130 research outputs found

    Atomic dataflow model

    Get PDF
    With the recent switch in the design of general purpose processors from frequency scaling of a single processor core towards increasing the number of processor cores, parallel programming became important not only for scientific programming but also for general purpose programming. This also stressed the importance of programmability of existing parallel programming models which were primarily designed for performance. It was soon recognized that new programming models are needed that will make parallel programming possible not only to experts, but to a general programming community. Transactional Memory (TM) is an example which follows this premise. It improves dramatically over any previous synchronization mechanism in terms of programmability and composability, at the price of possibly reduced performance. The main source of performance degradation in Transactional Memory is the overhead of transactional execution. Our work on parallelizing Quake game engine is a clear example of this problem. We show that Software Transactional Memory is superior in terms of programmability compared to lock based programming, but that performance is hindered due to extreme amount of overhead introduced by transactional execution. In the meantime, a significant research effort has been invested in overcoming this problem. Our approach is aimed towards improving the performance of transactional code by reducing transactional data conflicts. The idea is based on the organization of the code in which highly conflicting data is promoted to dataflow tokens that coordinate the execution of transactions. The main contribution of this thesis is Atomic Dataflow model (ADF), a new task-based parallel programming model for C/C++ that integrates dataflow abstractions into the shared memory programming model. The ADF model provides language constructs that allow a programmer to delineate a program into a set of tasks and to explicitly define data dependencies for each task. The task dependency information is conveyed to the ADF runtime system that constructs a dataflow task graph that governs the execution of a program. Additionally, the ADF model allows tasks to share data. The key idea is that computation is triggered by dataflow between tasks but that, within a task, execution occurs by making atomic updates to common mutable state. To that end, the ADF model employs transactional memory, which guarantees atomicity of shared memory updates. The second contribution of this thesis is DaSH - the first comprehensive benchmark suite for hybrid dataflow and shared memory programming models. DaSH features 11 benchmarks, each representing one of the Berkeley dwarfs that capture patterns of communication and computation common to a wide range of emerging applications. DaSH includes sequential and shared-memory implementations based on OpenMP and TBB to facilitate easy comparison between hybrid dataflow implementations and traditional shared memory implementations. We use DaSH not only to evaluate the ADF model, but to also compare it with other two hybrid dataflow models in order to identify the advantages and shortcomings of such models, and motivate further research on their characteristics. Finally, we study applicability of hybrid dataflow models for parallelization of the game engine. We show that hybrid dataflow models decrease the complexity of the parallel game engine implementation by eliminating or restructuring the explicit synchronization that is necessary in shared memory implementations. The corresponding implementations also exhibit good scalability and better speedup than the shared memory parallel implementations, especially in the case of a highly congested game world that contains a large number of game objects. Ultimately, on an eight core machine we were able to obtain 4.72x speedup compared to the sequential baseline, and to improve 49% over the lock-based parallel implementation based on work-sharing.Con el reciente cambio en el diseño de los procesadores de propósito general pasando del aumento de frecuencia al incremento del número de núcleos, la programación paralela se ha convertido en importante no solo para la comunidad científica sino también para la programación en general. Este hecho ha enfatizado la importancia de la programabilidad de los modelos actuales de programación paralela, cuyo objetivo era el rendimiento. Pronto se observó la necesidad de nuevos modelos de programación, para hacer factible la programación paralela a toda la comunidad. Transactional Memory (TM) es un ejemplo de dicho objetivo. Supone una gran mejora sobre cualquier método anterior de sincronización en términos de programabilidad, con una posible reducción del rendimiento como coste. La razón principal de dicha degradación es el sobrecoste de la ejecución transaccional. Nuestro trabajo en la paralelización del motor del juego Quake es un claro ejemplo de este problema. Demostramos que Software Transactional Memory es superior en términos de programabilidad a los modelos de programación basados en locks, pero que el rendimiento es entorpecido por el sobrecoste introducido por TM. Mientras tanto, se ha invertido un importante esfuerzo de investigación para superar dicho problema. Nuestra solución se dirige hacia la mejora del rendimiento del código transaccional reduciendo los conflictos con la información contenida en las transacciones. La idea se basa en la organización del código en el cual la información conflictiva es promocionada a señales del flujo de datos que coordinan la ejecución de las transacciones. La contribución principal de esta tesis es Atomic Dataflow Model (ADF), un nuevo modelo de programación para C/C++ basado en tareas que integra abstracciones de flujo de datos en el modelo de programación de la memoria compartida. El modelo ADF provee construcciones del lenguaje que permiten al programador la definición del programa como un conjunto de tareas, además de la definición explícita de las dependencias de datos para cada tarea. La información de dependencia de la tarea se transmite al runtime de ADF, que construye un grafo de tareas que es el que controla la ejecución de un programa. Adicionalmente, el modelo ADF permite que las tareas compartan información. La idea principal es que la computación es activada por el flujo de datos entre tareas, pero que dentro de una tarea la ejecución ocurre haciendo actualizaciones atómicas a un estado común mutable. Para conseguir este fin, el modelo ADF utiliza TM, que garantiza la atomicidad en las modificaciones de la memoria compartida. La segunda contribución es DaSH, el primer conjunto de benchmarks para los modelos de programación de flujo de datos híbridos y los de memoria compartida. DaSH contiene 11 benchmarks, cada uno representativo de uno de los Berkeley dwarfs que captura patrones de comunicaciones y procesamiento comunes en un amplio rango de aplicaciones emergentes. DaSH incluye implementaciones secuenciales y de memoria compartida basadas en OpenMP y TBB que facilitan la comparación entre los modelos híbridos de flujo de datos e implementaciones de memoria compartida. Nosotros usamos DaSH no solo para evaluar ADF, sino también para compararlo con otros dos modelos híbridos para identificar sus ventajas. Finalmente, estudiamos la aplicabilidad de dichos modelos híbridos para la paralelización del motor del juego. Mostramos que disminuyen la complejidad de la implementación paralela, eliminando o reestructurando la sincronización explícita que es necesaria en las implementaciones de memoria compartida. También se observa una buena escalabilidad y una aceleración mejor, especialmente en el caso de un ambiente de juego muy cargado. En última instancia, sobre una máquina con ocho núcleos se ha obtenido una aceleración del 4.72x comparado con el código secuencial, y una mejora del 49% sobre la implementación paralela basada en locks

    High-Performance Composable Transactional Data Structures

    Get PDF
    Exploiting the parallelism in multiprocessor systems is a major challenge in the post ``power wall\u27\u27 era. Programming for multicore demands a change in the way we design and use fundamental data structures. Concurrent data structures allow scalable and thread-safe accesses to shared data. They provide operations that appear to take effect atomically when invoked individually. A main obstacle to the practical use of concurrent data structures is their inability to support composable operations, i.e., to execute multiple operations atomically in a transactional manner. The problem stems from the inability of concurrent data structure to ensure atomicity of transactions composed from operations on a single or multiple data structures instances. This greatly hinders software reuse because users can only invoke data structure operations in a limited number of ways. Existing solutions, such as software transactional memory (STM) and transactional boosting, manage transaction synchronization in an external layer separated from the data structure\u27s own thread-level concurrency control. Although this reduces programming effort, it leads to significant overhead associated with additional synchronization and the need to rollback aborted transactions. In this dissertation, I address the practicality and efficiency concerns by designing, implementing, and evaluating high-performance transactional data structures that facilitate the development of future highly concurrent software systems. Firstly, I present two methodologies for implementing high-performance transactional data structures based on existing concurrent data structures using either lock-based or lock-free synchronizations. For lock-based data structures, the idea is to treat data accessed by multiple operations as resources. The challenge is for each thread to acquire exclusive access to desired resources while preventing deadlock or starvation. Existing locking strategies, like two-phase locking and resource hierarchy, suffer from performance degradation under heavy contention, while lacking a desirable fairness guarantee. To overcome these issues, I introduce a scalable lock algorithm for shared-memory multiprocessors addressing the resource allocation problem. It is the first multi-resource lock algorithm that guarantees the strongest first-in, first-out (FIFO) fairness. For lock-free data structures, I present a methodology for transforming them into high-performance lock-free transactional data structures without revamping the data structures\u27 original synchronization design. My approach leverages the semantic knowledge of the data structure to eliminate the overhead of false conflicts and rollbacks. Secondly, I apply the proposed methodologies and present a suite of novel transactional search data structures in the form of an open source library. This is interesting not only because the fundamental importance of search data structures in computer science and their wide use in real world programs, but also because it demonstrate the implementation issues that arise when using the methodologies I have developed. This library is not only a compilation of a large number of fundamental data structures for multiprocessor applications, but also a framework for enabling composable transactions, and moreover, an infrastructure for continuous integration of new data structures. By taking such a top-down approach, I am able to identify and consider the interplay of data structure interface operations as a whole, which allows for scrutinizing their commutativity rules and hence opens up possibilities for design optimizations. Lastly, I evaluate the throughput of the proposed data structures using transactions with randomly generated operations on two difference hardware systems. To ensure the strongest possible competition, I chose the best performing alternatives from state-of-the-art locking protocols and transactional memory systems in the literature. The results show that it is straightforward to build efficient transactional data structures when using my multi-resource lock as a drop-in replacement for transactional boosted data structures. Furthermore, this work shows that it is possible to build efficient lock-free transactional data structures with all perceived benefits of lock-freedom and with performance far better than generic transactional memory systems

    White-box methodologies, programming abstractions and libraries

    Get PDF
    EXCESS deliverable D2.2. More information at http://www.excess-project.eu/This deliverable reports the results of white-box methodologies and early results ofthe first prototype of libraries and programming abstractions as available by projectmonth 18 by Work Package 2 (WP2). It reports i) the latest results of Task 2.2on white-box methodologies, programming abstractions and libraries for developingenergy-efficient data structures and algorithms and ii) the improved results of Task2.1 on investigating and modeling the trade-off between energy and performance ofconcurrent data structures and algorithms. The work has been conducted on two mainEXCESS platforms: Intel platforms with recent Intel multicore CPUs and MovidiusMyriad1 platform

    Intermediate language extensions for parallelism

    Full text link

    Algorithms incorporating concurrency and caching

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2009.Cataloged from PDF version of thesis.Includes bibliographical references (p. 189-203).This thesis describes provably good algorithms for modern large-scale computer systems, including today's multicores. Designing efficient algorithms for these systems involves overcoming many challenges, including concurrency (dealing with parallel accesses to the same data) and caching (achieving good memory performance.) This thesis includes two parallel algorithms that focus on testing for atomicity violations in a parallel fork-join program. These algorithms augment a parallel program with a data structure that answers queries about the program's structure, on the fly. Specifically, one data structure, called SP-ordered-bags, maintains the series-parallel relationships among threads, which is vital for uncovering race conditions (bugs) in the program. Another data structure, called XConflict, aids in detecting conflicts in a transactional-memory system with nested parallel transactions. For a program with work T and span To, maintaining either data structure adds an overhead of PT, to the running time of the parallel program when executed on P processors using an efficient scheduler, yielding a total runtime of O(T1/P + PTo). For each of these data structures, queries can be answered in 0(1) time. This thesis also introduces the compressed sparse rows (CSB) storage format for sparse matrices, which allows both Ax and ATx to be computed efficiently in parallel, where A is an n x n sparse matrix with nnz > n nonzeros and x is a dense n-vector. The parallel multiplication algorithm uses e(nnz) work and ... span, yielding a parallelism of ... , which is amply high for virtually any large matrix.(cont.) Also addressing concurrency, this thesis considers two scheduling problems. The first scheduling problem, motivated by transactional memory, considers randomized backoff when jobs have different lengths. I give an analysis showing that binary exponential backoff achieves makespan V2e(6v 1- i ) with high probability, where V is the total length of all n contending jobs. This bound is significantly larger than when jobs are all the same size. A variant of exponential backoff, however, achieves makespan of ... with high probability. I also present the size-hashed backoff protocol, specifically designed for jobs having different lengths, that achieves makespan ... with high probability. The second scheduling problem considers scheduling n unit-length jobs on m unrelated machines, where each job may fail probabilistically. Specifically, an input consists of a set of n jobs, a directed acyclic graph G describing the precedence constraints among jobs, and a failure probability qij for each job j and machine i. The goal is to find a schedule that minimizes the expected makespan. I give an O(log log(min {m, n}))-approximation for the case of independent jobs (when there are no precedence constraints) and an O(log(n + m) log log(min {m, n}))-approximation algorithm when precedence constraints form disjoint chains. This chain algorithm can be extended into one that supports precedence constraints that are trees, which worsens the approximation by another log(n) factor. To address caching, this thesis includes several new variants of cache-oblivious dynamic dictionaries.(cont.) A cache-oblivious dictionary fills the same niche as a classic B-tree, but it does so without tuning for particular memory parameters. Thus, cache-oblivious dictionaries optimize for all levels of a multilevel hierarchy and are more portable than traditional B-trees. I describe how to add concurrency to several previously existing cache-oblivious dictionaries. I also describe two new data structures that achieve significantly cheaper insertions with a small overhead on searches. The cache-oblivious lookahead array (COLA) supports insertions/deletions and searches in O((1/B) log N) and O(log N) memory transfers, respectively, where B is the block size, M is the memory size, and N is the number of elements in the data structure. The xDict supports these operations in O((1/1B E1-) logB(N/M)) and O((1/)0logB(N/M)) memory transfers, respectively, where 0 < E < 1 is a tunable parameter. Also on caching, this thesis answers the question: what is the worst possible page-replacement strategy? The goal of this whimsical chapter is to devise an online strategy that achieves the highest possible fraction of page faults / cache misses as compared to the worst offline strategy. I show that there is no deterministic strategy that is competitive with the worst offline. I also give a randomized strategy based on the most recently used heuristic and show that it is the worst possible pagereplacement policy. On a more serious note, I also show that direct mapping is, in some sense, a worst possible page-replacement policy. Finally, this thesis includes a new algorithm, following a new approach, for the problem of maintaining a topological ordering of a dag as edges are dynamically inserted.(cont.) The main result included here is an O(n2 log n) algorithm for maintaining a topological ordering in the presence of up to m < n(n - 1)/2 edge insertions. In contrast, the previously best algorithm has a total running time of O(min { m3/ 2, n5/2 }). Although these algorithms are not parallel and do not exhibit particularly good locality, some of the data structural techniques employed in my solution are similar to others in this thesis.by Jeremy T. Fineman.Ph.D

    Extremely fast (a,b)-trees at all contention levels

    Get PDF
    Many concurrent dictionary implementations are designed and evaluated with only low-contention workloads in mind. This thesis presents several concurrent linearizable (a,b)-tree implementations with the overarching goal of performing well on both low- and high-contention workloads, and especially update-heavy workloads. The OCC-ABtree uses optimistic concurrency control to achieve state-of-the-art low-contention performance. However, under high-contention, cache coherence traffic begins to affect its performance. This is addressed by replacing its test-and-compare-and-swap locks with MCS queue locks. The resulting MCS-ABtree scales well under both low- and high-contention workloads. This thesis also introduces two coalescing-based trees, the CoMCS-ABtree and the CoPub-ABtree, that achieve substantially better performance under high-contention by reordering and coalescing concurrent inserts and deletes. Comparing these algorithms against the state of the art in concurrent search trees, we find that the fastest algorithm, the CoPub-ABtree, outperforms the next fastest competitor by up to 2x. This thesis then describes persistent versions of the four trees, whose implementations use fewer sfence instructions than a leading competitor (the FPTree). The persistent trees are proved to be strictly linearizable. Experimentally, the persistent trees are only slightly slower than their volatile counterparts, suggesting that they have great use as in-memory databases that need to be able to recover after a crash

    Deterministic load balancing and dictionaries in the parallel disk model

    Full text link

    Easier Parallel Programming with Provably-Efficient Runtime Schedulers

    Get PDF
    Over the past decade processor manufacturers have pivoted from increasing uniprocessor performance to multicore architectures. However, utilizing this computational power has proved challenging for software developers. Many concurrency platforms and languages have emerged to address parallel programming challenges, yet writing correct and performant parallel code retains a reputation of being one of the hardest tasks a programmer can undertake. This dissertation will study how runtime scheduling systems can be used to make parallel programming easier. We address the difficulty in writing parallel data structures, automatically finding shared memory bugs, and reproducing non-deterministic synchronization bugs. Each of the systems presented depends on a novel runtime system which provides strong theoretical performance guarantees and performs well in practice
    corecore