5,083 research outputs found

    Alpha Entanglement Codes: Practical Erasure Codes to Archive Data in Unreliable Environments

    Full text link
    Data centres that use consumer-grade disks drives and distributed peer-to-peer systems are unreliable environments to archive data without enough redundancy. Most redundancy schemes are not completely effective for providing high availability, durability and integrity in the long-term. We propose alpha entanglement codes, a mechanism that creates a virtual layer of highly interconnected storage devices to propagate redundant information across a large scale storage system. Our motivation is to design flexible and practical erasure codes with high fault-tolerance to improve data durability and availability even in catastrophic scenarios. By flexible and practical, we mean code settings that can be adapted to future requirements and practical implementations with reasonable trade-offs between security, resource usage and performance. The codes have three parameters. Alpha increases storage overhead linearly but increases the possible paths to recover data exponentially. Two other parameters increase fault-tolerance even further without the need of additional storage. As a result, an entangled storage system can provide high availability, durability and offer additional integrity: it is more difficult to modify data undetectably. We evaluate how several redundancy schemes perform in unreliable environments and show that alpha entanglement codes are flexible and practical codes. Remarkably, they excel at code locality, hence, they reduce repair costs and become less dependent on storage locations with poor availability. Our solution outperforms Reed-Solomon codes in many disaster recovery scenarios.Comment: The publication has 12 pages and 13 figures. This work was partially supported by Swiss National Science Foundation SNSF Doc.Mobility 162014, 2018 48th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN

    Throughput enhancement with parallel redundancy in multi-product flow line system

    Get PDF
    We develop a new analytic approximation method to replace a set of parallel machines by an equivalent machine in a series-parallel flow line with finite buffer. We develop our method based on discrete state Markov chain. The proposed technique replaces a set of parallel machines at a work centre by an equivalent machine in order to obtain a traditional flow line with machines in series separated by intermediate buffers. We derive equations for the parameters of the equivalent machine when it operates in isolation as well as in flow line. The existing analytic methods for series-parallel systems can tract only lines with a maximum of two machines in series and a buffer in-between them. The method we propose in this thesis can be used in conjunction with an approximation method or simulation to solve flow lines of any length. We also model and evaluate the performance of series-parallel systems manufacturing more than one product types with predefined sequence and lot size. We address this issue for a considerable longer flow line system with finite buffer which is common in industry. We consider the set-up time of the machines as the product type changes, deterministic processing times and operation dependent failures of the machines. We analyze the effects of buffer and number of machines in parallel on the performance of series-parallel systems

    An Analytical Approach to Cycle Time Evaluation in an Unreliable Multi-Product Production Line with Finite Buffers

    Get PDF
    This thesis develops an analytical approximation method to measure the performance of a multi-product unreliable production line with finite buffers between workstations. The performance measure used in this thesis is Total Cycle Time. The proposed approximation method generalizes the processing times to relax the variation of product types in a multi-product system. A decomposition method is then employed to approximate the production rate of a multi-product production line. The decomposition method considers generally distributed processing times as well as random failure and repair. A GI/G/1/N queuing model is also applied to obtain parameters such as blocking and starving probabilities that are needed for the approximation procedure. Several numerical experiments under different scenarios are performed, and results are validated by simulation models in order to assess the accuracy and strength of the approximation method. Consequent analysis and discussion of the results is also presented

    Production Systems with Deteriorating Product Quality : System-Theoretic Approach

    Get PDF
    Manufacturing systems with perishable products are widely seen in practice (e.g., food, metal processing, etc.). In such systems, the quality of a part is highly dependent on its residence time within the system. However, the behavior and properties of these systems have not been studied systematically, and, therefore, is carried out in this dissertation. Specifically, it was assumed that the probability that each unfinished part is of good quality is a decreasing function of its residence time in the preceding buffer. Then, in the framework of serial production lines with machines having Bernoulli and geometric reliability models, closed-form formulas for performance evaluation in the two-machine line case were derived, and develop an aggregation-based procedure to approximate the performance measures in M\u3e2-machine lines. In addition, the monotonicity properties of these production lines using numerical experiments were studied. A case study in an automotive stamping plant is described to illustrate the theoretical results obtained. Also, Bernoulli serial lines with controlled parts released was analyzed for both deterministic and stochastic releases. Finally, bottleneck analysis in Bernoulli serial lines with deteriorating product quality were studied

    Performance Evaluation of Remanufacturing Systems

    Get PDF
    Implementation of new environmental legislation and public awareness has increased the responsibility on manufacturers. These responsibilities have forced manufacturers to begin remanufacturing and recycling of their goods after they are disposed or returned by customers. Ever since the introduction of remanufacturing, it has been applied in many industries and sectors. The remanufacturing process involves many uncertainties like time, quantity, and quality of returned products. Returned products are time sensitive products and their value drops with time. Thus, the returned products need to be remanufactured quickly to generate the maximum revenue. Every year millions of electronic products return to the manufacturer. However, only 10% to 20% of the returned products pass through the remanufacturing process, and the remaining products are disposed in the landfills. Uncertainties like failure rate of the servers, buffer capacity and inappropriate preventive maintenance policy would be highly responsible the delays in remanufacturing. In this thesis, a simulation based experimental methodology is used to determine the optimal preventive maintenance frequency and buffer allocation in a remanufacturing line, which will help to reduce the cycle time and increase the profit of the firm. Moreover, an estimated relationship between preventive maintenance frequency and MTBF (Mean Time Between Failure) is presented to determine the best preventive maintenance frequency for any industry. The solution approach is applied to a computer remanufacturing and a cell phone remanufacturing industry. Analysis of variance and regression analysis are performed to denote the influential factors in the remanufacturing line, and optimization is done by using the regression techniques and ANOVA results

    Space Applications of Automation, Robotics and Machine Intelligence Systems (ARAMIS). Volume 4: Supplement, Appendix 4.3: Candidate ARAMIS Capabilities

    Get PDF
    Potential applications of automation, robotics, and machine intelligence systems (ARAMIS) to space activities, and to their related ground support functions, in the years 1985-2000, so that NASA may make informed decisions on which aspects of ARAMIS to develop. The study first identifies the specific tasks which will be required by future space projects. It then defines ARAMIS options which are candidates for those space project tasks, and evaluates the relative merits of these options. Finally, the study identifies promising applications of ARAMIS, and recommends specific areas for further research. The ARAMIS options defined and researched by the study group span the range from fully human to fully machine, including a number of intermediate options (e.g., humans assisted by computers, and various levels of teleoperation). By including this spectrum, the study searches for the optimum mix of humans and machines for space project tasks
    • …
    corecore