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ABSTRACT
PRODUCTION SYSTEMS WITH DETERIORATING PRODUCT

QUALITY : SYSTEM-THEORETIC APPROACH

by

Raed A. Naebulharam

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor Liang Zhang

Manufacturing systems with perishable products are widely seen in practice (e.g.,

food, metal processing, etc.). In such systems, the quality of a part is highly depen-

dent on its residence time within the system. However, the behavior and properties

of these systems have not been studied systematically, and, therefore, is carried out

in this dissertation. Specifically, it was assumed that the probability that each un-

finished part is of good quality is a decreasing function of its residence time in the

preceding buffer. Then, in the framework of serial production lines with machines hav-

ing Bernoulli and geometric reliability models, closed-form formulas for performance

evaluation in the two-machine line case were derived, and develop an aggregation-

based procedure to approximate the performance measures in M > 2-machine lines.

In addition, the monotonicity properties of these production lines using numerical ex-

periments were studied. A case study in an automotive stamping plant is described to

illustrate the theoretical results obtained. Also, Bernoulli serial lines with controlled

parts released was analyzed for both deterministic and stochastic releases. Finally,

bottleneck analysis in Bernoulli serial lines with deteriorating product quality were

studied.
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1

Chapter 1

INTRODUCTION

1.1 Motivation

Production systems are sets of processing machines and material handling equipments

arranged so as to produce desired products. This can be accomplished by maintaining

smooth flow of parts throughout the system to prevent production losses. In the last

three decades, the increasing competitiveness of the global market has resulted in

ever increasing pressure on both the quality of products and the productivity of the

systems producing the products. The progress in technology has provided several

possibilities for production managers to exercise better control over a production

plant’s performance, both from the point of view of quality and production logistics.

In the past several decades, production systems have been studied extensively and

numerous results have been reported. Among these studies, performance analysis

and optimization of production systems are mostly investigated. In contrast, system-

theoretic properties of production systems have rarely been discussed in the literature.

These properties, however, are of importance because they reveal the fundamental

principles that characterize the behavior of such systems. This dissertation is intended

to provide a contribution in this direction.
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Productivity and quality are often considered as the most important metrics of

a production system. During the past 60 years, extensive research efforts have been

spent in analyzing and improving the productivity of manufacturing systems (see, for

instance, monographs [1–6]). On the other hand, there also exist a great amount of

results in the literature regarding quality monitoring and control in manufacturing

processes (see, for instance, survey [7]). Integrated analysis of productivity and qual-

ity in manufacturing systems, however, received limited attention until recent years

(see review papers [8] and [9]).

Also, it was assumed in many inventory models that the items can be stored

infinitely without any risk of deterioration. However, certain types of items undergo

changes while in storage so that, with time, they become partially or entirely unfit

for use. Deterioration refers to damage, spoilage, vaporization, or obsolescence of the

products. There are several types of items that will deteriorate if stored for extended

periods of time. Examples of deteriorating items include metal parts, which are prone

to corrosion and rusting, and food items, which are subject to spoilage and decay.

Electronic components and fashion clothing also fall into this category, because they

can become obsolete over time and their demand will typically decrease drastically.

In this work, we consider production systems with reliable machines and finite buffers

with deteriorating product quality issues.

The motivation for this study stems from the fact that a more reliable use of

buffers in production systems with deteriorating production quality is a prerequisite to

get a competitive advantage in factories processing perishable products. Variability in

manufacturing environment is one of the obstacles in achieving high production with

least waste. In general, the variability is known to be detrimental, but at the same

time it is impossible to be eliminated completely. Hence, it is important to identify

the sources of variability, measure it accurately, and understand its relationship with

the system design factors. Accordingly, the dissertation tries to establish a foundation
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to investigate how production system design and operation influence productivity and

deteriorating product quality by developing conceptual and computational models of

two-machines and more systems and performing numerical experiments to evaluate

the performance measures and system theoretic properties.

1.2 Related Literature

There is a substantial body of literature on the analysis of asynchronous serial lines

with reliable machines; for the last four decades, several researchers have attempted

to determine line efficiency and the effect of interstation buffer capacity on various

performance measures. The majority of the studies consist of attempts to determine

line efficiency measured as throughput either analytically or by utilizing approximate

procedures such as predictive equations or simulation models. Exact expressions and

numerical methods are developed to determine throughput for lines with a limited

length and/or certain processing time distribution functions [10–14]. For the through-

put of longer lines with various distribution functions, several approximate expressions

and simulation models are proposed [10,15–20]. Another group of studies search the

optimal allocation of buffer capacities to maximize throughput [14,21–23,23–27]. Fi-

nally, a few researchers examine higher moments of throughput. In this section, only

these relevant studies will be reviewed.

Miltenburg [28] presents a Markov analysis to determine the mean and the

variance of the number of units produced during a fixed period of time. The stations

are considered to be unreliable; thus, three sources of variability, namely, station up

and down times and the processing times exist. Due to the large matrices involved for

problems of realistic sizes, variance computations are reported for only lines with up

to three stations and a total buffer capacity of 14. However, the author recommends

his analysis for two-station lines with any buffer capacity and three-station lines with
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a total buffer capacity of less than 10 units. Even though this approach has limited

applicability in industrial settings, it is the first study reported in the literature for

variability of interdeparture time.

Chow [29] presents an approximate procedure to determine the throughput and

the coefficient of variation (CV) of interdeparture time with coxian type processing

time distributions. For a two-station line, regression equations are developed on

data obtained from a simulation model to determine the throughput and the CV of

the interdeparture time expressions. These expressions are first applied to the first

two stations of the line to combine them into a single station. The same process is

applied to the combined station and the third station until all the stations in the

line are considered. The author also presents an approximate dynamic programming

procedure to determine the optimal buffer allocation to achieve a target throughput

level. In an example solved, with nonzero buffer capacities at each location, the

procedure results in designs that confirm the bowl phenomenon. It is interesting that

the results are reported only for the throughput; in a simulation experiment with

10-station lines, most of the relative deviations of the proposed approximate model

are within 5%. Unfortunately, the performance of this method is not reported for the

CV of interdeparture times.

To the best of our knowledge, the work of Martin and Lau [30] is the first study

that examines the properties of interdeparture time distribution for lines with up to 10

stations and buffer capacity of up to 2 per location. According to their approach, lines

are partitioned into sub-queues and the moments of interdeparture time for each sub-

queue are determined by using regression meta-models. In the simulation experiment

to estimate the coefficients of regression equations, the authors consider two levels

of CV and several levels for the other system design factors. During simulation

experiments, they also note certain relationship between CV and other design factors;

CV of interdeparture time increases as the line length, CV, third and fourth moments
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of the processing times increase. An opposite effect is observed as the buffer capacity

at each location increases. In this study, the authors also point out a need for more

extensive simulation studies are required to consider other levels of the factors.

Hendricks [31] examines the effects of line length, buffer capacity and buffer

allocation on production lines with exponentially distributed processing times using

Markov analysis. The performance measures considered are the mean, variance and

asymptotic variance of the interdeparture time, and the correlation structure of the

output process. The asymptotic variance is defined as the limiting variance, per

departure, of the time of the nth departure. Computational findings indicated that

for all the line lengths considered (up to 6 stations), the correlations are all less than

or equal to zero, as expected. The variance of the interdeparture time increases as

the line length increases; however, the asymptotic variance is observed to decrease.

Experiments conducted on the effects of buffer capacity and buffer allocation show

that as the buffer capacities increase, the variance and the asymptotic variance both

decrease and approach to each other. The experiment on the effect of buffer allocation

indicates that the optimal buffer allocation to maximize throughput does not always

coincide with the one that minimizes the variance. The author also concludes that the

difference is not large and could probably be ignored. Another observation reported

in the paper is that the reversibility property does hold for the asymptotic variance

whereas it does not hold for the variance of the interdeparture time.

In the later work, Hendricks and McClain [31] consider Erlang and uniformly

distributed processing times. Skewness of processing time is considered in their sim-

ulation model in addition to the factors stated above. Results indicate that the

variability of interdeparture time increases as the skewness increases especially for

large line lengths. It is also observed that the variability of interdeparture time is

completely explained by the processing time variability for large buffer sizes. The

other observations are similar to the ones reported in the previous study.
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In summary, there are a few studies that examine interdeparture time variability

in serial production lines. Even though these studies yield several useful results, there

are still a number of issues remained to be addressed. One of the objectives of this

paper is to investigate these issues by examining the relationship between several

design factors and the interdeparture time variability. Moreover, the problem will be

studied for average and variability of work-in-process (WIP) inventory.

Productivity is an important measure of manufacturing system performance,

traditionally estimated including both the reliability of the machining system and

its processing speed. However, the influence of configuration on productivity has

typically been overlooked. Configuration is the arrangement of operations and their

part flow to take a product from raw materials to finished goods. Productivity is

defined as the stochastic measure of the production rate of the different operational

states of a manufacturing system. As analysts experienced in simulation methods

know, treating productivity as stochastic gives information about a configuration’s

expected long-term production rate, as well as the probability distribution of produc-

tion rates. This knowledge can be leveraged to take advantage of system configuration

to enhance manufacturing line throughput while providing a means to assess a system

configuration’s value when examining system cost.

On the other hand, topics in quality research have captured the attention of

practitioners and researchers since the early 1980’s. Statistical Process Control [32],

Total Quality Management [33] and Six Sigma [34] theories have been developed for

a better control of manufacturing processes, for meeting higher product quality and

for continuous improvement of processes. These two fields, productivity and quality,

have been extensively studied and reported separately both in the manufacturing sys-

tems research literature and the practitioner literature, but there is little research in

their intersection. All manufacturers must satisfy these two requirements (high pro-

ductivity and high quality) at the same time to maintain their competitiveness. The
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link between these two areas have been very rarely considered at a production sys-

tem level, even if industrial experience has evidenced the need for jointly considering

quality and productivity performance measures while designing the manufacturing

system [8]. There are many aspects that prove that quality and production logistics

are mutually related. For instance, the production system architecture affects the

performance of the quality control system. It has been shown by Gershwin [35] that

for a production line with 15 machines, the number of bad parts to be scrapped by the

system if inspection stations are poorly allocated, can be 15% higher than the num-

ber of bad parts produced with a good allocation of the same number of inspection

stations.

Moreover, the results coming from researches carried out in Lean Production

area [36], [37] have shown that the reduction of inventory has a positive impact

on product quality. However, from the manufacturing system engineering research

area, it is known that the production rate of the system is positively affected by

the presence of buffers, since they decrease the behavior of the machines, preventing

from the propagation of machine disruptions upstream and downstream the line [38].

Some lean manufacturing professionals advocate reducing inventory on the factory

floor since the reduction of WIP reveals the problems in the production lines [39].

Thus, it can help improve product quality. It is true in some sense: less inventory

reduces the time between making a defect and identifying the defect. But it is also

true that productivity would diminish significantly without stock [40]. Since there is

a tradeoff, there must be optimal stock levels that are specific to each manufacturing

environment. In machining and assembly operations, it has been shown that the

operating speed is inversely related to the product quality [41]. Thus, improving the

machine processing rate has a positive impact on the system production rate but may

negatively affect the system yield.

Bottlenecks identification and elimination have been a central topic in con-
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trol and improvement of production systems and several notions of bottleneck have

been proposed in the literature, for instance, [42], [43]. Rigorous study of bottleneck

identification in production lines was initiated in [44], which developed an effective

arrow-based method to identify the bottleneck in Bernoulli serial lines using the prob-

abilities of machine blockages and starvations. This method is then extended to serial

lines with exponential machines in [45–47] .

To consider product quality issues in production systems, various models have

been proposed. The simplest model is the Bernoulli quality model, which determines

the quality of each part, defective or non-defective, by a series of independent and

identical (i.i.d.) Bernoulli random variables. This model is usually applicable where

the defects are due to independent reasons, such as dust and scratches in automotive

paint shops. Results regarding production systems with Bernoulli quality model can

be found in [48–51]. In these studies, the problems of performance analysis; bot-

tleneck identification, placement of inspection stations, operations sequencing, etc.,

are discussed. Following this direction, a case study at an automotive paint shop

was carried out in [52]. While the Bernoulli model can be applied in systems, where

the quality of different jobs is independent, it is not applicable when the quality

of consecutive parts are closely related, for example, due to tool wear. To model

this phenomenon, additional machine states are usually introduced to represent the

scenario when the operation is “out-of-control”, i.e., when defective parts are being

produced. Unlike the operational states (up or down), the quality-related out-of-

control states are often assumed to be not immediately observable. Rather, one can

only determine if a machine is in an out-of-control state through a local or remote

inspection station downstream, where the defective parts and the type of defects are

identified using quality control tools such as Statistical Process Control. Represen-

tative results in this direction are reported in [53–57]. For production systems with

repair/rework, studies have been carried out in, for instance, [58–60]. Specifically, an-
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alytical approaches for performance evaluation and bottleneck identification in such

systems were developed. A case study at an automotive paint shop is reported in [61].

Another direction of research on product quality in manufacturing systems considers

part scrapping in production systems during machine breakdowns (see, for instance,

papers [62–64]). However, in these papers, it is assumed that when a machine fails,

the part being processed on that machine is immediately scrapped or scrapped with

certian probability, regardless of how long the downtime is. Finally, quality issues

in multi-product flexible production systems have been discussed in [65], where the

effects of product sequencing on product quality is modeled as a Markov chain.

Despite these important results, there are still various situations that the current

quality models cannot precisely depict. For example, in the quality models developed

above, the product quality is either assumed to be independent of other system pa-

rameters or just modeled as part of the machine characteristic, while the interactions

with other system factors are not considered. Among these factors, the storage time

of parts between consecutive operations is one of the most important issues, especially

in systems that produce perishable products (e.g., food, metal processing, etc.). In

fact, from a broad perspective, most commodity can be viewed as having deteriorat-

ing “quality” or decreasing appeal/value to the customers. These include, but are

not limited to, electronics, appliances, fashion goods, computer software, etc. In the

current literature, there exist several directions to study the effects of deteriorating

part quality in production systems. The first is to introduce the quality deterioration

factor into the classical economic order quantity (EOQ) model and economic produc-

tion quantity (EPQ) model and their variations (see review papers [66–69], and recent

publications [70–75]). However, in these studies, the production system is considered

as a single entity in the models, and, therefore, the quality issues within the process

of production are not addressed. Another direction of studying quality deterioration

is in the area of queueing systems with impatient customers (see [76] and [77] for
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representative results). Unfortunately, all studies in this area have only focused on

single-stage queueing systems with parallel servers, while systems with tandem queues

have not been investigated. The paper closest to the topic considered in this paper

is [78], which studies performance evaluation in a bufferless synchronized production

line with machines having geometrically distributed up- and downtimes. The paper

assumes that the parts in a machine must be scrapped if the machine is stopped (due

to breakdowns or downstream blockages) for a certain amount of time. Nevertheless,

production systems with general buffering and non-synchronized operations have not

been addressed. This paper is intended to contribute to this end.

1.3 Outline

The remainder of the paper is organized as follows: Chapter 2 introduces the

model and defines the performance measures of interest. In Chapter 3, formulas are

derived to evaluate the performance measures in the two-machine Bernoulli case and

investigate their monotonicity properties. A case study at an automotive stamping

plant is discussed. Based on these results, an aggregation-based recursive procedure

is developed for performance evaluation in M > 2-machine cases. In Chapter 4,

releasing parts to the system were controlled and compared with previous study.

Chapter 5, formulas are derived to evaluate the performance measures in the two-

machine Geometric case and investigate their monotonicity properties. Based on

these results, an aggregation-based recursive procedure is developed for performance

evaluation in M > 2-machine cases. In chapter 6, bottleneck identification in Bernoulli

serial lines with perfect quality and non-perfect quality buffers were studied. Finally,

the conclusions and topics for future work are given in Chapter 7.
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Chapter 2

SYSTEM MODELING AND

PROBLEM FORMULATION

2.1 Introduction

As mentioned in Chapter 1, the purpose of this research is to study system-theoretic

properties of production lines with deteriorating product quality, general buffering,

and non-synchronized operations. Since there are various notions and conventions on

production system used in the literature (see review paper [9]), to avoid confusion

and to formalize the presentation, this chapter is devoted to define terminologies that

are used throughout this work.

2.2 Types of Production Systems

2.2.1 Serial production lines

Serial production line - a group of producing units, arranged in consecutive order,

and material handling devices that transport parts (or jobs) from one producing unit

to the next.
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Figure 2.1 shows the block diagram of a serial production line where circles represents

producing units and rectangles are material handling devices.

Figure 2.1: Serial production line

The producing units may be either individual machines or departments/shops

that have different processes. The material handling devices may be boxes, or con-

veyers, or vehicles. Whatever the physical appearance may be, we refer to them as

buffers, since the most important feature of material handling devices, in this paper,

is their storing capacity. The example provided in the figure above is a simple serial

production line and the buffers are called in-process buffers. There are other types of

buffers such as finished goods buffers and empty carrier buffers. The latter buffer can

be seen in lines called closed with respect to carriers.

There are other serial lines such as serial lines with product quality inspection

where products are checked before getting processed, if they pass they get processed

and if they fail they get scrapped, this particular model will be discussed in this

paper. Also, there are serial lines with rework, where there is/are quality machines

that checks product quality if they fail thus, storing them in buffers to perform rework.

2.2.2 Assembly systems

Assembly system - two or more serial lines, referred to as component lines, one or

more merge operations, where the components are assembled, and, perhaps, several

subsequent processing operations performed on an assembled part. Figure 2.2 shows

typical assembly lines in automative industries.
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Figure 2.2: Assembly system with single merge operation

Clearly, assembly systems may be viewed as several serial production lines con-

nected through their finished goods buffers. This is clearly one of the simplest serial

systems that can be found in the industry while complex assembly systems may carry

more complex and advanced lines with quality inspection machines and rework and

so on.

2.3 Machine Reliability Models

Machine reliability model - the probability mass function (pmf’s) or the probability

density function (pdf’s) of the up- and downtime of the machine in the slotted or

unslotted time, respectively. In this work, some of the following machine reliability

models are used:

2.3.1 Reliability models for the slotted time case

Production lines with Bernoulli and Geometric reliability models are usually consid-

ered as discrete event systems. The two models addressed:

Bernoulli reliability model (B): at the beginning of each time slot, the status

of the machine - up or down - is determined by a chance experiment, according to

which it is up with probability p and down with probability 1 - p, independently of

the status of this machine in all previous time slots. In addition, parameter p is the



14

efficiency of a Bernoulli machine.

This reliability model is simple but practical. Indeed, it is applicable to opera-

tions where the unscheduled downtime is, on the average, comparable to the machine

cycle time. This often happens in automotive painting and assembly operations,

where the downtime is primarily due to quality problems rather than machine break-

downs.

Geometric reliability model (Geo): during each time slot, the status of a machine

depends on its status in the previous time slot with probabilities of breakdown and

repair P and R, respectively as shown in the transition diagram of Figure 2.3

Figure 2.3: Geometric reliability model

It can be shown that the up- and downtime of this machine, denoted as tup and

tdown are characterized by the following distributions:

P [tup = t] = P (1− P )t−1, t = 1, 2, . . .

P [tdown = t] = R(1−R)t−1, t = 1, 2, . . .

Clearly, tup and tdown are geometric random variables and we refer to such a machine

as a geometric machine, i.e., obeying the geometric reliability model. In addition, it

is easy to show that for a geometric machine.
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Tup =
1

P
, Tdown =

1

R
,

e =
Tup

Tup + Tdown
=

R

P +R
.

Methods of analysis of production systems with this reliability model are more

complex than in memoryless case. In comparison with the Bernoulli model, this is a

more realistic description of a machine.

2.3.2 Reliability models for the continuous time case

The continuous time case is, perhaps, more realistic than the slotted time and, there-

fore, a larger set of reliability models is addressed. They are as follows:

Exponential reliability model (exp): consider a machine in Figure 2.4, which is a

continuous time analogue of the geometric machine. Namely, if it is up (respectively,

down) at time t, it goes down (respectively, up) during an infinitesimal time δt with

probability λδt (respectively, µδt). The parameters λ and µ are called the breakdown

and repair rates, respectively.

Figure 2.4: Exponential reliability model

It can be shown that the pdf’s of the up- and downtime of this machine, denoted
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as tup and tdown, are as follows:

ftup(t) = λe−λt, t ≥ 0,

ftdown(t) = µe−µt, t ≥ 0.

Log-normal reliability model (LN): the up- and downtime pdf’s of the machine

are given by:

ftup(t) =
1√

2πΛt
e

−(ln t−λ)2

2Λ2 , t ≥ 0,

ftdown(t) =
1√

2πMt
e

−(ln t−µ)2

2M2 , t ≥ 0,

where Λ and M are positive numbers. In addition, it can be calculated that for a

log-normal machine

Tup = eλ+ Λ2

2 , Tdown = eµ+M2

2 ,

CVup =
√
eΛ2−1, CVdown =

√
eM2−1.

2.4 Quality Models

2.4.1 Buffer quality model

The quality deterioration function g is selected from the following three types:

• Type 1: S-shaped function, defined by

g(tr) =
1

1 + e(a·tr−b)
, (2.1)

where tr is the residence time of the part in the buffer and a and b are positive
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constants. Examples of this type of function are shown in Figure 2.5(a). Under

this type of quality function, a part maintains a high probability of good qual-

ity for short residence time, while the rate of deteriorating is growing as the

residence time increases. When the good quality probability becomes already

low, the deterioration slows down as well.

• Type 2: L-shaped function defined by

g(tr) =
c

1 + (c− 1)ed·tr
, (2.2)

where c and d are positive constants. Examples of this type of function are

shown in Figure 2.5(b). Unlike the functions of Type 1, here, the probability

of good quality decreases almost linearly as a function of part residence time

before the deterioration slows down after the part resides in the buffer for a

relatively long period of time.

• Type 3: Step function defined by

g(tr) =

 1, if tr ≤ T ,

0, if tr > T,
(2.3)

where T is a positive constant. Examples of this type of function are shown

in Figure 2.5(c). Clearly, parameter T is actually the maximum residence time

allowed for a part in the buffer. This type of function is used to imitate the

effect of “expiration date” in reality.

While the implication of Type-3 deterioration function is straightforward, the

other two may not by immediately intuitive. In fact, both Type-1 and Type-2 de-

terioration functions are variations of widely used models for quality deterioration.

Indeed, the deterioration time, i.e., the time for a product to become defective, is
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Figure 2.5: Quality deteriorating functions considered

usually modeled as a random variable subject to gamma or Weibull distributions in

the literature for items such as food, fashion goods, technology products, etc. (see,

for instance, [67,69,71,73,74]). Thus, the probability of good quality as a function of

residence time can be expressed as:

g(tr) = 1− F (tr), (2.4)

where F (·) is the cumulative distribution function of gamma or Weibull distribution.

It can be shown that, depending on the distribution parameters, g(tr) is either an

S-shaped curve or an L-shaped one, similar to the ones shown in Figure 2.5(a) and

(b). In this paper, for calculation convenience, we use expressions (2.1) and (2.2) as

the quality deteriorating functions to mimic this property.

2.4.2 Machine quality model

In some manufacturing operations, machines can produce defective parts, along

with non defective parts. To formalize this situation, we can introduce machine qual-

ity models - the pmf or pdf of time intervals during which the machine produces good

or defective parts. Listed are some examples of quality models:
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Bernoulli quality model: each part produced during a cycle time is good with

probability g and defective with probability 1 - g, independent of the quality of parts

produced during previous cycles.

Exponential quality model: when up, the intervals of time during which a machine

produces good parts or defective parts are distributed exponentially with parameters

γ and β, respectively.

2.5 System Considered

In this dissertation, serial production lines, as shown in Figure 2.6 are defined by the

following assumptions:

Figure 2.6: Serial production line with deteriorating product quality

(i) The production line consists of M machines (represented by circles) and M − 1

in-process buffers (represented by rectangles).

(ii) All machines have constant and identical cycle time τ . The time axis is slotted

with the slot duration τ . The status of the machines is determined at the

beginning of each time slot according to their reliability models.

(iii) Each in-procees buffer, bi, i = 1, . . . ,M − 1, is characterized by its capacity, Ni,

where 1 < Ni < ∞. The state of the buffer (i.e., the number of parts in it) is

determined at the end of each time slot.
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(iv) Machine mi, i = 2, . . . ,M is starved during a time slot if it is up and buffer

bi−1 is empty at the beginning of the time slot. It is assumed that machine m1

is never starved for raw material.

(v) Machine mi, i = 1, . . . ,M − 1, is blocked during a time slot if it is up, buffer bi

has Ni parts at the beginning of the time slot and machine mi+1 fails to take a

part during that time slot. It is assumed that mM is never blocked.

(vi) The state of the machines is defined by:

(a) If machine mi, i = 1, . . . ,M , when it is neither blocked nor starved, produces

a part during a time slot with probability pi and fails to do so with probability

1 − pi. Parameter pi is referred to as the efficiency of mi. In other words, the

machines obey the Bernoulli reliability model.

(b) If machine, mi, i = 1, . . . ,M , when it is neither blocked nor starved and up,

it will be down during the next cycle with probability Pi and up with probability

1 − Pi; if it is down, it will be up during the next cycle with probability Ri

and down with probability 1 − Ri. In other words, the up- and downtime are

distributed geometrically with the parameters Pi and Ri respectively.

(vii) The quality of a part deteriorates while residing in the buffers in the sense

that the probability that the part is non-defective when exiting buffer bi, i =

1, . . . ,M − 1, is a monotonically decreasing function of its residence time in the

buffer.

(viii) The quality of parts is identified at each machine after drawn from the previous

buffer and the defectives are discarded from the system immediately (repre-

sented as the arrows underneath the machines).

Remark 2.1: Note that in large volume production systems, machine cycle time is

practically constant or close to being constant. This is the case in most production

systems in automotive, electronics, appliance, and other industries. Note also, that



21

the Bernoulli reliability model is applicable to operations where the downtime is,

on the average, close to the machine cycle time (see [6], [61] and [79] for practical

examples using the Bernoulli model). Systems with machines having other reliability

models (e.g., exponential, Weibull, gamma, log-normal, and general, etc.) will be

studied in future work.

Remark 2.2: Assumptions (iv), (v) and (vi-b) are formulated in terms of the so-

called time-dependant failures, i.e., machines can go down even when blocked or

starved [2]. Another possible model is that of operation-dependent failures, were

no breakdowns of starved or blocked machines is possible [2], [4]. Both models are

practical, depending on the production system at hand: For automated palletized

material handling, operation-dependent failures applicable. In case of manual ma-

terial handling, operation-dependent failures often take place. Both failure modes,

however, result in similar behavior. Studies show that thoughputs of a line with

time-dependent or operation-dependent failures differ at most by 3 - 4% [2], which is

well within the accuracy of the date describing production lines.

Remark 2.3: To reduce the level of complexity, we assume that the parts quality

is inspected perfectly, i.e., no good parts are inspected as defective and no defectives

are missed.

Remark 2.4: Denote tr,i and gi as the residence time of a part in buffer bi and

the good quality probability of the part when exiting the buffer. Then, according to

assumption (vii), function gi(tr,i) is monotonically decreasing in tr,i. As noted above,

production systems with residence-time dependent deteriorating quality are widely

seen in industries such as food production, metal processing, etc. For instance, in

an automotive paint shop, the longer a car body is exposed to plant air, the more

probable its surface will be contaminated with dirt and other particles.

Remark 2.5: It should be noted that, in some manufacturing operations, the product

quality depends on not only its residence time in the immediate upstream buffer,
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but also the time in several operations/buffers upstream. The case considered in

this paper, however, is also widely observed on the factory floor, where potential

quality problems from previous steps are fixed at the operation before the buffer

with quality deterioration. For example, in automotive paint shops, wet sanding

is the last operation before the car bodies are sent to the paint booths and this

operation is designed to thoroughly clean the job surface and have it prepared for

painting. However, after being sanded and before being painted, contamination may

take place and cause quality problems. Production systems with more complex quality

deterioration scenarios will be studied in future work.

Remark 2.5: As one may notice, assumptions (i)-(vi-a) define the conventional

Bernoulli serial lines, which have been analyzed in [6].

2.6 Performance Measures

In the framework of the model defined above, the productivity performance measures

of interest are:

• Production rate, PR: the expected number of finished parts produced by mM

during one time slot in the steady state where 0 < PR < 1;

• Consumption rate, CR: the expected number of raw parts consumed by m1

during one time slot in the steady state where 0 < CR < 1;

• Scrap rate, SRi: the expected number of defective parts scrapped by mi during

one time slot in the steady state where 0 < SRi < 1;

• Work-in-process, WIPi: the expected number of parts in buffer bi, i = 1, . . . ,M−

1, in the steady state where 0 < WIPi < Ni;

• Machine starvation STi: the probability that machine mi, i = 2, . . . ,M , is

starved in the steady state where 0 < STi < 1;
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• Machine blockage BLi: the probability that machine mi, i = 1, . . . ,M − 1, is

blocked in the steady state where 0 < BLi < 1.

Among these performance measures, while PR, CR, SR, and WIP have been

widely used and measured on the factory floor, ST and BL have received signif-

icantly less attention. However, as illustrated in [6], ST and BL have important

manufacturing implications and are closely related to various issues, such as bottle-

neck identification and lean design, in manufacturing practice. For systems defined by

assumptions (i)-(viii), the above performance measures can be evaluated as follows:

PR = P [{mM is up} ∩ {bM−1 is non-empty}], (2.5)

CR = P [{m1 is up} ∩ {m1 is not blocked}], (2.6)

WIPi =

Ni∑
j=1

j · P [{buffer bi contains j parts}], (2.7)

STi = P [{mi is up} ∩ {buffer bi−1 is empty}], (2.8)

BLi = P [{mi is up} ∩ {buffer bi is full} ∩ {mi+1 is neither down nor blocked}].

(2.9)

2.7 Summary

In this paper, we will develop analytical methods to evaluate these performances

measures of the production systems defined above and discuss the effects of quality

deterioration on these performances.

It should be noted that a production system is characterized by both steady

state and transient performance. Although the quality of each product in the system

is dynamic in time, the goal of this work is to study its properties during steady state.

Therefore, in this paper, we focus the discussion on the stationary performance of the

system. Transient behavior of the system will be investigated in future work.
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Chapter 3

BERNOULLI SERIAL LINES

WITH DETERIORATING

PRODUCT QUALITY

3.1 Two-machine Lines

3.1.1 Performance analysis

In this section, production lines defined by assumptions (i)-(vi-a)-(viii) with

M = 2 are analyzed. As a matter of fact, conventional two-machine Bernoulli

lines, i.e., lines defined by assumptions (i)-(vi-a), have been studied in [6], while

two-machine Bernoulli lines with non-perfect quality machines were studied in [50].

However, for the systems considered in this paper, since the quality of parts is depen-

dent on their residence time in the buffer, it is necessary to obtain the distribution of

the residence time first.

Lemma 1 For two-machine Bernoulli lines defined by assumptions (i)-(vi-a)-

(viii), the probability distribution of part residence time, tr, is given by
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Figure 3.1: Two-machine Bernoulli serial lines

P [tr = t] = p2

min(t,N−1)∑
i=0

Ci
t P̃ip

i
2(1− p2)t−i, t = 0, 1, . . . , (3.1)

where

Ck
n =

n!

k!(n− k)!
, 0 ≤ k ≤ n,

P̃0 =
Q(p1, p2, N)

(1− p1)[1−Q(p2, p1, N)]
, (3.2)

P̃i = αi(p1, p2)P̃0, i = 1, . . . , N − 1, (3.3)

Q(p1, p2, N) =


(1−p1)(1−α(p1,p2))

1− p1
p2
αN (p1,p2)

, if p1 6= p2,

1−p
N+1−p , if p1 = p2 = p,

(3.4)

α(p1, p2) =
p1(1− p2)

p2(1− p1)
. (3.5)

Proof of Lemma 1: Let Pi, i = 0, . . . , N , denote the steady state probability that

the buffer contains i parts at the end of a time slot. Expressions for calculating Pi’s

are derived in [6]:

P0 = Q(p1, p2, N), Pi =
αi(p1, p2)

1− p2

P0,

where Q(p1, p2, N) and α(p1, p2) are given in (3.4) and (3.5), respectively. Introduce

the following probability:

P̃i = P [buffer has i parts when m1 produces a part into the buffer]. i = 0, . . . , N−1.

(3.6)
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Thus, P̃i, i = 0, . . . , N − 1, can be evaluated as follows:

P̃0 =
P [buffer is empty and m1 produces a part]

P [ m1 produces a part]

=
P0p1 + P1p1p2

p1[1−Q(p2, p1, N)]

=
Q(p1, p2, N)

(1− p1)[1−Q(p2, p1, N)]
,

P̃i =
P [buffer has i parts and m1 produces a part]

P [ m1 produces a part]

=
Pip1(1− p2) + Pi+1p1p2

p1[1−Q(p2, p1, N)]

= αi(p1, p2)P̃0, i = 1, . . . , N − 1.

According to the total probability formula, the steady state probability distri-

bution of part residence time in systems defined by (i)-(vi-a)-(viii) is given by:

P [tr = t] =

min(t,N−1)∑
i=0

P [ m2 up for i cycles in the next t time slots] ·

P [ m2 is up during the (t+ 1)th time slots ] ·

P [ the buffer has i parts when the new part comes in ]

= p2

min(t,N−1)∑
i=0

Ci
t P̃ip

i
2(1− p2)t−i, t = 0, 1, . . . ,

which completes the proof. �

Clearly, the quality buy rate of the system, i.e., the probability that a part is

non-defective at the output of m2 can be evaluated as:

q = q(p1, p2, N, g) =
∞∑
t=0

P [tr = t]g(tr = t). (3.7)

Thus, the performance measures of the two-machine production line can be evaluated

using the following:
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Theorem 1 In two-machine Bernoulli lines defined by assumptions (i)-(vi-a)-

(viii),

CR = p2[1−Q(p1, p2, N) = p1[1−Q(p2, p1, N)], (3.8)

PR = CR · q, (3.9)

SR = CR · (1− q), (3.10)

WIP =


p1

p2−p1αN (p1,p2)

[
1−αN (p1,p2)
1−α(p1,p2)

−NαN(p1, p2)
]
, if p1 6= p2,

N(N+1)
2(N+1−p) , if p1 = p2 = p,

(3.11)

BL1 = p1Q(p2, p1, N), (3.12)

ST2 = p2Q(p1, p2, N). (3.13)

where q is defined in (3.7).

Proof of Theorem 1: Follows immediately from Lemma 1 and [50].

�

3.1.2 Monotonicity property

The monotonicity properties of the performance measures are characterized by

the following:

Property 1 In two-machine Bernoulli lines defined by assumptions (i)-(viii),

• PR is monotonically increasing in p2, non-monotonic or monotonically increas-

ing in p1, and non-monotonic or monotonically decreasing or monotonically

increasing in N ;

• SR is monotonically increasing in p1 and N , and non-monotonic in p2;

• CR is monotonically increasing in pi, i = 1, 2, and N ;

• q is monotonically decreasing in p1 and N , and monotonically increasing in p2.
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Justifcation of Property 1: To justify these properties, a total of 100,000 produc-

tion lines were generated with parameters randomly and equiprobably selected from

the following sets:

pi ∈ [0.6, 0.95], Ni ∈ {1, 2, 3, 4, 5}. (3.14)

For each line, thus generated, the quality deterioration function g is selected

from the three types discussed previously. Specifically, the parameters of these func-

tions are randomly and equiprobably form the following sets:

Type 1: a ∈ (0.1, 1.6), b ∈ (3, 7);

Type 2: c ∈ (1, 2), d ∈ (0.1, 5); (3.15)

Type 3: T ∈ {3, 4, 5, 6, 7, 8}.

Next, we calculate the performance measures of all lines as functions the pa-

rameters p1, p2, and N using (3.7)-(3.10) and examined whether the corresponding

statement of Property 1 holds. As a result, among the 100,000 lines studied, no coun-

terexamples of Property 1 were found. Thus, we conclude that Property 1 indeed

takes place.

An illustration of the above properties is given in Figure 3.2, where the quality

deterioration function is characterized by an “expiration time”, T , as follows:

g(tr) =

 1, if tr ≤ T ,

0, if tr > T.
(3.16)

As one can see in Figure 3.2, increasing the efficiency of m1 leads to more defec-

tives, which may result in lower production rate of good parts. Such phenomenon

is usually referred to as quality-quantity coupling (see [41, 61, 80]). However, in the

systems considered here, the decrease of quality is not because of less careful or less
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precise processing but due to longer residence time in the buffer. On the other hand,

improving m2 always leads to higher production rate and higher quality buy rate. In

addition, if p2 is not significantly smaller than p1, then the scrap rate can be reduced

by increasing p2. Finally, under quality deterioration function (3.16), larger buffer

capacity does not necessarily lead to higher production rate, which is not observed in

conventional serial lines defined by assumptions (i)-(vi).
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Figure 3.2: PR, SR, and CR as functions of p1, p2, N , and T

Due to the lack of monotonicity in PR with respect to buffer capacity N , release

of parts into the system needs to be controlled to avoid potentially long residence

time. Since the Bernoulli machines are memoryless, the state of the system is just

the occupancy of the buffer. Assume that the control point policy is used, i.e.,

u(h(n)− h∗) =

 1 (i.e., release is authorized), if h(n) ≤ h∗,

0 (i.e., release is denied), otherwise.
(3.17)
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Therefore, under control (3.17), parameter h∗ can be viewed as the virtual capacity of

the buffer since its occupancy cannot exceed h∗ parts. As a result, the performance

measures in the controlled, i.e., closed-loop, systems can be evaluated using (3.8)-

(3.10) with N replaced by min(N, h∗).

To determine the optimal value h∗ of control (3.17), the following procedure

can be used:

Procedure 3.1: Given the desired production rate PRd:

(a) For n = 1, select h∗(n) = 1 and PR(0) = 0.

(b) Evaluate PR(n) using (3.9) with N replaced by h∗(n).

(c) If PR(n − 1) < PR(n) < PRd and h∗(n) < N , then h∗(n + 1) = h∗(n) + 1,

n = 1, 2, . . . , and return to (b).

(d) if PR(n) > PRd, select h∗ = h∗(n) and terminate the algorithm.

(e) If PR(n) < PR(n − 1), or PR(n) < PRd and h∗(n) = N , then h∗ dose not

exist for the given PRd.

To illustrate the efficacy of the parts release control, consider a Bernoulli line

defined by assumptions (i)-(viii) with p1 = p2 = 0.8, N = 5. Assume that the part

quality deterioration in the buffer is of Type 3 with T = 4. The performance measures

of the system are calculated using (3.8)-(3.10) as follows:

PR = 0.6154, SR = 0.1538, CR = 0.7692, q = 0.8000.

Now, assume that the desired production rate is PRd = 0.73. Then, using Procedure

3.1, the optimal control parameter h∗ = 3 is obtained and the resulting closed-loop

system performances are

PR = 0.7338, SR = 0.0162, CR = 0.7500, q = 0.9783.
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Clearly, with feedback release control, both quantity and quality performances of the

system are significantly improved. Specifically, the production rate of good parts

is increased by 19%, while the quality buy rate is increased by 17%. Along with

these improvements, less raw material is consumed and practically no scraps is ob-

served. Therefore, using optimal feedback control of parts release can improve the

productivity and the quality of production systems.

It should be noted that, in practice, there are other techniques that can be

used to maintain the quality of work-in-process by, for instance, dispatching and

relocating the products. However, controlling the buffer size is often considered as a

direct approach, which does not involve additional subsystems (e.g., hoist scheduling).

Thus, in this paper, we only consider the effect of controlling buffer capacities on

system performance.

3.1.3 Case study

At an automotive stamping plant as shown in Figure 3.3, the raw steel is received

via truck in a roll. The blanking press will cut the steel into the required quantity

and size for the body panel, and a layer of lubrication (oil) is placed on the blanks

of steel during the blanking process. Then the pallet of blanks is shipped to the

washer, which cleans debris off the parts and places oil on the blanks at a specified

thickness. The washed pallet is placed in a queue waiting for stamping press. The

top and bottom blanks on a pallet will be discarded if it has stayed in the queue for

more than 4 hours, and the rest is loaded into the press to create the desired body

panel. The reason for this discarding is due to that the oil has evaporated after four

hours. Such evaporation will result in a bad finished part or die damage. Finally

visual inspection is carried out to check obvious defects in the stamping parts. The

most critical operations in this process are washing and pressing.

Although the defective panels only accounts for a very small portion of the
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Figure 3.3: Automative stamping plan

entire batch (typically 1-3%), due the large volume of this production system, the

scrap can lead to significant unnecessary cost (e.g., additional workforce for quality

inspection, material transportation, etc.) even after it is offset through material

recycling. Therefore, reducing scrap waste is considered a critical task by the factory

floor operators and management personnel in this system. Improvement efforts have

been made to increase the thickness of the oil so that no discarding is necessary before

6 hours. To investigate the impact and savings of such effort, a production system

model is developed, and using this model, we study the residence time feedback

control policy. As described above, the most critical processes, washing and pressing,

are included in the model. Thus, a two-machine Bernoulli model is introduced, where

the parameters of the machines are identified using the data collected on the factory

floor and we obtain:

p1 = 0.768, p2 = 0.8, τ = 76.8 min.

To determine T , note that the maximal residence times for a batch in the buffer

are 4 hours and 6 hours, before and after the increase of oil thickness, respectively.

Therefore, we assume in the model that T = 3 (i.e., residence time = 3τ = 3 hr 50

min) and T = 5 (i.e., residence time = 5τ = 6 hr 24 min) for the above two cases,

respectively.
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Assume a batch contains 200 blanks on the average. Since only the top and

bottom blanks are scrapped for batches residing in the buffer longer than T , the

throughput of good blanks of the system is given by:

TP =
200(PR + 0.99SR)

τ
(blanks/min).

The behavior of the performance measures as functions of buffer capacity, N , is

illustrated in Figure 3.4. It can also be observed from the figure that without feedback

release control, more than 50% of the washed batches contain defective blanks due to

long waiting before being pressed.

Assume now that feedback release controller (3.17) is applied to this system.

Since the controller parameter h∗ can be viewed as the (virtual) capacity of the buffer,

Figure 3.4 can be viewed as the behavior of the performance measures as functions

of h∗ as well. As one can see from the figure, if the maximal allowed residence time

in the buffer is increased to T = 5 cycles, then PR, SR, and q can be improved

significantly under the same control, with the TP remaining almost the same.

Next, we investigate the optimal feedback release control under desired through-

put TPd for the system at hand. The optimal control parameter h∗ can be obtained

using Procedure 3.1 and the resulting performance measures as functions of TPd are

illustrated in Figure 3.5. As one can see, both T = 3 and T = 5 require similar control

parameters for the same TPd. However, significantly less scraps can be produced if

the maximal residence time is increased from T = 3 to T = 5. In addition, as the

desired throughput increases, the optimal control parameter also increases to allow

more batches into the system, which leads increased scraps. It should be noted that

PR is non-monotonic with respect to TPd due to its non-monotonic behavior with

respect to h∗ (see Figures 3.4(b) and 3.5(b)).
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3.2 M > 2-machine Lines

3.2.1 Performance analysis

For Bernoulli serial lines with non-perfect quality machines and inspection ma-

chines, an aggregation-based recursive procedure is developed in [50]. Note that the

system considered in [50] assumes that the defects are generated at individual ma-

chines but independent of the parts residence time in the buffers. As a result, the

quality buy rate at each inspection machine can be explicitly calculated by multi-

plying the quality parameters of all upstream machines until the nearest inspection

machine. However, due to the coupling of machines and buffers in the system consid-

ered in this paper, the quality buy rates cannot be obtained by explicit calculations.

Therefore, the following recursive procedure is proposed to accommodate this feature:

Figure 3.6: M > 2-machine Bernoulli serial lines

Recursive Procedure 3.2:

pbi(s+ 1) = pi

[
1−Q(pbi+1(s+ 1), pfi (s), Ni)

]
, i = 1, . . . ,M − 1,

s = 0, 1, 2, . . . , (3.18)

pfi (s+ 1) = piq(p
f
i−1(s+ 1), pbi(s+ 1), Ni−1, gi−1)

[
1−Q(pfi−1(s+ 1), pbi(s+ 1), Ni−1)

]
,

i = 2, . . . ,M, s = 0, 1, 2, . . . , (3.19)

with initial conditions

pfi (0) = pi, i = 1, . . . ,M, (3.20)
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and boundary conditions

pf1(s) = p1, pbM(s) = pM , s = 0, 1, . . . , (3.21)

where functions Q(·), α(·) and q(·) are defined in (3.4), (3.5) and (3.7), respectively.

To investigate the convergence of this recursive procedure, we define

V (s) =
M∑
i=2

[pfi (s)− p
f
i (s− 1)]2 +

M−1∑
i=1

[pbi(s)− pbi(s− 1)]2, s = 1, 2, . . . . (3.22)

Numerical Fact 1 Sequence V (s) is convergent with respect to s with proba-

bility 1− ε, where ε� 1. In other words, there exist limit V∞ such that

P
[

lim
s→∞

V (s) = V∞

]
= 1− ε. (3.23)

Justification of Numerical Fact 1: To justify this numerical fact, we studied pro-

duction lines with M = 3, 4 . . . , 15 machines. Specifically, for each M ∈ {3, 4, . . . , 15},

a total of 50,000 lines were generated. Therefore, a total of 650,000 production lines

were investigated. The efficiencies of the machines and the capacities of the buffers

were selected randomly and equiprobably from (3.14). In addition, for each buffer,

quality deterioration exists with probability 0.5. In such cases, the quality deteri-

oration function gi is selected from the three types described above with parame-

ters randomly and equiprobably selected from (3.15). During the justification, we

considered sequence V (s) convergent, if there exists 0 < s0 < 10, 000, such that

|V (s0)− V (s0− 1)| < 10−7, and terminate the procedure as soon as this inequality is

observed.

As a result, sequence V (s) converged in 649,841 lines, i.e., 99.976% of all cases

studied. The number of non-convergent cases for each M considered is shown in

Figure 3.7. Among the cases, where convergence is observed, two cases are possible:
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V∞ = 0 and V∞ > 0. The former implies that sequences pfi (s), i = 2, . . . ,M , and

pbi(s), i = 1, . . . ,M − 1, are also convergent with respect to s with unique limits p̃fi

and p̃bi :

lim
s→∞

pfi (s) = p̃fi , lim
s→∞

pbi(s) = p̃bi .

In the latter, it implies that sequences pfi (s) and pbi(s) converge with respect to s to

limit cycles, i.e., for s → ∞, each sequence oscillates among a set of values, while

having V (s) constant everywhere on the cycle. Detailed information regarding this

convergence issue for each M considered among the 650,000 lines studied above is

summarized in Table 3.1. Clearly, limit cycle convergence appears in a very small

portion of all systems studied (usually less than 2%).

Based on these results, we claim that Numerical Fact 1 indeed takes place.
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Figure 3.7: Justification of Numerical Fact 1

�

A total of 650,000 randomly generated production lines were used in the justi-

fication. As a results, convergence of V (s) is observed in 99.976% of all cases studied.

The non-convergent cases often contain system parameters that are dramatically dif-

ferent from one another, which is rarely the case in practical situations. Moreover,

for those lines where V (s) converges, two cases are possible: V∞ = 0 and V∞ > 0.

The former implies that sequences pfi (s), i = 2, . . . ,M , and pbi(s), i = 1, . . . ,M − 1,
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Table 3.1: Convergence of Recursive Procedure 4.1

Non-converging Limit cycles Unique limits
M = 3 0 33 49967
M = 4 0 152 49848
M = 5 3 351 49646
M = 6 1 492 49507
M = 7 9 596 49395
M = 8 7 726 49267
M = 9 12 830 49158
M = 10 16 903 49081
M = 11 25 927 49048
M = 12 16 986 48998
M = 13 23 971 49006
M = 14 20 940 49040
M = 15 27 998 48975

are also convergent with respect to s with unique limits p̃fi and p̃bi :

lim
s→∞

pfi (s) = p̃fi , lim
s→∞

pbi(s) = p̃bi . (3.24)

In the latter, however, it implies that sequences pfi (s) and pbi(s) converge with respect

to s to limit cycles, i.e., for s → ∞, each sequence oscillates among a set of values,

while having V (s) constant everywhere on the cycle. In addition, for those systems

with limit cycle convergence, we observed that each limit cycle contains only two

values. In this case, we introduce

lim
s→∞

pfi (s) + pfi (s− 1)

2
= p̄fi , lim

s→∞

pbi(s) + pbi(s− 1)

2
= p̄bi . (3.25)

Clearly, when sequences pfi (s) and pbi(s) converge to unique limits (3.24), we have

p̃fi = lim
s→∞

pfi (s) = lim
s→∞

pfi (s) + pfi (s− 1)

2
= p̄fi ,

p̃bi = lim
s→∞

pbi(s) = lim
s→∞

pbi(s) + pbi(s− 1)

2
= p̄bi .
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Therefore, to avoid confusion, in the subsequent discussions, we define

pfi = p̄fi = lim
s→∞

pfi (s) + pfi (s− 1)

2
, pbi = p̄bi = lim

s→∞

pbi(s) + pbi(s− 1)

2
. (3.26)

It should be noted that the limit cycle convergence is not observed in production lines

studied in [6, 50].

Based on Recursive Procedure 4.1 and Numerical Fact 1, the estimates of the

performance measures for M > 2-machine Bernoulli lines defined by assumptions

(i)-(viii) are formulated below:

P̂R = pfM , (3.27)

ĈR = pb1, (3.28)

ŜRi = pbi [1−Q(pfi−1, p
b
i , Ni−1)](1− qi), (3.29)

Ŵ IPi =


pfi

pbi+1−p
f
i α

N
i (pfi ,p

b
i+1)

[
1−αNi (pfi ,p

b
i+1)

1−α(pfi ,p
b
i+1)
−Niα

N
i (pfi , p

b
i+1)
]
, if pfi 6= pbi+1,

Ni(Ni+1)

2(Ni+1−pfi )
, if pfi = pbi+1,

(3.30)

ŜTi = pi −
pfi
qi
, (3.31)

B̂Li = pi − pbi , (3.32)

where pfi and pbi are defined in (3.26).

To evaluate the accuracy of these estimates, we developed a C++ program

to simulate the systems considered in this paper and estimated the performance

measures of the 649,841 convergent lines generated in the justification of Numerical

Fact 1. Specifically, we carried out 20 replications of the simulation code for each

line. In each replication, we used the first 20,000 time slots as a warm-up period and

the subsequent 400,000 time slots to statistically calculate the average performance.

The resulting performance estimates are denoted as PRsim, CRsim, SRsim, WIPi,sim,
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STi,sim andBLi,sim. Then, we calculated the performance estimates using (3.27)-(3.32)

and compared them with those obtained by simulations according to the following

metrics:

δPR =
|PRsim − P̂R|

PRsim

· 100%, (3.33)

δCR =
|CRsim − ĈR|

CRsim

· 100%, (3.34)

δSR =
|SRsim − ŜR|

CRsim

· 100%, (3.35)

δWIP =
1

M − 1

M−1∑
i=1

|WIPi,sim − Ŵ IP i|
Ni

· 100%, (3.36)

δST =
1

M − 1

M∑
i=2

|STi,sim − ŜT i|, (3.37)

δBL =
1

M − 1

M−1∑
i=1

|BLi,sim − B̂Li|. (3.38)

The results are summarized in Table 3.2, which also includes the average com-

putation time for the aggregation procedure (also coded as a C++ program), tagg,

and the average simulation time tsim for the production lines considered. All com-

putations and simulations were performed on the University of Wisconsin-Milwaukee

High Performance Computing Cluster, which consists of 142 Nehalem 5,550 nodes

(1,136 cores), with 24 gigabytes of memory per node. As one can see from the table,

the errors of the performance estimates (3.27)-(3.32) are increasing as the number

of machines in the system M becomes larger. Also, it has been observed during the

experiments that the errors of these performance estimates tend to be larger as the

number of buffers with quality deterioration increases. However, for all cases, the

average errors remain relatively small. Moreover, the time needed by the calculation-

based method is significantly shorter than that required by simulations. In addition,

despite the lack of guaranteed convergence, the procedure is still convergent with close

to 100% probability under practical parameter ranges. Finally, taking into account
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that the parameters of the machines and buffers are rarely known on the factory floor

with accuracy better than 5%-10%, we claim that Recursive Procedure 4.1 and equa-

tions (3.27)-(3.32) can be used to approximate the performance of the production

systems considered in this paper effectively and efficiently.

Table 3.2: Average accuracy of performance estimates (3.27)-(3.32)

δPR δCR δSR δWIP δST δBL tagg (sec) tsim (sec)
M = 3 0.66% 0.56% 0.72% 0.93% 0.0355 0.0014 < 0.01 6.56
M = 4 1.26% 0.76% 1.12% 1.46% 0.0342 0.0027 < 0.01 9.11
M = 5 1.75% 0.91% 1.44% 1.81% 0.0334 0.0037 0.01 12.17
M = 6 2.15% 1.00% 1.70% 2.04% 0.0328 0.0045 0.01 15.11
M = 7 2.39% 1.07% 1.87% 2.22% 0.0318 0.0050 0.06 17.68
M = 8 2.65% 1.13% 2.03% 2.35% 0.0308 0.0054 0.07 20.27
M = 9 2.78% 1.17% 2.13% 2.41% 0.0301 0.0056 0.09 23.48
M = 10 2.96% 1.22% 2.25% 2.48% 0.0297 0.0058 0.15 26.26
M = 11 3.01% 1.26% 2.30% 2.49% 0.0288 0.0059 0.21 28.70
M = 12 3.11% 1.28% 2.34% 2.49% 0.0283 0.0059 0.23 31.55
M = 13 3.19% 1.32% 2.39% 2.51% 0.0277 0.0059 0.26 34.42
M = 14 3.21% 1.35% 2.41% 2.48% 0.0272 0.0059 0.29 36.78
M = 15 3.25% 1.39% 2.43% 2.45% 0.0266 0.0058 0.29 39.75

3.2.2 Monotonicity property

Similar to the two-machine case, we study the monotonicity properties of pro-

duction lines defined by assumptions (i)-(vi-a)-(viii) with M > 2:

Property 1 In M > 2-machine Bernoulli lines defined by assumptions (i)-

(viii),

• PR is either monotonically increasing in pi, or non-monotonic in pi, i =

1, . . . ,M ;

• PR is either monotonically increasing in Ni, or monotonically decreasing in Ni,

or non-monotonic in Ni, i = 1, . . . ,M − 1;

• SR is either monotonically increasing in pi, or non-monotonic in pi, i =

1, . . . ,M ;
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• SR is monotonically increasing in Ni, i = 1, . . . ,M − 1;

• CR is monotonically increasing in pi, i = 1, . . . ,M , and Ni, i = 1, . . . ,M − 1.

Again, similar to the two-machine case, due to quality deterioration, the mono-

tonic properties of the performance measures with respect to machine and buffer

parameters strongly depend on the location of the machines and buffers in the sys-

tem.

As an illustration, consider a 5-machine line given in Figure 3.8, where buffer b4

is the only one with quality deterioration. Assume that the efficiency of the machines

are given by p = [0.93 0.78 0.90 0.75 0.81], the buffers are of equal capacity Ni = N ,

and the quality deterioration in b4 is defined by expression (3.16) with T = 4. Since

the monotonicity properties of CR are simple Figure 3.11, here we only discuss the

behavior of PR and SR as functions of pi’s and Ni’s for this system. Representative

results are shown in Figures 3.9 and 3.10. As one can see, higher efficiency of machine

m4 and/or higher capacity of buffer b4 may lead to lower production of good parts

due to long residence time of parts in buffer b4, while increasing p5 can help alleviate

the accumulation of work-in-process, and thus, always lead to increasing PR.

Figure 3.8: 5-machine line example

3.3 Summary

Apparently, the lack of monotonicity in PR makes it more difficult when designing a

continuous improvement project for production lines with quality deterioration issues.

Intuitively, one would attempt to reduce the residence time of parts in the buffers while
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P̂R vs. pi

P̂R vs. Ni

Figure 3.9: P̂R as functions of pi and Ni

ŜR vs. pi

ŜR vs. Ni

Figure 3.10: ŜR as functions of pi and Ni
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ĈR vs. pi

ĈR vs. Ni

Figure 3.11: ĈR as functions of pi and Ni

maintaining sufficient parts flow through the system. However, for practical systems,

due to the complicated coupling among machines and buffers, it is all but impossible

to “predict” the effect of changing system parameters by using just common-sense.

Fortunately, the aggregation-based performance evaluation technique developed in

this paper can be used by practitioners as an effective and computationally efficient

tool to accomplish this task.
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Chapter 4

BERNOULLI SERIAL LINES

WITH CONTROLLED PARTS

RELEASE

4.1 Introduction

Effective production control systems are those that produces the right parts, at the

right time, at a competitive price. Some manufacturers have reported considerable

success meeting these objectives by using “pull based” production planning and con-

trol systems. The effective production control in any manufacturing system, that is,

the management of the total flow of goods through the system, from the acquisition of

raw parts to the delivery of final products to customers, is key to the competitiveness

of the system. Production control is an optimization problem that typically addresses

the question of when and how much to produce in order to achieve a satisfactory pro-

duction, while keeping low in-process inventories. Difficulties in production control

arise because of queueing delays due to variability in production capacity (e.g., due to

the failure or maintenance of a machine) and demand for final or intermediate prod-
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ucts. In a real production environment, it can often be observed that there are items

being scrapped. These scrapped items must be reduced. In all cases, substantial costs

are incurred. Therefore, it is more appropriate to take the quality-related cost into

account in determining the optimal release policy. Since the recursive procedure used

earlier provides estimates, rather than exact values, the results obtained here are also

approximate; they provide estimates of the performance measures. The accuracy of

these estimates is quantified by simulations and shown to be sufficiently high (well

within 3%).

This chapter will consider similar production lines as introduced in Chapter 3

with a minor difference, Figure 4.1 shows the block diagram of a Bernoulli serial pro-

duction line consists of two machines and the first machine m0 (grey circle) represents

part release control machine (PRC) and first buffer b0 (grey rectangle) is an infinite

buffer. In other words, parts released to the system is controlled by m0 and can be

on deterministic or stochastic bases. This study in this chapter was carried out using

a simulation model coded as a C++ program. Then we analyze each of them and

compare them to one another and to the original system studied. As we shall see, the

continuous part release policy is no longer optimal for some cases we covered earlier

after using PRC.

Figure 4.1: Two-machines Bernoulli line with PRC machine
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4.2 Deterministic Release

The deterministic part is the average, or expected pattern in the absence of any kind

of randomness or measurement error (i.e., stochasticity). The system we considered

here can be ideally used to model production systems in which PRCd machine is

only interrupted after (approximately) a fixed amount of time since it starts. We will

look into the system from different angles starting with; machines efficiencies, buffer

capacity, and maximum residence time allowed for parts to stay in the buffer before

they become obsolete.

Definition 4.1: Machine m0 releases x parts to the system to infinite buffer

b0 in a deterministic manner defined by:

rd(x) =

 0, if x%(PRCd + 1) = 0,

1, else,
(4.1)

where PRCd is a positive constant represents how many parts that we want

to release in the system before it holds the system from releasing the next part. To

analyze the effect of deterministic part release control, series of tests were conducted

on two-machine Bernoulli serial line with the following parameters:

pi = 0.80, N = 4, T = 4.

As one can see in Figure 4.2, increasing m1 efficiency results in monotonically

increasing PR for a less frequent release, but as parts released into the system more

frequently, production rate becomes non-monotonic with respect to p1. The non-

monotonic behavior is due to the monotonically increasing WIP (average number

of parts to be processed in buffer N) with respect to p1. Also, for a more frequent

release, m0 is allowing more parts into the system, CR improves as well as PR while
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maintaining low SR. On the other hand, increasing efficiency of m2, see Figure 4.3,

results in monotonically increasing PR and improves with a more frequent release.

(a) PR vs. p1 (b) CR vs. p1

(c) SR vs. p1 (d) WIP vs. p1

Figure 4.2: Performance measures as functions of p1 with deterministic release

Controlling part release is only sufficient when m2 efficiency is lower than m1

efficiency. As mentioned earlier in Chapter 3, the lack of monotonicity in PR with

respect to buffer capacity N suggested to control release of parts into the system

to avoid potentially long residence time. We can see in Figure 4.4 that, with more

frequent part release PR increases until it reaches certain buffer capacity then drops.

Finally, Figure 4.5 shows that PR is monotonically increasing in maximum residence

time constraint T and how little of a positive effect PRCd provides for systems with

adjustable T.
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(a) PR vs. p2 (b) CR vs. p2

(c) SR vs. p2 (d) WIP vs. p2

Figure 4.3: Performance measures as functions of p2 with deterministic release

(a) PR vs. N (b) CR vs. N

(c) SR vs. N (d) WIP vs. N

Figure 4.4: Performance measures as functions of N with deterministic release
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(a) PR vs. T (b) CR vs. T

(c) SR vs. T (d) WIP vs. T

Figure 4.5: Performance measures as functions of T with deterministic release

4.3 Stochastic Release

This is the probabilistic counterpart to a deterministic release. The system consid-

ered here can be ideally used to model production systems in which PRCs is only

interrupted randomly since it starts based on the probability of release selected. We

will look into the system from different angles starting with; machines efficiencies,

buffer capacity, and maximum residence time allowed for parts to stay in the buffer

before they become obsolete. Results obtained by stochastic release presents similar

results studied in the deterministic release and that can be seen in Figures 4.6, 4.7,

4.8, and 4.9.
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Definition 4.2: Machine m0 releases x parts to the system to infinite buffer

b0 in a stochastic manner defined by:

rs(x) =

 1, if random < PRCs,

0, else,
(4.2)

where PRCs is a positive fraction. This fraction determines whether or not

parts are releasing to the system using a random number generation. To analyze the

effect of stochastic part release control, series of tests were conducted on two-machine

Bernoulli serial line with parameters similar to deterministic part release case.

(a) PR vs. p1 (b) CR vs. p1

(c) SR vs. p1 (d) WIP vs. p1

Figure 4.6: Performance measures as functions of p1 with stochastic release
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(a) PR vs. p2 (b) CR vs. p2

(c) SR vs. p2 (d) WIP vs. p2

Figure 4.7: Performance measures as functions of p2 with stochastic release

(a) PR vs. N (b) CR vs. N

(c) SR vs. N (d) WIP vs. N

Figure 4.8: Performance measures as functions of N with stochastic release
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(a) PR vs. T (b) CR vs. T

(c) SR vs. T (d) WIP vs. T

Figure 4.9: Performance measures as functions of T with stochastic release

4.4 Summary

Increasing the efficiency of m1 results in lower production rate of good parts. The

decrease of production rate is not because of less careful or precise processing but due

to longer residence time in the buffer. By applying deterministic part release control,

significantly lower scrap rate is discovered. Even though the production rate is not

as high as continuous release due to lower consumption rate, the decease in average

number of parts to be processed in the buffer and the lower scrap rate may justify the

improvement. On the contrary, increasing the efficiency of m2 always leads to higher

production rate and higher quality buy rate. In addition, if p2 is not significantly

smaller than p1, then the scrap rate can be reduced by increasing p2. Therefore, part

release control doesn’t help as much in this scenario. Due to the lack of monotonicity

in PR with respect to buffer capacity N, the part release control provides a perfect
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solution to keep the PR significantly high while increasing buffer capacity.

We also noticed that the system behavior in both deterministic and stochastic

release is similar to one another. The only difference lies in the application of each

approach. Deterministic release can be used in production lines where very tight SR

is desired while knowing the shipping schedules. On the other hand, stochastic release

can be implemented in production lines where shipping schedules are unknown with

considerably high demand.
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Chapter 5

GEOMETRIC SERIAL LINES

5.1 Perfect Buffers Quality

In such serial production lines, it is assumed that the quality of items residing in

the buffer while waiting to be processed is not affected by time. This will allow us

to examine the theoretic properties of the geometric serial lines and have a better

understanding of each parameter effect on the system at hand.

5.1.1 Two-machine lines

Performance analysis

In this section, the production system considered here is shown in Figure 5.1 and

defined by assumptions (i)-(vi-b) with M = 2 are analyzed.

Figure 5.1: Geometric two-machine case
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Theorem 2 [81] The production rate in a serial production line defined by

assumptions (i)-(vi-b) with M = 2 is given by

PR = e2[1−Q(P1, R1, P2, R2, N)], (5.1)

where

ei =
Ri

Pi +Ri

, i = 1, 2,

Q(P1, R1, P2, R2, N) =


P1β2

(R1+R2−R1R2)(R1+P1)
, if N = 1,

P1α1α2β2
2(R2+P2)

A+B+C+D
, if N > 1,

(5.2)

and

α1 = P1 + P2 − P1P2 −R1P2,

α2 = P1 + P2 − P1P2 −R2P1,

β1 = R1 +R2 −R1R2 − P1R2,

β2 = R1 +R2 −R1R2 − P2R1,

σ =
α2β1

α1β2

,

A = P1R2α1α2β(P2 + β2),

B = P1R1R2α2

[
β2

2 + (α1 + β1)(α2 + 2β2)
]
,

C =
N−1∑
k=2

P1P2R1R2(α2 + β2)3σk−1,

D = P2R1α1β2

[
R2(α1 + β1) + α2(P1 +R1)

]
σN−1.

Moreover, the average probability of the buffer occupancy, WIP , and the prob-

abilities of manufacturing starvation of m2, ST , and blockage of m1, BL, are given
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by

WIP =


P1[(R1+R2−R1R2)(P2+R2)+P1P2]
(R1+R2−R1R2)(R1+P1)(R2+P2)

, N = 1,

B+
∑N−2
k=2 P1P2R1R2(α2+β2)3σk−1+ND

A+B+C+D
, N > 1,

(5.3)

ST =


P1R1β2

(R1+R2−R1R2)(R1+P1)(R2+P2)
, N = 1,

P1R2α1α2β2
2

A+B+C+D
, N > 1,

(5.4)

BL =


P2R1β1

(R1+R2−R1R2)(R1+P1)(R2+P2)
, N = 1,

B+
∑N−2
k=2 P1P2R1R2(α2+β2)3σk−1+ND

A+B+C+D
, N > 1,

(5.5)

Proof of Theorem 2: [81] The proof of this theorem consists of the following three

steps:

Step 1: Derivation of the steady state balance equations.

First, introduce the following steady state probabilities

Yk,s1s2 = Prob{k parts in the buffer, m1 and m2 are in states s1 and s2

respectively at the beginning of the slot}, k = 0, 1, . . . , N,

where

si =

 1, mi is up,,

0, mi is down, i = 1, 2..

Next, write the balance equations for empty buffer, buffer occupancy equaled to 1 (N

= 1, N > 1, respectively), buffer occupancy equaled to k, 1 < k < N , and the full

buffer, respectively.

Step 2: Analysis of case N = 1.



58

• Write Y0,00, Y0,10, Y0,01, Y1,11, Y1,10, Y1,01, Y1,00 in terms of Y0,11.

• From the fact that the total probabilities is equal to 1, calculate Y0,11 and Q(P1,

R1, P2, R2, N).

Y0,11 =
R1R2P1β2

(R1 +R2 −R1R2)(R1 + P1)(R2 + P2)
.

It follows then that

Q(P1, R1, P2, R2, N) =
Y0,11

e2R1

=
P1β2

(R1 +R2 −R1R2)(R1 + P1)
.

Step 3: Analysis of the case N > 1.

• Write Yk,11, Yk,10, Yk,01, Yk,00, k = 1, . . . , N , interms of Y0,11.

• From the fact that the total probability os equal to 1, calculate Y0,11 and Q(P1,

R1, P2, R2, N).

Y0,11 = P1R1R2α1α2β
2
2 [P1R2α1α2β2(P2 + β2)

+P1R1R2α2

[
β2

2 + P2(α1 + β1)(α2 + 2β2)
]

+
N−1∑
k=2

P1P2R1R2(α2 + β2)3σk−1

+P2R1α1β2 (R2(α1 + β1) + α2(P1 +R1))σN−1
]−1

=
P1R1R2α1α2β

2
2

A+B + C +D
,

where,

A = P1R2α1α2β(P2 + β2),

B = P1R1R2α2

[
β2

2 + (α1 + β1)(α2 + 2β2)
]
,

C =
N−1∑
k=2

P1P2R1R2(α2 + β2)3σk−1,



59

D = P2R1α1β2

[
R2(α1 + β1) + α2(P1 +R1)

]
σN−1.

It follows then that,

Q(P1, R1, P2, R2, N) =
P1α1α2β2

2(R2 + P2)

A+B + C +D
.

• Calculate WIP , ST2, BL1, where

WIP =
N∑
k=1

k(Yk,11 + Yk,10 + Yk,01 + Yk,00),

ST2 = Y0,11 + Y0,01,

BL1 = YN,10.

Theorem 2 is proved. �

Monotonicity property

The monotonicity properties of the performance measures are characterized by the

following:

Property 2 In two-machine geometric lines defined by assumptions (i)-(vi-b),

• PR is monotonically increasing in N , Tup,1, and Tup,2, and monotonically de-

creasing in Tdown,i;

• WIPi is monotonically increasing in N , Tup,1, and Tdown,2, and monotonically

decreasing in Tup,2 and Tdown,1;

• BLi is monotonically decreasing in N , Tup,2, and Tdown,1, and monotonically

increasing in Tup,1 and Tdown,2;

• STi is monotonically decreasing in N , Tup,1, and Tdown,2), and monotonically

increasing in Tup,2 and Tdown,1;
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A more interesting prospective of this system theoretic property was revealed

by studying Figures 5.3, 5.4, 5.5 and 5.6. It was found that shorter up- and downtime

lead to a higher production rate than longer ones, even if the machines’ efficiency

remains the same. This phenomenon takes place because finite buffers protect against

shorter downtime better than against longer ones. Mathematically, this phenomenon

is due to the fact that the probabilities of buffer being empty and full are larger for

machines with longer up- and downtime.

Clearly, production rate can be improved by either increasing the uptime of a

machine or decreasing its downtime. Is it more beneficial to increase the uptime, say

by a factor, or decrease its downtime by the same factor? It was found that decreasing

downtime by given factor leads to a larger production rate than increasing uptime by

the same factor [82].

(a) PR vs. N (b) WIP vs. N

(c) BL1 vs. N (d) ST2 vs. N

Figure 5.2: Performance measures as a function of N with Tdown,i = 5
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(a) PR vs. Tdown,1 (b) WIP vs. Tdown,1

(c) BL1 vs. Tdown,1 (d) ST2 vs. Tdown,1

Figure 5.3: Performance measures as a function of Tdown,1 with Tup,i=20 and Tdown,2=5

(a) PR vs. Tdown,2 (b) WIP vs. Tdown,2

(c) BL1 vs. Tdown,2 (d) ST2 vs. Tdown,2

Figure 5.4: Performance measures as a function of Tdown,2 with Tup,i=20 and Tdown,1=5
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(a) PR vs. Tup,1 (b) WIP vs. Tup,1

(c) BL1 vs. Tup,1 (d) ST2 vs. Tup,1

Figure 5.5: Performance measures as a function of Tup,1 with Tdown,i=5 and Tup,2=20

(a) PR vs. Tup,2 (b) WIP vs. Tup,2

(c) BL1 vs. Tup,2 (d) ST2 vs. Tup,2

Figure 5.6: Performance measures as a function of Tup,2 with Tdown,i=5 and Tup,1=20
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(a) PR vs. Tdown,i (b) WIP vs. Tdown,i

(c) BL1 vs. Tdown,i (d) ST2 vs. Tdown,i

Figure 5.7: Performance measures as a function of Tdown,i with Tup,i = 20

Justifcation of Property 2: To justify these properties, a total of 100,000 produc-

tion lines were generated with parameters randomly and equiprobably selected from

the following sets:

ei ∈ [0.6, 0.95], N ∈ {5, 10, 15, 20, 25},

Tdown,i ∈ [5, 20], Tup,i ∈ [20, 35]. (5.6)

Next, we calculate the performance measures of all lines as functions the pa-

rameters N , ei, Tup,i, and Tdown,i; using equations (5.1)-(5.5) and examined whether

the corresponding statement of Property 2 holds. As a result, among the 100,000

lines studied, no counterexamples of Property 2 were found. Thus, we conclude that

Property 2 indeed takes place.

It was interesting to observe how the system reacts to all parameters specifically

Tup,i and Tdown,i and their interrelation with one another with respect to ei, where ei
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=
Tup,i

Tup,i+Tdown,i
. With fixed values of Tup,i and Tdown,i, system behave as expected, PR

is monotonically increasing in N and Tup,i and monotonically decreasing in Tdown,i.

On the other hand, when Tdown,i is unknown and calculated using its relationship

with Tup,i and ei, they system behaves differently, PR is monotonically decreasing

in Tup,i. The reversed effect of increasing Tup,1 and Tup,2 on WIP , BL, and ST in

each case, was expected as well. Also, detailed study of different Tdown,i values were

investigated, which lead to similar general results.

5.1.2 M > 2-machine lines

No closed form expression for PR in M−machine line is available. Therefore, an

aggregation procedure, based on the results of the previous subsections. Specifically,

the first two machines into a single machines, mf
2 , with Rf

2 defined as

Rf
2 = R2[1−Q(P1, R1, P2, R2, N1)],

and P f
2 selected so that

Rf
2

P f
2 +Rf

2

=
R2

P2 +R2

[1−Q(P1, R1, P2, R2, N1)],

i.e.,

P f
2 = P2 +R2Q(P1, R1, P2, R2, N1),

where Q(.) is defined in 5.2. Next mf
2 is aggregated with m3 to result in mf

3 , with

the parameters defined as shown above, and so on until all machines are aggregated

in a single ones, mf
M . This continues to forward aggregation (subscript f is used to

denote this fact). Then, in the backward aggregation, the last machine, mM , is ag-

gregated with mf
M−1 to result in mb

M−1 and so until all machines are again aggregated

in a single machine, mb
1 [81]. Then the procedure is repeated again. Formally, this
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process can be represented as follows:

Recursive Procedure 5.1:

Rb
i(s+ 1) = Ri −RiQ

(
P b
i+1(s+ 1), Rf

i+1(s), P f
i (s), Rf

i (s)Ni)
)
, i = 1, . . . ,M − 1,

s = 0, 1, 2, . . . ,

P b
i (s+ 1) = Pi +RiQ

(
P b
i+1(s+ 1), Rf

i+1(s), P f
i (s), Rf

i (s)Ni)
)
, i = 1, . . . ,M − 1,

s = 0, 1, 2, . . . ,

Rf
i (s+ 1) = Ri −RiQ

(
P b
i−1(s+ 1), Rf

i−1(s), P f
i (s+ 1), Rf

i (s+ 1)Ni−1)
)
,

i = 1, . . . ,M − 1, s = 0, 1, 2, . . . ,

P f
i (s+ 1) = Pi +RiQ

(
P b
i−1(s+ 1), Rf

i−1(s), P f
i (s+ 1), Rf

i (s+ 1)Nii− 1)
)
,

i = 1, . . . ,M − 1, s = 0, 1, 2, . . . ,

with initial conditions

P f
i (0) = Pi, Rf

i (0) = Ri, i = 1, . . . ,M,

and boundary conditions

P f
1 (s) = P1, Rf

1(s) = R1,

P b
M(s) = PM , Rb

M(s) = RM ,

s = 0, 1, . . . ,

where Q(.) is defined in 5.2.

The equation of convergence of the resulting sequences P b
i (s), Rb

i(s), P
f
i (s), i = 1,. . . ,

M , s = 1,. . . , is answered in the following:
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Theorem 3 [81] Under function Q(P1, R1, P2, R2, N), N > 1, is monotoni-

cally increasing with respect to P1 and R2, and decreasing with respect to P2 and R1,

the recursive procedure 5.1 is convergent and, therefore, the following limits exist:

lim
s→∞

P f
i (s) = P̃ f

i , lim
s→∞

P b
i (s) = P̃ b

i ,

lim
s→∞

Rf
i (s) = R̃f

i , lim
s→∞

Rb
i(s) = R̃b

i ,

i = 1, . . . ,M

(5.7)

Moreover, the following relationship holds:

Rf
M

P f
M

=
Rb

1

P b
1

. (5.8)

Proof of Theorem 3: [81] Under the assumptions of the Theorem, since the se-

quences P f
j (s) and P b

i (s) are monotonically increasing and sequences Rf
j (s) and Rb

i(s)

are monotonically increasing and bounded from above and below, they are conver-

gent. This proves (5.7). To prove (5.8), consider the steady state equations of the

recursive procedure(1) and define

efi =
Rf
i

Rf
i + P f

i

, i = 1, . . . ,M,

ebi =
Rb
i

Rb
i + P b

i

, i = 1, . . . ,M.

The following property holds (see Li and Meerkov 2000c):

efi e
b
i

ei
=
efj e

b
j

ej
, i, j = 1, . . . ,M,∈ i 6= j.

Therefore,
RfM
P fM

=
Rb1
P b1

. Theorem 3 is proved.

�

The limits in 5.7 can be used to define estimates of performance measures for
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production line with assumptions (i)-(vi-b). Production rate can be estimated as [81]

P̂R(P1, R1, . . . , PM , RM , N1, . . . , NM−1) =
Rf
M

P f
M +Rf

M

=
Rb

1

P b
1 +Rb

1

. (5.9)

δPR =
|PRsim − P̂R|

PRsim

· 100%. (5.10)

To evaluate the accuracy of the estimate 5.9, we developed a C++ program

to simulate the system defied by assumptions (i)-(vi-b) with various machine and

buffer parameters assumed. Twenty of them with 3 - 8 machines, are shown in Table

5.1. This simulation was used to evaluate the performance measures specifically PR.

Confidence intervals have been evaluated with 20 runs. The 95% confidence intervals

were consistently around ±0.0015. In Table 5.1, PR denotes the actual production

rate obtained by simulation, whereas P̂R denotes the estimate of production rate

calculated according to 5.9 [81]. As it can be seen from Table 5.1, the estimate

results in relatively high precision, comparable with [4], [83], [84], and [85].

Monotonicity property

To investigate the monotonicity properties of the performance measures for M >

2-machine geometric serial lines, the following sets of serial lines with five machines,

i = 1,. . . , 5, four buffers, i = 1,. . . , 4, were introduced:

Set 1: Machines’ up-times vs. buffer capacities: This set of lines was created

to evaluate the effect of machines’ up-times with respect to buffer capacities.

L1: Tupi = [45,45,45,45,45], Tdown,i = 5, Ni = {5,. . . ,25},

L2: Tupi = [45,0.28,20,15,12], Tdown,i = 5, Ni = {5,. . . ,25},

L3: Tupi = [12,15,20,28,45], Tdown,i = 5, Ni = {5,. . . ,25},

L4: Tupi = [45,28,12,28,45], Tdown,i = 5, Ni = {5,. . . ,25},
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Table 5.1: [81]Numerical justification of production rate estimation for M > 2-
machine using 5.10)

Pi Ri Ni PR P̂R δPR
M = 3 0.06 0.07 0.08 0.27 0.28 0.29 1 2 0.561 0.562 0.21%
M = 3 0.12 0.15 0.10 0.43 0.46 0.50 2 2 0.606 0.605 0.18%
M = 3 0.05 0.10 0.10 0.50 0.45 0.40 2 2 0.5627 0.629 0.32%
M = 3 0.10 0.10 0.10 0.42 0.42 0.42 3 3 0.668 0.668 0.04%
M = 3 0.10 0.05 0.20 0.90 0.85 0.75 3 2 0.776 0.786 1.24%
M = 3 0.10 0.02 0.06 0.60 0.04 0.09 1 1 0.360 0.349 3.11%

M = 4
0.11 0.08 0.08

0.11
0.40 0.41 0.41

0.40
2 3 2 0.608 0.606 0.39%

M = 4
0.11 0.12 0.13

0.10
0.39 0.38 0.36

0.43
4 5 3 0.606 0.605 0.20%

M = 4
0.08 0.09 0.07

0.06
0.37 0.43 0.41

0.39
3 2 2 0.644 0.645 0.22%

M = 4
0.15 0.04 0.30

0.02
0.50 0.80 0.40

0.70
3 2 3 0.550 0.557 1.26%

M = 4
0,06 0.08 0.05

0.10
0.36 0.39 0.42

0.37
3 3 4 0.682 0.689 0.94%

M = 4
0.04 0.07 0.10

0.13
0.40 0.43 0.37

0.46
2 3 3 0.646 0.645 0.13%

M = 4
0.10 0.07 0.09

0.12 0.11
0.40 0.35 0.33

0.42 0.39
4 4 4 3 0.607 0.607 0.15%

M = 5
0.10 0.12 0.13

0.11 0.12
0.45 0.42 0.43

0.46 0.44
4 3 4 3 0.613 0.612 0.03%

M = 5
0.12 0.09 0.12

0.09 0.12
0.41 0.36 0.41

0.36 0.41
3 4 3 4 0.627 0.631 0.54%

M = 5
0.05 0.09 0.13

0.17 0.21
0.42 0.45 0.48

0.51 0.54
2 2 2 2 0.542 0.540 0.31%

M = 6
0.80 0.80 0.80
0.80 0.80 0.80

0.42 0.42 0.42
0.42 0.42 0.42

3 3 3 3 3 0.638 0.644 0.97%

M = 6
0.06 0.08 0.07
0.01 0.12 0.09

0.43 0.46 0.45
0.48 0.47 0.44

2 2 3 2 3 0.616 0.617 0.13%

M = 7
0.06 0.08 0.07
0.10 0.12 0.10

0.07

0.35 0.37 0.32
0.38 0.39 0.41

0.36
3 2 3 4 3 2 0.544 0.547 0.58%

M = 8
0.06 0.07 0.09
0.10 0.12 0.08

0.11 0.09

0.43 0.42 0.41
0.41 0.43 0.45

0.44 0.40

3 3 2 3 4 3
2

0.575 0.582 1.34%
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L5: Tupi = [12,28,45,28,12], Tdown,i = 5, Ni = {5,. . . ,25},

L6: Tupi = [12,45,12,45,12], Tdown,i = 5, Ni = {5,. . . ,25},

L7: Tupi = [45,12,45,12,45], Tdown,i = 5, Ni = {5,. . . ,25},

L8: Tupi = [15,15,95,15,15], Tdown,i = 5, Ni = {5,. . . ,25}.

Set 2: Machines’ downtimes vs. buffer capacities: This set of lines was created

to evaluate the effect of machines’ downtimes with respect to buffer capacities.

L1: Tupi = 20, Tdown,i = [5,5,5,5,5], Ni = {5,. . . ,25},

L2: Tupi = 20, Tdown,i = [5,10,15,20,25], Ni = {5,. . . ,25},

L3: Tupi = 20, Tdown,i = [25,20,15,10,5], Ni = {5,. . . ,25},

L4: Tupi = 20, Tdown,i = [5,10,20,10,5], Ni = {5,. . . ,25},

L5: Tupi = 20, Tdown,i = [20,10,5,10,20], Ni = {5,. . . ,25},

L6: Tupi = 20, Tdown,i = [20,5,20,5,20], Ni = {5,. . . ,25},

L7: Tupi = 20, Tdown,i = [5,20,5,20,5], Ni = {5,. . . ,25},

L8: Tupi = 20, Tdown,i = [20,20,5,20,20], Ni = {5,. . . ,25}.

Set 3: Machines’ up-times vs. machines’ downtimes: This set of lines was

created to evaluate the effect of machines’ up-times with respect to downtimes.

L1: Tupi = [45,45,45,45,45], Tdown,i = {5,. . . ,25}, Ni = 5,

L2: Tupi = [45,0.28,20,15,12], Tdown,i = {5,. . . ,25}, Ni = 5,

L3: Tupi = [12,15,20,28,45], Tdown,i = {5,. . . ,25}, Ni = 5,

L4: Tupi = [45,28,12,28,45], Tdown,i = {5,. . . ,25}, Ni = 5,

L5: Tupi = [12,28,45,28,12], Tdown,i = {5,. . . ,25}, Ni = 5,

L6: Tupi = [12,45,12,45,12], Tdown,i = {5,. . . ,25}, Ni = 5,

L7: Tupi = [45,12,45,12,45], Tdown,i = {5,. . . ,25}, Ni = 5,

L8: Tupi = [15,15,95,15,15], Tdown,i = {5,. . . ,25}, Ni = 5,

Set 4: Machines’ downtimes vs. machines’ up-times: This set of lines was

created to evaluate the effect of machines’ downtimes with respect to up-times.

L1: Tupi = {12,. . . ,95}, Tdown,i = [5,5,5,5,5], Ni = 5,
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L2: Tupi = {12,. . . ,95}, Tdown,i = [5,10,15,20,25], Ni = 5,

L3: Tupi = {12,. . . ,95}, Tdown,i = [25,20,15,10,5], Ni = 5,

L4: Tupi = {12,. . . ,95} Tdown,i = [5,10,20,10,5], Ni = 5,

L5: Tupi = {12,. . . ,95}, Tdown,i = [20,10,5,10,20], Ni = 5,

L6: Tupi = {12,. . . ,95}, Tdown,i = [20,5,20,5,20], Ni = 5,

L7: Tupi = {12,. . . ,95}, Tdown,i = [5,20,5,20,5], Ni = 5,

L8: Tupi = {12,. . . ,95}, Tdown,i = [20,20,5,20,20], Ni = 5.

The reasons for selecting these particular lines, shown in Figure 5.8, are as

follows: Line 1 illustrates the behavior of systems with identical machines. Lines 2

and 3 represent systems with increasing and decreasing machines, respectively; clearly

L3 is the reverse of L2. Lines 4 and 5 illustrate systems with machine allocated

according to a bowl and an inverted bowl patterns, respectively. Lines 6 and 7

exemplify systems with ”oscillating” machine allocation. Finally, Line 8 is selected to

illustrate the case of a good machine surrounded with low ones. To illustrate more,

these lines were used in each set differently. In sets 1 and 3, lines introduced in the

form of machines’ efficiencies. While, in sets 2 and 4, lines introduced in the form of

machines’ downtimes.

Figure 5.8: Lines proposed for studying the system behavior
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Property 3 In M > 2-machine geometric lines defined by assumptions (i)-(vi-

b),

• PR is monotonically increasing in Ni and Tup,i, and monotonically decreasing

in Tdown,i;

• WIPi is monotonically increasing in Ni, and monotonically increasing or mono-

tonically decreasing in Tup,i and Tdown,i;

• BLi is monotonically decreasing in Ni and Tup,i, and monotonically increasing

in Tdown,i;

• STi is monotonically decreasing in Ni and Tup,i, and monotonically increasing

in Tdown,i.

Illustration of the property was analyzed in Figures 5.9, 5.10, 5.11, and 5.12.

Similar results were found in M > 2-machine serial lines as in two-machine serial

lines. Also, it was found that increasing Tup,i with fixed Tdown,i increases PR while

increasing Tup,i with variable Tdown,i leads to decreasing PR.

Justifcation of Property 3: To justify these properties, a total of 100,000 produc-

tion lines were generated with parameters randomly and equiprobably selected from

the following sets:

ei ∈ [0.6, 0.95], N ∈ {5, 10, 15, 20, 25},

Tdown,i ∈ [5, 20], Tup,i ∈ [20, 35]. (5.11)

Next, we calculate the performance measures of all lines as functions the pa-

rameters N , ei, Tup,i, and Tdown,i; using simulation model and examined whether

the corresponding statement of Property 3 holds. As a result, among the 100,000

lines studied, no counterexamples of Property 3 were found. Thus, we conclude that

Property 3 indeed takes place.
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PR WIPi BLi STi

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Figure 5.9: Performance measures of Set 1: machines’ up-times vs. buffer capacities
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PR WIPi BLi STi

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Figure 5.10: Performance measures of Set 2: machines’ downtimes vs. buffer capaci-
ties
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PR WIPi BLi STi

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Figure 5.11: Performance measures of Set 3: machines’ up-times vs. machines’ down-
times
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PR WIPi BLi STi

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Line 8

Figure 5.12: Performance measures of Set 4: machines’ downtimes vs. machines’
up-times
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5.2 Deteriorating Quality Buffers (DQB)

In such serial production lines, it is assumed that the quality of items residing in the

buffer while waiting to be processed is affected by time, i.e., the longer the item stays

in the buffer, the higher risk of its quality to deteriorate over time.

5.2.1 Two-machine lines

In this section, production lines defined by assumptions (i)-(vi-b)-(viii) with M = 2

are analyzed as shown in Figure 5.13. As a matter of fact, conventional two-machine

geometric lines, i.e., lines defined by assumptions (i)-(vi-b), have been introduced in

the previous section that was studied in [81]. Since the quality of parts is dependent

on their residence time in the buffer, simulation model of the system was used to

evaluate the system theoretic properties.

Figure 5.13: Two-machine geometric serial line with deteriorating quality buffer

Monotonicity property

To investigate the monotonicity property of the performance measures for M =

2-machine geometric serial lines with deteriorating product quality, the following sets

of serial lines of two-machines were introduced:
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Set 1: M = 2-Identical machines:

L1: Tup,i = [20,20], Tdown,i = [5,5], N = {5,10,15,20,25}, T = {1,4,8,20},

L2: Tup,i = [40,40], Tdown,i = [10,10], N = {10,20,30,40,50}, T = {1,4,8,40},

L3: Tup,i = {12, . . . ,95}, Tdown,i = [5,5], N = 5, T = {1,4,8},

L4: Tup,i = {23, . . . ,190}, Tdown,i = [10,10], N = 10, T = {1,4,8},

L5: Tup,i = [20,20], Tdown,i = {5,. . . ,20}, N = {5,10,15,20,25}, T = {1, . . . ,20},

L6: Tup,i = [20,20], Tdown,i = {5,. . . ,20}, N = 5, T = {1,4,8},

L7: Tup,i= {12, . . . ,95}, Tdown,i = 5, N = {5,10,15,20,25}, T = 4.

Set 2: M = 2-Different machines:

L1: Tup,i = [20,45], Tdown,i = [5,5], N = {5,10,15,20,25}, T = {1,4,8,20},

L2: Tup,i = [45,20], Tdown,i = [5,5], N = {5,10,15,20,25}, T = {1,4,8,20},

L3: Tup,1 = 12, Tup,2 = {12, . . . ,95}, Tdown,i = [5,5], N = 5, T = {1,4,8},

L4: Tup,1 = {12, . . . ,95}, Tup,2 = 12, Tdown,i = [5,5], N = 5, T = {1,4,8},

L5: Tup,i = [20,20], Tdown,1 = 5, Tdown,2 = {5,. . . ,20}, N = 5, T = {1,4,8},

L6: Tup,i = [20,20], Tdown,1 = {5,. . . ,20}, Tdown,2 = 5, N = 5, T = {1,4,8}.

The reason for selecting these particular lines was to examine different possible

combinations of the system parameters to carefully analyze its behavior. Therefore,

the monotonicity properties of the performance measures are characterized by the

following:

Property 4 In two-machine geometric lines defined by assumptions (i)-(vi-b)-

(vii-viii),

• PR is monotonically increasing in T and Tup,2, monotonically decreasing in

Tdown,1, monotonically increasing or monotonically decreasing in Tup,1 and Tdown,2,

and monotonically decreasing or non-monotonic in N ;
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• SR is monotonically increasing in N , Tup,1, and Tdown,1, and monotonically

decreasing in T , monotonically increasing and decreasing in Tup,2 and Tdown,2;

• CR is constant and increasing in T , monotonically increasing in N , Tup,1, and

Tup,2, and monotonically decreasing in Tdown,1, and Tdown,2 ;

Illustration of the property was analyzed in was analyzed in Figures 5.14 and

5.15. As buffer capacity increases production rate decreases monotonically in relation

with increasing the average downtime in the buffer. The more Items allowed to reside

in the buffer, the higher possibility that some items might reside longer in the buffer,

therefore higher scrap rate. The non-monotonic behavior of PR in relation with N

appears with higher residence time. This provided an inter-relation between residence

time constraint T and buffer capacity. Also, the expiration behavior associated with

residence time constraint T suggests that the product is less scrapped when items

are allowed to stay in the buffer for longer period of time therefore higher production

rate.

5.2.2 M > 2-machine lines

In this section, production lines defined by assumptions (i)-(vi-b)-(viii) with M >

2-machine are analyzed as shown in Figure 5.16. As a matter of fact, conventional

M > 2-machine geometric lines, i.e., lines defined by assumptions (i)-(vi-b), have been

introduced in the previous section. Since the quality of parts is dependent on their

residence time in the buffer, simulation model of the system was used to evaluate the

system theoretic properties.

Monotonicity property

To investigate the monotonicity properties of the performance measures for

M > 2-machine geometric serial lines with deteriorating product quality, the follow-

ing sets of serial lines with three and five identical machines were introduced:
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PR SR CR

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Line 7

Figure 5.14: Performance measures of Set 1: M = 2-identical machines
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PR SR CR

Line 1

Line 2

Line 3

Line 4

Line 5

Line 6

Figure 5.15: Performance measures of Set 2: M = 2-different machines
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Figure 5.16: Two-machine geometric serial line with deteriorating quality buffer

Set 1: M = 3-machines vs. Ni: this particular set was created to identify the

effect of machines’ up-times on the system, whether both are deteriorating quality

buffers or one of them. The difference between lines 1-3 and lines 4-6 is the downtimes

and buffer capacities to accommodate one downtime in the buffer.

Tup,i = [20,20,20], Tdown,i = [5,5,5], Ni = {5,10,15,20,25}, Ti = {1,4,8,20},

L1: DQB = Ni, L2: DQB = N1, L3: DQB = N2,

Tup,i = [40,40,40], Tdown,i = [10,10,10], Ni = {5,10,15,20,25}, Ti = {1,4,8,20},

L4: DQB = Ni, L5: DQB = N1, L6: DQB = N2.

Set 2: M = 3-machines vs. Tup,i: the set was created to identify the effect

of machines’ up-times on the system, whether the system with both deteriorating

quality buffers or one of them. Again, the difference between lines 1-3 and lines 4-6

is the downtimes and buffer capacities to accommodate one downtime in the buffer.

Tup,i = {12, . . . ,95}, Tdown,i = [5,5,5], Ni = [5,5], Ti = {1,4,8},

L1: DQB = Ni, L2: DQB = N1, L3: DQB = N2,

Tup,i = {23, . . . ,190}, Tdown,i = [10,10,10], Ni = [10,10], Ti = {1,4,8},

L4: DQB = Ni, L5: DQB = N1, L6: DQB = N2.

Set 3: M = 3-machines vs. Tdown,i: this set was created to identify the effect

of machines’ downtimes on the system, whether the system with both deteriorating
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quality buffers or one of them.

Tup,i = [20,20,20], Tdown,i = {5,. . . ,20}, Ni = [5,5], Ti = {1,4,8},

L1: DQB = Ni, L2: DQB = N1, L3: DQB = N2.

Set 4: M = 3-machines vs. Tup,i and Ni: this particular set was created to

determine the effect of machines’ up-times and buffer capacities on the system in

3-machines case, whether the system with both deteriorating quality buffers or one

of them.

Tup,i = {12, . . . ,95}, Tdown,i = [5,5,5], Ni = {5,10,15,20,25}, Ti = {1,4,8},

L1: DQB = Ni, L2: DQB = N1, L3: DQB = N2.

Set 5: M = 3-machines vs. Ti: the set was created to analyze the effect of

residence time constraint Ti on the system, whether the system with both deteriorat-

ing quality buffers or one of them.

Tup,i = {12, . . . ,95}, Tdown,i = [5,5,5], Ni = {5,10,15,20,25}, Ti = {1,4,8},

L1: DQB = Ni, L2: DQB = N1, L3: DQB = N2.

Set 6: M = 5-machines vs. Ni: this particular set was created to identify the

effect of buffer capacities on the system, whether the system with all deteriorating

quality buffers or one of them.

Tup,i = [20,20,20,20,20], Tdown,i = [5,5,5,5,5], Ni = {5,10,15,20,25}, Ti = {1,4,8,20},

L1: DQB = Ni, L2: DQB = N1, L3: DQB = N2, L4: DQB = N3, L5:

DQB = N4,

Set 7: M = 5-machines vs. Tup,i: the set was created to analyze the effect

of machines’ up-times on the system, whether the system with all deteriorating qual-

ity buffers or one of them.
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Tup,i = {12, . . . ,95}, Tdown,i = [5,5,5,5,5], Ni = {5,10,15,20,25}, Ti = {1,4,8},

L1: DQB = Ni, L2: DQB = N1, L3: DQB = N2, L4: DQB = N3, L5:

DQB = N4.

Set 8: M = 5-machines with one DQB vs. Tup,i: this particular set was gener-

ated to identify the effect of machines’ up-times on the system, whether the system

with all deteriorating quality buffers or one of them. To be specific, this particular

set will be checking the effect of increasing the machine up-time downstream of the

DQB.

Tup,i = 20, Tdown,i = [5,5,5,5,5], Ni = [5,5,5,5], Ti = {1,4,8},

L1: Tup,1 = {0.7, . . . ,0.95},DQB = N1, L2: Tup,2 = {0.7, . . . ,0.95},DQB = N2,

L3: Tup,3 = {0.7, . . . ,0.95},DQB = N3, L4: Tup,4= {0.7, . . . ,0.95},DQB = N4.

Set 9: M = 5-machines with one DQB vs. Tup,i+1: this set was created to

identify the effect of machines’ up-times on the system, whether the system with all

deteriorating quality buffers or one of them. To be specific, this particular set will be

checking the effect of increasing the machine efficiency upstream of the DQB.

Tup,i = 20, Tdown,i = [5,5,5,5,5], Ni = [5,5,5,5], Ti = {1,4,8},

L1: Tup,2 = {0.7, . . . ,0.95},DQB = N1, L2: Tup,3 = {0.7, . . . ,0.95},DQB = N2,

L3: Tup,4 = {0.7, . . . ,0.95},DQB = N3, L4: Tup,5 = {0.7, . . . ,0.95},DQB = N4.

Set 10: M = 5-machines vs. Tup,i and Ni: the set was put together to identify

the effect of machines’ up-times and buffer capacities on the system in 5-machines

case, whether the system with both deteriorating quality buffers or one of them.

Tup,i = {12, . . . ,95}, Tdown,i = [5,5,5,5,5], Ni = [5,5,5,5], Ti = {1,4,8}.
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Set 11: M = 5-machines vs. Tdown,i: this particular set was created to identify

the effect of machines’ downtimes on the system in 5-machines case.

Tup,i = {12, . . . ,95}, Tdown,i = {5,. . . ,20}, Ni = [5,5,5,5], Ti = {1,4,8}.

Set 12: M = 5-machines vs. Ti: this particular set was generated to identify

the effect of residence time constraint Ti on the system in 5-machines case. Then,

compare the effect of Tion each buffer separately.

Tup,i = {12, . . . ,95}, Tdown,i = [5,5,5,5,5], Ti = {1,. . . ,20},

L1: DQB = Ni, Ni = {5,10,15,20,25}, L2: DQB = N1,N2,N3,N4,Ni, Ni = [5,5,5,5].

The monotonicity properties of the performance measures are characterized by the

following:

Property 5 In M > 2-machine geometric lines defined by assumptions (i)-(vi-

b)-(vii-viii),

• PR is monotonically increasing in T , monotonically decreasing in Tdown,i, mono-

tonically increasing or monotnoically decreasing in Tup,i, and monotonically de-

creasing or non-monotonic in Ni;

• SR is monotonically increasing in Ni and Tdown,i, monotonically decreasing in

T , and monotonically increasing or monotonically decreasing in Tup,i;

• CR is monotonically increasing in Ni, Tup,i and Tdown,i, and monotonically de-

creasing or constant in T ;

As buffer capacity increases, production rate decreases monotonically. This is

due to the average downtime in the buffer increases as buffer capacity increases. The

results suggests that the best allocation of the deteriorating quality buffer is toward

the end of the line to ensure the highest production rate of the line. Also, increasing

the up-time of the machine following the deteriorating quality buffer provides less
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scrap rate then increasing up-time of the machine preceding the deteriorating quality

buffer.

PR SR CR

Line 1
DQB = Ni

(Tdown,i = 5)

Line 2
DQB = N1

(Tdown,i = 5)

Line 3
DQB = N2

(Tdown,i = 5)

Line 4
DQB = Ni

(Tdown,i = 10)

Line 5
DQB = N1

(Tdown,i = 10)

Line 6
DQB = N2

(Tdown,i = 10)

Figure 5.17: Performance measures of Set 1: M = 3-machines vs. Ni
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PR SR CR

Line 1
DQB = Ni

(Tdown,i = 5)

Line 2
DQB = N1

(Tdown,i = 5)

Line 3
DQB = N2

(Tdown,i = 5)

Line 4
DQB = Ni

(Tdown,i = 10)

Line 5
DQB = N1

(Tdown,i = 10)

Line 6
DQB = N2

(Tdown,i = 10)

Figure 5.18: Performance measures of Set 2: M = 3-machines vs. Tup,i
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PR SR CR

Line 1
DQB = Ni

Line 2
DQB = N1

Line 3
DQB = N2

Figure 5.19: Performance measures of Set 3: M = 3-machines vs. Tdown,i

PR SR CR

Line 1
DQB = Ni

Line 2
DQB = N1

Line 3
DQB = N2

Figure 5.20: Performance measures of Set 4: M = 3-machines vs. Tup,i and Ni
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PR SR CR

Line 1
DQB = Ni

Line 2
DQB = N1

Line 3
DQB = N2

Figure 5.21: Performance measures of Set 5: M = 3-machines vs. T
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PR SR CR

Line 1
DQB = Ni

Line 2
DQB = N1

Line 3
DQB = N2

Line 4
DQB = N3

Line 5
DQB = N4

Figure 5.22: Performance measures of Set 6: M = 5-machines vs. Ni
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PR SR CR

Line 1
DQB = Ni

Line 2
DQB = N1

Line 3
DQB = N2

Line 4
DQB = N3

Line 5
DQB = N4

Figure 5.23: Performance measures of Set 7: M = 5-machines vs. Tup,i
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N1, Tup,1 N2, Tup,2 N3, Tup,4 N4, Tup,4

PR

SR

CR

Figure 5.24: Performance measures of Set 8: M = 5-machines with one DQB and
previous machine’s Tup,i

N1, Tup,2 N2, Tup,3 N4, Tup,4 N4, Tup,5

PR

SR

CR

Figure 5.25: Performance measures of Set 9: M = 5-machines with one DQB and
following machine’s Tup,i
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PR SR CR

Tup,i

Figure 5.26: Performance measures of Set 10: M = 5-machines vs. Tup,i and Ni

PR SR CR

Tdown,i

Figure 5.27: Performance measures of Set 11: M = 5-machines vs. Tdown,i

PR SR CR

T

T vs.
DQB

Figure 5.28: Performance measures of Set 12: M = 5-machines vs. T
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To elaborate more on the monotonicity property of a geometric serial line with

deteriorating product quality for longer lines, consider a 5-machine line given in Figure

5.29, where b3 is the buffer with quality deterioration. Assume that line parameters

are as follows:

Tup,i = [45, 30, 50, 40, 45], Tdown,i = [5, 5, 5, 5, 5], Ni = [5, 5, 5, 5], and T = 3.

Figure 5.29: 5-machine geometric line example

The results are shown in Figures 5.30, 5.30, and 5.32. As one can see, higher

uptime of m3 and/or higher capacity of buffer b3 may lead to lower production of

good parts due to long residence time of parts in buffer b3, while increasing uptime

of m4 can help alleviate the accumulation of work-in-process, and thus, always lead

to increasing PR.

PR vs. Tup,i

PR vs. Ni

Figure 5.30: PR as functions of Tup,i and Ni
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SR vs. Tup,i

SR vs. Ni

Figure 5.31: SR as functions of Tup,i and Ni

CR vs. Tup,i

CR vs. Ni

Figure 5.32: CR as functions of Tup,i and Ni
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5.3 Summary

• Throughput of a geometric serial line is monotonic with respect to machine and

buffer parameters.

• Shorter up- and downtime lead to a higher production rate (or throughput)

than longer ones, even if machine efficiency remains constant.

• A decrease in downtime leads to higher throughput than a similar increase in

uptime.

• The aggregation procedure introduced provides a very acceptable error less than

3.15% compared to the simulation model for the system.

• Deteriorating quality buffer (DQB) must be placed towards the end of the line

to ensure the largest throughput.

• More efficient machine after the deteriorating quality buffer decreases scrap rate

and therefore improves throughput.

• The non-monotonic behavior of PR in Ni suggests that a part release control

may help in SR reduction.
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Chapter 6

BOTTLENECK ANALYSIS

6.1 Introduction

Bottlenecks within a production line significantly reduce the productivity. Because

in practice bottlenecks are almost certain to exist [86], and because the existence

of bottlenecks is a major factor in line performance and management [87], [47], it

is important to improve the bottleneck. By improvement, we mean increasing the

effective throughput capacity of the current bottleneck, which in turn permits greater

production rate for the entire production line. However, before the bottleneck can be

improved, it must be located.

If quantitative performance evaluation is carried out at all, then in almost any

case simulation is the only tool used. Machine and buffer optimization problems are

mainly solved through simple trial-and-error approaches, which suffer from the se-

vere drawbacks of being both very time-consuming and providing solutions that are

usually far from optimal. The practitioner must also know when to stop improving.

Improvement at non-bottleneck resources does not increase system capacity. Bottle-

neck analysis is of high interest in manufacturing operations and in recent years a

great deal of research has focused on the area of bottleneck detection [88].



97

It was noted that a small change of data or system characteristics may generate

a considerably different behavior of the system under study. For example, slightly

changing the processing time at a station may shift the bottleneck of the system with

the need to rearrange the buffers completely. As every production line is obviously

unique, it jeopardizes the economic efficiency if a flow line planner relies completely

upon experience gathered from observations of other production lines. Therefore,

tools are required that can provide system-specific performance measures in a fast

and reliable manner. Quick and correct identification of the bottleneck locations can

lead to an improvement in the operation management of utilizing finite manufacturing

resources, increasing the system production rate, and minimizing the total cost of

production. This chapter will be focusing on identifying bottleneck in Bernoulli serial

line with perfect quality and deteriorating quality buffers.

6.2 Bernoulli Serial Lines with Perfect Quality Buffer

Bottleneck machine: Consider a serial production line with M Bernoulli machines

defined by parameters pi, i= 1 ,. . . , M and M -1 buffers with capacities Ni, i = 1

,. . . , M -1. Assume that the line operates according to assumptions (i)-(vi-a)

Let, as before, PR, denote the production rate of the system, i.e., PR = PR(p1, . . . ,

pM , N1,. . . ,NM−1)

Definition 6.1: [44] Machine mi, i ∈ 1, . . . , M , is the bottleneck machine

(BN-m) of a Bernoulli line defined by assumptions (i)− (vi− a) if

δPR

δpi
>
δPR

δpj
, ∀j 6= i. (6.1)

Due to the monotonicity properties of PR with respect to p′is , both derivation

in (6.1) are positive. Thus, definition implies that mi is the BN-m if its infinitesimal
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improvement leads to largest increase of the production rate, as compared with a

similar improvement of any other machine in the system [44] .

Furthermore, a machine with the smallest pi is not necessarily the BN-m in the

sense of Definition 6.1. Indeed, consider the production lines shown in Figure 6.2,

where the numbers in the circles and the rectangles are pi and Ni, respectively, and

the row of numbers under the machines represent the estimates of partial derivation

δPR
δpi

evaluated by numerical simulations. Clearly, the bottleneck machines are m2

(in Figure 6.1) and also m2 (in Figure 6.2), none of which corresponds to the worst

machine (i.e., the machine with the smallest pi). In fact, m2 in Figure 6.1 is the best

machine in the system.

Figure 6.1: The best machine is the bottleneck in Bernoulli lines

Figure 6.2: The worst machine is not the bottleneck in Bernoulli lines

Similarly, a machine with the largest work-in-process inforont of it is not nec-

essarily the bottleneck. An example is given in Figure 6.2, where m3 has the largest

WIP to be processed, while the BN-m is m2.
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Bottleneck buffer: While the term “bottleneck machine” is widely used in practice,

the term “bottleneck buffer” is not. This is due to focusing on machine efficiencies

happens to be believed more important than the effect of buffer capacity adjacent to

these machines on the overall production rate of the system. On the contrary, the

buffers “shock absorbers” are of importance. Therefore, bottleneck buffer must be

introduced in order to explore all means of system improvements.

Definition 6.2: [44] Buffer bi, i ∈ 1 ,. . . , M -1, is the bottleneck buffer (BN-b)

of a Bernoulli line defined by assumptions (i)− (vi− a) if

PR(p1, . . . , pM , N1, . . . , Ni + 1, . . . , NM−1)

> PR(p1, . . . , pM , N1, . . . , Nj + 1, . . . , NM−1), ∀j 6= i.

(6.2)

In other words, BN-b is the buffer, which leads to the largest increase in PR if

its capacity is increased by 1, as compared with increasing other buffers in the system.

An example is shown in Figure 6.3, where the numbers under each buffer corresponds

to the PR of the system obtained by simulations when the capacity of this buffer is

increased by one. Moreover, a buffer with the smallest capacity is not necessarily the

BN-b. To identify the BN-b using Definition 6.2, one would have to experiment with

the system by increasing each buffer and measuring the resulting production rate,

which is hardly possible in practice.

Figure 6.3: Example of bottleneck buffer in Bernoulli lines
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To make these definitions practical, [44] reformulated them in terms of quanti-

ties, which are either available through measurements on the factory floor or through

analytical calculations or both:

Theorem 4 [44] For two-machine Bernoulli lines, the inequality

δPR

δp1

>
δPR

δp2

(respectively,
δPR

δp1

<
δPR

δp2

) (6.3)

takes place if and only if

BL1 < ST2 (respectively, BL1 > ST2).

This result relates the “non-measurable” and “non-calculable” partial deriva-

tives of PR with the “measurable” and “calculable” probabilities of blockages and

starvations. In addition, it states that the BN-m can be identified without even

knowing parameters of the machines and buffer, but just by measuring ST2 and BL1.

Inspired by this theorem, an arrow-based method has been developed to identify

the BN in longer lines: arrange the probabilities of starvations (STi) and blockages

(BLi) under each machine as shown in Figure 6.4 and place arrows directed from one

machine to another according to the following method [44]

Figure 6.4: BN identification in M-machine lines

Arrow assignment method: [44] This method derives its name from the practice

of drawing arrows pointing left or right showing which machines have higher blockage
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and starvation compared to adjacent machines and uses two related rules to locate

the bottleneck. The first rule is the bottleneck indicator rule, composed of two related

parts, which says that:

(a) If BLi > STi+1, assign the arrow pointing from mi to mi+1,

(b) If BLi < STi+1, assign the arrow pointing from mi+1 to mi.

In a Bernoulli line with M > 2-machines,

• if there is a single machine with no emanating arrows, it is the BN-m;

• if by this rule there are multiple machines with no emanating arrows, then the

primary bottleneck is determined by using of the second rule, the one with

the largest severity if the Primary BN-m (PBN-m), where the severity of each

(local) BN-m is defined by

Si = | STi+1 −BLi | + | STi −BLi−1 |, i = 2, . . . ,M − 1,

S1 = | ST2 −BL1 |,

SM = | STM −BLM−1 |; (6.4)

• the BN-b is the buffer immediately upstream of the BN-m (or PBN-m) if it

is more often starved than blocked, or immediately downstream the BN-m (or

PBN-m) if it is more often blocked than starved.

According to this method, m2 and b2 are the bottlenecks in Figure 6.5, which

indicates that there is a single bottleneck machine in the system. On the other hand,

m2 and b2 are the PBN-m and BN-b in Figure 6.6, where multiple bottleneck machines

are available in the system.
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Figure 6.5: Illustration of a Bernoulli line with a single bottleneck machine

Figure 6.6: Illustration of a Bernoulli line with multiple bottleneck machines
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6.3 Bernoulli Serial Lines with Deteriorating Qual-

ity Buffer (DQB)

Consider a serial production line with M Bernoulli machines defined by parameters

pi, i= 1 ,. . . , M and M -1 buffers with capacities Ni, i = 1 ,. . . , M -1. Assume that

the line operates according to assumptions (i)-(vi-a)-(viii) Let, as before, PR, denote

the production rate of the system, i.e., PR = PR(p1, . . . , pM , N1,. . . ,NM−1)

Definition 6.3: Machine mi, i ∈ 1 ,. . . , M , is the bottleneck machine (BN-m)

of a Bernoulli line defined by assumptions (i)− (vi− a)− (viii) if

∣∣∣∣δPRδpi
∣∣∣∣ > ∣∣∣∣δPRδpj

∣∣∣∣ , ∀j 6= i. (6.5)

Figure 6.7: Illustration of 3-machine Bernoulli line with DQB

This definition is similar to Definition 6.1 for production lines with perfect qual-

ity buffers. The only difference is that absolute values of partial derivatives are used

in (6.5), because it is not priori clear that PR in systems defined by assumptions

(i)-(vi-a)-(viii) are both monotonic and non-monotonic in some cases with respect to

p′is.
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Figure 6.8: Illustration of 5-machine Bernoulli line with DQB

Figures 6.7 and 6.8, where the numbers under each machine corresponds to

the
∣∣∣ δPRδpi ∣∣∣ of the system obtained by simulation when the machine efficiency of this

machine is increased by a factor (all machines’ efficiencies are increased by the same

factor).

Definition 6.4: Buffer bi, i ∈ 1 ,. . . , M -1, is the bottleneck buffer (BN-b) of a

Bernoulli line defined by assumptions (i)− (vi− a)− (viii) where

PR(p1, . . . , pM , N1, . . . , Ni ± 1, . . . , NM−1, T1, . . . , TM−1)

if ∣∣∣∣δPRδNi

∣∣∣∣ > ∣∣∣∣δPRδNj

∣∣∣∣ , ∀j 6= i. (6.6)

In other words, BN-b is the buffer, which leads to the largest increase in PR if

its capacity is increased or decreased by 1, as compared with increasing or decreasing

other buffers in the system. The definition is set to accommodate the monotonicity

property of Bernoulli serial lines with deteriorating quality buffer; PR is monotoni-

cally decreasing in buffer capacity Ni. An example is shown in Figures 6.9 and 6.10,

where the numbers under each buffer corresponds to the Ti, followed by PR of the

system obtained by simulations when the buffer capacities Ni is increased by one,
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and followed by PR of the system obtained by simulations when the residence time

constraint Ti of this buffer is increased by one.

Definition 6.5: Buffer bi, i ∈ 1 ,. . . , M -1, is the quality bottleneck buffer

(QBN-b) of a Bernoulli line defined by assumptions (i)− (vi− a)− (viii) if

PR(p1, . . . , pM , N1, . . . , NM−1, T1 . . . , Ti + 1, . . . , TM−1)

> PR(p1, . . . , pm, N1, . . . , NM−1, T1, . . . , Tj + 1, . . . , TM−1), ∀j 6= i.

(6.7)

Similarly, QBN-b is the buffer, which leads to the largest increase in PR if its

residence time constraint is increased by 1, as compared with increasing other buffers

in the system. An example is shown in Figure 6.9, where the numbers under each

buffer corresponds to the Ti, followed by PR of the system obtained by simulations

when the buffer capacities Ni is increased by one, and followed by PR of the system

obtained by simulations when the residence time constraint Ti of this buffer is in-

creased by one. Note that, the system may have both QBN-b and BN-b represented

in one buffer or separate buffers. Finally, another indicator that can be utilized to

predict the QBN-b, the machine with the highest SRi is downstream of the QBN-b.

Figure 6.9: Illustration of 3-machine Bernoulli line with DQB



106

Figure 6.10: Illustration of 3-machine Bernoulli line with DQB

6.4 Summary

• The machine with the smallest pi is not necessarily the BN-m.

• The buffer with the smallest capacity Ni is not necessarily the BN-b.

• The bottleneck in a Bernoulli serial line with prefect quality buffer can be iden-

tified by an arrow assignment method using machine blockages and starvations.

• The bottleneck in a Bernoulli serial line with DQB can be analyzed using sim-

ulation.

• The QBN-b can be identified easily by identifying the highest SRi in the system

of all machines mi following the buffers with deteriorating quality issues.
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Chapter 7

CONCLUSION AND FUTURE

WORK

7.1 Conclusion

Manufacturing systems with perishable products are widely seen in practice. In this

dissertation, system-theoretic properties of production lines are described. Specifi-

cally, performance evaluation, monotonicity property, and bottleneck identification.

Introducing the mathematical models of machines and buffers are necessary, in

particular, for calculating performance measures of production systems at hand. The

performance evaluation in Bernoulli serial lines with deteriorating product quality

were introduced using Markovian analysis, closed-form expressions are provided to

calculate the performance measures for two-machine lines, and a recursive procedure

based on aggregation is developed for longer lines. Based on these techniques, the

monotonicity properties of good part production rate, scrap rate, and raw material

consumption rate are discussed for Bernoulli serial lines. A case study in an automo-

tive stamping plant is described to illustrate the efficacy of the method developed.

For all systems studies in this part, the production rate is always monotonic to all
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machines and buffers except for lines with deteriorating quality buffers.

It was noticed that the system reacts similarly in both deterministic and stochas-

tic part release. The notable difference between both PRC approaches relies in the

application. Deterministic release can be relevant in production lines where a very

strict SR is required while knowing shipping schedules. On the contrary, stochastic

release best implemented in production lines where shipping schedules are unknown

with considerably high demand. Due to the lack of monotonicity in PR with respect

to buffer capacity N, the part release control provides a perfect solution to keep the

PR significantly high while increasing buffer capacity.

Similarly, the performance evaluation in geometric serial lines with perfect qual-

ity buffers were introduced for two-machine lines, and a recursive procedure based

on aggregation is developed for longer lines. To verify the accuracy of the aggrega-

tion procedures introduced in both lines, a simulation models were introduced to to

each system and was extremely accurate with error less than 3.15%. These results

provided a more logical way to introduce the geometric serial line with deteriorating

quality buffer and study its behavior. Based on these techniques, the monotonicity

properties of good part production rate, scrap rate, and raw material consumption

rate are discussed for geometric serial lines with deteriorating quality buffers. For all

systems studies in this part, the production rate is always monotonic to all machines

and buffers.

The bottleneck studied in this dissertation is defined as the machine (or buffer),

which has the largest effect on the system performance. For Bernoulli serial lines

with perfect quality buffers, an arrow assignment method is described to identify the

bottleneck machine and bottleneck buffer. Then, for Bernoulli serial lines with deteri-

orating quality buffers, bottleneck machine, bottleneck buffer, and quality bottleneck

buffer were defined.



109

7.2 Future Work

Future work in this direction includes:

• Investigation of the structural properties of system performance with respect to

machine and buffer parameters to ensure fast and robust search of high quality

feedback release controllers in M > 2-machine lines;

• Investigation of continuous improvement and lean design in Bernoulli serial lines

with quality deterioration;

• Investigation of continuous improvement, bottleneck identification, and lean

design in geometric serial lines with quality deterioration;

• Investigation of transient behavior of the production system with quality dete-

rioration in both Bernoulli and geometric serial lines;

• Investigation of the impact of production control rules (Kanban, Basestock and

Conwip) on production lines with quality deterioration;

• Investigation of production lines with more than one down state of the machines

such loss of usefulness, which includes but not limited to obsolescence, surface

degradation and accidents;

• Extension of the results of quality deterioration to production systems with

different topologies, e.g., parallel lines, hybrid lines, assembly systems, closed

lines, re-entrant lines, lines with rework, etc;

• Extension of the results of quality deterioration to systems with machines having

other reliability models such as exponential, Weibull, gamma, log-normal, etc;

• Extension of the results to systems with other quality models and complex

deteriorating characteristics;

• Extension of the results to systems with non-perfect quality machines;
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• Customization of system to fit real manufacturing facilities, there might be

one or several constrains like equipment restrictions, facility layout restrictions,

buffer allocation and stations length which essentially differ from plant to plant;

• Applications of the results to real manufacturing systems.
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