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Abstract—In this paper, we present a method to remove
specularities from imaging spectroscopy data. We do this
by making use of the dichromatic model so as to cast the
problem in a linear regression setting. We do this so as
to employ the average radiance for each pixel as a means
to map the spectra onto a two-dimensional space. This
permits the use of an entropy minimisation approach so
as to recover the slope of a line described by a linear
regressor. We show how this slope can be used to recover
the specular coefficient in the dichromatic model and
provide experiments on real-world imaging spectroscopy
data. We also provide comparison with an alternative and
effect a quantitative analysis that shows our method is
robust to changes the degree of specularity of the image
or the location of the light source in the scene.

I. INTRODUCTION

Imaging spectroscopy can deliver an information-rich

representation which can capture the properties of the

materials in the scene. It is important to note that for

imaging spectroscopy, the geometry of the object under

study plays an important role in the image formation

process. This has attracted the attention of the computer

vision community for purposes of [1], edge detection

and colour analysis [2] and material identification [3].

Despite effective, these methods often lack the ability

to withstand the illumination variations, specularities and

shadowing. This is required to process real-world im-

agery in an unsupervised or automatic way. For instance,

the analysis in [2] was derived from the Lambertian

reflection model and, hence, is not applicable to specular

reflections. Fu and Robles-Kelly [4] have proposed the

use of band ratios as an alternative to raw spectral

bands as features for classification as a means to shading

invariance. In [5], a subspace projection method for

specularity-free spectral representation is presented.

For both, imaging spectroscopy and trichromatic im-

agery, there have been several attempts to remove specu-

larities from images of non-Lambertian objects. Most of

the efforts in the literature were devoted to modeling the

effects encountered on shiny or rough surfaces. For shiny

surfaces, specular spikes and lobes have to be modelled.

There have been several attempts to remove specularities

from images of non-Lambertian objects. For instance

Brelstaff and Blake [6] used a simple thresholding strat-

egy to identify specularities on moving curved objects.

Other lines of research remove specularities by either

using additional hardware [7], imposing constrains on

the input images [8], requiring color segmentation [9]

as postprocessing steps, or using reflectance models to

account for the distribution of image brightness [10]. The

main limitation of these methods is that they either rely

on pre-determined setups for the image acquisition or

the use of the closed form of the BRDF to characterise

the specular spike and lobe.

In a related development, Novak and Shafer [11]

used the color histogram to relate the shape of the

objects in the scene to their roughness so as to estimate

the illuminant colour. Sato and Ikeuchi [12] used the

dichromatic reflection model of Shafer [13] to separate

the specular reflection component from a series of color

images. Umeyama and Godin [14] separated the diffuse

from the specular component by maximising the prob-

abilistic independence between these two components

via Independent Component Analysis (ICA). Tan and

Ikeuchi [15] have used chromaticity to separating the

reflection components of textured Surfaces using a single

image.

Here, we focus on the use of the dichromatic model so

as to separate the specular component from the imagery.

We do this based upon an entropy minisation scheme

somewhat related to the work of Finlayson et al. [16],

where intrinsic images are recovered by shadow removal.

Note that, nonetheless both, the work presented here and

that in [16] are based upon entropy measurements, they

differ substantially. In [16] the entropy is minimised un-

der the assumptions of Lambertian reflectance, approxi-

mately Planckian lighting, and fairly narrow trichromatic

camera sensors. This contrasts with our method, where
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we aim at tackling the problem in imaging spectroscopy

by departing from a non-Lambertian surface assumption.

We do this by employing the dichromatic model pre-

sented by [13]. Moreover, we do not assume a Plankian

lighting, rather apply the method in [17] so as to recover

the power spectrum of the illuminant and normalise

the image radiance accordingly. Once the normalised

radiance is at hand, we perform a linear regression which

allows the entropy minisation to be applied.

The paper is organised as follows. In the follow-

ing section we introduce the dichromatic model and

ellaborate on how the reflection components may be

separated using a linear regression approach. In Section

III we ellaborate on how the entropy can be used to

recover the slope corresponding to the line described

by the dichromatic model. With this slope at hand,

we show how the specularities can be recovered in a

straightforward manner. At the end of Section III we also

ellaborate on the implementation issues arising from our

approach. Experiments are presented in Section IV and

conclusions provided in Section V.

II. SEPARATING THE REFLECTION COMPONENTS

As mentioned earlier, here we account for specularities

in hyperspectral and multispectral imaging by employing

the Dichromatic model [13]. This model has long been

used in physics-based vision for characterising specular

reflections on non-Lambertian surfaces. The model states

that the radiance I(λi, u) at the ith band centered at the

wavelength λi for a pixel u in the image can be expressed

as follows

I(λi, u) = g(u)L(λi)S(λi, u) + k(u)L(λi) (1)

where the first term on the right-hand side corresponds

for the diffuse reflection and the second term accounts

for the specular reflection. Here, L(·) is the power

spectrum of the illuminant, S(λi, u) is the reflectance of

the object surface, g(u) is the shading factor and k(u)
is the specular coefficient.

We can give an intuitive interpretation to the model as

follows. At specular pixels, i.e. where the shading factor

g(u) is negligible, the surface acts as a mirror, where the

radiance becomes proportional to the illuminant power

spectrum L(λi). In the other hand, if the radiance is

diffuse, i.e. k(u) is close to zero, then the surface appears

shaded and the reflectance becomes a multiplicative term

on the illuminant to determine the radiance. We can

easily verify by writing

R(λi, u) =
I(λi, u)

L(λi)
= g(u)S(λi, u) + k(u) (2)

Once an image is acquired, the illuminant power

spectrum L(·) can be computed using the algorithm in

[17]. Moreover, we can subtract Note that, in Equation

2, the specular component k(u) is constant over all the

N wavelength-indexed bands. In fact, only S(λi, u) is a

function of the wavelength.

This is an important observation since it provides

a way to extract the reflectance S(λ, u). It would be

noticed that, by subtracting the mean R̄(u) of R(·, u)
across the wavelengths λi, from Equation 2 the specular

coefficient k(u) can be eliminated. Moreover, for an

image region of homogeneous reflectance, R(λ, u) the

variation of radiance across pixels is governed by the

shading factor g(u). Since g(u) is independent of the

wavelength, it can be removed via normalisation.

To commence, note that we can write

R(λi, u)− R̄(u) = g(u)

(
S(λi, u)− 1

N

∑
λi

S(λi, u)

)

(3)

Moreover, as mentioned above, we can use the standard

deviation

τ2R =
∑
λi

(
R(λi, u)− R̄(u)

)2
(4)

so as to obtain the relation

1

τS

(
S(λi, u)− S̄(u)

)
=

1

τR

(
R(λi, u)− R̄(u)

)
(5)

Where τ2S =
∑

λi

(
S(λi, u)− S̄(u)

)2
The relation above further suggests that, the re-

flectance of the object in the scene can be computed

from the image radiance I(λi, u) once the illuminant

power spectrum is available. As a direct consequence of

Equations 2 and 5, we have that

R(λi, u) = g(u)
(
S(λi, u)− S̄(u)

)
+ g(u)S̄(u) + k(u)

= g(u)τSŜ(λi, u) + g(u)S̄(u) + k(u)

= a(u)Ŝ(λi, u) + b(u) (6)

where, in the last line of the above equations we have

used the short hands

b(u) = g(u)S̄(u) + k(u)

a(u) = g(u)τS (7)

and introduced the variable Ŝ(λi, u) = S(λi, u) − S̄(u)
for the sake of brevity.

The use of these short hands permits the use of linear

regression to recover the variables a(u) and b(u) in
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Fig. 1. Illustration of our entropy minimisation scheme. The left-
hand panel shows points projected onto the line perpendicular to
that with slope c; The right-hand panel shows the same set of points
projected onto a line which is suboptimal with respect to the Shannon
entropy.

Equation 6. To do this, note that, from Equation 7, we

can express b(u) using a line equation of the form

b(u) = k(u) + ca(u) (8)

where c = S̄(u)
τS

.

III. ENTROPY MINIMIZATION

The formulation in Equation 8 is important since we

can now view the recovery of k(u) in an entropy minimi-

sation setting. Here we employ an entropy minimization.

Along these lines, our strategy is to estimate c. Once c
is at hand, a(u) and b(u) can be estimated using linear

regression. With c, a(u) and b(u) at hand the specular

coefficient can be obtained in a straightforward manner

from Equation 8.

For a homogeneous reflectance region in the image,

Ŝ(·, u) is constant, with k(u) and g(u) varying accord-

ingly. This implies that every pixel in the homogenous

region should correspond to a line in the a(u)–b(u)
space. This is illustrated in Figure 1. Note that all

these share the slope c. By projecting the points on the

direction of any line in the a(u)–b(u), we can appreciate

that the frequency distribution of these has a skew which

is minimum when the intersecting line is perpendicular

to b(u) = k(u) + ca(u).
This is illustrated in Figure 1. Note that, this implies

that the entropy for the frequency distribution for the

pixel projections of the set of intersecting lines is min-

imum for the line whose slope is 1
c . This suggests the

use of the Shannon entropy for the recovery of c.
Thus, we aim at recovering the angle θ on which

the projected points have a minimal entropy. Hence, we

project every point corresponding to the pixels in the

homogeneous reflectance image region onto the line with

slope given by tan θ. The distance is given by

d(u, θ) = a(u) cos(θ) + b(u) sin(θ) (9)

Here, we use Shannon’s entropy to quantify the degree

of skewness for the distribution of projected points.

This can be done computationally by making use of

a histogram. To do this, we equally divide the interval

[min d(u, θ),max d(u, θ)] of d(u, θ) into K bins such

that the ith bin comprises those pixels in the range

[(i− 1)r, ir), where r = max d(u, θ)−min d(u, θ). We

then take the cumulative and view it as the probability of

a point in the bin indexed i falling in the interval under

consideration. This is p(i|θ) = Ni(θ)
Ntotal

, where Ntotal is the

number of pixels in the homogenous reflectance region

under study and Ni(θ) corresponds to the number of

pixels in the interval [(i−1)r, ir). With these ingredients,

the Shannon entropy is given by

η(θ) = −
∑
i

p(i|θ)log(p(i|θ)) (10)

To implement the algorithm, we proceed as follows.

Firstly, we note that, for imaging spectroscopy data, we

can get the illuminant power spectrum L(λ) making

use of the method in [17]. Once the illuminant power

spectrum is in hand, we apply k-means to the vectors

given by R(λi, u). This yields a set of clusters whose

pixels are then further selected through the application

of a dichromatic plane [18].

This is as the spectra of all pixels of a uniform

reflectance can be shown to span a two-dimensional

subspace. For more details, see [19]. Thus, we select

a subset of each cluster such that the corresponding

pixels are those that deviate less from the dichromatic

plane. This is done by performing a singular value

decomposition as proposed in [18].

We use these pixels as the input to our method. To

recover the variable c in Equation 8, we commence by

applying a linear regression on Equation 6. With a(u),
b(u) in hand, we perform a search over the values of

the entropy in Equation 10 by varying the angle θ and

selecting the value which yields the lowest η(θ). Once

the c has been selected, we recover the value of k(u) for

every pixel in each of the k clusters.

IV. EXPERIMENTS

In this section, we illustrate the utility of our method

for specularity removal. To this end, we compare our

results to those yielded by the method in [20]. The

alternative is a specularity removal method based upon

chromaticity. For our experiments, we have modified the

method slightly so as to work with N bands instead of

three so as to account for the fact that here we work
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Fig. 2. Trichromatic pseudocolour images for the torus and the
dome. Left-hand column: Imagery rendered using the Cook and
Torrance model; Right-hand column: Images rendered using Phong’s
model.

with imaging spectroscopy data rather than trichromatic

imagery.

In all our experiments, we have set the number of

bins K to 64 and the number of clusters k to 20. Here,

we use two datasets. The first of these is comprised

by synthetically generated imagery. The second of these

consists of real-world images. For the synthetic data, we

use computer-generated imagery. To produce the images,

we have used two reflectance models widely used in the

literature. These are the Phong model [21] and the Cook-

Torrance model [22]. Our choice hinges in the nature

of these, the former is a phenomenological one which

is widely employed in graphics, whereas the latter is a

physics-based model which captures specularity through

a Beckmann distribution [23].

To render the imagery, we use 3D models of two

simple shapes, i.e. a torus and parabolic dome. For both

models, the shading factor is given by

g(u) = 〈 �N, �L〉
where �N is the surface normal at pixel u, �L is the light

source direction and 〈·, ·〉 denotes the dot product.

The image radiance is then given by the dichromatic

model with the specular term given by either of the two

Fig. 3. The error as a function of illumination direction for the model
of Cook and Torrance. The green line corresponds to our method,
whereas the red line shows the result yielded by the method in [20].
The left hand panel shows the error plots for the torus. The right-hand
panel shows the plots for the dome.

models under consideration. Thus, we have

I(λ, u) = σsg(u)S(λ, u)L(λ) + σdk(u)L(λ) (11)

where σsg(u) + σdk(u) = 1 Here σs and σd are

the parameters that control the intensity of the diffuse

specular components. In Equation 11, k(u) is given by

the reflectance model of choice. For the Phong model,

we have

k(u) = 0.5 cos(θ) + 0.5 cos(θ)η

where θ = arccos( �N · �L). For our experiments, we have

generated synthetic images with values of shininess in

the interval η ∈ [0.5, 5].
For the Cook and Torrance model we have

k(u) = 0.5( �N · �H) + 0.5
DGF

π( �N · �V )( �N · �L)
where �H is the half-way vector and the terms D, G and

F are the microfacet-slope distribution, geometric factor

and Fresnel term, respectively, and are given by

D =

exp

{
− tan

(arccos( �N · �H)
mp

)2}

4m2
p(

�N · �H)4

G = min

{
1,

2( �N · �H)( �N · �V )

(�V · �H)
,
2( �N · �H)( �N · �L)

(�V · �H)

}

F = 0.5
sin

(
(�L · �H)− arcsin( sin(

�L· �H)
mp

)
)2

sin
(
(�L · �H) + arcsin( sin(

�L· �H)
mp

)
)2

where we have denoted the microfacet-slope by mp.

Here, we have generated images by varying the

microfacet-slope parameter mp from 0.20 to 0.40 in

increments of 0.05 and varied the illuminant direction
�L.
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Here, the reflectance S(λ, u) of the material has

been collected in-house using an spectrometer. For our

imagery, we have used the reflectance for a number

of materials, such as wood, skins, etc. In Figure 2,

we show two sample images rendered using one of

our wood samples. In the figure, we show the colour

images yielded by the application of the colour matching

functions in [24] according to the device-independent

CIE standard [25]. In the panels, for the Cook and

Torrrance model, we have set mp to 0.3. For Phong’s

model, we use a shininess factor η of 5 and set �L′ = �V .

To provide a quantitative analysis, we use the specular

coefficient k(u) from the ground truth and employ the

absolute error between this and the specularities recov-

ered by our method and the alternative for each of the

input images. Once the mean absolute error per image

is in hand, we compute the mean of these quantities

for the whole of our datasets for both, Phong’s and

Torrance-Sparrow models. In Figures 3 and 4 we show

the error as a function of illuminant direction �L such

that arccos 〈�V , �L〉 ∈ [0, 50o]. Since the error magnitudes

vary dramatically, we have used a logarithmic scale.

Note that, from the figures, we can appreciate that

our method yields, in some cases, an improvement of

more than an order of magnitude with respect to the

alternative. This is further confirmed in Figures 5 and 6

where we plot the error as a function of σs. Again, we

have used a logarithmic scale. In the figures, the trend

is similar, with the difference between the two methods

decreasing as the specular component increases.

We now turn our attention to the error with respect

to the shininess η and the microfacet slpe mp. These

parameters are important since they determine the spec-

ular component induced by both, Phong’s and the Cook

and Torrance model. In Figure 8, we plot the error as a

Fig. 4. The error as a function of illumination direction for Phong’s
model. The green line corresponds to our method, whereas the red
line shows the result yielded by the method in [20]. The left hand
panel shows the error plots for the torus. The right-hand panel shows
the plots for the dome.

Fig. 5. The error as a function of σs for the Torrance and Sparrow
model. The green line corresponds to our method, whereas the red
line shows the result yielded by the method in [20]. The left hand
panel shows the error plots for the torus. The right-hand panel shows
the plots for the dome.

function of shininess. In Figure 7 we repeat the sequence

for the microfacet slope.

From the figures, we can conclude that our method is

effective over a wide range of parameters and viewing

directions for both models. Maybe the most noticeable

aspect of the last set of figures is that, for our method, as

the shininess increases, the error decreases. In contrast,

the alternative has an error that is almost constant with

respect to the shininess parameter.

Finally, we turn our attention to the real world im-

agery. To illustrate the utility of our method, we use two

hyperspectral images. Our two images correspond to a

portrait and a wooden toy, both composed of spectra

sampled at intervals of 10 nm in the range between 430
nm and 650 nm, i. e. 23 bands. To process these images,

and as mentioned earlier, we commence by applying

the method in [26] so as to recover the illuminant

power spectrum. In Figures 9 and 10 we show, in the

left-hand column the portrait and the detail of our toy

image reproduced using the pseudocolour yielded by

the colour matching functions according to the device-

independent CIE standard [25]. We have used a detail

Fig. 6. The error as a function of σs for Phong’s model. The green
line corresponds to our method, whereas the red line shows the result
yielded by the method in [20]. The left hand panel shows the error
plots for the torus. The right-hand panel shows the plots for the dome.
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Fig. 7. The error as a function of microfacet slope for the Cook and
Torrance model. The green line corresponds to our method, whereas
the red line shows the result yielded by the method in [20]. The left
hand panel shows the error plots for the torus. The right-hand panel
shows the plots for the dome.

of the toy so as to provide a better illustration of the

capacity of the algorithm for specularity removal. In

the second column, we show the specularities yielded

by our method. The third column corresponds to those

recovered by the alternative. The fourth and fifth columns

show the pseudocolour for the diffuse radiance recovered

by both, our method and that in [20], respectively.

From the imagery, we can conclude that our method

delivers imagery in better accordance with the expected

appearance of both, the specularities and the diffuse

radiance. This is particularly evident for the toy detail,

where the pseudocolour for the diffuse radiance appears

noisy. This also shows an interesting consequence of

specularity removal in imaging spectroscopy. Nonethe-

less the specular coefficient in Equation 2 is an additive

one, the illuminant power spectrum is a multiplicative

factor affecting both, diffuse and specular reflection.

Thus, errors in the specularity removal process may duly

affect the diffuse radiance when the power of the light

plays an important role in the image formation process

by, effectively, magnifying the error.

Fig. 8. The error as a function of shininess for Phong’s model. The
green line corresponds to our method, whereas the red line shows the
result yielded by the method in [20]. The left hand panel shows the
error plots for the torus. The right-hand panel shows the plots for the
dome.

V. CONCLUSIONS

In this paper, we have proposed a method to effect

specularity removal from imaging spectroscopy data. We

have done this by making use of the dichromatic model

so as to cast the problem in a linear regression setting.

We have shown how the average radiance at each pixel

can be used to map the spectra onto a two-dimensional

space. This mapping allows for the use of a Shannon’s

entropy as a metric that can be employed to recover the

slope of a line described by a linear regressor. We have

provided a quantitative analysis making use of synthetic

data and illustrated the effectiveness of our approach for

specularity removal on real-world imagery. We have also

provide comparison with an alternative.
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