7 research outputs found

    Radiometric Correction and 3D Integration of Long-Range Ground-Based Hyperspectral Imagery for Mineral Exploration of Vertical Outcrops

    Get PDF
    Recently, ground-based hyperspectral imaging has come to the fore, supporting the arduous task of mapping near-vertical, difficult-to-access geological outcrops. The application of outcrop sensing within a range of one to several hundred metres, including geometric corrections and integration with accurate terrestrial laser scanning models, is already developing rapidly. However, there are few studies dealing with ground-based imaging of distant targets (i.e., in the range of several kilometres) such as mountain ridges, cliffs, and pit walls. In particular, the extreme influence of atmospheric effects and topography-induced illumination differences have remained an unmet challenge on the spectral data. These effects cannot be corrected by means of common correction tools for nadir satellite or airborne data. Thus, this article presents an adapted workflow to overcome the challenges of long-range outcrop sensing, including straightforward atmospheric and topographic corrections. Using two datasets with different characteristics, we demonstrate the application of the workflow and highlight the importance of the presented corrections for a reliable geological interpretation. The achieved spectral mapping products are integrated with 3D photogrammetric data to create large-scale now-called “hyperclouds”, i.e., geometrically correct representations of the hyperspectral datacube. The presented workflow opens up a new range of application possibilities of hyperspectral imagery by significantly enlarging the scale of ground-based measurements

    Remote Sensing Exploration of Nb-Ta-LREE-Enriched Carbonatite (Epembe/Namibia)

    No full text
    On the example of the Epembe carbonatite-hosted Nb-Ta-LREE deposit, we demonstrate the use of hyperspectral reflectance data and geomorphic indicators for improving the accuracy of remote sensing exploration data of structurally-controlled critical raw material deposits. The results further show how exploration can benefit from a combination of expert knowledge and remotely-sensed relief, as well as imaging data. In the first stage, multi-source remote sensing data were used in lithological mapping based on Kohonen Self-Organizing Maps (SOM). We exemplify that morphological indices, such as Topographic Position Index (TPI), and spatial coordinates are crucial parameters to improve the accuracy of carbonate classification as much as 10%. The resulting lithological map shows the spatial distribution of the ridge forming carbonatite dyke, the fenitization zone, syenite plugs and mafic intrusions. In a second step, the internal zones of the carbonatite complex were identified using the Multi-Range Spectral Feature Fitting (MRSFF) algorithm and a specific decision tree. This approach allowed detecting potential enrichment zones characterized by an abundance of fluorapatite and pyroxene, as well as dolomite-carbonatite (beforsite). Cross-validation of the mineral map with field observations and radiometric data confirms the accuracy of the proposed method

    The Need for Accurate Pre-processing and Data Integration for the Application of Hyperspectral Imaging in Mineral Exploration

    Get PDF
    Die hyperspektrale Bildgebung stellt eine Schlüsseltechnologie in der nicht-invasiven Mineralanalyse dar, sei es im Labormaßstab oder als fernerkundliche Methode. Rasante Entwicklungen im Sensordesign und in der Computertechnik hinsichtlich Miniaturisierung, Bildauflösung und Datenqualität ermöglichen neue Einsatzgebiete in der Erkundung mineralischer Rohstoffe, wie die drohnen-gestützte Datenaufnahme oder digitale Aufschluss- und Bohrkernkartierung. Allgemeingültige Datenverarbeitungsroutinen fehlen jedoch meist und erschweren die Etablierung dieser vielversprechenden Ansätze. Besondere Herausforderungen bestehen hinsichtlich notwendiger radiometrischer und geometrischer Datenkorrekturen, der räumlichen Georeferenzierung sowie der Integration mit anderen Datenquellen. Die vorliegende Arbeit beschreibt innovative Arbeitsabläufe zur Lösung dieser Problemstellungen und demonstriert die Wichtigkeit der einzelnen Schritte. Sie zeigt das Potenzial entsprechend prozessierter spektraler Bilddaten für komplexe Aufgaben in Mineralexploration und Geowissenschaften.Hyperspectral imaging (HSI) is one of the key technologies in current non-invasive material analysis. Recent developments in sensor design and computer technology allow the acquisition and processing of high spectral and spatial resolution datasets. In contrast to active spectroscopic approaches such as X-ray fluorescence or laser-induced breakdown spectroscopy, passive hyperspectral reflectance measurements in the visible and infrared parts of the electromagnetic spectrum are considered rapid, non-destructive, and safe. Compared to true color or multi-spectral imagery, a much larger range and even small compositional changes of substances can be differentiated and analyzed. Applications of hyperspectral reflectance imaging can be found in a wide range of scientific and industrial fields, especially when physically inaccessible or sensitive samples and processes need to be analyzed. In geosciences, this method offers a possibility to obtain spatially continuous compositional information of samples, outcrops, or regions that might be otherwise inaccessible or too large, dangerous, or environmentally valuable for a traditional exploration at reasonable expenditure. Depending on the spectral range and resolution of the deployed sensor, HSI can provide information about the distribution of rock-forming and alteration minerals, specific chemical compounds and ions. Traditional operational applications comprise space-, airborne, and lab-scale measurements with a usually (near-)nadir viewing angle. The diversity of available sensors, in particular the ongoing miniaturization, enables their usage from a wide range of distances and viewing angles on a large variety of platforms. Many recent approaches focus on the application of hyperspectral sensors in an intermediate to close sensor-target distance (one to several hundred meters) between airborne and lab-scale, usually implying exceptional acquisition parameters. These comprise unusual viewing angles as for the imaging of vertical targets, specific geometric and radiometric distortions associated with the deployment of small moving platforms such as unmanned aerial systems (UAS), or extreme size and complexity of data created by large imaging campaigns. Accurate geometric and radiometric data corrections using established methods is often not possible. Another important challenge results from the overall variety of spatial scales, sensors, and viewing angles, which often impedes a combined interpretation of datasets, such as in a 2D geographic information system (GIS). Recent studies mostly referred to work with at least partly uncorrected data that is not able to set the results in a meaningful spatial context. These major unsolved challenges of hyperspectral imaging in mineral exploration initiated the motivation for this work. The core aim is the development of tools that bridge data acquisition and interpretation, by providing full image processing workflows from the acquisition of raw data in the field or lab, to fully corrected, validated and spatially registered at-target reflectance datasets, which are valuable for subsequent spectral analysis, image classification, or fusion in different operational environments at multiple scales. I focus on promising emerging HSI approaches, i.e.: (1) the use of lightweight UAS platforms, (2) mapping of inaccessible vertical outcrops, sometimes at up to several kilometers distance, (3) multi-sensor integration for versatile sample analysis in the near-field or lab-scale, and (4) the combination of reflectance HSI with other spectroscopic methods such as photoluminescence (PL) spectroscopy for the characterization of valuable elements in low-grade ores. In each topic, the state of the art is analyzed, tailored workflows are developed to meet key challenges and the potential of the resulting dataset is showcased on prominent mineral exploration related examples. Combined in a Python toolbox, the developed workflows aim to be versatile in regard to utilized sensors and desired applications

    The sulfur isotope evolution of magmatic-hydrothermal fluids : insights into ore-forming processes

    Get PDF
    This project was supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 689909. W.H. also acknowledges support from a UKRI Future Leaders Fellowship (MR/S033505/1). A.J.B. is funded by the NERC National Environment Isotope Facility award (NE/S011587/1) and the Scottish Universities Environmental Research Centre.Metal-rich fluids that circulate in magmatic-hydrothermal environments form a wide array of economically significant ore deposits. Unravelling the origins and evolution of these fluids is crucial for understanding how Earth’s metal resources form and one of the most widely used tools for tracking these processes is sulfur isotopes. It is well established that S isotopes record valuable information about the source of the fluid, as well as its physical and chemical evolution (i.e. changing pH, redox and temperature), but it is often challenging to unravel which of these competing processes drives isotopic variability. Here we use thermodynamic models to predict S isotope fractionation for geologically realistic hydrothermal fluids and attempt to disentangle the effects of fluid sources, physico-chemical evolution and S mineral disequilibrium. By modelling a range of fluid compositions, we show that S isotope fingerprints are controlled by the ratio of oxidised to reduced S species (SO42−/H2S), and this is most strongly affected by changing temperature, fO2 and pH. We show that SO42−/H2S can change dramatically during cooling and our key insight is that S isotopes of individual sulfide or sulfate minerals can show large fractionations (up to 20 ‰) even when pH is constant and fO2 fixed to a specific mineral redox buffer. Importantly, while it is commonly assumed that SO42−/H2S is constant throughout fluid evolution, our analysis shows that this is unlikely to hold for most natural systems. We then compare our model predictions to S isotope data from porphyry and epithermal deposits, seafloor hydrothermal vents and alkaline igneous bodies. We find that our models accurately reproduce the S isotope evolution of porphyry and high sulfidation epithermal fluids, and that most require magmatic S sources between 0 and 5 ‰. The S isotopes of low sulfidation epithermal fluids and seafloor hydrothermal vents do not fit our model predictions and reflect disequilibrium between the reduced and oxidised S species and, for the latter, significant S input from seawater and biogenic sources. Alkaline igneous fluids match model predictions and confirm magmatic S sources and a wide range of temperature and redox conditions. Of all these different ore deposits, porphyry and alkaline igneous systems are particularly well-suited to S isotope investigation because they show relationships between redox, alteration and ore mineralogy that could be useful for exploration and prospecting. Ultimately, our examples demonstrate that S isotope forward models are powerful tools for identifying S sources, flagging disequilibrium processes, and validating hypotheses of magmatic fluid evolution.Publisher PDFPeer reviewe
    corecore