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Abstract 

A single composite image with an extended intensive range is generated by combining disjoint 
regions from different images of the same scene. The set of images is obtained with a charge- 
coupled device (CCD) set for different flux integration times. By limiting differences in the 
integration times so that the ranges of output, pixel values overlap considerably, individual 
pixels are assigned the value measured at each spatial location that is in the most sensitive 
range where the values are both below sat,uration and are most precisely specified. Integration 
times are lengthened geometrically from a minimum where all pixel values are below ~at~uration 
until all dark regions emerge from the lowest cluant,izat,ion level. The method is applied t,o 
an example scene and the effect the compo~it~e images have on t,radit,ional low-level imaging 
methods also is examined. 

1 Introduction 

While it is t rue that  reflectance values range over less than t,wo orders of magnit.ude (oftmen much 
less), variations in patterns of illumination can distribute the information ill natural scenes over 
luminance values having a much greater diversity. Interposition of opaque objects and conca.vit.ies 
within them, as well as interreflections among opposing surfaces, all contribute to  the variet,y of' 
local light levels. The difficulty is in capturing this diversity with sufficient resolution to  represent, 
the information in an  image that  is acquired with a linear sensor of limited quantizat,ion resolut,ion. 

Conventional CCD cameras provide a voltage that is proportional t o  the irradiai-tce on each 
photosensitive region (see [HealIP]). The signal to noise ratio is usually guarant,eed to  be smaller 
than the smallest quantization level over the specified operating t,enlperat.ure range. In critical 
low-light applications such as astronomy, the noise introduced by t,lre camera electro~lics can be 
reduced by cooling; however, temperature control is not pract,ical in many weight.- and size-sensitive 
environments. Most commonly, digitization of a solid-stat,e camera irrlage  result,^ in an %bit (256 
level) pixel representation. Higher resolution converters are available, although often a t  less than 
frame rate speeds. The effective resolution of any subsequent digitization is limited by t,he settling 
time of the conversion and the signal to  noise ratio of the analog signal. 

Such 8-bit/pixel images are appropriat,e for capt.uring sinylc S U I ~ U C C  scelles, sceues of' I ~ I I ~ ~ O ~ I I I  

illumination and Lambert,ian reflectance with no specula.~,it,ies or ~ l l i ~ t l o ~ e t l  ol~scu~.;l.t iot13. Histor- 
cally, scenes with greater intensive range were capt,ured by altering t,he lens apert,ure [Born811 01. 

by actively controlling the source of illuniii~a.tiorr [YiSeSO]. The tlow~i side of' t l ~ r s e  111el l~ods  was 



tha t  they altered the optical wavefront presented t o  the sensor array or they altered components 
of the scene such as the position of shadows and specularities. 

Advances in camera technology offer electronic alternatives that  may close the gap between 
sensor sensitivity and the distribution of luminance values in the scene. Sensors have been suggested 
that  allow the sensitivity of individual pixels to  be altered [Huangl] or allow flux differentials to 
be directly encoded a t  the sensor [Andogl]. These adaptive sensors, however, do not offer a way to 
label the extent t o  which the local gain is adjusted, thus information is lost. In addition, adaptive 
systems can create nonmonotonicities where none exist,. Intense, localized feat,ures can depress t,he 
values of the representation in the region, making a gradient appear. 

The availability of cameras that  allow the temporal interval over which flux is integrated in the 
CCD sensor t o  be varied now offers another alternative. With variation in temporal integration 
time, sensitivity of the image may be controlled without either altering the composition of the scene 
or distorting the optical waveform within the camera. A method is proposed here that  uses this 
electronic shutter to  generate a series of images of varying sensitivity and then t,o creat,e a single 
composite image of extended intensive resolution. If' the series of images varies geomet~.ically in the 
gain applied in their acquisition, the resulting composit.e will have a, coirlp~,essive i~lt~ensity-t,o-pixel 
value relation with the width of the quantization level approximately proport,ional t,o int,ensit,y. The 
existence and utility of such a compression in ljiological vision is described in a, companion paper 
[Madd94] and its application to  comput,er vision will be a.ddresset1 here in a, la.t,er section. 

2 Extended Intensity Range Imaging 

If the goal is t o  represent the spatial position and magnitude of all flux gradients in a. scene 
above a criterion contrast without loss (i.e., fusion of informat,ion within overly large quantization 
levels or fusion of information due to  saturation), then a decision needs t,o be rnade as t.o t,he 
allocation of computational and storage resources for the t,ask. The r~let~hod proposed here allocates 
representational resources so that  local contrast is equally preserved in the scene independent of 
the absolute value of the local mean luminance. Local contrast is a. measure of the difference in 
magnitude between two sets of pixel values weighted by a third set t,hat is oft.en (but  not necessarily) 
the union of the difference sets. Weighting of individual pixels prior to  pooling can be used to fine 
tune the differencing and scaling operations. It is important in this process, however, not t,o discard 
the absolute luminance information, nor allow its represent,ation to  he sat,urated so that  chr0mat.i~ 
information will be distorted. 

It is proposed that  the increased cost in expanding pixels from t,he usual 8-bit int,eger represen- 
tation t o  larger integer or floating point forinatas (cornnionly a. fa.ct,or of 4 increase) is offset, by t.he 
benefits associated with the increased retention of inf~rinat~ion.  The addit,ional inforrnat,ion corries 
from images that  have a different sensitivity. With all qua~lt~ization scales starting a t  zero (no DC' 
offset), changes in the sensitivity of a fixed nurnber of levels t,ratle range for resolnt,iou (see Fig- 
ure 1). By weighting the pixel values in each image by their associat,etl sensit,ivit,y, pixels acquired 
in different images can be combined in a manner that  preserves local luminance relat,ions even 
though they extend beyond the scale of a single image. When a more sensitive scale sat,urates, the 
composite response shifts to  a less sensitive scale, mapping additional quantization levels to  larger 
intensity values a t  proportionately coarser resolution (see Figure 2). This method is compressive 
in the number of quantization levels but allows the retention of the absolute level of intensit,y. This 
compressive nonlinearity should not be confused with gamma correction of displays with nonlinear 
voltage t o  luminance functions. 

The distribution of intensity resolution within an extended intensit,y range image itself depends 



on four factors: the absolute sensitivity of the camera, set by optical and electronic factors that  
determine the amount of flux integrated per pixel; the number of quantization levels per image (q), 
limited by electronic noise and digitization time; the gain differential between the images (m),  and 
the number of images (n). These factors can be adjusted t o  match the requirements of the task 
and the scene (see [Kamg89]). 

Given the criteria for the detection of the desired information in the scene (t,he minimum 
contrast), the number of component images and their relative sensit,ivit,y re~llain t,o be det8eririined. 
In order t o  maximize the capture of the intensive gradient information, t.he sensitivit,~ of the 
images is adjusted to  match the values present in the scene. To accornnlodat,e the largest, intensity 
values, the sensitivity of the initial image is reduced until all pixel values are less than satauration. 
Conversely, for lower intensities, sensitivity is raised successively until all pixel values are above zero 
and the quantization level is smaller than the difference required for the criterion cont,rast level. 
When the local intensity mean is a t  the high end of the linear scale, pixel differences correspond 
t o  smaller contrast changes than the same difference does a t  the low end of the scale and it is 
easier t o  determine if there is gradient information present in t,he region. This variat,ion of cont,rast, 
resolution is a consequence of the piecewise linear compression of quantization levels. The decisions 
as t o  what constitutes a meaningful contrast and how many pixels are enough t,o be considered a, 
region with their own lighting characteristic are t,ask dependent ant1 1na.y not a1wa.y~ be det.ermined 
from the image statistics alone. Wit.h a fixed numl~er of cjuantiza.tion levels t,here is a, limit to how 
small a gradient may be reliably ext,ra,cted from an image. In t,he piecewise linear cornposite image 
the contrast ( A I I I )  resolution represented by adjacent quantiza.tion levels goes from l/y to  ,m/y 
each time the sensitivity is decreased. In addition, contrast resolution degrades below this in the 
lowest l / m  portion of the most sensitive image since this range is not overlapped by a further 
reduction of the quantization interval. 

2.1 Reduction in Quantization 

The benefit of a sliding scale of sensit.ivit,y t,hat is ~na.tle possil)le Ily t,he use of' local co1111.a.st 
as the measure of information in t,he image is considera.l~le. The atlvant,a,ge of scaled conlpressior~ 
versus full representation of the entire range at  t,he most sensitive quant i~at~ion is: 

nz " 
relative sa.uinys = 

,m. + (em - l ) ( n  - 1) 

where m is the differential gain bet,ween images and n is the number of images in the 
sensitivity series. 

Note that  the reduction in the quantization requirement is independent of' both the number of 
available quantization levels in t,he sensor as well as the absolute sensit,ivitv. A cor~~bina.t,ion of 
just three sensitivity levels with a. gain tlifferent,ia.l of 4, ~,esult,s in a, more tl1a.n 6 t,o 1 savings. In 
another example, if 8 images were acquired, each a facttor of 4 in sensitivity, the resulting savings 
ratio would be in the thousands (see Figure 3).  

2.2 Merging of Images 

Starting with the least sensitive image as a base, nonsat,ura.t,ed portions of successively more 
sensitive images are masked off and overlaid until ea.ch pixel in t,he result,ing mosaic has t,he best. 
available resolution. As sensitivity increases, more and more pixels ernerge frorn t,he lowest quant,i- 
zation level and move up the available cjua~lt~iza~tion scale hecorning more a n d  rllo1.e 111,ecisely tlefii~etl. 
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Relative Intensity 

F i g u r e  1: D i s t r i b u t i o n  of  Q u a n t i z a t i o n  Levels w i t h  C h a n g e s  i n  Sensi t ivi ty .  When sen- 
sitivity is increased, the limited cluanti~at~ion range sat,urat,es proport.ionat,rly earlier wllilr, at t.hr 
same time, affording greater resolulion t,o flux changes in t,he darker regiorrs of t,he image. A dtx- 
crease in sensitivity extends the range of intensitmy values represent,ed w~t.hout, sat.ura.t.ion a.0 t,he cost, 
of lower discrimination. The scale at, the top reflects the best relat,ive cluant,izat,ion available at each 
intensity level. The hot,t,om graph shows the int,ensit.y/pixel map of three inlages obt,ained witah gai l~ 
differentials of 4. 

Relative Intensity 

F i g u r e  2: C o m b i n a t i o n  of  L i n e a r  Resporise  R a n g e s .  Three linear response fuirct,iot~ are conl- 
bined to make a single compressive response function. The result,ing compressive function allows high 
quantization resolution a t  low intensity levels without the cost of maintaining that resolution over 
the entire range. 



Log Relative Intensity 

Figure 3: Combined Response Function. The combined response function made up of portions 
of 8 different sensitivities (Again = 4) has a slightly scalloped appearance due to its piecewise 
linearity and a semilogarithmic presentation. There is a savings of over 2600:l in this representation 
(1600 quantization steps versus over 4 million at full resolution). 

Ultimately, the in tens it,^ of a given pixel will pass I~eyond t .11~ r;tnge of' c.onve~.siorr nl~d the response 
will be saturated. If the images are acqnired in order of inc~.exsing; sensit,ivit,y, t,here is no need to 
store them since the masking and repla.cement opera.t,io~~s lriay 111,oceetl sequent.ially. 

2.3 Gain Measurement 

The proper scaling and combination of pixel values from different images depends critically 
on an accurate measure of the differential gain. In the discussion to here, all int,ensit,y to  pixel 
conversions were assumed to  be linear and of t,he correct rnagnit,ude. This is seldom t,he case (see 
Section 4). Fortunately i t  is possible to  obtain a rnea.sure of bot,h the gain and the conversion 
linearity from the intensity distribution of two images alone (see Figure 4) .  Discount~ing noise and 
other conversion anomalies, a pixel value a t  a given spatial locat,ioil in a less sensitive irllage call 
be paired with one of m values in the next more sensitive image. When this pairing opera.t,ion is 
done for all corresponding pixels in two images, the result,ing two-dimensional histogram of pixel 
values will define a straight line with a slope (as well as a vertical t,hickness) that  corresponds 
t o  the relative gain between the two images. Care should be taken ill obtaining t,his empirical 
estimate since small differences in the less sensit,ive images are amplified by the ca,scaded gains 
in the formation of the composite image creating coiltours where none should exist. Sillall errors 
in the assumed gain or linearity of the transformation coultl prevent the seamless combination of 
pixels. 

3 Example 

An indoor scene was created wit,h as much diversit,y as possible to t,est t,he ext,ei~tletl iilt,ensit,y 
range algorithm. The collage was arranged to  conta.iik conca.vit.ies. obscur;l.tions, int,er~dlections, 
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Image 1 

Figure 4: Determination of Effective Gain Differences. A 2-dimensional histogram of corre- 
sponding pixel values in two images of differing sensitivity will fall in a straight line wit,h a slope t,hat 
corresponds to the gain differential. Pixels in t,he less sensit,iv~ irnage (plot.t,ed on t,he abscissa.) that. 
have values beyond the range of t,he more sensitive image will he lnat.ched wrt,h saturat.ed responses 
and will fall in a horizontal line at 255. The slope of 2 corresponds t,o a doubling of t,he sensitivit,~ 

and a range of surfaces, matte and glossy, opaque and transparent - all a t  various orient,ations wit.h 
respect t o  the principal illumination (1000 watts of light positioned t o  the right of the scene). 

3.1 Methods 

The images were obtained with a CCD camera (SONY XC-77RR.) and a Cosmicar 25 mm lens 
with the manual aperture fully open (1:l.a). The camera's sensor arra.y provided 93'% coverage and 
0.8 lux sensitivity as well as a 768 by 493 usal~le pixel lllatrix that, wa,s read out at a 14.3 MHz 
scanning rate [SONYSO]. The temporal intPegrat,ion tirr~e of t,he sensor was changed manually on 
the camera adaptor box. While it is ~>ossible t,o electronically cont,rol t,he int,egrat,ion t,ime, such 
an interface was not assembled for this test. The integration times went from 4 microseconds to 
32 milliseconds (mostly in factors of 4). The camera out,pnt. was digitmized by a Data Translation 
framegrabber (DT1451) which has a 10 MHz resampling rate. The mismatch between the scanning 
and resampling rates resulted in each out,put pixel being a cornl)ina.t,ion of t,he voltages from 2 or 3 
sensor cells along a raster line. The underlying cell sul~st,rate for a given out.pnt. pixel varietl fro111 
image t o  image (and line t o  line) due to a +/ - 50 na.nosecont1 range of jit,ter offset,. 

Much of the image manipula.tion wa.s done wit,ll t,lie HIPS 11r1a.ge Process i~~g Pac,k;l.gr (Shil.r.~jIi~~- 
age Software) and the XV Interactive Image Display Syst,elli. 

3.2 Results 

A series of 8 images with varying sensitivity were acquired of the same scene (see Figure 5 ) .  
At the lowest sensitivity, only the interior of the lamp and the outline of the cardboard box can 
be seen. As sensitivity increases, more detail emerges but at  the cost of losing some information 
t o  saturation. Beginning as soon as the third image, information on the shape of the light bulb is 
lost. By the fourth image, the writing and all det,ail of t,he interior of the lamp are gone and the 
specularity on the rim of the cup is saturat,ing. In the fift,h image, much of' t,he wall and part of 
the box are saturating but the writing on t,he cap, slide ant1 box is discernible. In the sixt,h irnage, 
the corner of the cardboard box is lost and is fused wit11 t,he wall but the st.ereo slideholder begins 
t o  emerge from the shadow inside the box. In t,he final two images, more feat,ures are eroded by 



Figure 5: Variation of Integration Time. This series of images reflects changes in the temporal 
integration time of the CCD array by a factor of over 8,000. The shortlest time was 4 microseconds; 
the longest, 32 milliseconds. This variation can only be appr~ximat~ed by the figure which has a range 
of less than 25 to  1. 



Image 3 

Figure 6: 2D Histogram from Levels 2 and 3 of Example. The best linear fit to the his- 
togram was 3.98 (with an intercept of -10.89). The graph represents all occurrences of 10 or more 
correspondences. Note the thickening of the slant,ed portion of the graph. This vertical spread is 
a consequence of the mapping of several pixel values in the image with t.he greater gain tlo a single 
pixel value in the image with the lower gain. The t,hickness of the plot increases in proport,ion t,o t.hr 
differential gain. 

saturation while the objects in deep shadow become more tlefinetl. 

According to  the settings provided by SONY, t.he tlifferent.ia1 gains were all 3 ,  except. I~et,ween 
the two most sensitive images when it was 2. Tlie ratio of t,he lu~l~inance represented by t.he 
highest pixel of the least sensitive image to  the lowest pixel of the ~riost seusitive image is more 
than lo6. In order to  test these settings, 2D histograms were ol~tained for each adjacellt pair of 
images in the sensitivity series. The obtained linear fit,s (start,ing from the most sensitive image 
pair) for the example images were: 0:l (2.17, -8.03), 1:2 (3.80, -9.00), 2:3 (3.98, -10.89), 3:4 (4.17, 
-12.87), 4:5 (3.6713.75, -12.351-12.75), 5:6 (2.7813.26, -5.341-6.78), 6:7 (2.1312.71, -3.391-5.13) (see 
Figure 6). Similar results were ol~tained for a second camera. The observed gain diflerentials for 
the less sensitive images were less than that  expected from the camera settings. At the shorter flux 
integration times, the fixed 5.04 microsecond difference in the ~ollect~ion time between t,he even and 
odd fields becomes appreciable. This electronic irritation can be eliminatetl hy fit,ting t,he odd and 
even lines separately in the gain calculat~ions, hence the doul~le estimates for t,he slope and int.ercept. 
values of the lower sensitivity images (see Section 4).  

Using the obtained best linear fits to match the intensities of different sensitivities, a series 
of overlays produced a single floating point representation of the full range of intensities in the 
scene. Since the selection of sensitivity is done on a pixel by pixel basis, little spatial information is 
distorted and since each quantization level is weighted by the associated sensitivity, little intensive 
information is lost. The percentage of pixels in the final composit,e ill~age f'ro~n least. to 111ost. se~~si t ive  
image was: 0.0, 0.05, 0.9, 8.5, 32.2, 22.1, 9.6 ant1 26.6 (t,ot,aI ~)ixels: 24.5,i(iO) (see Figure 7).  No1.e 
that  the two most sensitive images are only a fact,or of 2 away L'ron~ one anot.her, thus the he educed 
percentage of contributed pixels in the second most sensit,ive irnage. 

The pixel values in this floating point ~.epresentation of the indoor scene range over 2500: I ,  u p  
to  a a value of 112,123 (see Figure 8). This difference is appreciably more than that  available from 
a single 8-bit image (and it is likely an underestimate since the veiling luminance is an additive 
distortion and disproportionately increases the lowest pixel values, see Section 4). The distribution 
of pixel values is very skewed (90% of the pixel values reside in the lower 5% of the range). This 
is certainly due t o  the specular component of the image. Even larger ranges of pixel intensities 
can be expected from daylight scenes where more cantllepower is available for distribution across 



Figure 7: Contribution of Different Sensitivities t o  Composite Image. Reflecting the large 
range of intensities, the composite image is a mosaic of regions of varying quantization resolution. 
The grey scale in this image is proportional t.o the size of the <luant,izat.ion int,erval in the respect.ive 
source images. In those portions of the image with higher luminance, sensitivity is decreased in 
order to extend the range of represent,at,ion. In the darker port.ions of t,he ima.ge, t.he decreasc~tl rallgr 
requirements allow greater resolution. 

the scene (resulting in perhaps a less skewecl t l i ~ t r i b u t ~ i o ~ ~  of pixel values). If the specularit.ies 
were not of interest in the example and their informat,ion could be disc.artlecl (clistort,ed), adequate 
representation of the intrinsic surface contrast woultl still require a series of several images. Once 
the scene is represented in a single image having this expanded resolution, arbitrary ext.raction of 
slices of the image can be taken, either multiplicative or sul~tractive, or both. The irlclusion of all 
scene information on a single scale and in a single image makes locally adaptive transformations 
especially convenient. 

3.3 Application of Low-Level Operators 

With extended intensity range images, low-level operators need not be stymied by edges van- 
ishing into shadows or specularities. For the most part,, such disappearances have been due to 
quantization or range limitations of the digitization process. To demonstrate the utility of the 
extended representation, a simple bandpass edge detector was convolved with t,he composite image 
of the example scene (see Figure 9). A 7 by 7 difference of Gaussians (DOG) operator was used to 
obtain an  estimate of the local edge gradients. The magnitude of the filter response was normalized 
by the mean intensity of the pixels under the operator. The result is a tlipole a t  each step function 
within the bandpass of the filter that has a. magnitude t.hat is proportional t,o the local cont,rast.. 
This extremely simple adaptive operator is able to ext.racl. t.he ~)at.t.el.li~i on t.he sl.el,co slide in  t,he 
shadow as well as on the interior of the lamp. Other, Inore spatially clifuse changes are ignored 
(e.g., the intensities on the back wall vary over a 7:1 range). It, is quit,e likely that, even t.his per- 
formance would be improved on by more sophisticatetl filt,ers or a I~ett~er measure of local cont.rast. 
(especially in regions of large and rapid intensity change). 
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Figure 9: Normalized Edges in the Scaled Image. 1nt.ensit.y gradiel1t.s in t.he scalrtl irnagr 
were obtained by convolving the image with a difference of Gaussians operat.or and normalizing the 
resulting values by the local mean luminance of the pixels under the operator. In this example, the 
operator was 7 by 7 and the ratio of the  two Gallssians was 1.6: 1 .  



The majority of edge junctions in natural scenes involve edges that  have similar absolut,e gra- 
dient magnitudes. Even these similar edges, when intersecting, present problems to  segmenting 
algorithms that  attempt t o  form closed contours. In the past, algorithms have only had to deal 
with differences in edge magnitudes that  could be spanned by an 8-bit repre~entat~ion - at  most a 
0 t o  1 ridge running orthogonally into a 0 t o  255 ridge. Both these edges potentially are equally 
important in that  they have the same local contrast, varying only in mean luminance. While the 
one pixel step may be a minor variation in the dark side of the larger step (under uniform illumi- 
nation), it may also be due t o  a large reflectance difference itself (but in deep shadow). I11 cases 
where the local contrast criterion is applied, the extended intensity range representation raises the 
ante of this task by requiring the simultaneous processing of much great,er edge differences. 

3.4 Representation of Specularities 

Although the presentation heretofore has focused on greyscale images, they can be thought of 
also as one channel of a color image. Given the dimensionality of of hurnan color matches, three 
color channels are required t o  represent the perceived hue corresponding to  the broad distribut,ion 
of wavelengths reflected from a point in the scene. The linear combination of wa.ve1engt.h~ wit,hin a 
channel and the linear combination of the three channels is an adequa.te first,-order approximation 
of human color processing. One f~inclaniental problem in color ima,ging (and human vision) is 
the assessment of the intrinsic spectral reflectance of the surfa.ces in a scene in the presence of 
an  unknown illuminant. The problem is underconst,ra.inetl. Not. only do t,he potential degrees 
of freedom of the illuminant and reflectance funct,ions dwarf the degrees of freedom available t,o 
represent the chromaticity of each pixel, t,he intrinsic reflect,ance is c,ont,ai~linated by an additive 
specular surface reflection complicating the extra.ctlion of object plopert,ies [Sliaf85, Nov92b]. By 
examining the apparent wavelength of the specular reflections in t,fle ilrlage, i t  is possible t.o ext.ract 
an  estimate of the nature of the illuminant [DZrnu86, LeeH86, Gers86, IilinS71. In the current, 
context, performance on the extraction t,ask is degra.det1 if a,ny of t,he color channels is saturat.ed 
(see [Klin87]). As the intensity is increased for a given camera configuration, saturation will result, 
in all specularities, and thus all illuminants, appearing white. While the range of in tens it.^ spanned 
by an 8-bit representation may be increased in order t,o reduce t,he amount of specularit,y saturat,ion, 
it is done a t  the cost of reduced local contrast resolution. Adequat,e quant i~at~ion resolut,ion is not 
only required t o  discern objects under varied illumination conditions but it is also necessary for 
the accurate determination of the chromatic distril)ut,ion of the highlight so that  the int,ensity of 
the illuminant may be estimated [Nov92a]. With the intensity and chromaticity of the illumi~lant, 
known, the albedo of the surface may be fact,ored out of the distribut,ion of light reflected from the 
object. It  is only when the specular colnponent can l)e accurately det.ermined that  the intrinsic 
reflectance of real objects under different illumination conditions can be tested against the various 
theoretical predictions (e.g., [Beck63, Torr67, Cook81, Naya91, Wolf921). 

Other studies have proposed that  specular components can play a role in the assessrrlellt of 
form in machine vision [Thri83, Hea188, Parkgo, Na,ya93] ant1 ca.n contril>ut,e t,o hurnan vision as 
well [Blak9O]. The local geometric information available in highlig11t.s in a, single image affect,s 
the perception of surface curvature. In glossy arid met,allic surfaces, especially in a.reas of high 
curvature, the specularity tends to exceed the other reflection cornl)one~it,s by far. The i~lt~ensive 
changes that  these algorithms rely upon for local st,ructura.l cues a.re an order of magnitude or 
more larger than the intrinsic properties. Const.ra.int,s OII the 1.~1a.tion betweell t.he specularity 
distribution and surface curvature ca.n be extentled t,hrougli 11inocula.1. viewing or. motion of t,he 
observer [Blak88, Ziss89, Parkgo, Lees921 or of t,he illl~rniilarit [IkeuXl]. Again, perforrr~ance on 
these tasks is degraded by saturation of the representation of the highlight. Extending the il~t~ensity 
range so that  the contrast of the matt,e component will ret,ain sufficient resolut,ion and yet allow 



the full amplitude of the specularity to  be rep~esent~ed will reduce or eliminat,e many of the errors. 

In the example, a localized specularity can be seen on the lip of t,he cup. At a sensitivity level 
where the stereo viewer is still fused together in the low quantization levels, the specularity on the 
cup is already saturating (bottom left image, figure 5). Only a t  successively lower sensitivities is 
the distribution of intensities on the lip undistorted I>y the upper limit of the camera's response 
range. While this example is due t o  the polished ceramic surface of a man-made object, equivalent 
degrees of specularity may be encountered in natural scenes where silicates, bodies of water or 
moisture on surfaces could approximate this degree of glossiness. 

4 Practical Considerat ions 

A s  with the dancing dog, the surprise is not how well i t  works, but thut it works at all. 

It is of interest t o  examine how vulnerable the merging algorithm is t,o liiriitations in both the 
environment and the equipment. The images in t,he exa.mple were t,aken in an open terminal roorn 
with uncalibrated cameras and framegrabber in as-is-frorn-factory conc-lition. Multiple banks of 
fluorescent ceiling lights complimented the incandescent  floodlight,^ to  illuminate the scene. The 
poorly balanced three-phase electrical system in the lab bnilding added to  t,he general variability 
of the West Philadelphia power grid. 

There are several consequences of operating a CCD camera a t  its grea.test sensitivity while 
acquiring images of moderate to  high int,ensity. Most of' t,hese effects are not apparei~t, when t.he 
cameras are operated in a more conventional manner. The first, of t,hese is lens flare. Reflections 
of the bright sources illuminating the scene 11ounce off of t,lie internal supports of t,he optical 
components and end up providing a.n additive veiling luminance. The lowest 34 q~ant~izat ion levels 
of the most sensitive image in the example were unused. The numher of unused levels decreased 
in proportion to the decreases in sensitivity (also taking into account a fixed digit,ization offset of 
between 2 and 3 tha t  can be seen in t,he linear fitas of the 2D pixel value histlograms). In order of 
decreasing image sensitivity, the number of unused levels are: 44, 23, 8, 3, 3, 2 ,  2, 2. Sorne of this 
veiling luminance (which need not be uniform across the sensor array) can be elirnina.t,ed if care 
is used in positioning the camera with respect. to  t,he nlajor sources of illuminatiol~. I11 a(1dition. 
external baffling can he added to  the lens to reduce t.l~e off-a.xis sca.t,t,er. 

Another source of image distortion is due t,o the sensor elect,ronics. When the 2L) hist,og~.arn 
of pixel intensities is expanded to  incl~itle the infrecjuent correspondences ( <  l o ) ,  t,hel.e appears 
a comet's tail of matches between the linear ridge ca,used by the gain differential and t,he major 
diagonal (see Figure 10). Once the best linear fit t o  t,lie ridge of' t,lie 2D hist,ograni is known, it 
is then possible to  localize within the images all occurrences t,hat do not fall within t,he nl pixel 
width of the linear ridge. When this is done, all of the outliers were found to fall on a raster 
line next t o  a large and rapid bright,-to-dark or dark-to-bright t,ra.nsit.ion. Distort,ion of greyscale 
values near highly saturated ones reflect the inability of the sensor elect,ronics to recover sufficieiltly 
fast during the shifting of large voltages out of the array (see [Witt88]). The presence of this 
nonlinearity is evinced by the appearance under some circumsta.nces of pixel values lowel. t,llail t,he 
veiling luminance should allow. 

In addition t o  the step response nonlinearity, any variability in t,he sampling of t,he camera 
output along a raster line relative to  the scanning rat,e of the sensor would alter the manilel. in 
which an output pixel weights the voltage producetl hy t,he spnsor cells (see [BeyeSol). In the 
current setup, this variability is exacerbated by the rnisrnat,c.h between the scanning and sampling 
rates where 2 to  3 cells influence a pixel value. The consequence of any phase jitter is amplified by 
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Figure 10: 2D Histogram from Levels 2 and 3 with Nonlinearities. Transitions from 
saturated pixels to unsaturated pixels result in nonlinearities. These nonlinearities are not reflective 
of the gain differential between the two images and thus do not fall on the sloping line. When this 
comet's tail is localized on the image they all fall lat,erally on a rast,er line next t,o a bright-to-dark 
or dark-to-bright transition. As in Figure 6,  t,he pixel values of tlhe less sensit,ivr image are plott,ed 
on the abscissa. 

the magnitude of the flux gradient; however, the distribution of t.he conlet's t r r i l  alir~ost, ent,irely to 
one side of the ridge argues against jitter as tthe major source of intensity error in t,he irnages. 

Because the large aperture used in t,he exa.mple resnlt.ed in a very srna.11 depth of field. relat,ively 
few of the contours were in exact focus. It. woultl be ext,remely difficnlt,, t,herefore, t.o discri~rli~~a,t,e 
distortions due t o  limitations of temporal response or phase st,ability from gradat,ions in the o11ject.s 
or illumination or from optical blurring. Nonetheless, tlhe localization of significant distortion to 
regions of steep gradients allowed a remedy. In the formation of the composite irnage, nonsaturated 
pixels (< 255) in the next more sensitive image were used to  replace the spatially corresponding 
pixels in the unfinished composite. Prior to  replacement, the greyscale portion of the image being 
added was eroded by two pixels t o  either side of any saturat,ed pixel value. In the example, all but 
5 nonsaturated pixels (out of 245,760 total image pixels) eroded 1)y this method ha,d corresponding 
pixels available in less sensitive images that  could be used t,o take their place. The replacenlent, 
process is, in large part ,  a trade between t,he error int,roduced by the nonlinear dist,ort,ion and an 
error introduced by the increase in the yuantiza.t,ion int,erval of the less sensitive images. In the 
extreme this process produced, at  regions of st,eep int,ensit,y  gradient,^ in the example, strings of 
adjacent pixels that  all come from different images - the edge of t,he cardhoard box ( 5  in a row) 
and the specularity on the lip of the cup (6 i11 a colninii). 

As the image sensitivity decreases and i111age capture ent,ers a more convent,ional regi~ne, t,l~ese 
effects diminish (and others become more apparent). With CCD cameras there is of't.en a srnearing 
phenomenon that  creates vertical bands in the ima.ge whenever t,liere is a l ~ r i g l ~ t  ol),ject, in t,he 
field, especially one that  reflects or emits long wavele~igt,ll (infrared) light,. These phot,ons genera1.e 
charges deep within the photosensors and the effect. is cascaded along a column because of t,he 
interline-transfer of the vertical shift ~egist~ers. Small, single pixel level efiect,s can be see11 even 
a t  the shortest integration times. This effec.t is rrlost pel.c.ept,ually a.pparent, at. low pixel levels 
where a single quantization level constitutes a proportionat,ely much great,er proportion of the t.ot,al 
luminance of a given pixel. In addition, a t  low sensitivit,~ (short. integrat#ion t,irnes), t,here is a 
constant temporal difference between the flux integration times of the even and odd fields. The 
5 microsecond increase in integration is significant when the integration time it,self is only tens of 
microseconds or less. The result is an interline gain different,ial that  creates two linear distributions 



in the 2D histograms. It is possible to eliminate most of the effect by fitting the odd and even lines 
separately. 

Additional nonlinearities will introduce minor dist,ortions of the linear tlistrihutiol~ in t,he 2D 
histograms. For example, there is often a deviation of the ridge in t,he 2D hist,ogran~ at t,he high 
values. This error may be due to  an electronic feature such as whitre clipping. It is tlifficult t.o 
accurately partition the multiple sources of error bet,ween the images when distort.ions are present 
in both. As a practical matter, when significant dist,ort,ions are present,, it is  robab ably best to fit. t,he 
2D distribution with a supralinear function in an  attempt t o  maintain a seamless match between 
images of different sensitivity. For most applications, the introduction of a contour where none 
existed is probably much more damaging than the distortion of the intensity assigned to a uniform 
region. 

5 Discussion 

Natural scenes contain a diversity of lightring conditions which must be accommodat,ed in the 
image representation if structural information al,out t,he scene is not t.o be lost because of t,he 
chance state of illumination. Oftmen, complica.ted scenes a.re processed piecemeal, in regions of 
uniform illumination. Still more often, extrema a,re truncated I>y Procrustean digitizat,ion methods. 
The method proposed here is more accommodating. For the cost of acquiring a series of images 
with increasing sensitivity and then masking the nonsaturated port,ions so t,hey can be sequentially 
superimposed, arbitrarily diverse scenes can be represented in a single image. Creation of the 
composite images is simplified by the self-cali111,ating ~~i~. t ,u l .e  of' the r.ela.t.io11 hetween two versions 
of the same scene taken over different int,egrat,io~i t,irnes. The l ) ~ ~ s e ~ . ~ i ~ . t . i o l ~  of s]>ec.uli~,~.ity i ~ l ~ d  edge 
information are examples of wha.t can be a~ccornplisl~ed wit,ll a. ~.elat,ively sir~all i11crea.sr i l l  forillat.. 

The combination of new camera technology and the cont.inuing reduct,io11 i n  rr1ernol.y costs rrlake 
the acquisition of extended intensity range images an increasingly at.t,ractive alt,erllative. The tirue 
will come when the reduced cost,s will make 8-bit representa.t,ion t.he iinage equivalent. of t,he black 
and white television. 

5.1  Biological Analogs 

How is this problem solved in biological vision? In human retinae, the large range ( lol ' : l )  of 
intensities in the external world t o  which the visual system differentially responds is accommodated 
by adaptive nonlinearities. One class of ph~t~oreceptors,  t , l~e  cones, media.t,e rrlost of t,he serlsit,ivit,y 
in photopic (daylight) vision. Cones are thought to exhillit at  least three mechanisms of adapt,at,ion 
[Vale83]. At extremely high levels of illlirnination, sensit,ivit,y is retluced by a, pro~~ort ional  depletion 
of available photopigment. The analogy here t,o CCDs, however, is weak. Even photon den~it~ies 
sufficiently large to  cause damage t o  the sensor (lo not lack for sit,es t,o generat,e elect,ron-hole 
pairs. A second adaptation mechanism is the multiplicative shift in the cone response function 
with changes in mean luminance. In biological systems this shift is a way to  respond to  ever larger 
intensities while constrained by a fixed o ~ t ~ p u t  range. Al~solnt,e intensity informa,t,ion is sacrificed 
while relative information (contrast) is preserved. If adapt.at,ion is incomplet,e, a measure of' t,he 
mean can be maintained in the encoding 11y shifting the 011el.a.t ing point as lur11i11a.nc.o il~cl.ri>ses. 
altering the balance between increment. ant1 decrement response range. The analogous const ra.iut,s 
do not apply here either. By colnbining clua,nt,izat,iol~s of t.11e scerle of' tlifI'e~.ei~~ se~~sitivities. i t  is 
possible to  effectively extend the output range of t,he init,ial point-int,ensit,y t,ransfbl.in. 

The third mechanism of adaptation in the cone is inst,ant,aneo~is response cornpression. Viewed 



on linear coordinates, the Naka-Rushton ii~tensit~y voltage relation is increasingly compressive: 

where a is the luminance level that  elicit,s a relative response of 112 and n alt,ers t,he 
slope of the function. 

While even a 100% contrast sinewave is subjected to only moderate distortion (26% second harmonic 
content) by this transform, it is the extreme spread of the top third of the response range that 
is exceptional (see [Madd94]). It  is this component. of the cone adaptation mechanism t,hat is 
useful in encoding natural scenes. The shape of the curve in Figure 2 is very similar t,o Equation 

(2). Certainly, the visual system does not allow a third of the response range t,o go t,o wast,e. 
The spreading of response increments over ever larger intensity ranges a,llows 11ot)h biological and 
computer vision systems to generate proport,ional responses to local cont,rast as well as to contaill 
the sometimes extreme demands of specularities. 

5.2 Ideal Sensor Characteristics 

This paper has focused on the assembly of composit,e images with extended intensity range. 
Is there a way in which this composition can be captured in a transform within t,he sensor? A 
compressive function integrated into the sensor would reduce the need for some of, or perha.ps 
eliminate entirely, the series of images of different sensit,ivit,ies. While it may be possible t,o use 
the gamma correction feature t,o redist,ribut,e cluant,izatioii resolut,ion in an a.pproxirnat,ion of' t,he 
instantaneous compression of photoi,ecept,ors. gamma, correct.ion does r~ot exte~ld t,he int,ensity range 
of the transform. A more fundamental change in the transtluctiou rriechanisnl is required. Of all the 
possible sites (flux to voltrage tra,nsform wit,hin t,he cell; t,he array o ~ t , p u t  air~plifier; t,he resampling 
digitization at  input tlo the framegrabber; or, t,he out l~nt  look-up t,able of the franiegrabber.), if 
the locus of the init,ial t,ransformation in t,he cell could incorporat,e t,he same form as the Naka- 
R.ushton equation, it would go a long way t,oward represeilt,iiig locd cont.rast wit11 equipoise. .4 
compressive function at  the sensor would elimirlate t,he scallopetl variat,io~l i l l  contrast resolut,ion 
due to  the piecewise linear approximation and shoultl present little difficnlty for most low-level 
computer vision methods. 

5.3 Future Directions 

While it is clear that  nat,ural scenes require much more than 8-l~it,s/pixel t.o represent I heir 
structure, it is not as clear what the optimal dist,ribut.ion of quant~ization levels is over t,he int,ensity 
range nor even whether there is a need t,o retrain t,he coi.r~cct labeling of absolute luminance. -41so 
of interest is the relation between t,he content of t,he scene and the relative gaiil of t,he series of 
images. Is it possible that  the gains might be automa.tically determined, perhaps by t,he out,come 
of the previous masking stage in a manner t,ha.t would minimize the numljer of required images? 

What  edge operat,ors best extract contours across a large range of lurninances? Adapt,ive op- 
erators will be needed that  do not allow t,heir response t,o evaporat,e at  T-junctions with bright 
edges. Extended int,ensit,y range images provide a greater challenge t,o t,he tradit,ional collect,ion of' 
edge operators. At large, bright contours rnar~y factors contril~ut,e t,o raise t,he baseline response 
of linear filters and force small increments 1)elow crit,erion. Perhaps nonlinear filt,ers offer a better 
chance to  track weak edges as surrounding conditions worseil. Does t,he fa,ct that  steep  gradient,^ 
are composed of pixels from many images irnprove 01, hamper t,he det,ect,iorr of int.el.sec.ting edges'? 



Also, da ta  from a variety of scenes (especially daylight) need to be collected. The use of a 
CCD camera with variable flux integration times will facilitate this; however, the p~rt-abilit~y of' a 
tethered camera is limited. It is also of interest t o  determine the distribution of naturally occurring 
specularities. If no color CCD cameras are available that  have an electronic aperture, color filters 
can be used t o  obtain reasonable RGB partitioning of the scenes. In addition, if unsat.urat,ed 
measures of specularities are obtained, physical models of color clusters can be tested and t,he 
performance of edge operators in the absence of specularities can be observed. Different tasks (e.g., 
object recognition versus image quality) may benefit by different representations of the color gamut 
(RGB intensities versus Uniform Chromaticity Space (see [Judd75])). Recllictions could be made in 
the residual error caused by the simplifying planar assumptions of specularity extractio~i algorithms 
(see [Klin87]). 

Are there better combination methods to compensate for hardware deficiencies? When there 
are pixels a t  risk of distortion and erosion might be used, what is worse, the quant,iza,tion error 
or the nonlinear error? Many of the errors are a result of sensor weaknesses made apparent by 
the extreme signal strength. Is there a good model for the cl(1.l;~ of CCD sensors i~lcorpora,t,ing all 
nonlinearities and thus enabling seamless cor~iposit,es viewa.ble a t  any arbit,rary scale'! C:oi~iplicat,i~~g 
the problem is the fact that  there are nonlinearities t,hat are cha.~.acte~.ist ic of t,his pa.i.f.icula.~. cn1rler.a.. 
this particular model of camera, t,his pa.rticnlar cla.ss of sensor, a.nd elect,ronic c,amer;l.s in general 
(see [Ande88]). How robust can t,he co~nbinat,ion of irr~a.ges 11e 111a.tle with such varia,t,ioi~ ill the 
underlying equipment? 

With the advent of smart sensors, much of the sequential assen~bly of cornposit,e images could be 
done by a microprocessor proximal to  the sensor. The avajlability of camcorder subasserriblies wit.h 
a color sensor, control microprocessor, and mot.orized zoom, foclis ancl aperture lens, all weighing 
175 grams, will certainly form a good part of the next generation of robotics image accluisition. 
It would not be difficult to  incorporate the serial merging of successive frames, each acquired a t  a 
different sensitivity and adaptively modified, all distal t,o cent,ral cout,rol. 

6 Conclusions 

Natural scenes contain a range of intensities that  is far in excess of that  which can be covered 
with conventional solid-state light sensors while still afiording sufficient qua.ntization resolut,ion. 

CCD cameras with electronic shutters can be used to crea.t,e single composite images of natural 
scenes with extended intensity range from a series of ima.ges t,l~wt va.ries i11 sensitivity. 

These composite images have been show11 t,o ha.ve a.tlva.nt,ages in t,he ext,ra.ctmion of' ir~~port,ant 
properties of the scene such as local cont,rast. aatl specl1la.rities. 

It is possible to overcome sensor nonlinearities b~ought  on by the present,a.t,ion of unbufferetl 
high intensities and form a single representation of the scene t11a.t is free of artifacts from t~he 
composition. 
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