
variables such as the type of camera motion (rotation, trans-
lation, zoom), object size, intensity of the specular reflection
and specular blur, object shape (sphere, ellipsoid, chamfer
box with various degrees of corner roundedness), camera
speed, as well as image noise and blur. The sequences were
evaluated for each subsequent pair of images, and the results
(precision) were averaged for each sequence to give an over-
all performance for different scenarios.
Real-world scenes In order to test the algorithms perfor-
mance in real-world settings, we also captured real image
sequences with a medium-quality camera (resolution 1,600×
1,200). We recorded camera trajectories through two indoor
and two outdoor environments that each contained a specu-
lar, undulated sculpture. As a further check of the robustness
of our algorithm in generic non-rigid motion scenarios9 we
also analyzed the video of a moving person.

All image sequences, rendered and synthetic are available
at our website (http://www.bilkent.edu.tr/~katja/specdec) as
a benchmark set for future studies.

5 Experiments and results

5.1 Camera motion and object size

Previous specular surface detection algorithms [2,53,63]
relied solely on epipolar deviations, which limited their
applicability to linear camera motion. Our SIFT-driven
epipolar deviation feature, however, is expected to give sim-
ilar results across different camera trajectories, since it relies

9 As discussed below: nonrigid and specular motion share similar fea-
tures and may be confused by a classifier; see, for example [1].

on the same geometric information. To verify this, we tested
our algorithm for three types of camera motions: rotation,
translation and zoom. In addition, to concurrently examine
the effects of object size on detection quality, we multiplied
the diameter of the largest object by 0.8 and 0.5 to obtain
medium and small-sized objects, respectively. Thus we tested
the algorithm on nine image sequences (three camera motions
× three object sizes). Precision-recall curves for the three
object sizes, and a rotational camera motion are shown in
Fig. 9. The precision values for all nine conditions are given
in Table 1.

Overall, we see that at higher recall values the precision
of the algorithm drops10. The algorithm precisely located
the specular object in the image sequence for the large and
medium-sized object, for each, camera, rotation, translation
and zoom. There was a significant decrease in precision for
the small object, as the number of SIFT features might not
have been sufficient to capture specularity. Consistent with
previous studies [2,53,63], we obtained best results for small-
sized objects with translational camera motion.

For subsequent experiments, we optimized the parame-
ters of the algorithm to give maximal precision for large
and medium objects and all types of camera motions
(Appendix A).

5.2 Surface properties: reflection intensity and blur

We wished to examine the effect of surface reflectance prop-
erties on detection performance, that is, we tested whether the
algorithm is able to detect less-than-perfectly specular sur-
faces. The object size in this experiment was fixed to large and
we used a translational camera motion11. Specular intensity
and specular blur were varied by adjusting the reflectance

10 Precision-recall curves are obtained by varying a specific threshold
parameter, analogous to ROC curves.
11 Given the results in experiment 5.1, we did not expect differences in
performance for rotation and zoom.
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Fig. 9 Effect of object size. We tested three different object sizes (a, c, e). Corresponding precision-recall curves are shown on the left (b, d, f)

Table 1 Effect of camera trajectory and object size

Size Camera motion type

Rotation Translation Zoom

Large 0.94 1 1

Medium 1 1 1

Small 0.22 0.49 0.11

Precision values for three different camera trajectories and three object
sizes

[1, 0.25] and glossiness [1, 0.5] parameters of the BLINN
model. Increasing specular blur results in a brushed metal
appearance, whereas decreasing specular intensity causes
the object to appear more glossy, less mirror-like. Render-
ings and results are shown in Fig. 10. Though our algorithm
remains quite successful for small changes in reflectance, we

find an overall, gradual decline in precision for decreasing
specular intensity and increasing specular blur.

5.3 Object shape

Epipolar deviations in specular surfaces have been shown to
peak and then decrease with increasing curvature radius [2].
Appearance distortion is also expected to be weak for large
curvature radii, and objects of constant or near constant cur-
vature12. Thus, we expected the performance of algorithm
to be affected by 3D surface curvature. We tested detection
performance for a set of simple objects that varied in their sur-
face curvature: a sphere, ellipsoid and three different chamfer
boxes (Fig. 11). The size of these objects was adjusted to cor-
respond to the large object (Fig. 9a). In order to examine the

12 Interestingly, it has been shown that such objects tend to be perceived
as less shiny by human observers [71].
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1342 O. Yilmaz, K. Doerschner

Fig. 10 Effect of specular
intensity and specular blur.
Precision values are shown as
insets in each subpanel. Overall,
the manipulation of both
parameters decreases
performance. We also find that
blurring has a stronger
detrimental effect

optimum curvature for detection, we varied the curvature of
the chamfer box edges by adjusting the fillet parameter to
20, 30, and 40 % of the box size. The camera motion in this
experiment was the same as in Exp. 5.1. Precision values for
each object are shown in Fig. 11. We found the detection
performance for chamfer box to be largest for an intermedi-
ate value of curvature suggesting that there is an optimum
curvature for specular object detection. As expected, sphere
and ellipsoid were not detected by the algorithm.

Interestingly, human observers perceive objects with sim-
ple 3D structure as less shiny compared to undulated, com-
plex objects [20]. Thus, our algorithm is rather appearance-
based, rather than physics-based13.

5.4 Camera motion speed

The detection algorithm depends on the change of SIFT fea-
ture vectors on consecutive frames. For very fast camera
motion the change in feature vectors will be large, whether
or not specularities are present in the scene; therefore, the
false alarm rate in detection might increase. In addition, there
will be smaller number of matching features between frames.
However, size thresholding after connected component label-
ing is expected to reject spurious regions. To examine the sen-
sitivity of the algorithm to speed, we doubled and tripled the
camera speed, for rotation, translation and zoom trajectories,
and a large object size. For all three types of motion the pre-
cision reduced to 0.96 and 0.94 when doubling and tripling

13 We suggest below that by complementing our motion-based features
with static cues to specularity, e.g., [19], also simple 3D specular shapes
may be detected.

the camera speed, respectively. Thus, the algorithm appears
to be robust against increases in rate of change in appearance.
In contrast, an optical flow-based approach would be highly
sensitive to camera motion speed; see Sect. 5.8.

5.5 Image noise and motion blur

Rendered images do not suffer from the noise or blurring
effects that are inherent in real video sequences, however,
SIFT features have shown to have some tolerance to noise
and blur [56]. Thus we wished to test the performance of
our detection algorithm under more real-life like situations.
To this end we introduced additive Gaussian noise (σ , 0–29)
and motion blur (length, 0–32 pixels) to our image sequences,
varying noise power and motion blur length (Fig. 12). Noise
was added to the image before applying motion blur. This
is a harder case than the opposite sequence since it creates
structured noise in the image. Camera trajectory and object
size were the same as in Exp. 5.1. Precision values for this
set are shown in Fig. 12. The detection performance breaks
down beyond 32 pixels of motion blur, but seems to be robust
against additive noise.

We also examined the effect of noise and blur on the
simpler object geometries used in Exp. 5.3. Gaussian, addi-
tive noise (σ = 7) and 32 pixel-length motion blur were
applied to the chamfer box sequences (Fig. 12). Preci-
sion for these sequences drops to zero, whereas it was
33 % for the complex object, suggesting that a more
undulated shape may be less sensitive to noise and blur
distortions.
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Fig. 11 Effect of 3D shape. Specular object shapes tested: sphere, ellipsoid and chamfer box with three different edge curvatures. Precision of the
detection algorithm are shown as inset in each subpanel

Fig. 12 Effect of image noise
and blur. a Shown are frames of
a specular object under different
additive image noise powers and
motion blur length conditions.
Precision of the detection
algorithm is given as inset in
every subpanel. b Chamfer
boxes with added noise and blur
(σ = 7 noise and 32 pixels
motion blur). The precision
values are all zero as opposed to
33% for the complex object in a

5.6 Individual contributions of cues

The specularity field is generated by combining two poten-
tial cues for detecting specularity: epipolar deviation which
has been suggested in the pervious studies [2,53,63] and

appearance distortion, a new measure that we have proposed
in this paper. We have noted in Sect. 2.3 that there exist dif-
ferences between these cues, thus it important to understand
the contribution of each cue to detecting specular surfaces.
Figure 13 shows the precision-recall curve for the algorithm,
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Fig. 13 Individual contributions of cues. A Precision-Recall curve for
the algorithm (red) and individual cues (blue epipolar deviation, green
appearance distortion). The specular object was of medium size, the
camera trajectory, rotation in azimuth

and individual cues for a medium-sized object and a rotating
camera motion. While this figure highlights that the appear-
ance distortion cue tends to outperform epipolar deviations,
we would like to note that only by combining the cues we
significantly boost algorithm performance, as discussed in
2.3 (also see Fig. 14).

5.7 Real video sequences

For real-world experiments we purchased an approximately
30-cm-high specular sculpture. The algorithm had to find

this object in four real-world scenes: indoor (office, hallway)
and outdoor (street, building). Note, that these movies were
taken under everyday conditions (handheld camera, acciden-
tal trajectories, etc.), thus should constitute a hardest-case test
scenario. To make our tests highly stringent we left the para-
meters of the algorithm unchanged, i.e., they were optimized
for performance in computer-rendered scenes.

Figure 15 shows detection in an indoor and an out-
door scene, as well as the corresponding epipolar deviation-
, appearance distortion-, and combined specularity fields.
Results for the whole dataset and bounding box videos of
detection are available at http://www.bilkent.edu.tr/~katja/
specdec. The algorithm is able to detect specular objects in
real indoor and outdoor settings, suggesting that performance
is quite robust across different environments. Detection suc-
cess is comparable to synthetic scenes, even though the false
alarm rate has increased, probably due to perspective effects,
noise, and repetitive patterns. Table 2 shows the precision-
recall values for all indoor and outdoor scenes.

Nonrigid motion Nonrigid motion and specular flow have
both high levels of appearance distortion and epipolar devia-
tions, thus it is possible that nonrigid motion, such as biolog-
ical motion may be mis-detected by the algorithm. Yet, we
suspected that the appearance distortion caused by specular
flow may be higher than those caused by non-rigidly mov-
ing agents. To test this issue we also analyzed a real videos

Fig. 14 Performance boost through combination of cues. The combi-
nation of epipolar deviation row (a) and appearance distortion (b) sig-
nificantly enhances specularity detection performance of the algorithm

(c). Epipolar deviation-, appearance distortion-, and combined specu-
larity fields are shown for translational and zoom camera trajectories
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Fig. 15 Real video sequences. Two frames of indoor (hallway) and out-
door (building) videos are shown in the left most column, along with cor-
responding epipolar deviation-, appearance distortion-, and combined
specularity fields (from left to right). The white bounding box overlaid
on the original frame (left column) show that the specular object was
successfully localized using the combined cue. Color codes are as in

Fig. 4. Note, that specular surfaces with constant or low curvature, such
as the metal hand rails in the indoor scene or the windows in the outdoor
scene, have low appearance distortion and were thus not consistently
labeled as specular by the algorithm. Also see Fig. 11. for a general
effect of 3D shape on algorithm performance

Table 2 Performance of detection for real images

Scene Detection Performance

Precision Recall

Hallway 1 0.67

Office 0.4 0.82

Building 0.24 0.54

Street 0.21 0.21

Precision-recall values for indoor and outdoor scenes. Corresponding
bounding box videos of detection can be found at http://www.bilkent.
edu.tr/~katja/specdec

of a person walking. Figure 16 shows epipolar deviation-,
appearance distortion-, and combined specularity fields for
one nonrigid sequences. Additional results can be found at
http://www.bilkent.edu.tr/~katja/specdec). No bounding box
could be estimated for these scenes, thus the algorithm cor-
rectly rejected all non-rigid scenarios. Note, however, that a
possibility remains that an object which moved into the scene
in between the acquisition of two images, might cause sub-

stantial appearance distortion and might thus be mislabeled
as specular.

5.8 Optical flow-based detection

It is possible that an algorithm based on optic flow may per-
form as well in specularity detection, given previous suc-
cesses of using optic flow-based features for specularity clas-
sification [1]. Yet, classification14 is a rather distinct task
from detection and localization, thus the success of optic
flow-based features in the former task may not predict suc-
cess in the latter two. To make this test explicit we used pre-
viously identified optical flow field features for specularity
detection. Parameters of the optical flow computation [72]
and epipolar deviation were identical to [1].

Figure 17 shows the result for one of the computer-
rendered image sequences using optic flow features for spec-
ularity detection. Evidently, an algorithm based on optic flow
fails to correctly localize the specular object. Success of the

14 In [1] images to be classified as matte or shiny contained only a
single object and a black background.
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Fig. 16 Real video sequences–nonrigid motion. We tested whether the
video of a walking person causes false alarms in specularity detection,
due to the potentially substantial amount of appearance distortion and
epipolar deviations. Yet, the algorithm proved robust under this condi-
tion and did not label any regions as specular in these video sequences,

i.e., the regions of the filtered specular probability field shown in the
right-most column did not pass the thresholding stage (Sect. 3.2.) and
thus, no bounding box could be estimated. Also see http://www.bilkent.
edu.tr/~katja/specdec for corresponding bounding box videos

Fig. 17 Optical flow performance. We adapted the optical flow method
proposed in [1] to detect and localize specular objects. Shown is a sam-
ple frame from the computer-rendered test set with an overlaid epipolar
deviation field, that exhibits very poor specificity. In addition, appear-

ance distortion—based on optic flow—could not be computed reliably.
Thus, an algorithm based on optic flow fails to correctly localize spec-
ular objects (compare performance to Fig. 7)

epipolar deviation computation is highly dependent on the
localization accuracy of SIFT features in order to discrimi-
nate matte and specular regions. In fact, the epipolar devi-
ation threshold (Sampson error = 0.02) used in this study
was rather stringent compared to other uses of SIFT fea-
tures, e.g., in 3D reconstruction or visual odometry. Optical
flow features, however, were simply not accurate enough for
this task, even though the optic flow algorithm itself is recent
and with good reported performance [72]. Consequently, the
from optic flow-obtained epipolar deviation field was not
specific enough for specularity detection.

Appearance distortion based on optical flow suffers from
similar problems as the epipolar deviation computation. In
particular, increases in camera speed15 will compromise the
optical flow computation, due to an increased difficulty of
identifying corresponding pixels, and will thus give rise to
an inflated appearance distortion as illustrated in Fig. 17.

15 Compared to the video sequences in [1].

6 Summary and discussion

Surface reflectance is a major factor contributing to an
object’s appearance, and estimation of surface reflectance is
a fundamental problem in computer vision. Recently, image
motion has been shown to provide useful information for
reflectance classification [1,20] and specularity detection
[2,53]. Previous work suggested that there may be several
specific image motion cues that signal the existence of spec-
ular surfaces [1]. Here, we developed a novel algorithm for
the detection and localization of specular objects using image
motion, that combines appearance distortion, a novel, partic-
ularly strong cue to surface specularity, and epipolar devia-
tions [2].

We have shown that appearance distortion tends to be the
more robust image motion feature. Yet, only by combining it
with epipolar deviations we significantly improve detection
performance. We explain this effect with the complimentary
origins and orthogonal visual concepts of these motion cues:
feature detection and description. Feature descriptor match-
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ing is an essential pre-processing stage for epipolar consis-
tency check and robust fundamental matrix estimation, while
epipolar deviations are mainly caused by the localization
error during feature position estimation in the feature detector
[59]. Therefore, position errors are the main source of devi-
ations. Appearance distortion, however, is directly related to
the feature descriptor [60–62], and how it is changing from
one frame to the other. How one defines a feature location
and how one describes the assigned feature are, as pointed
out before, two orthogonal concepts. In fact, it is possible to
cross-match different detection and description algorithms
[corner feature+image patch, corner feature + histogram of
gradients (HOG) descriptor, difference of Gaussians (DoG)
feature+image patch, etc.] to generate new detect–describe–
match methodologies. In this work, we exploited both of
these features and fused them to obtain a reliable specularity
detector.

We tested the algorithm under a wide range of conditions.
Performance was excellent for all types of camera trajectories
(translation, zoom, rotation) and speeds (doubled, tripled).
Furthermore, we measured detection performance for differ-
ent object sizes, less-than-specular reflectance types, various
object shapes, as well as under additive noise and motion blur
conditions. We find that the algorithm is remarkably robust
under noise conditions smaller changes in reflectance. We
showed detection to be problematic for small-sized objects
as well as spherical shapes. The results on very different
object variations, noise, blur, etc., showed the generalization
power of the algorithm. Though we tested the algorithm for
just one type of rendered scene (office), we think that our
results are general as long as there are enough features in
the scene to compute fundamental matrix. Our experiments
with real videos support this: specular objects were success-
fully localized in a variety of indoor and outdoor scenes and
under varying lighting conditions—without adjusting algo-
rithm parameter for real-world scenarios. However, we found
that the precision of the algorithm dropped substantially com-
pared to computer-rendered scenes, probably due to perspec-
tive effects, intensity variations and repetitive patterns. The
precise influences of these factors should be investigated in
future set of experiments.

The algorithm parameters were adjusted conservatively
such that the source of precision errors was limited to
undetected specular surfaces, rather than false alarm detec-
tions. Furthermore, the parameters were optimized for large-
and medium-sized objects, with perfect specular (mirror)
reflectance and no image noise/blur. Even though the algo-
rithm is not very sensitive to the choice of parameters, in
principle, a distinct set of parameters could be obtained to
optimize performance in each of the experiments in Sect. 5.
A preprocessing step that estimates image noise, blur and
camera motion might be beneficial for optimal parameter
adjustment. Specifically, real-world outdoor scene sequences

would benefit from a change in parameters. Lastly, the algo-
rithm detected the specular surface in at least one of the
frames for nearly all of the tested image sequences. Hence,
the algorithm’s detection performance may be boosted if the
detection results are integrated over multiple frames.

Previous research has shown that moving specular sur-
faces with small surface curvature variability (ellipsoids)
tend to be perceived as matte and non-rigid by human
observers [20]. Moreover, appearance distortion, which relies
on distinct image motion patterns, has been shown to corre-
late well with observers’ percepts of surface shininess [1],
thus is not surprising that we find that our algorithm, which
relies on appearance distortion, fails to detect these sim-
ple shapes. Surface curvature is a key factor for generat-
ing reflectance-specific patterns of image motion [20,50–52],
thus simple specular objects that lack surface curvature com-
plexity will not generate these characteristic patterns, thus
become ”invisible” to the algorithm. We suggest that by com-
bining image motion and static cues to specularity [19,28]
we may solve this detection problem in the future16.

Acknowledgments This work was supported by a Marie Curie Inter-
national Reintegration Grant (239494) within the Seventh European
Community Framework Programme awarded to KD. KD has also
been supported by a Turkish Academy of Sciences Young Scientist
Award (TUBA GEBIP), a grant by the Scientific and Technological
Research Council of Turkey (TUBITAK 1001, 112K069), and the EU
Marie Curie Initial Training Network PRISM (FP7-PEOPLE-2012-
ITN, Grant Agreement: 316746).

Appendix

Algorithm parameters

• SIFT peak threshold = 3
• SIFT edge threshold = 10
• SIFT feature elimination threshold = 5
• SIFT matching threshold = 2
• RANSAC iteration = 2,000
• Sampson error = 0.02
• Convolution kernel size = 60
• Convolution kernel, Gaussian standard deviation = 30
• Specular field threshold = 1.5 × 10−6

• Connected component area threshold = 1,000

Optic flow experiments

For the optical flow-based detection experiment, we kept the
parameters the same as in [1]. However, we used 5% of the

16 Specular highlights have been suggested as robust features for match-
ing between 2D images and object’s 3D representation for pose estima-
tion [73]. This suggests that highlights may also be useful for specular
object detection.
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optical flow vectors for epipolar deviation computation. The
Sampson error, kernel size and standard deviation are iden-
tical to the ones used for the SIFT-based method.
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