18 research outputs found

    Reliability characterization of a piezoelectric actuator based AVC system

    Get PDF
    Reliability and Maintainability analyses are becoming an increasing competitive advantage in machine tool design. In particular, the goal of machine tools for Ultra High Precision Machining is to guarantee high specified performances and to maintain them over life cycle time. A structured reliability approach applied to such complex and innovative systems must be integrated in the early phase of the design. In this paper, the reliability characterization of an adjustable platform for micromilling operations is presented. The platform is intended to improve the surface finishing of the workpiece, through a broadband Active Vibration Control device based on high performance piezoelectric multilayer actuators. The study intends to assess the capability of the system to maintain along the life cycle the appropriate reduction of the chattering vibrations without any shape error. By dividing the system through a morphological-functional decomposition, the critical elements are detected and their reliability issues are extensively discussed. Their lifetimes are described through opportune distributions and models. The study is completed by the quantitative reliability prediction of the overall system. Finally, a sensitivity analysis is performed and reliability allocation implications are evaluated to determine the effect of every component on the system reliability characteristics and life cycle cost

    Design of piezo-based AVC system for machine tool applications

    Get PDF
    The goal of machine tools for Ultra High Precision Machining is to guarantee high specified performances and to maintain them over life cycle time. In this paper the design of an innovative mechatronic subsystem (platform) for Active Vibration Control (AVC) of Ultra High Precision micromilling Machines is presented. The platform integrates piezoelectric stack actuators and a novel sensor concept. During the machining process (e.g. milling), the contact between the cutting tool and the workpiece surface at the tool tip point generates chattering vibrations. Any vibration is recorded on the workpiece surface, directly affecting its roughness. Consequently, uncontrolled vibrations lead to poor surface finishing, unacceptable in high precision milling. The proposed Smart Platform aims to improve the surface finishing of the workpiece exploiting a broadband AVC strategy. The paper describes the steps throughout the design phase of the platform, beginning from the actuator/sensor criteria selection taking into account both performance and durability. The novel actuation principle and mechanism and the related FE analysis are also presented. Finally, an integrated mechatronic model able to predict in closed-loop the active damping and vibration-suppression capability of the integrated system is presented and simulation results are discussed

    Requirements for the transfer of lead-free piezoceramics into application

    Get PDF
    The recent review for the Restriction of Hazardous Substances Directive (RoHS) by the expert committee, appointed by the European Union, stated that the replacement of PZT “… may be scientifically and technologically practical to a certain degree …”, although replacement “… is scientifically and technically still impractical in the majority of applications.” Thus, two decades of sustained research and development may be approaching fruition, at first limited to a minority of applications. Therefore, it is of paramount importance to assess the viability of lead-free piezoceramics over a broad range of application-relevant properties. These are identified and discussed in turn: 1. Cost, 2. Reproducibility, 3. Mechanical and Thermal Properties, 4. Electrical Conductivity, and 5. Lifetime. It is suggested that the worldwide efforts into the development of lead-free piezoceramics now require a broader perspective to bring the work to the next stage of development by supporting implementation into real devices. Guidelines about pertinent research requirements into a wide range of secondary properties, measurement techniques, and salient literature are provided

    Electroceramics for High-Energy Density Capacitors: Current Status and Future Perspectives

    Get PDF
    Materials exhibiting high energy/power density are currently needed to meet the growing demand of portable electronics, electric vehicles and large-scale energy storage devices. The highest energy densities are achieved for fuel cells, batteries, and supercapacitors, but conventional dielectric capacitors are receiving increased attention for pulsed power applications due to their high power density and their fast charge–discharge speed. The key to high energy density in dielectric capacitors is a large maximum but small remanent (zero in the case of linear dielectrics) polarization and a high electric breakdown strength. Polymer dielectric capacitors offer high power/energy density for applications at room temperature, but above 100 °C they are unreliable and suffer from dielectric breakdown. For high-temperature applications, therefore, dielectric ceramics are the only feasible alternative. Lead-based ceramics such as La-doped lead zirconate titanate exhibit good energy storage properties, but their toxicity raises concern over their use in consumer applications, where capacitors are exclusively lead free. Lead-free compositions with superior power density are thus required. In this paper, we introduce the fundamental principles of energy storage in dielectrics. We discuss key factors to improve energy storage properties such as the control of local structure, phase assemblage, dielectric layer thickness, microstructure, conductivity, and electrical homogeneity through the choice of base systems, dopants, and alloying additions, followed by a comprehensive review of the state-of-the-art. Finally, we comment on the future requirements for new materials in high power/energy density capacitor applications

    Are lead-free relaxor ferroelectric materials the most promising candidates for energy storage capacitors?

    Get PDF
    Dielectric capacitors offer high-power density and ultrafast discharging times as compared to electrochemical capacitors and batteries, making them potential candidates for pulsed power technologies (PPT). However, low energy density in different dielectric materials such as linear dielectrics (LDs), ferroelectrics (FEs), and anti-ferroelectric (AFEs) owing to their low polarization, large hysteresis loss and low breakdown strength, respectively, limits their real time applications. Thus, achieving a material with high dielectric constant, large dielectric breakdown strength and slim hysteresis is imperative to obtain superior energy performance. In this context, relaxor ferroelectrics (RFEs) emerged as the most promising solution for energy storage capacitors. This review starts with a brief introduction of different energy storage devices and current advances of dielectric capacitors in PPT. The latest developments on lead-free RFEs including bismuth alkali titanate based, barium titanate based, alkaline niobite based perovskites both in ceramics and thin films are comprehensively discussed. Further, we highlight the different strategies used to enhance their energy storage performance to meet the requirements of the energy storage world. We also provide future guidelines in this field and therefore, this article opens a window for the current advancement in the energy storage properties of RFEs in a systematic way.This study has been partially supported by (i) DST-SERB, Govt. of India through Grant ECR/2017/000068 (KCS), (ii) UGC through grant nos. F.4-5(59-FRP)/ 2014(BSR) and (iii) Portuguese Foundation for Science and Technology (FCT) in the framework of the Strategic Funding UIDB/FIS/04650/2020 (JPBS). The author A. R. Jayakrishnan acknowledges the Central University of Tamil Nadu, India for his Ph. D fellowship. The authors acknowledge the CERIC-ERIC Consortium for access to experimental facilities and financial support under proposal 20192055

    Nanoscale Ferroic Materials—Ferroelectric, Piezoelectric, Magnetic, and Multiferroic Materials

    Get PDF
    Ferroic materials, including ferroelectric, piezoelectric, magnetic, and multiferroic materials, are receiving great scientific attention due to their rich physical properties. They have shown their great advantages in diverse fields of application, such as information storage, sensor/actuator/transducers, energy harvesters/storage, and even environmental pollution control. At present, ferroic nanostructures have been widely acknowledged to advance and improve currently existing electronic devices as well as to develop future ones. This Special Issue covers the characterization of crystal and microstructure, the design and tailoring of ferro/piezo/dielectric, magnetic, and multiferroic properties, and the presentation of related applications. These papers present various kinds of nanomaterials, such as ferroelectric/piezoelectric thin films, dielectric storage thin film, dielectric gate layer, and magnonic metamaterials. These nanomaterials are expected to have applications in ferroelectric non-volatile memory, ferroelectric tunneling junction memory, energy-storage pulsed-power capacitors, metal oxide semiconductor field-effect-transistor devices, humidity sensors, environmental pollutant remediation, and spin-wave devices. The purpose of this Special Issue is to communicate the recent developments in research on nanoscale ferroic materials

    Development of lead-free thin-film dielectrics for capacitor applications

    Get PDF
    This PhD project aims to develop lead-free thin-film dielectric materials for fixed value, voltage tunable and high-k zipping variable capacitors using growth techniques that can be scaled for silicon batch fabrication. The thesis specifically details the growth and characterisation of barium zirconate titanate (BZT) and bismuth zinc niobate (BZN) dielectric thin films. Fixed value and tunable capacitors have been realised through the use of low and high permittivity dielectric thin film materials in both the amorphous and crystalline states. Planar devices fabricated using BZT and BZN thin-film dielectrics were grown by sol-gel and RF magnetron sputtering, respectively. The effects of different bottom electrodes were also investigated. Capacitors in metal-insulator-metal (MIM) structure have been fabricated to characterise the dielectric films at low frequency (to 300 kHz). Finding alternative higher permittivity dielectrics to SiO2 for various capacitor and isolation layer applications can be a challenge. Trials were conducted that looked at using amorphous BZT and nano-crystalline/crystalline BZN as a low-k dielectric insulator. Dielectric constants of ~50 were typical for BZN, but much lower permittivity was achieved for amorphous BZT, between 2 and 15 when deposited on Cr/Au bottom electrode. Breakdown strength of amorphous BZT was extremely high (2.0 MV/cm) and far superior to that of BZN (0.35 MV/cm). The dielectric strength of BZN was increased to 0.56 MV/cm when BZN was grown on a BZT seed layer due to a change in the microstructure of the BZN film from granular to columnar. The development of a suitable dielectric BZN for use with polymer substrate was also investigated and MIM capacitors fabricated by sputter deposition. Preliminary results for nano-crystalline BZN thin film growth on gold coated liquid crystal polymer (LCP) substrates appeared encouraging with dielectric constant of 27 and loss 0.005. Crystallised BZT thin films can be used to good effect as lead-free dielectric material in tunable devices. For BZT in the ferroelectric phase, excellent tunabilities of 80% were realised when deposited on platinised silicon. This wasfound not to be the case for BZT in the paraelectric phase where tunabilities tended to be ~60% at best. The dielectric properties of thin-film MIM capacitors can be enhanced by the use of lower resistivity bottom electrode such as gold. Previous research has failed to demonstrate growth and crystallisation of BZT on gold electrode due to the fact that it is technically difficult using the sol-gel method. Films tend to crack after annealing. I have found that films can be stabilised, and the tunability of BZT thin film in the paraelectric phase can be increased significantly, by growing BZT on gold bottom electrode using a BZN buffer layer 25nm thick. A peak tunability of 83% was achieved while maintaining a low dielectric loss of ~0.01. Novel BZT multilayer structures incorporating both ferroelectric and paraelectric compositions were grown on platinised silicon resulting in a tunability of 82% at a bias field 600 kV/cm. Based on the success of growing good quality BZN thin films on gold bottom electrode, it was decided to use BZN thin film as one of the high-k dielectrics in the zipping varactor, a miniature MEMS tunable device. Trials were performed that looked at depositing BZN on thick (800nm) gold coated silicon and glass. This was successful on small sample pieces but failed when scaled up to full device wafer size (100 mm diameter) due to Cr/Au diffusion into the dielectric layer. To overcome this, a 300nm thick BZN film was sputter deposited on Ti/Pt and Ti/Au/Pt coated 100 mm glass device wafers and processed to form the dielectric layer and bottom electrode of the capacitor. As part of the process the BZN layer required patterning. Wet etching of the small features was inappropriate due to undercutting of the structure; dry etching was therefore necessary. Prior to this work there had been nothing reported on the dry etching of BZN, only wet etched using a 1:10 HF-deionised H2O solution. In this work, thin-film BZN was reactively ion etched in Ar/CHF3 plasma at a rate of 6nm per minute with excellent selectivity over platinum of 10:1. Fabrication of the curved top electrode, final assembly and device testing were undertaken by a group at Imperial College London who were collaborators on a work programme entitled, “Integrated Functional Materials for System-in-Package Applications”.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Ceramic Materials

    Get PDF
    This is the first book of a series of forthcoming publications on this field by this publisher. The reader can enjoy both a classical printed version on demand for a small charge, as well as the online version free for download. Your citation decides about the acceptance, distribution, and impact of this piece of knowledge. Please enjoy reading and may this book help promote the progress in ceramic development for better life on earth

    End-of-Life and Constant Rate Reliability Modeling for Semiconductor Packages Using Knowledge-Based Test Approaches

    Get PDF
    End-of-life and constant rate reliability modeling for semiconductor packages are the focuses of this dissertation. Knowledge-based testing approaches are applied and the test-to-failure approach is approved to be a reliable approach. First of all, the end-of-life AF models for solder joint reliability are studied. The research results show using one universal AF model for all packages is flawed approach. An assessment matrix is generated to guide the application of AF models. The AF models chosen should be either assessed based on available data or validated through accelerated stress tests. A common model can be applied if the packages have similar structures and materials. The studies show that different AF models will be required for SnPb solder joints and SAC lead-free solder joints. Second, solder bumps under power cycling conditions are found to follow constant rate reliability models due to variations of the operating conditions. Case studies demonstrate that a constant rate reliability model is appropriate to describe non solder joint related semiconductor package failures as well. Third, the dissertation describes the rate models using Chi-square approach cannot correlate well with the expected failure mechanisms in field applications. The estimation of the upper bound using a Chi-square value from zero failure is flawed. The dissertation emphasizes that the failure data is required for the failure rate estimation. A simple but tighter approach is proposed and provides much tighter bounds in comparison of other approaches available. Last, the reliability of solder bumps in flip chip packages under power cycling conditions is studied. The bump materials and underfill materials will significantly influence the reliability of the solder bumps. A set of comparable bump materials and the underfill materials will dramatically improve the end-of-life solder bumps under power cycling loads, and bump materials are one of the most significant factors. Comparing to the field failure data obtained, the end-of-life model does not predict the failures in the field, which is more close to an approximately constant failure rate. In addition, the studies find an improper underfill material could change the failure location from solder bump cracking to ILD cracking or BGA solder joint failures

    Roadmap on ferroelectric hafnia- and zirconia-based materials and devices

    Get PDF
    Ferroelectric hafnium and zirconium oxides have undergone rapid scientific development over the last decade, pushing them to the forefront of ultralow-power electronic systems. Maximizing the potential application in memory devices or supercapacitors of these materials requires a combined effort by the scientific community to address technical limitations, which still hinder their application. Besides their favorable intrinsic material properties, HfO2–ZrO2 materials face challenges regarding their endurance, retention, wake-up effect, and high switching voltages. In this Roadmap, we intend to combine the expertise of chemistry, physics, material, and device engineers from leading experts in the ferroelectrics research community to set the direction of travel for these binary ferroelectric oxides. Here, we present a comprehensive overview of the current state of the art and offer readers an informed perspective of where this field is heading, what challenges need to be addressed, and possible applications and prospects for further development
    corecore