528 research outputs found

    Autonomous light-weight heliostat with rim drives

    Get PDF
    Several approaches for cost reduction of heliostats, which fit well to each other, are combined to a new heliostat concept to achieve the current challenging cost objectives: The wind loads are reduced by appropriate manipulators which reduces weight and cost of the heliostat structure and the ground anchor foundation. Laminated mirror facets are of high reflectivity and shape accuracy and of low weight. The low weight is advantageous for the dimensioning of the bearings and regarding energy consumption. Energy consumption is further reduced by a highly efficient drive train. Thus, small capacity of the wireless energy supply of the autonomous heliostat is sufficient which reduces significantly its cost. By the combination of horizontal primary axis with rims and winch wheels a cheap and precise solution for the drives was found. Ray tracing calculations show that the losses due to the compromised angle range are negligible. With the new heliostat concept the current cost goals seem to be achievable

    Highly reliable, low-latency communication in low-power wireless networks

    Get PDF
    Low-power wireless networks consist of spatially distributed, resource-constrained devices – also referred to as nodes – that are typically equipped with integrated or external sensors and actuators. Nodes communicate with each other using wireless transceivers, and thus, relay data – e. g., collected sensor values or commands for actuators – cooperatively through the network. This way, low-power wireless networks can support a plethora of different applications, including, e. g., monitoring the air quality in urban areas or controlling the heating, ventilation and cooling of large buildings. The use of wireless communication in such monitoring and actuating applications allows for a higher flexibility and ease of deployment – and thus, overall lower costs – compared to wired solutions. However, wireless communication is notoriously error-prone. Message losses happen often and unpredictably, making it challenging to support applications requiring both high reliability and low latency. Highly reliable, low-latency communication – along with high energy-efficiency – are, however, key requirements to support several important application scenarios and most notably the open-/closed-loop control functions found in e. g., industry and factory automation applications. Communication protocols that rely on synchronous transmissions have been shown to be able to overcome this limitation. These protocols depart from traditional single-link transmissions and do not attempt to avoid concurrent transmissions from different nodes to prevent collisions. On the contrary, they make nodes send the same message at the same time over several paths. Phenomena like constructive interference and capture then ensure that messages are received correctly with high probability. While many approaches relying on synchronous transmissions have been presented in the literature, two important aspects received only little consideration: (i) reliable operation in harsh environments and (ii) support for event-based data traffic. This thesis addresses these two open challenges and proposes novel communication protocols to overcome them

    OPERATION AND PROCESS CONTROL DEVELOPMENT FOR A PILOT-SCALE LEACHING AND SOLVENT EXTRACTION CIRCUIT RECOVERING RARE EARTH ELEMENTS FROM COAL-BASED SOURCES

    Get PDF
    The US Department of Energy in 2010 has identified several rare earth elements as critical materials to enable clean technologies. As part of ongoing research in REEs (rare earth elements) recovery from coal sources, the University of Kentucky has designed, developed and is demonstrating a ¼ ton/hour pilot-scale processing plant to produce high-grade REEs from coal sources. Due to the need to control critical variables (e.g. pH, tank level, etc.), process control is required. To ensure adequate process control, a study was conducted on leaching and solvent extraction control to evaluate the potential of achieving low-cost REE recovery in addition to developing a process control PLC system. The overall operational design and utilization of Six Sigma methodologies is discussed. Further, the application of the controls design, both procedural and electronic for the control of process variables such as pH is discussed. Variations in output parameters were quantified as a function of time. Data trends show that the mean process variable was maintained within prescribed limits. Future work for the utilization of data analysis and integration for data-based decision-making will be discussed

    ICT-Enabled Control and Energy Management of Community Microgrids for Resilient Smart Grid Operation

    Full text link
    Our research has focused on developing novel controllers and algorithms to enhance the resilience of the power grid and increase its readiness level against major disturbances. The U.S. power grid currently encounters two main challenges: (1) the massive and extended blackouts caused by natural disasters, such as hurricane Sandy. These blackouts have raised a national call to explore innovative approaches for enhanced grid resiliency. Scrutinizing how previous blackouts initiated and propagated throughout the power grid, the major reasons are lack of situational awareness, lack of real-time monitoring and control, underdeveloped controllers at both the transmission and distribution levels, and lack of preparation for major emergencies; and (2) the projected high penetration of renewable energy resources (RES) into the electric grid, which is mainly driven by federal and state regulatory actions to reduce GHG emissions from new and existing power plants, and to encourage Non Wire Solutions (NWS). RESs are intermittent by nature imposing a challenge to forecast load and maintain generation/demand balance. The conceived vision of the smart grid is a cyber-physical system that amalgamates high processing power and increased dependence on communication networks to enable real-time monitoring and control. This will allow for, among other objectives, the realization of increased resilience and self-healing capabilities. This vision entails a hierarchical control architecture in which a myriad of microgrids, each locally controlled at the prosumer level, coordinates within the distribution level with their correspondent distribution system operator (i.e. area controllers). The various area controllers are managed by a Wide Area Monitoring, Protection and Control operator. The smart grid has been devised to address the grid main challenges; however, some technical barriers are yet to be overcome. These barriers include the need to develop new control techniques and algorithms that enable flexible transitions between operational modes of a single controller, and effective coordination between hierarchical control layers. In addition, there is a need to understand the reliability impacts of increased dependence on communication networks. In an attempt to tackle the aforementioned barriers, in my work, novel controllers to manage the prosumer and distribution networks were developed and analyzed. Specifically, the following has been accomplished at the prosumer level, we: 1) designed and implemented a DC MG testbed with minimal off-the-shelf components to enable testing new control techniques with significant flexibility and reconfiguration capability; 2) developed a communication-based hybrid state/event driven control scheme that aims at reducing the communication load and complexity, processor computations, and consequently system cost while maintaining resilient autonomous operation during all possible scenarios including major emergencies; and 3) analyzed the effect of communication latency on the performance of centralized ICT-based DC microgrids, and developed mathematical models to describe the behavior of microgrids during latency. In addition, we proposed a practical solution to mitigate severe impacts of latency. At the distribution level, we: 1) developed a model for an IEEE distribution test network with multiple MGs integrated[AM1] [PL2] ; 2) developed a control scheme to manage community MGs to mitigate RES intermittency and enhance the grid resiliency, deferring the need for infrastructure upgrade; and 3) investigated the optimal placement and operation of community MGs in distribution networks using complex network analysis, to increase distribution networks resilience. At the transmission level (T.L), New York State T.L was modeled. A case study was conducted on Long Island City to study the impact of high penetration of renewable energy resources on the grid resilience in the transmission level. These research accomplishments should pave the way and help facilitate a smooth transition towards the future smart grid.

    Nuclear Power Plants

    Get PDF
    This book covers various topics, from thermal-hydraulic analysis to the safety analysis of nuclear power plant. It does not focus only on current power plant issues. Instead, it aims to address the challenging ideas that can be implemented in and used for the development of future nuclear power plants. This book will take the readers into the world of innovative research and development of future plants. Find your interests inside this book

    Nuclear Power - Control, Reliability and Human Factors

    Get PDF
    Advances in reactor designs, materials and human-machine interfaces guarantee safety and reliability of emerging reactor technologies, eliminating possibilities for high-consequence human errors as those which have occurred in the past. New instrumentation and control technologies based in digital systems, novel sensors and measurement approaches facilitate safety, reliability and economic competitiveness of nuclear power options. Autonomous operation scenarios are becoming increasingly popular to consider for small modular systems. This book belongs to a series of books on nuclear power published by InTech. It consists of four major sections and contains twenty-one chapters on topics from key subject areas pertinent to instrumentation and control, operation reliability, system aging and human-machine interfaces. The book targets a broad potential readership group - students, researchers and specialists in the field - who are interested in learning about nuclear power

    Переклад термінології у галузі електроніки, електротехніки та енергетики з англійської на українську мову

    Get PDF
    У посібнику подано аутентичні матеріали та вправи з письмового та усного перекладу в галузі електротехніки, електроніки та енергетики; тексти для самостійної роботи, контрольні завдання з перекладу, а також англо-український та українсько-англійський словник термінів та понять електротехніки, електроніки та енергетики. Розраховано на студентів спеціальності "Переклад (англійська мова)" і аспірантів технічних спеціальностей.The book presents authentic materials and exercises in written and oral translation in the field of electronics, electrical engineering and power engineering; texts for independent home translation, English–Ukrainian and Ukrainian-English vocabularies of specific terms. For the students of "Translation and Interpreting" departments and post-graduate students of technical specialities

    Collaborative, Trust-Based Security Mechanisms for a National Utility Intranet

    Get PDF
    This thesis investigates security mechanisms for utility control and protection networks using IP-based protocol interaction. It proposes flexible, cost-effective solutions in strategic locations to protect transitioning legacy and full IP-standards architectures. It also demonstrates how operational signatures can be defined to enact organizationally-unique standard operating procedures for zero failure in environments with varying levels of uncertainty and trust. The research evaluates layering encryption, authentication, traffic filtering, content checks, and event correlation mechanisms over time-critical primary and backup control/protection signaling to prevent disruption by internal and external malicious activity or errors. Finally, it shows how a regional/national implementation can protect private communities of interest and foster a mix of both centralized and distributed emergency prediction, mitigation, detection, and response with secure, automatic peer-to-peer notifications that share situational awareness across control, transmission, and reliability boundaries and prevent wide-spread, catastrophic power outages
    corecore