366 research outputs found

    Traffic engineering in dynamic optical networks

    Get PDF
    Traffic Engineering (TE) refers to all the techniques a Service Provider employs to improve the efficiency and reliability of network operations. In IP over Optical (IPO) networks, traffic coming from upper layers is carried over the logical topology defined by the set of established lightpaths. Within this framework then, TE techniques allow to optimize the configuration of optical resources with respect to an highly dynamic traffic demand. TE can be performed with two main methods: if the demand is known only in terms of an aggregated traffic matrix, the problem of automatically updating the configuration of an optical network to accommodate traffic changes is called Virtual Topology Reconfiguration (VTR). If instead the traffic demand is known in terms of data-level connection requests with sub-wavelength granularity, arriving dynamically from some source node to any destination node, the problem is called Dynamic Traffic Grooming (DTG). In this dissertation new VTR algorithms for load balancing in optical networks based on Local Search (LS) techniques are presented. The main advantage of using LS is the minimization of network disruption, since the reconfiguration involves only a small part of the network. A comparison between the proposed schemes and the optimal solutions found via an ILP solver shows calculation time savings for comparable results of network congestion. A similar load balancing technique has been applied to alleviate congestion in an MPLS network, based on the efficient rerouting of Label-Switched Paths (LSP) from the most congested links to allow a better usage of network resources. Many algorithms have been developed to deal with DTG in IPO networks, where most of the attention is focused on optimizing the physical resources utilization by considering specific constraints on the optical node architecture, while very few attention has been put so far on the Quality of Service (QoS) guarantees for the carried traffic. In this thesis a novel Traffic Engineering scheme is proposed to guarantee QoS from both the viewpoint of service differentiation and transmission quality. Another contribution in this thesis is a formal framework for the definition of dynamic grooming policies in IPO networks. The framework is then specialized for an overlay architecture, where the control plane of the IP and optical level are separated, and no information is shared between the two. A family of grooming policies based on constraints on the number of hops and on the bandwidth sharing degree at the IP level is defined, and its performance analyzed in both regular and irregular topologies. While most of the literature on DTG problem implicitly considers the grooming of low-speed connections onto optical channels using a TDM approach, the proposed grooming policies are evaluated here by considering a realistic traffic model which consider a Dynamic Statistical Multiplexing (DSM) approach, i.e. a single wavelength channel is shared between multiple IP elastic traffic flows

    Cost Effective Routing Implementations for On-chip Networks

    Full text link
    Arquitecturas de múltiples núcleos como multiprocesadores (CMP) y soluciones multiprocesador para sistemas dentro del chip (MPSoCs) actuales se basan en la eficacia de las redes dentro del chip (NoC) para la comunicación entre los diversos núcleos. Un diseño eficiente de red dentro del chip debe ser escalable y al mismo tiempo obtener valores ajustados de área, latencia y consumo de energía. Para diseños de red dentro del chip de propósito general se suele usar topologías de malla 2D ya que se ajustan a la distribución del chip. Sin embargo, la aparición de nuevos retos debe ser abordada por los diseñadores. Una mayor probabilidad de defectos de fabricación, la necesidad de un uso optimizado de los recursos para aumentar el paralelismo a nivel de aplicación o la necesidad de técnicas eficaces de ahorro de energía, puede ocasionar patrones de irregularidad en las topologías. Además, el soporte para comunicación colectiva es una característica buscada para abordar con eficacia las necesidades de comunicación de los protocolos de coherencia de caché. En estas condiciones, un encaminamiento eficiente de los mensajes se convierte en un reto a superar. El objetivo de esta tesis es establecer las bases de una nueva arquitectura para encaminamiento distribuido basado en lógica que es capaz de adaptarse a cualquier topología irregular derivada de una estructura de malla 2D, proporcionando así una cobertura total para cualquier caso resultado de soportar los retos mencionados anteriormente. Para conseguirlo, en primer lugar, se parte desde una base, para luego analizar una evolución de varios mecanismos, y finalmente llegar a una implementación, que abarca varios módulos para alcanzar el objetivo mencionado anteriormente. De hecho, esta última implementación tiene por nombre eLBDR (effective Logic-Based Distributed Routing). Este trabajo cubre desde el primer mecanismo, LBDR, hasta el resto de mecanismos que han surgido progresivamente.Rodrigo Mocholí, S. (2010). Cost Effective Routing Implementations for On-chip Networks [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/8962Palanci

    Internet of Things From Hype to Reality

    Get PDF
    The Internet of Things (IoT) has gained significant mindshare, let alone attention, in academia and the industry especially over the past few years. The reasons behind this interest are the potential capabilities that IoT promises to offer. On the personal level, it paints a picture of a future world where all the things in our ambient environment are connected to the Internet and seamlessly communicate with each other to operate intelligently. The ultimate goal is to enable objects around us to efficiently sense our surroundings, inexpensively communicate, and ultimately create a better environment for us: one where everyday objects act based on what we need and like without explicit instructions

    Mobile Ad Hoc Networks

    Get PDF
    Guiding readers through the basics of these rapidly emerging networks to more advanced concepts and future expectations, Mobile Ad hoc Networks: Current Status and Future Trends identifies and examines the most pressing research issues in Mobile Ad hoc Networks (MANETs). Containing the contributions of leading researchers, industry professionals, and academics, this forward-looking reference provides an authoritative perspective of the state of the art in MANETs. The book includes surveys of recent publications that investigate key areas of interest such as limited resources and the mobility of mobile nodes. It considers routing, multicast, energy, security, channel assignment, and ensuring quality of service. Also suitable as a text for graduate students, the book is organized into three sections: Fundamentals of MANET Modeling and Simulation—Describes how MANETs operate and perform through simulations and models Communication Protocols of MANETs—Presents cutting-edge research on key issues, including MAC layer issues and routing in high mobility Future Networks Inspired By MANETs—Tackles open research issues and emerging trends Illustrating the role MANETs are likely to play in future networks, this book supplies the foundation and insight you will need to make your own contributions to the field. It includes coverage of routing protocols, modeling and simulations tools, intelligent optimization techniques to multicriteria routing, security issues in FHAMIPv6, connecting moving smart objects to the Internet, underwater sensor networks, wireless mesh network architecture and protocols, adaptive routing provision using Bayesian inference, and adaptive flow control in transport layer using genetic algorithms

    1st Symposium of Applied Science for Young Researchers: proceedings

    Get PDF
    SASYR, the rst Symposium of Applied Science for Young Researchers, welcomes works from young researchers (master students) covering any aspect of all the scienti c areas of the three research centres ADiT-lab (IPVC, Instituto Polit ecnico de Viana do Castelo), 2Ai (IPCA, Instituto Polit ecnico do C avado e do Ave) and CeDRI (IPB, Instituto Polit ecnico de Bragan ca). The main objective of SASYR is to provide a friendly and relaxed environment for young researchers to present their work, to discuss recent results and to develop new ideas. In this way, it will provide an opportunity to the ADiT-lab, 2Ai and CeDRI research communities to gather synergies and indicate possible paths for future joint work. We invite you to join SASYR on 7 July and to share your research!info:eu-repo/semantics/publishedVersio

    Optimal route reflection topology design

    Get PDF
    An Autonomous System (AS) is a group of Internet Protocol-based networks with a single and clearly defined external routing policy, usually under single ownership, trust or administrative control. The AS represents a connected group of one or more blocks of IP addresses, called IP prefixes, that have been assigned to that organization and provides a single routing policy to systems outside the AS. The Internet is composed of the interconnection of several thousands of ASes, which use the Border Gateway Protocol (BGP) to exchange network prefixes (aggregations of IP addresses) reachability advertisements. BGP advertisements (or updates) are sent over BGP sessions administratively set between pairs of routers. BGP is a path vector routing protocol and is used to span different ASes. A path vector protocol defines a route as a pairing between a destination and the attributes of the path to that destination. Interior Border Gateway Protocol (iBGP) refers to the BGP neighbor relationship within the same AS. When BGP neighbor relationship are formed between two peers belonging to different AS are called Exterior Border Gateway Protocol (eBGP). In the last case, BGP routers are called Autonomous System Border Routers (ASBRs), while those running only iBGP sessions are referred to as Internal Routers (IRs). Traditional iBGP implementations require a full-mesh of sessions among routers of each AS

    A Framework for Controlling Quality of Sessions in Multimedia Systems

    Get PDF
    Collaborative multimedia systems demand overall session quality control beyond the level of quality of service (QoS) pertaining to individual connections in isolation of others. At every instant in time, the quality of the session depends on the actual QoS offered by the system to each of the application streams, as well as on the relative priorities of these streams according to the application semantics. We introduce a framework for achieving QoSess control and address the architectural issues involved in designing a QoSess control laver that realizes the proposed framework. In addition, we detail our contributions for two main components of the QoSess control layer. The first component is a scalable and robust feedback protocol, which allows for determining the worst case state among a group of receivers of a stream. This mechanism is used for controlling the transmission rates of multimedia sources in both cases of layered and single-rate multicast streams. The second component is a set of inter-stream adaptation algorithms that dynamically control the bandwidth shares of the streams belonging to a session. Additionally, in order to ensure stability and responsiveness in the inter-stream adaptation process, several measures are taken, including devising a domain rate control protocol. The performance of the proposed mechanisms is analyzed and their advantages are demonstrated by simulation and experimental results
    • …
    corecore