1,639 research outputs found

    Internet of Things-aided Smart Grid: Technologies, Architectures, Applications, Prototypes, and Future Research Directions

    Full text link
    Traditional power grids are being transformed into Smart Grids (SGs) to address the issues in existing power system due to uni-directional information flow, energy wastage, growing energy demand, reliability and security. SGs offer bi-directional energy flow between service providers and consumers, involving power generation, transmission, distribution and utilization systems. SGs employ various devices for the monitoring, analysis and control of the grid, deployed at power plants, distribution centers and in consumers' premises in a very large number. Hence, an SG requires connectivity, automation and the tracking of such devices. This is achieved with the help of Internet of Things (IoT). IoT helps SG systems to support various network functions throughout the generation, transmission, distribution and consumption of energy by incorporating IoT devices (such as sensors, actuators and smart meters), as well as by providing the connectivity, automation and tracking for such devices. In this paper, we provide a comprehensive survey on IoT-aided SG systems, which includes the existing architectures, applications and prototypes of IoT-aided SG systems. This survey also highlights the open issues, challenges and future research directions for IoT-aided SG systems

    Real life Applications of Internet of Things

    Get PDF
    The Internet of Things is the next technological revolution after the revolution of computer and internet. IoT integrates the new technologies of computing and communication (e.g. Sensor networks, RFID, Mobile communication and IPV6 etc). The Internet of Things is an emerging topic of technical, social, and economic significance. The term Internet of Things generally refers to scenarios where network connectivity and computing capability extends to objects, sensors and everyday items not normally considered computers, allowing these devices to generate exchange and consume data with minimal human intervention. Internet connect “all people”, Internet of Things connect “all things”. Interconnection of Things or Objects or Machines, e.g., sensors, actuators, mobile phones, electronic devices, home appliances, any existing items and interact with each other via Interne

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Study of the development of an Io T-based sensor platform for e-agriculture

    Get PDF
    E-agriculture, sometimes reffered as 'ICT in agriculture' (Information and Communication technologies) or simply "smart agriculture", is a relatively recent and emerging field focused on the enhacement on agricultural and rural development through improved information and communication processes. This concept, involves the design, development, evaluation and application of innovative ways to use IoT technologies in the rural domain, with a primary focus on agriculture, in order to achieve better ways of growing food for the masses with sustainability. In IoT-based agriculture, platforms are built for monitoring the crop field with the help of sensors (light, humidity, temperature, soil moisture, etc.) and automating the irrigation system. The farmers can monitor the field conditions from anywhere and highly more efficient compared to conventional approaches

    Review Paper on IoT Based Smart Applications, Home Automation

    Get PDF
    This paper discusses internet of things and their applications in various domains such as healthcare, manufacturing, retail, transportation, etc. It highlights the importance of IoT technology in enabling devices and sensors to communicate and exchange data, leading to more efficient and connected systems. The paper explores different applications of IoT, including smart agriculture, smart cities, smart energy, and smart traffic monitoring systems, smart environment, and smart home automation. It also addresses the challenges and problems associated with IoT, such as privacy and security issues, handling big data, connectivity, data transmission, and compatibility. The literature review section examines the development of IoT in smart homes, identifies challenges and hindrances to widespread adoption, and discusses intelligent home automation systems. The survey analysis focuses on the gaps in IoT implementation, including security, interoperability, scalability, data management, ethical concerns, edge computing, and legal/regulatory frameworks. Overall, the paper provides an overview of IoT-based smart applications, their benefits, challenges, and future prospects

    Development of a wireless sensor network for agricultural monitoring for Internet of Things (IoT)

    Get PDF
    Monitoring of the agricultural environment has become an important area of control and protection which provides real-time system and control communication with the physical world. This thesis focuses on Development ofa wireless Sensor Network for agricultural monitoring for Internet of things (IoT) to monitor environmental condition. Among the various technologies for Agriculture monitoring, Wireless Sensor Networks (WSNs) are perceived as an amazing one to gather and process information in the agricultural area with low-cost and low-energy consumption. WSN is capable of providing processed field data in real time from sensors which are physically distributed in the field. Agriculture and farming are one of the industries which have a late occupied their regards for WSNs, looking for this financially acute innovation to improve its production and upgrade agribusiness yield standard. Wireless Sensor Networks (WSNs) have pulled in a lot consideration in recent years.The proposed system uses WSN sensors to capture and track information pertaining to crop growth condition outside and inside greenhouses. 6LowPAN network protocol is used for low power consumption and for transmitting and receiving of data packets.This thesis introduces the agricultural monitoring system's hardware design, system architecture, and software process control. Agriculture monitoring system set-up is based on Contiki OS while device testing is carried out using real-time farm information and historical dat

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    LPWAN Technologies: Emerging Application Characteristics, Requirements, and Design Considerations

    Get PDF
    Low power wide area network (LPWAN) is a promising solution for long range and low power Internet of Things (IoT) and machine to machine (M2M) communication applications. This paper focuses on defining a systematic and powerful approach of identifying the key characteristics of such applications, translating them into explicit requirements, and then deriving the associated design considerations. LPWANs are resource-constrained networks and are primarily characterized by long battery life operation, extended coverage, high capacity, and low device and deployment costs. These characteristics translate into a key set of requirements including M2M traffic management, massive capacity, energy efficiency, low power operations, extended coverage, security, and interworking. The set of corresponding design considerations is identified in terms of two categories, desired or expected ones and enhanced ones, which reflect the wide range of characteristics associated with LPWAN-based applications. Prominent design constructs include admission and user traffic management, interference management, energy saving modes of operation, lightweight media access control (MAC) protocols, accurate location identification, security coverage techniques, and flexible software re-configurability. Topological and architectural options for interconnecting LPWAN entities are discussed. The major proprietary and standards-based LPWAN technology solutions available in the marketplace are presented. These include Sigfox, LoRaWAN, Narrowband IoT (NB-IoT), and long term evolution (LTE)-M, among others. The relevance of upcoming cellular 5G technology and its complementary relationship with LPWAN technology are also discussed
    • …
    corecore