
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2004-2019

2016

High-Performance Composable Transactional Data Structures High-Performance Composable Transactional Data Structures

Deli Zhang
University of Central Florida

 Part of the Computer Sciences Commons

Find similar works at: https://stars.library.ucf.edu/etd

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2004-2019 by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Zhang, Deli, "High-Performance Composable Transactional Data Structures" (2016). Electronic Theses
and Dissertations, 2004-2019. 5069.
https://stars.library.ucf.edu/etd/5069

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd
http://network.bepress.com/hgg/discipline/142?utm_source=stars.library.ucf.edu%2Fetd%2F5069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd/5069?utm_source=stars.library.ucf.edu%2Fetd%2F5069&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

HIGH-PERFORMANCE COMPOSABLE TRANSACTIONAL DATA STRUCTURES

by

DELI ZHANG
M.S. University of Central Florida, 2016

B.S. Huazhong University of Science and Technology, 2008

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy
in the Department of Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Summer Term
2016

Major Professor: Damian Dechev

c© 2016 Deli Zhang

ii

ABSTRACT

Exploiting the parallelism in multiprocessor systems is a major challenge in the post “power wall”

era. Programming for multicore demands a change in the way we design and use fundamental

data structures. Concurrent data structures allow scalable and thread-safe accesses to shared data.

They provide operations that appear to take effect atomically when invoked individually. A main

obstacle to the practical use of concurrent data structures is their inability to support composable

operations, i.e., to execute multiple operations atomically in a transactional manner. The problem

stems from the inability of concurrent data structure to ensure atomicity of transactions composed

from operations on a single or multiple data structures instances. This greatly hinders software

reuse because users can only invoke data structure operations in a limited number of ways.

Existing solutions, such as software transactional memory (STM) and transactional boosting, man-

age transaction synchronization in an external layer separated from the data structure’s own thread-

level concurrency control. Although this reduces programming effort, it leads to significant over-

head associated with additional synchronization and the need to rollback aborted transactions. In

this dissertation, I address the practicality and efficiency concerns by designing, implementing, and

evaluating high-performance transactional data structures that facilitate the development of future

highly concurrent software systems.

Firstly, I present two methodologies for implementing high-performance transactional data struc-

tures based on existing concurrent data structures using either lock-based or lock-free synchroniza-

tions. For lock-based data structures, the idea is to treat data accessed by multiple operations as

resources. The challenge is for each thread to acquire exclusive access to desired resources while

preventing deadlock or starvation. Existing locking strategies, like two-phase locking and resource

hierarchy, suffer from performance degradation under heavy contention, while lacking a desirable

iii

fairness guarantee. To overcome these issues, I introduce a scalable lock algorithm for shared-

memory multiprocessors addressing the resource allocation problem. It is the first multi-resource

lock algorithm that guarantees the strongest first-in, first-out (FIFO) fairness. For lock-free data

structures, I present a methodology for transforming them into high-performance lock-free trans-

actional data structures without revamping the data structures’ original synchronization design.

My approach leverages the semantic knowledge of the data structure to eliminate the overhead of

false conflicts and rollbacks.

Secondly, I apply the proposed methodologies and present a suite of novel transactional search

data structures in the form of an open source library. This is interesting not only because the

fundamental importance of search data structures in computer science and their wide use in real

world programs, but also because it demonstrate the implementation issues that arise when using

the methodologies I have developed. This library is not only a compilation of a large number

of fundamental data structures for multiprocessor applications, but also a framework for enabling

composable transactions, and moreover, an infrastructure for continuous integration of new data

structures. By taking such a top-down approach, I am able to identify and consider the interplay

of data structure interface operations as a whole, which allows for scrutinizing their commutativity

rules and hence opens up possibilities for design optimizations.

Lastly, I evaluate the throughput of the proposed data structures using transactions with randomly

generated operations on two difference hardware systems. To ensure the strongest possible com-

petition, I chose the best performing alternatives from state-of-the-art locking protocols and trans-

actional memory systems in the literature. The results show that it is straightforward to build

efficient transactional data structures when using my multi-resource lock as a drop-in replacement

for transactional boosted data structures. Furthermore, this work shows that it is possible to build

efficient lock-free transactional data structures with all perceived benefits of lock-freedom and with

performance far better than generic transactional memory systems.

iv

To my parents and wife for their unwavering support over the years.

v

ACKNOWLEDGMENTS

I would like to thank my advisor Dr. Damian Dechev for his guidance and support along the way.

I would like to also thank my dissertation committee members Dr. Gary Leavens, Dr. Cliff Zou,

Dr. Mingjie Lin, and Dr. Kien Hua for their time and effort.

vi

TABLE OF CONTENTS

LIST OF FIGURES . xiii

LIST OF TABLES . xv

LIST OF ALGORITHMS . xvi

CHAPTER 1: INTRODUCTION . 1

Motivation . 1

Contribution . 5

Pseudo-Code Convention . 6

Outline . 7

CHAPTER 2: BACKGROUND . 9

Terminology . 9

Atomic Primitives . 9

Correctness Property . 10

Non-blocking Progress Assurance . 11

Mutual Exclusion . 11

vii

Resource Allocation . 12

Related Work . 12

Lock-based Concurrency Control . 13

Resource Allocation Solutions . 13

Queue-Based Algorithms . 14

Transaction Synchronization . 15

Transactional Memory . 15

Lock Inference . 16

Semantic Conflict Detection . 17

Search Data Structures . 18

Search Trees . 19

Skiplists . 20

Tries . 21

CHAPTER 3: METHODOLOGY . 22

Multi-resource Lock . 22

Motivation . 24

A Naive Algorithm . 25

viii

Queue-based Algorithm . 26

Acquiring Locks . 29

Releasing Locks . 31

Bitset Operations . 31

Lock-free Transactional Transformation . 32

Overview . 33

Data Type Definition . 35

Node-based Conflict Detection . 37

Logical Status Interpretation . 38

Logical Status Update . 40

Transaction Execution . 41

Multi-dimensional Linked List . 43

Motivation . 44

Overview . 46

Definition . 47

Data Types . 48

Concurrent Find . 49

ix

Concurrent Insert . 51

Concurrent Delete . 54

CHAPTER 4: LIBRARY IMPLEMENTATION . 57

Interface Design . 57

Unified Transaction Descriptor . 58

Set Interface . 61

Applying MRLock . 61

Applying LFTT . 63

Code Transformation . 63

Code Templates . 64

CHAPTER 5: EXPERIMENTAL EVALUATION . 67

Lock-based Transactions . 67

Experiment Setup . 67

Single-thread Overhead . 69

Resource Scalability . 71

Thread Scalability . 75

Performance Consistency . 77

x

Lock-free Transactions . 78

Transactional List . 79

Transactional Skiplist . 83

Lock-free Dictionaries . 85

CHAPTER 6: CONCLUSION . 93

APPENDIX A: CORRECTNESS PROOF OF MRLOCK 95

Safety . 96

Liveness . 97

APPENDIX B: CORRECTNESS PROOF OF LFTT . 99

Definitions . 100

Serializability and Recoverability . 102

Progress Guarantees . 104

APPENDIX C: CORRECTNESS PROOF OF MDLIST 106

Invariants . 107

Linearizability . 109

Lock Freedom . 111

xi

REFERENCES . 113

xii

LIST OF FIGURES

1 False conflict in STM . 4

2 Atomic lock acquisition process . 27

3 Transaction Execution and Conflict . 38

4 BSTs have various layouts for the same logical ordering (a and b). The linked

list (c) has deterministic layout that is independent of execution histories. . . 45

5 FIND operation in a 3DList (D = 3, N = 64) 49

6 INSERT operation in a 3DList (D = 3, N = 64) 51

7 Contention scaling up to 64 resources . 70

8 Contention scaling up to 1024 resources . 72

9 Thread Scaling Trends for 64 Resources . 74

10 Thread Scaling Trends for 1024 Resources 75

11 Standard deviation (11a, 11b) and relative error (11a, 11b) out of 10 runs . . . 78

12 Transaction Lists (10K Key Range) . 81

13 Transaction Skiplists (1M Key Range) . 84

14 50% INSERT, 50% DELETE, 0% FIND on the NUMA System 86

xiii

15 20% INSERT, 10% DELETE, 70% FIND on the NUMA System 87

16 9% INSERT, 1% DELETE, 90% FIND on the NUMA System 89

17 Throughput on SMP system and dimension sweep on NUMA 91

xiv

LIST OF TABLES

1 Coding Convention . 7

2 Lock overhead obtained without contention 70

xv

LIST OF ALGORITHMS

1 TATAS lock for resource allocation . 26

2 Multi-Resource Lock Data Structures . 28

3 Multi-Resource Lock Acquire . 29

4 Multi-Resource Lock Release . 30

5 Bitset Operations . 32

6 Type Definitions . 36

7 Pointer Marking . 37

8 Logical Status . 39

9 Update NodeInfo . 40

10 Transaction Execution . 42

11 Lock-free Dictionary Data Structure . 48

12 Pointer Marking . 48

13 Concurrent Find . 50

14 Predecessor Query . 50

15 Concurrent Insert . 53

16 Child Adoption . 54

17 Concurrent Delete . 55

18 Libtxd Transaction Descriptor . 58

19 Libtxd Usage Example . 59

20 Libtxd Set Interface . 60

21 Libtxd MRLock Interface . 62

22 Template for Transformed Insert Function . 64

23 Template for Transformed Find Function . 64

24 Template for Transformed Delete Function . 65

xvi

25 Micro-Benchmark . 68

xvii

CHAPTER 1: INTRODUCTION

This dissertation is concerned with the design and implementation of high-performance transac-

tional data structures. By providing two designing strategies — one lock-based and one lock-free

— I show that a wide range of useful transactional data structures can be built from their concurrent

counterparts. My experimental results demonstrate that the performance of proposed transactional

data structures surpass state-of-the-art generic constructions based on transactional memory.

In this chapter, I outline the core issues with exiting concurrent data structure which motivate this

work, and highlight the contributions that are described in this dissertation. I then summarize the

contents of each chapter and explain the pseudo code language convention used in this work.

Motivation

With the growing prevalence of multi-core systems numerous highly concurrent non-blocking data

structures have emerged [65, 29, 97, 74]. Researchers and advanced users have been using libraries

like LibCDS 1, Tervel 2 and Intel TBB 3, which are packed with efficient concurrent implemen-

tations of fundamental data structures. High level programming languages such as C#, Java and

Scala also introduce concurrent libraries, which allow users who are unaware of the pitfalls of

concurrent programming to safely take advantage of the performance benefits of increased con-

currency. These libraries provide operations that appear to execute atomically when invoked indi-

vidually. However, they fall short when users need to execute a sequence of operations atomically

(i.e., compose operations in the manner of a transaction). Users thus cannot extend or compose the

1http://libcds.sourceforge.net/
2http://ucf-cs.github.io/Tervel/
3https://www.threadingbuildingblocks.org/

1

provided operations safely without breaking atomicity. For example, given a concurrent map data

structure, the following code snippet implementing a simple COMPUTEIFABSENT pattern [37] is

error prone.

i f (! map . c o n t a i n s K e y (key)) {

v a l u e = . . . / / s o m e c o m p u t a t i o n

map . p u t (key , v a l u e) ; }

The intention of this code is to compute a value and store it in the map, if and only if the map does

not already contain the given key. The code snippet fails to achieve this since another thread may

have stored a value associated with the same key right after the execution of CONTAINSKEY and

before the invocation of PUT. As a result, the thread will overwrite the value inserted by the other

thread upon the completion of PUT. Programmers may experience unexpected behavior due to

the violation of the intended semantics of COMPUTEIFABSENT. Many Java programs encounter

bugs that are caused by such non-atomic composition of operations [90]. Because of such hazards,

users are often forced to fall back to locking and even coarse-grained locking, which has a negative

impact on performance and annihilates the non-blocking progress guarantees provided by some

concurrent containers.

Moreover, the complexity of operation composition drastically increases in real world programs,

where updates to multiple data structures need to be coordinated simultaneously. Consider a pro-

gram that needs to concurrently maintain a group of items with different properties in separate sets,

such an order processing program with a set of pending orders and a set of processed orders. The

program needs to atomically extract one order from the pending set and put it in the processed set.

If the sets are implemented using hash tables with fine-grained locks, then executing this composed

operation while maintaining data structure consistency requires acquiring one lock in the pending

set and one lock in the processed set. This would break the clean interface and encapsulation of the

2

concurrent sets by exposing their internal locks, because it is not sufficient to perform the two op-

erations separately. This use case may also lead to deadlock if the locks are not acquired following

a global order. As the number of data structures and operations involved in a transaction increases,

the user’s code will be exponentially more complicated. On the other hand, lock-free sets do not

even have the option of exposing their internal synchronization mechanism to users.

The problem of implementing high-performance transactional data structures4 is important and

has recently gained much attention [37, 12, 52, 40, 39, 48, 63]. Supporting composable transaction

for concurrent data structures is of paramount importance for building reusable software systems.

I refer to a transaction as sequence of linearizable operations on one or more concurrent data

structures. This can be seen as a special case of memory transactions where the granularity of

synchronization is on the data structure operation level instead of memory word level. I consider

concurrent data structures “transactional” if they support executing transactions 1) atomically (i.e.,

if one operation fails, the entire transaction should abort), and 2) in isolation (i.e., concurrent

executions of transactions appear to take effect in some sequential order). In this dissertation,

I focus the discussion on the data structures that implement set and map abstract data types 5.

Concurrent sets and maps have emerged as one of the main abstractions of multi-core programming

because their semantics allow maximum disjoint access parallelism compared with other data

structures.

Software transactional memory (STM) [91, 55] can be used to conveniently construct transactional

data structures from their sequential counterparts: operations executed within an STM transaction

are guaranteed to be transactional. It can be used to atomically compose multiple operations on

a single data structure, or across multiple data structures. Despite the appeal of straightforward

4Also referred as atomic composite operations [37]
5Also referred to as collection and dictionary interfaces in software engineering. In this dissertation, I use the term

interchangeably

3

implementation, this approach has yet to gain practical acceptance due to its significant runtime

overhead [14]. An STM instruments threads’ memory accesses by recording the locations a thread

reads in a read set, and the locations it writes in a write set. Conflicts are detected among the

read/write sets of different threads. In the presence of conflicts, only one transaction is allowed to

commit while the others are aborted and restarted. Apart from the overhead of metadata manage-

ment, excessive transaction aborts in the presence of data structure “hot-spots” (memory locations

that are constantly accessed by threads, e.g., the head node of a linked list) limit the overall concur-

rency [52]. Figure 1 illustrates such an example. It shows a set implemented as an ordered linked

list, where each node has two fields, an integer value and a pointer to the next node. The initial

state of the set is {0, 3, 6, 9, 10}. Thread 1 and Thread 2 intend to insert 4 and 1, respectively. Since

these two operations commute, it is feasible to execute them concurrently [16]. In fact, existing

concurrent linked lists employing lock-free or fine-grained locking synchronizations allow concur-

rent execution of the two operations. Nevertheless, these operations have a read/write conflict and

the STM has to abort one of them. The inherent disadvantage of STM concurrency control is that

low-level memory access conflicts do not necessarily correspond to high-level semantic conflicts.

0 3 96 10

Read(0)Thread 1

Thread 2 Read(0) Write(0.next)

41

Insert(4)

Read(3)

Insert(1)

Read(0.next) Write(3.next)

Conflict

Figure 1: False conflict in STM

4

Contribution

It is my thesis that exiting concurrent data structures should support efficient transactional opera-

tion in order for them to gain practical use. The methodologies and tools to develop transactional

data structures should be placed within the reach of mainstream programmers. Existing mem-

ory transaction programming paradigm has been too restrictive in performance to be of practical

use. In this dissertation, I introduce the design and implementation of efficient transactional data

structures that facilitate the development of future highly concurrent software systems.

My first contribution is two methodologies for implementing high-performance transactional data

structures using lock-based and using non-blocking synchronization. The locking strategy employs

multi-resource lock, or MRLock, which uses a lock-free FIFO queue to manage locking requests

in batches. When combined with existing lock-based transaction synchronization techniques such

as semantic locking [38] and transaction boosting [52], it can be used by programmers who prefer

lock-based code to implement high-performance transactional data structures on familiar grounds.

The lock-free strategy involves the use of my lock-free transactional transformation, or LFTT

methodology, which employs transaction descriptor objects to announce the transaction globally

so that delayed threads can be helped. It is applicable to a large class of linked data structures

such as linked lists, binary trees, and skip lists. It encapsulates all operations, operands, and

transaction status in a transaction descriptor, which is shared among the nodes accessed by the same

transaction. It coordinates threads to help finish the remaining operations of delayed transactions

based on their transaction descriptors. When transaction fails, it recovers the correct abstract state

by reversely interpreting the logical status of a node. Write operations are invisible to operations

outside the scope of the transaction until the transaction commits.

A further contribution is a suite of high-performance transactional data structure designs that im-

plements the widely used set and map abstract data types. This includes a brand new search data

5

structure — multi-dimensional linked list, or MDList, which is designed from scratch to provide

maximum disjoint access parallelism. It has a distributed memory layout which alleviates memory

access contention. A write operation modifies at most two nodes so that the interference among

concurrent operations are brought down to a minimum. This data structure implements the map

abstract data type, which is ubiquitous in modern applications. When combined with the above

mentioned transactional strategies, this could greatly benefit application developers who deal with

data intensive scenarios such as in memory databases.

Lastly, by fully implementing each of the designs and integrate them in a open source library I

provide the concurrent programming community with a readily available building block for high-

performance concurrent applications as well as a framework to continuously incorporating addi-

tional transactional data structures. A library of transactional data structures serves as a dedicated

framework for transaction descriptor management, and a unified data structure pool where different

instances of data structures have mutual awareness of the existence of each other. All transactional

data structures within this library will support the same transaction descriptor format, which en-

ables co-operative transaction execution across multiple data structures.

Pseudo-Code Convention

In this dissertation, I use a C++ like pseudo-code as well as actual C++ code snippet to list al-

gorithms. Generic algorithms are listed in pseudo-code so that they can be easily implemented

in another language. Library related code are displayed in C++ to preserve the language features

lacked by the pseudo-code. For clarity of presentation, I use the notion of inline functions, which

have implicit access to the caller’s local variables without explicit argument passing. I also de-

note line b from algorithm a by a.b. Table 1 list the operators and primitives that are used in this

dissertation.

6

Table 1: Coding Convention

Operator C++ representation Pseudo-code representation

Assignment = ←
Equality == =

Relational <,>,<=, >= <,>,≤,≥
Logical ||,&&, ! or, and, !

Bit Operation |,&, |,&,
Member Access .,− > .

Pointer Dereference ∗ ∗
Array Index [i] [i]
Index Range not supported [i : j]

Outline

In this section, I describe the organization of the rest of this dissertation.

In Chapter 2, I explain the terminology for concurrent data structures and transaction synchroniza-

tion. I then review previous work which relates to and motivates my dissertation.

In Chapter 3, I motivate and present efficient designs of both lock-based and lock-free transactional

data structures based on two easy to use techniques: multi-resource lock and lock-free transactional

transformation. I also introduce a brand new search structure, multi-dimension list, which optimize

concurrent write accesses

In Chapter 4, I discuss the implementation details of my transactional data structure library —

libtxd. I also demonstrate how to apply MRLock and LFTT to obtain transactional data structures

using the utility code provided in libtxd.

In Chapter 5, I explain the testing environment for my transactional data structures. I then present

experimental results that showcase the practicality and efficiency of my new transactional designs

7

compared with the best performing alternatives.

In Chapter 6, I conclude the dissertation and suggest directions for future research.

Lastly, I also included detailed correctness proofs for MRLock, LFTT, and MDList in the Appen-

dices.

8

CHAPTER 2: BACKGROUND

I start this chapter by presenting in greater details the technical terms that are generally used when

discussing transactional data structures. Some of the terms are originated from database concur-

rency control, and them may have slightly different implication when applied in the context of data

structures operations.

Terminology

I consider a concurrent data structure to be a set of memory locations that shared among multiple

threads and are accessed and updated only by a group of operations defined by the API specifi-

cations. A concurrent data structure is blocking if it uses any kind of mutual exclusion locks to

protect its shared data. Note that a concurrent data structure that use no locks is not necessarily

non-blocking. Non-blocking data structures refer to those that satisfies one of the progress assur-

ances describe in Section 2. Although blocking and non-blocking data structures differ in terms of

progress assurances, they conform to the same set of concurrent correctness criteria and employ

the same set of atomic primitives.

Atomic Primitives

Atomic primitives are the cornerstones of any synchronization algorithm. COMPAREANDSWAP(

ADDR, EXPECTED, VAL)1, or CAS for short, always returns the original value at the specified

ADDR but only writes VAL to ADDR if the original value matches EXPECTED. CAS is preferred

for two reasons: first, it is a universal atomic operation (infinite consensus number) [50], thus

1Also known as COMPAREEXCHANGE

9

can be used to construct any other atomic operations; second, it is now widely supported in most

systems after first appearing in the IBM 370. In C++ memory model [9], the use of an atomic

operation is usually accompanied by a memory order argument (std::memory order), which

specify how regular memory accesses made by different threads should be ordered around the

atomic operation. More specifically, the use of std::memory order acquire along with

std::memory order release requires that when a thread performs an atomic load opera-

tion with acquire order, prior writes made to other memory locations by the thread that did

the release become visible to it. std::memory order relaxed, on the hand, poses no

ordering constraints.

Correctness Property

Sequential data structures can be verified against their sequential specifications by checking their

pre- and post-conditions as well as program invariants. Determining if a concurrent data structure

behaves as expected is more intricate as threads’ execution can interleave resulting almost infinite

possible execution histories. One widely adopted concurrent correctness property is linearizabil-

ity [58]. This property is defined in terms of method invocations and responses from a compliant

operations: if a method is a synchronized procedure then a call to that procedure is a invocation

and the eventual return from that procedure is a response. A concurrent operation is linearizable if

and only if it appears to took place instantaneously at some points between their invocations and

responses. One important and desirable advantage of linearizability is that it is composable in the

sense that any combination of linearizable objects is still linearizable. However, as I stated in the

introduction, even though individual methods calls are linearizable there is no guarantee that the

composed sequence of method calls is linearizable as a whole. In such cases, it is desirable that the

sequence of method calls satisfies strict serializability [80], which is the analogue of linearizabil-

ity [58] for transactions. A execution history is strictly serializable if its subsequence consisting

10

of all events of committed transactions is equivalent to a legal history in which these transactions

execute sequentially in the order they commit.

Non-blocking Progress Assurance

Blocking data structures have very weak progress guarantee: if a thread crashes or gets preempted

while holding a lock then it may be impossible for any concurrent operations to finish. Non-

blocking synchronization [36] provides stronger progress guarantees by completely eliminating

the use of mutual exclusion locks. A concurrent data structure is lock-free if at least one thread

makes forward progress in a finite number of steps [51]. It is wait-free if all threads make forward

progresses in a finite number of steps. Compared to their blocking counterparts, non-blocking

data structures promise greater scalability and robustness. One common way to construct a non-

blocking object is to use CAS: each contending thread speculates by applying a set of writes on a

local copy of the shared data and attempts to CAS the shared object with the updated copy [21].

Mutual Exclusion

Mutual exclusion algorithms are widely used to construct synchronization primitives like locks,

semaphores and monitors. Designing efficient and scalable mutual exclusion algorithms has been

extensively studied (Raynal [85] and Anderson [2] provide excellent surveys on this topic). In

the classic form of the problem, competing threads are required to enter the critical section one at

a time. In the k-mutual exclusion problem [32], k units of an identical shared resource exist so

that up to k threads are able to acquire the shared resource at once. Further generalization of k-

mutual exclusion gives the h-out-of-k mutual exclusion problem [84], in which a set of k identical

resources are shared among threads. Each thread may request any number 1 ≤ h ≤ k of the

resources, and the thread remains blocked until all the required resources become available.

11

Resource Allocation

Data structures transaction can be viewed as a form of resource allocation problem, [67], where

memory locations in the data structure are resources and threads need to acquire exclusive accesses

to them before update the memory values. The resource allocation problem on shared-memory

multiprocessors extends the above mentioned h-out-of-k mutual exclusion problem in the sense

that the resources are not necessarily identical. The minimal safety and liveness properties for any

solution include mutual exclusion and deadlock-freedom [2]. Mutual exclusion means a resource

must not be accessed by more than one thread at the same time, while deadlock-freedom guarantees

system wide progress. Starvation-freedom, a stronger liveness property than deadlock-freedom,

ensures every thread eventually gets the requested resources. In the strongest FIFO ordering, the

threads are served in the order they arrive.

Related Work

To the best of my knowledge, there is no existing concurrent data structure that provides native

support for transactions. A transactional execution of data structure operations can be seen as a

restricted form of software transactions [45], in which the memory layout and the semantics of

the operations are well defined according to the specification of the data structure. Straightforward

generic constructions can be implemented by executing all shared memory accesses in coarse-

grained atomic sections, which can employ either optimistic (e.g., STM) or pessimistic (e.g., lock

inference) concurrency control. More sophisticated approaches [12, 52, 39] exploit semantic con-

flict detection for transaction-level synchronization to reduce benign conflicts. I draw inspirations

from previous semantic based conflict detection approaches. However, with the specific knowl-

edge on linked data structure, I further optimize the transaction execution by performing in-place

conflict detection and contention management on existing nodes.

12

Lock-based Concurrency Control

In this section, I summarize the solutions to the resource allocation problem and related queue-

based algorithms. I skip the approaches targeting distributed environments [7, 84]. These solu-

tions do not transfer to shared-memory systems because of the drastically different communication

characteristics. In distributed environments processes communicate with each other by message

passing, while in shared-memory systems communication is done through shared memory objects.

I also omit early mutual exclusion algorithms that use more primitive atomic read and write regis-

ters [85, 2]. As I show in section 2, the powerful CAS operation on modern multiprocessors greatly

reduces the complexity of mutual exclusion algorithms.

Resource Allocation Solutions

Assuming each resource is guarded by a mutual exclusion lock, lock acquiring protocols can ef-

fectively prevent deadlocks. Resource hierarchy is one protocol given by Dijkstra [26] based on

total ordering of the resources. Every thread locks resources in an increasing order of enumeration;

if a needed resource is not available the thread holds the acquired locks and waits. Deadlock is

not possible because there is no cycle in the resource dependency graph. Lynch [67] proposes a

similar solution based on a partial ordering of the resources. Resource hierarchy is simple to imple-

ment, and when combined with queue mutex it is the most efficient existing approach. However,

total ordering requires prior knowledge of all system resources, and dynamically incorporating

new resources is difficult. Besides, FIFO fairness is not guaranteed because the final acquisition

of the resources is always determined by the acquisition last lock in this hold-and-wait protocol.

Two-phase locking [31] was originally proposed to address concurrency control in databases. At

first, threads are allowed to acquire locks but not release them, and in the second phase threads

are allowed to release locks without acquisition. For example, a thread tries to lock all needed

13

resources one at a time; if any one is not available the thread releases all the acquired locks and

start over again. When applied to shared-memory systems, it requires a TRYLOCK method that re-

turns immediately instead of blocking the thread when the lock is not available. Two-phase locking

is flexible requiring no prior knowledge on resources other than the desired ones, but its perfor-

mance degrades drastically under contention, because the release-and-wait protocol is vulnerable

to failure and retry. Time stamp ordering [8] prevents deadlock by selecting an ordering among the

threads. Usually a unique time stamp is assigned to the thread before it starts to lock the resources.

Whenever there is a conflict the thread with smaller time stamp wins.

Queue-Based Algorithms

Fischer et al. [33] describes a simple FIFO queue algorithm for the k-mutual exclusion problem.

Awerbuch and Saks [6] proposed the first queuing solution to the resource allocation problem.

They treat it as a dynamic job scheduling problem, where each job encapsulates all the resources

requested by one process. Newly enqueued jobs progress through the queue if no conflict is de-

tected. Their solution is based on a distributed environment in which the enqueue and dequeue

operation are done via message communication. Due to this limitation, they need to assume no

two jobs are submitted concurrently. Spin locks such as the TATAS lock shown in Section 3.3

induce significant contention on large machines, leading to irregular timings. Queue-based spin

locks eliminate these problems by making sure that each thread spins on a different memory lo-

cation [89]. Anderson [3] embeds the queue in a Boolean array, the size of which equals the

number of threads. Each thread determines its unique spin position by drawing a ticket. When re-

linquishing the lock, the thread resets the Boolean flag on the next slot to notify the waiting thread.

The MCS lock [72] designed by Scott et al., employs a linked list with pointers from each thread

to its successor. The CLH lock by Craig et al. [17] also employs a linked list but with pointers

from each thread to its predecessor. A Recent queue lock based on flat-combining synchroniza-

14

tion [23] exhibits superior scalability on NUMA architecture than the above classic methods. The

flat-combining technique reduce contention by aggregating lock acquisitions in batch and process-

ing them with a combiner thread. A key difference between this technique and my multi-resource

lock is that my method aggregates lock acquisition requests for multiple resources from one thread,

while the flat-combining lock gathers requests from multiple threads for one resource. Although

the above queue-based locks could not solve the resource allocation problem on their own, they

share the same inspiration with my method: using a queue to reduce contention and provide FIFO

fairness.

Transaction Synchronization

In this work, I combine both fine-grained thread-level synchronization found in existing lock-free

data structures and semantic conflict detection to implement transactional linked data structures

without the overhead of atomic section synchronizations.

Transactional Memory

Initially proposed as a set of hardware extensions by Herlihy and Moss [56], transactional mem-

ory was intended to facilitate the development of lock-free data structures. However, on current

commodity chips hardware transaction memory (HTM) relies on cache-coherency based conflict

detection scheme, so transactions are subject to spurious failures during page faults and context

switches [22]. This makes HTM less desirable for data structure implementations. Considerable

amount of work and ingenuity has instead gone into designing lock-free data structures using low-

level synchronization primitives such as COMPAREANDSWAP, which empowers researchers to

devise algorithm-specific fine-grained concurrency control protocol.

15

The first software transactional memory was proposed by Shavit and Touitou [91], which is lock-

free but only supports a static set of data items. Herlihy, et al., later presented DSTM [55] that

supports dynamic data sets on the condition that the progress guarantee is relaxed to obstruction-

freedom. Over the years, a large number of STM implementations have been proposed [88, 35, 69,

24, 20]. I omit complete reviews because it is out of the scope of this paper. As more design choices

were explored [68], emerging discussions on the issues of STM regarding usability [86], perfor-

mance [14], and expressiveness [42] have been seen. There is also an increasing realization that

the read/write conflicts inherently provide insufficient support for concurrency when shared ob-

jects are subject to contention [63]. It has been suggested that “STM may not deliver the promised

efficiency and simplicity for all scenario, and multitude of approaches should be explored catering

to different needs” [5].

Lock Inference

STM implementations are typically optimistic, which means they execute under the assumption

that interferences are unlikely to occur. They maintain computationally expensive redo or undo

logs to allow replay or rollback in case a transaction experiences interference. In light of this

shortcoming, pessimistic alternatives based on lock inference have been proposed [71]. These al-

gorithms synthesize enough locks through static analysis to prevent data races in atomic sections.

The choice of locking granularity has an impact on the trade-off between concurrency and over-

head. Some approaches require programmers’ annotation [37] to specify the granularity, others au-

tomatically infer locks at a fixed granularity [30] or even multiple granularities [15]. Nevertheless,

most approaches associate locks with memory locations, which may lead to reduced parallelism

due to false conflicts as seen in STM. Applying these approaches to real-world programs also faces

scalability changes in the presence of large libraries [41] because of the high complexity involved

in the static analysis process. Applying these approaches to real-world programs also faces scala-

16

bility changes in the presence of large libraries [41] because of the high cyclomatic complexity 2

involved in the static analysis process. Moreover, the use of locks degrades any non-blocking

progress guarantee one might expect from using a non-blocking library.

Semantic Conflict Detection

Considering the imprecise nature of data-based conflict detection, semantic-based approaches have

been proposed to identify conflicts at a high-level (e.g., two commutative operations would not

raise conflict even though they may access and modify the same memory data) which enables

greater parallelism. Because semantically independent transactions may have low-level memory

access conflicts, some other concurrency control protocol must be used to protect accesses to the

underlying data structure. This results in a two-layer concurrency control. Transactional boosting

proposed by Herlihy [52] is the first dedicated treatment on building highly concurrent transac-

tional data structures using a semantic layer of abstract locks. Transactional boosting [52] is a

semantic-based methodology for transforming linearizable concurrent data structures into trans-

actional data structures. The idea behind boosting is intuitive: if two operations commute they

are allowed to proceed without interference (i.e., thread-level synchronization happens within the

operations); otherwise they need to be synchronized at the transaction level. It treats the base data

structure as a black box and uses abstract locking to ensure that non-commutative method calls

do not occur concurrently. For each operation in a transaction, the boosted data structure calls the

corresponding method of the underlying linearizable data structure after acquiring the abstract lock

associated with that call. A transaction aborts when it fails to acquire an abstract lock, and it re-

covers from failure by invoking the inverses of already executed calls. Its semantic-based conflict

detection approach eliminates excessive false conflicts associated with STM-based transactional

2A measure of the number of linearly independent execution paths [70].

17

data structures, but it still suffers from performance penalties due to the rollbacks of partially

executed transactions. Moreover, when applied to non-blocking data structures, the progress guar-

antee of the boosted data structure is degraded because of the locks used for transactional-level

synchronization. Transactional boosting is pessimistic in that it acquires locks eagerly before the

method calls, but it still requires operation rollback because not all locks are acquired at once.

Koskinen et al. [63] later generalized this work and introduce a formal framework called coarse-

grained transactions. Bronson et al. proposed transaction prediction, which maps the abstract state

of a set into memory blocks called predicate and relies on STM to synchronize transactional ac-

cesses [12]. Hassan et al. [49] proposed an optimistic version of boosting, which employs a white

box design and provides throughput and usability benefits over the original boosting approach.

Other STM variants, such open nested transactions [77] support a more relaxed transaction model

that leverages some semantic knowledge based on programmers’ input. The relaxation of STM

systems and its implication on composability have been studied by Gramoli et al. [40]. The work

by Golan-Gueta et al. [39] applies commutativity specification obtained from programmers’ input

to inferring locks for abstract data types.

Search Data Structures

Concurrent key-value store data structures that implement abstract dictionaries have been exten-

sively studied in the literature. Unordered dictionaries can be built upon non-blocking hash ta-

bles [74], which achieve O(1) amortized cost. Range queries are not attainable on such data

structures because keys are not totally ordered. I thus focus my discussion on BSTs and skiplists,

which provide totally ordered key-value store and logarithmic search time by retaining balance

either explicitly or probabilistically.

18

Search Trees

Early concurrent BSTs [44, 64, 78] are mostly lock-based adaptations of the sequential data struc-

tures, which focused on decoupling update and rebalancing to explore coarse-grained parallelism.

The strict balance invariants were relaxed in the sense that the balancing condition can be tem-

porarily violated by updates and eventually restored by subsequent rebalancing operations. Recent

fine-grained locking implementations by Bronson et al. [11] and Afek et al. [1] take advantage

of optimistic concurrently control and hand over hand validation to reduce synchronization over-

head. The lock-based relaxed AVL tree by Crain et al. [18] further reduces contention by delaying

tree rotation and employing a dedicated maintenance thread to remove logically deleted nodes.

Drachsler et al. [27] proposed a relaxed balanced and an unbalanced lock-based BSTs in which the

nodes store additional logical ordering data by pointing to its logical predecessor and successor.

The search operation would traverse the logical chain to locate the target if it does not find the

target after reaching a physical leaf node.

Fraser [35] presented a non-blocking BST using multi-word CAS, which is not available on exist-

ing multi-core chips and expensive to implement using CAS. The first practical lock-free lineariz-

able BST design was given by Ellen et al. [29]. Their implementation was based on a leaf-oriented

BST, where values are stored externally in leaf nodes and internal nodes were only used for routing.

Howley and Jones [59] presented a lock-free node-oriented BST based on the same co-operative

technique. Their algorithm has faster search operations than those in Ellen et al.’s algorithm be-

cause the search path is generally shorter in a node-oriented BST than in a leaf-oriented one. On

the other hand, Ellen et al.’s DELETE operations, which avoid removing nodes with two children,

are simpler and faster at the price of extra memory for internal nodes. Natarajan and Mittal [76]

proposed a lock-free leaf-oriented BST, which marks edges instead of nodes. Their algorithm is

more efficient than previous approaches because the mutating operations work on a smaller portion

19

of the tree and execute fewer atomic instructions. Due to the complexity of rebalancing, all of the

above non-blocking trees are not balanced, thus they subject to potential linear runtime for cer-

tain inputs. Brown et al. [13] proposed a general template for implementing lock-free linearizable

down-trees. In order to orchestrate rebalancing among threads, their tree update routine atomically

replaces a subgraph with a new connected subgraph using a set of multi-word synchronization

primitives. As recognized by the above researches, non-blocking rebalancing presents the biggest

challenge to practical non-blocking BSTs.

Skiplists

Pugh [82] designed a concurrent skiplist with per-pointer locks, where an update to a pointer must

be protected by a lock. Shavit [92] discovered that the highly decentralized skiplist is suitable for

shared-memory systems and presents a concurrent priority queue based on Pugh’s algorithm. In

practice, probabilistic balancing is easier to implement and as efficient as deterministic balanc-

ing. This is why the concurrent map class of the Java standard library uses skiplists rather than

search trees. Fraser [35] proposed a lock-free skiplist with an epoch based memory reclamation

technique. It also employs the logical deletion technique, which was originally proposed by Har-

ris [46], to mark pointers and delay physical removal. Fomitchev and Ruppert [34] sketched a

lock-free skiplist design but did not offer any implementation. Sundell and Tsigas [94] presented

a provably correct linearizable lock-free skiplist, which uses exponential back-off to alleviate con-

tention. They guarantee linearizability by forcing threads to help physically remove a node before

moving past it. Herlihy et al. [53] proposed an optimistic concurrent skiplist that simplifies pre-

vious work and allows for easy proof of correctness while maintaining comparable performance.

They later presented a optimistic skiplist [54] that uses hand-over-hand locking to lock two nodes

at a localized positions. Crain et al. [19] proposed a no hot spot skiplist that alleviates contention

by localizing synchronization at the least contended part of the structure. Dick et al. [25] recently

20

presented an improvement over existing skiplists algorithms. Their lock-free skiplist uses rotat-

ing wheels instead of the usual towers to improve locality of reference and speedup traversals.

Skiplists have also been used to built a number of hybrid data structures. Spiegel et al. [93] com-

bined a skiplist and a B-tree to produce a lock-free multi-way search tree, improving spatial locality

of reference of skiplists by storing several elements in a single node.

Tries

Prokopec et al. [81] proposed a lock-free hash array mapped trie using both single-word and

double-word CAS. They introduce intermediate nodes to solve the synchronization issue of up-

dating the branching nodes. However, the intermediate nodes also become hot spots for contention

because every expansion of a branching node requires a new branching node to be linked to the

corresponding intermediate node through CAS. Oshman and Shavit [79] proposed the lock-free

skiptrie using double-word CAS, which combines a shallow skiplist with a x-fast trie to store high

level nodes. The MDList also bears some similarity to above mentioned tries in that the keys are

ordered by their prefixes: a node always shares the same key prefix with its parent nodes. The

major difference lies in the partition strategies: in a trie a node shares the same prefix with all of its

children, but in an MDList a node shares prefixes of different lengths with each of its child. This

leads to a constant branch factor for nodes in tries and reducing branching factors for bottom levels

nodes in MDLists. Besides, retrieving the minimal key in a trie requires repetitive search, while

MDList behaves like a heap where the root node always holds the smallest key. Memory wise, the

values are stored in a trie’s leaf nodes, whereas they are stored in an MDList’s internal nodes.

21

CHAPTER 3: METHODOLOGY

In Section 1.1, I described how existing generic constructions of transactional data structures suffer

from performance bottlenecks. In this chapter, I introduce two methodologies for constructing

efficient transactional data structures from their concurrent counterparts, which are referred as

the base data structures. The locking strategy employs multi-resource lock, or MRLock, which

uses a lock-free FIFO queue to manage locking requests in batches When combined with existing

lock-based transaction synchronization techniques such as semantic locking [38] and transaction

boosting [52], it can be used by programmers who prefer lock-based code to implement high-

performance transactional data structures in a familiar way. The lock-free strategy involves the use

of the lock-free transactional transformation or LFTT, methodology, which employs transaction

descriptor object to announce the transaction globally so that delayed threads can be helped. It is

applicable to a large class of linked data structures such as linked lists and skip lists. Because both

strategies introduces additional code paths for transactional synchronization, the performance of

the obtained transactional data structures largely depends on and cannot exceed the performance

of the base data structures. To obtain even better performing transactional sets and maps than the

ones built from existing concurrent data structures such as linked lists and skiplists, I also introduce

a novel lock-free search data structure — multi-dimensional linked list, or MDList. An MDList

readily maintain its ordering property without rebalancing nor randomization, and it reduces write

access conflict to maximize disjoint access parallelism.

Multi-resource Lock

In this section, I propose the first FIFO (first-in, first-out) multi-resource lock algorithm for solving

the resource allocation problem on shared-memory multiprocessors. As mentioned in Section 2.2,

22

this lends support to implementing lock-based transactional data structures. Given k resources,

instead of having k separate locks for each one, I employ a non-blocking queue as the central-

ized manager. Each element in the queue is a resource request bitset1 of length k with each bit

representing the state of one resource. The manager accepts the resource requests in a first-come,

first-served fashion: new requests are enqueued to the tail, and then they progress through the

queue in a way that no two conflicting requests can reach the head of the queue at the same time.

Using the bitset, it detects resource conflict by matching the correspondent bits. I also introduce an

adaptive scheme that is composed of two lock algorithms of user’s choice, for example the multi-

resource lock which has scalable performance under high levels of contention and a two phase lock

which excels at low levels of contention. The adaptive scheme then alternates the use the locks

depending on the system wide contention level. The key algorithmic advantages of my approaches

include:

1. The FIFO nature of the manager guarantees fair acquisition of locks, while implying starvation-

freedom and deadlock-freedom

2. The lock manager has low access overhead and is scalable with the cost of enqueue and

dequeue being only a single COMPAREANDSWAP operation

3. The maximum concurrency is preserved as a thread is blocked only when there are outstand-

ing conflicting resource requests

4. Using a bitset allows an arbitrary number of resources to be tracked with low memory over-

head, and does not require atomic access

5. The adaptive scheme combines the strength of two lock algorithms and provides overall

better performance

1A bitset is a data structure that contains an array of bits.

23

Motivation

Improving the scalability of resource allocation algorithms on shared-memory multiprocessors is

of practical importance due to the trend of developing many-core chips [10]. The performance of

parallel applications on a shared-memory multiprocessor is often limited by contention for shared

resources, creating the need for efficient synchronization methods. In particular, the limitations

of the synchronization techniques used in existing database systems leads to poor scalability and

reduced throughput on modern multicore machines [60]. For example, when running on a machine

with 32 hardware threads, Berkeley DB was reported to spend over 80% of the execution time in

its Test-and-Test-and-Set lock [60].

Mutual exclusion locks eliminate race conditions by limiting concurrency and enforcing sequen-

tial access to shared resources. Comparing to more intricate approaches like lock-free synchro-

nization [57] and transactional memory [56], mutual exclusion locks introduce sequential ordering

that eases the reasoning about correctness. Despite the popular use of mutual exclusion locks, one

requires extreme caution when using multiple mutual exclusion locks together. In a system with

several shared resources, threads often need more than just one resource to complete certain tasks,

and assigning one mutual exclusion lock to one resource is common practice. Without coordina-

tion between locks this can produce undesirable effects such as deadlock, livelock and decrease in

performance.

Consider two clerks, Joe and Doe, transferring money between two bank accounts C1 and C2,

where the accounts are exclusive shared resources and the clerks are two contending threads. To

prevent conflicting access, a lock is associated with each bank account. The clerks need to acquire

both locks before transferring the money. The problem is that mutual exclusion locks cannot

be composed, meaning that acquiring multiple locks inappropriately may lead to deadlock. For

example, when Joe locks the account C1 then he attempts to lock C2. In the meantime, Doe has

24

acquired the lock on C2 and waits for the lock on C1. In general, one seeks to allocate multiple

resources among contending threads that guarantees forward system progress, which is known as

the resource allocation problem [32]. Two pervasive solutions, namely resource hierarchy [26] and

two-phase locking [31], prevent the occurrence of deadlocks but do not respect the fairness among

threads and their performance degrades as the level of contention increases. Nevertheless, both

the GNU C++ library [9] and the Boost library [61] adopt the two-phase locking mechanism as a

means to avoid deadlocks.

A Naive Algorithm

Given the atomic CAS instruction, it is straightforward to develop simple spin locks. In Algo-

rithm 1 I present an extended TATAS lock that solves the resource allocation problem for a small

number of resources. The basic TATAS lock [87] is a spin lock that allows threads to busy-wait

on the initial test instruction to reduce bus traffic. The key change I made is to treat the lock

integer value as a bit array instead of a Boolean flag. A thread needs to specify the resource re-

quests through a bitset mask when acquiring and releasing the lock. With each bit representing

a resource, the bits associated with the desired resources are set to 1 while others remain 0. The

request updates the relevant bits in the lock bitset if there is no conflict, otherwise the thread spins.

One drawback of this extension is that the total number of resources is limited by the size of in-

teger type because a bitset capable of representing arbitrary number of resources may span across

multiple memory words. Updating multiple words atomically is not possible without resorting to

multi-word CAS [47], which is not readily available on all platforms.

25

Algorithm 1 TATAS lock for resource allocation

1 typedef uint64 bitset; / / u s e 64 b i t i n t e g e r a s b i t s e t
2
3 / / i n p u t l : t h e a d d r e s s o f t h e l o c k
4 / / i n p u t r : t h e r e s o u r c e r e q u e s t b i t mask
5 void tatas_lock(bitset* l, bitset r){
6 bitset b;
7 do{
8 b = *l; / / r e a d b i t s v a l u e
9 if(b & r) / / c h e c k f o r c o n f l i c t

10 continue; / / s p i n w i t h r e a d s
11 }while(!compare_and_set(l, b, b | r));
12 }
13
14 void tatas_unlock(bitset* l, bitset r){
15 bitset b;
16 do{
17 b = *l;
18 }while(!compare_and_set(l, b, b & ˜r));
19 }

Queue-based Algorithm

I implement a queue-based multi-resource lock that manages an arbitrary number of exclusive

resources on shared-memory architectures. My highly scalable algorithm controls resource request

conflicts by holding all requests in a FIFO queue and allocating resources to the threads that reach

the top of the queue. It achieves scalable behavior by representing resource requests as a bitset and

by employing a non-blocking queue that grants fair acquisition of the locks.

My conflict management approach is built on an array-based bounded lock-free FIFO queue [57].

The lock-free property is desirable as my lock manager must guarantee deadlock freedom. The

FIFO property of the data structure allows for serving threads in their arriving order, implying

starvation-freedom for all enqueued requests. I favor an array-based queue over other high perfor-

mance non-blocking queues because it does not require dynamic memory management. Link-list

based queues involve dynamic memory allocation for new nodes, which could lead to significant

26

performance overhead and the ABA2 problem [73]. With a pre-allocated continuous buffer, my

lock algorithm is not prone to the ABA problem and has low runtime overhead by using a single

CAS for both enqueue and dequeue operations.

01000010
00011010

10100000
00000001
00111000
10100100

TAIL

HEAD1:

2:

3:

4:

5:

6:

(a) Cell 6 spins on cell 3.

01000010
00011010

10100000
00000001
00111000
00000000

TAIL

HEAD1:

2:

3:

4:

5:

6:

(b) Release of cell 3. Cell 6 spins on cell 4

Figure 2: Atomic lock acquisition process

Given a set of resources, each bit in a request bitset is uniquely mapped to one resource. A thread

encapsulates a request of multiple resources in one bitset with the correspondent bit of the re-

quested resources set to 1. The multi-resource lock handles requests atomically meaning that a

request is fulfilled only if all requested resources are made available, otherwise the thread waits in

the queue. This all-or-nothing atomic acquisition allows the maximum number of threads, without

conflicting requests, to use the shared resources. The length of the bitset is unlimited and can be set

either at runtime as in boost::dynamic bitset, or at compile time as in std::bitset.

Using variable length bitset is also possible to accommodate growing number of total resources at

runtime, as long as the resource mapping is maintained.

Figure 2a demonstrates this approach. A newly enqueued request is placed at the tail. Starting

2Note that ABA is not an acronym. It refers situations where a thread reads value A at some address and later
attempts CAS operation expecting value A [57]. However, between the read and the CAS another thread has changed
the value from A to B and back to A, thus the CAS operation succeed when it should not.

27

from the queue head, it compares the bitset value with each request. In the absence of conflict, it

moves on to the next one until it reaches itself. Here, the thread on 5th cell successfully acquires

all needed resources. The thread on the tail (6th cell) spins on the 3rd request due to conflict. In

Figure 2b, the thread on the tail proceeds to spin on the 4th cell when the 3rd request was released.

Algorithm 2 Multi-Resource Lock Data Structures

1 #include<bitset.h>
2 #include<atomic>
3 using namespace std;
4
5 struct cell{
6 atomic<uint32> seq; / / s e q u n c e n u m b e r
7 bitset bits; / / r e s o u r c e r e q u e s t b i t s
8 }
9 struct mrlock{

10 cell* buffer; / / r i n g b u f f e r o f c e l l s
11 uint32 mask; / / mask f o r f a s t m o d u l a t i o n
12 atomic<uint32> head; / / h e a d p o s i t i o n
13 atomic<uint32> tail; / / t a i l p o s i t i o n
14 }
15
16 / / i n p u t l : r e f e r e n c e t o t h e l o c k i n s t a n c e
17 / / i n p u t s i z : r e q u i r e d b u f f e r s i z e (p o w e r o f 2)
18 void init(mrlock& l, uint32 siz){
19 l.buffer = new cell[siz];
20 l.mask = siz - 1;
21 l.head.store(0, memory_order_relaxed);
22 l.tail.store(0, memory_order_relaxed);
23 / / i n i t i a l i z e b i t s t o a l l 1 s a n d s e q t o c e l l i n d e x
24 for (uint32 i = 0; i < siz; i++) {
25 l.buffer[i].bits.set();
26 l.buffer[i].seq.store(i, memory_order_relaxed);
27 }
28 }
29
30 void uninit(mrlock& l){
31 delete[] l.buffer;
32 }

Algorithm 2 defines the lock manager’s class. The cell structure defines one element in the

queue, it consists of a bitset that represents a resource request and an atomic sequence number that

coordinates concurrent access. The mrlock structure contains a cell buffer pointer, the size mask,

28

and the queue head and tail. I use the size mask to apply fast index modulus. In my implementation,

the head and tail increase monotonically; I use an index modulus to map them to the correct array

position. Expensive modulo operations can be replaced by bitwise and if the buffer size is chosen

to be a power of two. I discuss the choice of buffer size in Section A, and explain the initialization

of the sequence number and the bitset in following section.

Algorithm 3 Multi-Resource Lock Acquire

1 / / i n p u t l : r e f e r e n c e t o m r l o c k s t r u c t u r e
2 / / i n p u t r : r e s o u r c e r e q u e s t
3 / / o u t p u t : t h e l o c k h a n d l e
4 uint32 acquire_lock(mrlock& l, bitset r){
5 cell* c;
6 uint32 pos;
7 for(;;){ / / c a s l o o p , t r y t o i n c r e a s e t a i l
8 pos = l.tail.load(memory_order_relaxed);
9 c = &l.buffer[pos & l.mask];

10 uint32 seq = c->seq.load(memory_order_acquire);
11 int32 dif = (int32)seq - (int32)pos;
12 if(dif == 0){
13 if(l.tail.compare_exchange_weak(pos, pos + 1, memory_order_relaxed))
14 break;
15 }
16 }
17 c->bits = r; / / u p d a t e t h e c e l l c o n t e n t
18 c->seq.store(pos + 1, memory_order_release);
19 uint32 spin = l.head;
20 while(spin != pos){
21 if(pos - l.buffer[spin & l.mask].seq > l.mask || !(l.buffer[spin & l.

mask].bits & r))
22 spin++;
23 }
24 return pos;
25 }

Acquiring Locks

In Algorithm 3, the code from line 3.7 to line 3.16 outlines a CAS-based loop, with threads com-

peting to update the queue tail on line 3.13. If the CAS attempt succeeds the thread is granted

access to the cell at the tail position, and the tail is advanced by one. The thread then stores its

29

resource request, which is passed to acquire lock as the variable r, in the cell along with a

sequence number. The sequence number serves as a sentinel in my implementation. During the

enqueue operation the thread assigns a sequence number to its cell as it enters the queue as seen

on line 3.18. The nature of a bounded queue allows the head and tail pointers to move through

a circular array. Dequeue attempts to increment the head pointer towards the current tail, while a

successful call to enqueue will increment the tail pointer pulling it away from head. The sequence

numbers are initialized on line 2.26 in Algorithm 2. It is also used by the release lock function

in Algorithm 4.

Algorithm 4 Multi-Resource Lock Release

1 / / i n p u t l : r e f e r e n c e t o m r l o c k i n s t a n c e
2 / / i n p u t h : t h e l o c k h a n d l e
3 void release_lock(mrlock& l, uint32 h){
4 l.buffer[h & l.mask].bits.reset();
5 uint32 pos = l.head.load(memory_order_relaxed);
6 while(l.buffer[pos & l.mask].bits == 0){
7 cell* c = &l.buffer[pos & l.mask];
8 uint32 seq = c->seq.load(memory_order_acquire);
9 int32 dif = (int32)seq - (int32)(pos + 1);

10 if(dif == 0){
11 if(l.head.compare_exchange_weak(pos, pos + 1, memory_order_relaxed))

{
12 c->bits.set();
13 c->seq.store(pos + l.mask + 1,memory_order_release);
14 }
15 }
16 pos = l.head.load(memory_order_relaxed);
17 }
18 }

Once a thread successfully enqueues its request, it spins in the while loop on line 3.20 to 3.23. It

traverses the queue beginning at the head. When there is a conflict of resources indicated by the

bitset, the thread will spin locally on the conflicting request. Line 3.21 displays two conditions that

allow the thread to advance: 1) the cell the thread is spinning on is free and recycled, meaning the

cell is no longer in front of this thread. This condition is detected by the use of sequence numbers;

2) The request in the cell has no conflict, which is tested by bitwise and of the two requests. Once

30

the thread reaches its position in the queue, it is safe to assume the thread has acquired the requested

resources. The position of the enqueued request is returned as a handle, which is required when

releasing the locks.

Releasing Locks

The release lock function releases the locks on the requested resources by setting the bitset

fields to zero using the lock handle, on line 4.4 of Algorithm 4. This allows threads waiting

for this position to continue traversing the queue. The removal of the request from the queue is

delayed until the request in the head cell is cleared (line 4.6). If a thread is releasing the lock on

the head cell, the releasing operation will perform dequeue and recycle the cell. The thread will

also examine and dequeue the cells at the top of the queue until a nonzero bitset is found. The

code between lines 4.6 and 4.17 outlines a CAS loop that is similar to the enqueue function. The

difference is that here threads assist each other with the work of advancing the head pointer. With

this release mechanism, threads which finish before becoming the head of the queue do not block

the other threads.

Bitset Operations

I represent the array of resources status in the form of bitset because its compact memory layout

facilitates efficiency access for both lock acquire and release functions. In Algorithm 3 line 3.21

the two bitsets are compared using bitwise AND operation, and in Algorithm 4 line 4.4 and 4.12

the bitset store in a cell is cleared and re-initialized. In case of 64 or less resources, the bitset can be

implemented as a single 64-bit integer. Otherwise, the bits array can be composed by an array of

integers. I show an excerpt of the bitset class in Algorithm 5. The bitwise AND operation simply

walk through the integer array and perform AND on individual pair of integers. It is easy to deduce

31

that most bitset operations requires linear time with respect to the total number of resources divided

by a constant factor N , where N is the word size of the processor. The length of the integer array

grows reasonably slow on a 64-bit system; my approach consistently outperform the alternatives

up to 1024 resources. Moreover, modern CPUs like the Haswell chips by Intel support vector

instructions that computes AND between two 256-bit integers in a single step [66], which further

improves the efficiency of bitset operations.

Algorithm 5 Bitset Operations

1 class Bitset {
2 int64 m_words, *m_bits;
3 bool operator & (const Bitset& rhs) const {
4 for (int64 i = 0; i < m_words; i++) {
5 if(m_bits[i] & rhs.m_bits[i]) {
6 return true;
7 }
8 }
9 return false;

10 }
11 void Set() {
12 memset(m_bits, ˜0, m_words * sizeof(int64));
13 }
14 void Reset() {
15 memset(m_bits, 0, m_words * sizeof(int64));
16 }
17 };

Lock-free Transactional Transformation

In this section, I present lock-free transactional transformation: a methodology for transform-

ing high-performance lock-free base data structures into high-performance lock-free transactional

data structures. My approach is applicable to a large class of linked data structures—ones that

comprise a set of data nodes organized by references. I focus my discussion here on the data struc-

tures that implement the set abstract data type with three canonical operations INSERT, DELETE,

and FIND. Linked data structures are desirable for concurrent applications because their distributed

32

memory layout alleviates contention [92]. The specification for the base data structures thus de-

fines an abstract state, which is the set of integer keys, and a concrete state, which consists of all

accessible nodes. Lock-free transactional transformation treats the base data structure as a white

box, and introduces a new code path for transaction-level synchronization using only the single-

word COMPAREANDSWAP (CAS) synchronization primitive.

Overview

The two key challenges for high-performance data structure transaction executions are: 1) to ef-

ficiently buffer write operations so that their modifications are invisible to operations outside the

transaction scope; and 2) to minimize the penalty of rollbacks when aborting partially executed

transactions.

To overcome the first challenge, I employ a cooperative transaction execution scheme in which

threads help each other finish delayed transactions so that the delay does not propagate across

the system. It embeds a reference to a transaction descriptor in each node, which stores the

instructions and arguments for operations along with a flag indicating the status of the transaction

(i.e., active, committed, or aborted). A transaction descriptor is shared among a group of nodes

accessed by the same transaction. When an operation tries to access a node, it first reads the

node’s descriptor and proceeds with its modification only if the descriptor indicates the previous

transaction has committed or aborted. Otherwise, the operation helps execute the active transaction

according to the instructions in the descriptor.

To overcome the second challenge, I introduce logical rollback—a process integrated into the

transformed data structure to interpret the logical status of the nodes. This process interprets the

logical status of the nodes left behind by an aborted transaction in such a way that concurrent

operations observe a consistent abstract state as if the aborted transaction has been revoked. The

33

logical status defines how the concrete state of a data structure (i.e., set of nodes) should be mapped

to its abstract state (i.e., set of keys). Usually the mapping is simple—every node in the concrete

state corresponds to a key in the abstract state. Previous works on lock-free data structures have

been using logical deletion [46], in which a key is considered removed from the abstract state if

the corresponding node is bit-marked. Logical deletion encodes a binary logical status so that a

node maps to a key only if its reference has not been bit-marked. I generalize this technique by

interpreting a node’s logical status based on the combination of transaction status and operation

type. The intuition behind my approach is that operations can recover the correct abstract state

by inversely interpreting the logical status of the nodes with a descriptor indicating an aborted

transaction. For example, if a transaction with two operations INSERT(3) and DELETE(4) fails

because key 4 does not exist, the logical status of the newly inserted node with key 3 will be

interpreted as not inserted.

I applied lock-free transaction transformation on an existing lock-free linked list and a lock-free

skiplist to obtain their lock-free transactional counterparts. In my experimental evaluation, I com-

pare them against the transactional data structures constructed from transactional boosting, a word-

based STM, and an object-based STM. I execute a micro-benchmark on a 64-core NUMA system

to measure the throughput and number of aborts under three types of workloads. The results show

that my transactional data structures achieve an average of 40% speedup over transactional boost-

ing based approaches, an average of 10 times speedup over the word-based STM, and an average of

3 times over the object-based STM. Moreover, the number of aborts generated by my approach are

4 orders of magnitude less than transactional boosting and 6 orders of magnitude less than STMs.

I make the following contributions with the introduction of this methodology:

• To the best of my knowledge, lock-free transactional transformation is the first methodol-

ogy that provides both lock-free progress and semantic conflict detection for data structure

34

transactions.

• I introduce a node-based conflict detection scheme that does not rely on STM nor require the

use of an additional data structure. This enables us to augment linked data structures with

native transaction support.

• I propose an efficient recovery strategy based on interpreting the logical status of the nodes

instead of explicitly revoking executed operations in an aborted transaction.

• Data structures transformed by my approach gain substantial speedup over alternatives based

on transactional boosting and the best-of-breed STMs; Due to cooperative execution in my

approach, the number of aborts caused by node access conflict is brought down to a mini-

mum.

• Because my transaction-level synchronization is compatible with the base data structure’s

thread-level synchronization, I am able to exploit the considerable amount of effort devoted

to the development of lock-free data structures.

Data Type Definition

Any transactional data structure must cope with two tasks: conflict detection and recovery. In

previous works [52, 39], locks were commonly used to prevent access conflict, and undo logs

were often used to discard speculative changes when a transaction aborts. I introduce lock-free

transactional transformation: a methodology that streamlines the execution of a transaction by

abolishing locks and undo logs. My lock-free transactional transformation combines three key

ideas: 1) node-based semantic conflict detection; 2) interpretation-based logical rollback; and 3)

cooperative transaction execution. In this section, I explain these ideas and introduce the core

procedures that will be used by transformed data structures: a) the procedure to interpret the logical

35

status of a node; b) the procedure to update an existing node with a new transaction descriptor; and

c) the transaction execution procedure that orchestrates concurrent executions.

For clarity, I list the constants and data type definitions in Algorithm 6. In addition to the fields

used by the base lock-free data structure, I introduce a new field info in NODE. NODEINFO stores

desc, a reference to the shared transaction descriptor, and an index opid, which provides a history

record on the last access (i.e., given a node n, n.info.desc.ops[n.desc.opid] is the most recent

operation that accessed it). A node is considered active when the last transaction that accessed the

node had an active status (i.e., n.info.desc.status = Active). A descriptor [57] is a shared object

commonly used in lock-free programming to announce steps that cannot be done by a single atomic

primitive. The functionalities of my transaction descriptor is twofold: 1) it stores all the necessary

context for helping finish a delayed transaction; and 2) it shares the transaction status among all

nodes participating in the same transaction. For set operations, I pack the high-level instructions

including the operation type and the operand using only 8 bytes per operation. I also employ

the pointer marking technique described by Harris [46] to designate logically deleted nodes. The

macros for pointer marking are defined in Algorithm 12. The Mark flag is co-located with the

info pointers.

Algorithm 6 Type Definitions

1: enum TxStatus
2: Active
3: Committed
4: Aborted
5: enum OpType
6: Insert
7: Delete
8: Find
9: struct Operation

10: OpType type
11: int key

12: struct Desc
13: int size
14: TxStauts status
15: Operation ops[]

16: struct NodeInfo
17: Desc* desc
18: int opid
19: struct Node
20: NodeInfo* info
21: int key
22: ...

36

Algorithm 7 Pointer Marking
1: int Mark ← 0x1
2: define SetMark(p) (p |Mark)

3: define ClearMark(p) (p & ∼Mark)

4: define IsMarked(p) (p & Mark)

Node-based Conflict Detection

In my approach, conflicts are detected at the granularity of a node. If two transactions access differ-

ent nodes (i.e. the method calls in them commute [52]), they are allowed to proceed concurrently.

In this case, shared-memory accesses are coordinated by the concurrency control protocol in the

base data structure. Otherwise, threads proceed in a cooperative manner as detailed in Section 3.

For set data types, each node is associated with a unique key, thus my conflict detection operates

at the same granularity as the abstract locking used by transactional boosting.

I illustrate an example of node access conflict in Figure 3. At the beginning, Thread 1 committed

a transaction t1 inserting keys 1 and 3. Thread 2 attempted to insert keys 4 and 2 in transaction

t2, while Thread 3 was concurrently executing transaction t3 to delete keys 3 and 4. Thread 3 was

able to perform its first operation by updating the info pointer on node 3 with a new NODEINFO.

However, it encounters a conflict when attempting to update node 4 because Thread 2 has yet to

finish its second operation. To enforce serialization, operations must not modify an active node.

In order to guarantee lock-free progress, the later transaction must help carry out the remaining

operations in the other active transaction.

My synchronization protocol is pessimistic in that it assigns a node to a transaction as soon as

an operation requires it, for the duration of the transaction. Moreover, node-based conflict de-

tection effectively compartmentalizes the execution of transactions. Completed operations will

not be affected should a later operation in the transaction experience contention and need to retry

37

(most lock-free data structures use CAS-based retry loops). Each node acts as a checkpoint; once

an operation successfully updates a node, the transaction advances one step towards completion.

Data-based conflict detection, due to the lack of such algorithm-specific knowledge, has to restart

the whole transaction upon conflict.

1 3

Thread 2

Thread 3

4
2

Thread 1 Insert(3) Insert(1)

Insert(4) Insert(2)

Delete(3) Delete(4)

Replaced by t3

t1 t2 t3

Access conflict with t2

Node
Info

opid:1

txdesc:t1

opid:1

txdesc:t2

opid:0

txdesc:t1

opid:0

txdesc:t2

Transaction
Descriptor

Type:Insert,key:3
Type:Insert,key:1
Status:Committed

Size:2

Type:Insert,key:4
Type:Insert,key:2

Status:Active
Size:2

Type:Delete,key:3
Type:Delete,key:4

Status:Active
Size:2

opid:0

txdesc:t3

opid:1

txdesc:t3

Figure 3: Transaction Execution and Conflict

Logical Status Interpretation

To achieve isolation in transaction executions, a write operation needs to buffer or “hide” its update

until the transaction commits; and to achieve atomicity it needs to revoke its modifications upon

transaction abort. In the context of data structure transactions, existing strategies undo the oper-

ations by invoking their inverse operations [52]. This would incur a significant penalty because

the compute cycles spent on the inverse operations do not contribute to the overall throughput and

38

introduce additional contention. I approach the recovery task from another angle: an aborted trans-

action does not need to physically invoke the inverse methods; executed operations in an aborted

transaction just need to appear to have be undone. I achieve this by having operations inversely

interpret the logical status of nodes accessed by operations in an aborted transaction. Both physical

undo and my logical undo reach the same goal of restoring the abstract state of the data structure.

Algorithm 8 Logical Status
1: function ISNODEPRESENT(Node* n, int key)
2: return n.key = key

3: function ISKEYPRESENT(NodeInfo* info,Desc*desc)
4: OpType op← info.desc.ops[info.opid]
5: TxStatus status← info.desc.status
6: switch (status)
7: case: Active
8: if info.desc = desc then
9: return op = Find or op = Insert

10: else
11: return op = Find or op = Delete
12: case: Committed
13: return op = Find or op = Insert
14: case: Aborted
15: return op = Find or op = Delete

In Algorithm 8, I list the function to interpret the logical status of a node according to the value

of the transaction descriptor. Function ISNODEPRESENT, verifies that a node associated with a

specific key is present. This is a common test found in existing linked data structures. Given

a node’s presence, function ISKEYPRESENT verifies if the key should be logically included in

the abstract state, and returns a boolean value based on the combination of operation type and

transaction status. For a node most recently accessed by an INSERT operation, its key is considered

present if the transaction has successfully committed. On the contrary, according to the semantics

of DELETE, a successful operation must remove the key from the set. Thus for a node most recently

accessed by a DELETE operation, its key is considered present if the transaction has aborted. These

two opposite interpretations also match previous observations that INSERT and DELETE are a pair

39

of inverse operations [52]. Since the FIND operation is read-only, no rollback is needed. The node’s

key is always present regardless the status of the transaction. A special case is the operations in an

active transaction, which I treat as committed but are visible only to subsequent operations within

the same transaction scope.

Algorithm 9 Update NodeInfo
1: function UPDATEINFO(Node* n, NodeInfo* info, bool, wantkey)
2: NodeInfo* oldinfo← n.info
3: if ISMARKED(oldinfo) then
4: DO DELETE(n)
5: return retry
6: if oldinfo.desc 6= info.desc then
7: EXECUTEOPS(oldinfo.desc, oldinfo.opid+ 1)
8: else if oldinfo.opid ≥ info.opid then
9: return success

10: bool haskey ← ISKEYPRESENT(oldinfo)
11: if (!haskey and wantkey) or (haskey and !wantkey) then
12: return fail
13: if info.desc.status 6= Active then
14: return fail
15: if CAS(&n.info, oldinfo, info) then
16: return success
17: else
18: return retry

Logical Status Update

As mentioned above, the logical status of a node depends on the interpretation of its transaction

descriptor. In a transformed data structure, an operation needs to change a node’s logical status

before performing any necessary low-level node manipulations. This is done by updating the

node’s NODEINFO pointer as shown in Algorithm 9. Given a node n, the function UPDATEINFO

reads its current info field (line 9.2, verifies its sanity, and attempts to update n.info through the

use of CAS (line 9.15). It returns a tri-state value indicating whether the operation succeeded,

40

failed, or should be retried. I make sure that any other active transaction accessing n is completed

by helping execute its remaining operations (line 9.7). However, it has to avoid helping the same

transaction because of the hazard of infinite recursions. This is prevented by the condition check

on line 9.6. It also skips the update and reports success if the operation has already been performed

by other threads (line 9.8). Due to the use of the helping mechanism, the same operation may

be executed multiple times by different threads. The condition check on line 9.8 allows us to

identify the node accessed by threads that execute the same transaction, and ensures consistent

results. It validates the presence of the key on line 9.10 and test if the key’s presence (as required

by deletions and finds), or lack of presence (as required by insertions), is desired on line 9.11.

The boolean flag wantkey is passed on by the caller function to indicate if the presence of key

is desired. The operation reports failure when wantkey contradicts haskey. Finally, it validates

that the transaction is still active (line 9.13) to prevent a terminated transaction from erroneously

overwriting n.info.

Transaction Execution

I consider the transaction execution model in which a transaction explicitly aborts upon the first

operation failure. The EXECUTETRANSACTION in Algorithm 10 is the entry point of transaction

execution, which is invoked by the thread that initiates a transaction. The EXECUTEOPS function

executes operations in sequence starting from opid. For threads that help to execute a delayed trans-

action, the opid could be in the range of [1, desc.size]. In each step of the while loop (line 10.13),

the return value of the previous operation is verified. It requires the operations to return a boolean

value indicating if the executions are successful. A false value indicates the precondition required

by the operation is unsatisfied and the transaction will abort. Once all operations complete suc-

cessfully it atomically updates the transaction status with a Committed flag (line 10.26). It is not

necessary to retry this CAS operation as a failed CAS indicates that some other thread must have

41

successfully updated the transaction status. The thread that successfully executed the CAS will be

responsible for performing physical node deletion (line 10.27).

Algorithm 10 Transaction Execution
1: thread local Stack helpstack
2: function EXECUTETRANSACTION(Desc* desc)
3: helpstack.INIT()
4: EXECUTEOPS(desc, 0)
5: return desc.status = Committed

6: function EXECUTEOPS(Desc* desc, int opid)
7: bool ret← true
8: set delnodes
9: if helpstack.CONTAINS(desc) then

10: CAS(&desc.f lag, Active, Aborted)
11: return
12: helpstack.PUSH(desc)
13: while desc.status = Active and ret and opid < desc.size do
14: Operation* op← desc.ops[opid]
15: if op.type = Find then
16: ret← FIND(op.key, desc, opid)
17: else if op.type = Insert then
18: ret← INSERT(op.key, desc, opid)
19: else if op.type = Delete then
20: Node* del
21: ret← DELETE(op.key, desc, opid, del)
22: delnodes.INSERT(del)

23: opid← opid+ 1

24: helpstack.POP()
25: if ret = true then
26: if CAS(&desc.f lag, Active, Committed) then
27: MARKDELETE(delnodes, desc)

28: else
29: CAS(&desc.f lag, Active, Aborted)

By adopting cooperative transaction execution, my approach is able to eliminate the majority of

aborts caused by access conflicts. Although rare, potential livelock is possible if two threads were

to access two of the same nodes in opposite order. In such cases, both threads will be trapped

42

in infinite recursions helping execute each other’s transaction. It detects and recovers from this

hazard by using a per-thread help stack, which is a simple stack containing Desc pointers. This

is similar to a function call stack, except it records the invocation of EXECUTEOPS. A thread

initializes its help stack before initiating a transaction. Each time a thread begins to help another

transaction, it pushes the transaction descriptor onto its help stack. A thread pops its help stack

once the help completes. Cyclic dependencies among transactions can be detected by checking for

duplicate entries in the help stack (line 10.9). It recovers by aborting one of the transactions as

shown on line 10.10.

Multi-dimensional Linked List

The performance of the transactional data structures obtained by the above mentioned two strate-

gies will only be as good as the performance of the base data structure that one starts with. Al-

though many concurrent sets and maps based on binary search trees (BST) and skiplists have been

proposed [35, 29], their performance is limited by the inherent bottleneck of disjoint access par-

allelism in BSTs and skiplists. In this section, I present a high-performance linearizable lock-free

dictionary design based on a multi-dimensional list (MDList). A node in an MDList arranges its

child nodes by their dimensionality and order them by coordinate prefixes. The search operation

works by first generating a one-to-one mapping from the scalar keys to a high-dimensional vectors

space, then uniquely locating the target position by using the vector as coordinates. My algorithm

guarantees worst-case search time of O(logN) where N is the size of key space. Moreover, the

ordering property of the data structure is readily maintained during mutations without rebalancing

nor randomization.

43

Motivation

Binary search trees are among the most ubiquitous sequential data structures. Despite recent re-

search efforts, designing a self-balancing non-blocking BST is challenging and remains an active

topic [13, 76, 28]. One difficulty is to devise a correct and scalable design for predecessor query,

which serves as the subroutine for all three operations to locate the physical node containing the

target key. When executing the predecessor query concurrently with write operations, the phys-

ical location of the target key in the tree might have changed before the search finishes. This is

especially troublesome when a predecessor query fails to reach the target node, under which cir-

cumstance it has to decide whether the target element is absent, or the target element’s physical

location has been changed by some concurrent updates [27]. The problem stems from the lack of

one-to-one mapping between the logical ordering of keys and the physical layout of a BST. For

example, the BST in Figure 4a and 4b differ in layout but represent the same ordering for integers

{1, 6, 7}. If a predecessor query looking for node 6 in tree (a) gets suspended when examining

node 7 and another thread transforms the tree into (b) by deleting node 4, the resumed operation

would falsely conclude that node 6 does not exist. Well-orchestrated synchronization techniques,

such using a leaf-oriented BST [11], and embedding logical ordering [27], have been proposed to

address the issue, but they pose additional space or time overhead. Another difficulty is to cope

with sequential bottleneck of rebalancing. BSTs provide logarithmic access time complexity when

they are height balanced. Rebalancing is triggered to maintain this invariant immediately after the

height difference exceeds a certain threshold. For concurrent accesses by a large number of threads,

frequent restructuring induces contention. Mutating operations need to acquire not only exclusive

access to a number of nodes to guarantee the atomicity of their change, but also locks to ensure that

no other mutation affects the balance condition before the proper balance is restored [11]. Relaxed

balance [11] and lazy rebalancing [18] have been suggested to alleviate contention in lock-based

BSTs, but designing efficient lock-free rebalancing operations remains an open topic.

44

1

4

6

7

(a)

1

6

7

(b)

4 61 7

(c)

Figure 4: BSTs have various layouts for the same logical ordering (a and b). The linked list (c) has
deterministic layout that is independent of execution histories.

In recent research studies [65, 94, 35], non-blocking dictionaries based on skiplists are gaining

momentum. A skiplist [83] is a linked list that provides a probabilistic alternative to search trees

with logarithmic sequential search time on average. It eliminates the need of rebalancing by using

several linked lists, organized into multiple levels, where each list skips a few elements. Links

in the upper levels are created with exponentially smaller probability. Skiplist-based concurrent

dictionaries have a distributed memory structure that allows concurrent accesses to different parts

of the data structure efficiently with low contention. However, INSERT and DELETE operations on

skiplists involve updating shortcut links in distant nodes, which incurs unnecessary data dependen-

cies among concurrent operations and limits the overall throughput. Besides, due to the nature of

randomization, skiplists may exhibit less than ideal linear worst-case search time.

45

Overview

I present a linearizable lock-free dictionary implementation based on a multi-dimensional list

(MDList) using single-word COMPAREANDSWAP (CAS) primitives. An MDList [97, 96] stores

ordered key-value pairs in nodes and guarantees worst-case sequential search time of O(logN)

where N is the size of the key universe. The search works by injectively mapping a scalar key

into a high dimensional vector space, then uniquely locating the target node using the vector as

coordinates. The dimensionality D of an MDList is defined as the dimensionality of its vector

coordinates. A node in an MDList shares a coordinate prefix with its parent node. The search is

done through prefix matching rather than key comparison. Unlike previous prefix-based search

data structures [81, 79], an MDList partitions the key universe in a way such that 1) the nodes shar-

ing a common coordinate prefix form a sub-list; and 2) a node store links to at most D sub-lists

arranged by the length of their shared coordinate prefixes. As a result, an MDList provides efficient

concurrent accesses to different partition of the data structure, and its ordering invariant is readily

maintained during insertions and deletions without rebalancing nor randomization. The proposed

dictionary has the following algorithmic characteristics that aim to further improve the through-

put over existing approaches by exploiting a greater level of parallelism and reducing contention

among concurrent operations.

• Nodes are ordered by coordinate prefix, which eliminates the need of rebalancing and ran-

domization.

• Physical layout is deterministic and independent of execution histories, which provides a

unique location for each key, and simplifies the FIND algorithm.

• Each INSERT and DELETE operation modifies at most two consecutive nodes, which allows

concurrent updates to be executed with minimal interference.

46

Definition

The core idea of a multi-dimensional list is to partition a linked list into shorter lists and rearrange

them in a multi-dimensional space to facilitate search. Just like a point in a D-dimensional space,

a node in a D-dimensional list can be located by a D-dimensional coordinate vector. The search

operation examines one coordinate at a time and locates correspondent partitions by traversing

nodes that belong to each dimension. The search time is bounded by the dimensionality of the data

structure and logarithmic time is achieved by choosing D to be a logarithm of the key range.

Definition 1. A D-dimensional list is a rooted tree in which each node is implicitly assigned a

dimension of d ∈ [0, D). The root node’s dimension is 0. A node of dimension d has no more than

D − d children, and each child is assigned a unique dimension of d′ ∈ [d,D).

In an ordered multi-dimensional list, I associate every node with a coordinate vector k, and deter-

mine the order among nodes lexicographically based on k. A dimension d node share a coordinate

prefix of length d with its parent. The following requirement prescribes the exact arrangement of

nodes according to their coordinates.

Definition 2. Given a non-root node of dimension d with coordinate k = (k0, ..., kD−1) and its

parent with coordinate k′ = (k′0, ..., k
′
D−1) in an ordered D-dimensional list: ki = k′i, ∀ i ∈

[0, d) ∧ kd > k′d.

The search operation examines one coordinate at a time and locates correspondent partitions by

traversing nodes that belong to each dimension. The search time is bounded by the dimensionality

of the data structure and logarithmic search time is achieved by choosing D to be a logarithm of

the key range. To map a scalar key to a high-dimensional vector, one can choose any injective and

monotonic function. In this paper, I employ KEYTOCOORD, a simple mapping function based on

numeric base conversion [97]. This function maps keys uniformly to the vector space, which opti-

47

mizes the average search path length for random inputs. For a key in range [0, N), KEYTOCOORD

converts it to the base-d D
√
Ne representation, and treats each digit as one coordinate. For example,

given key 1234, when N = 232 and D = 8 we have (1234)10 = (4D2)16. Thus the key 1234 will

be mapped to vector (0,0,0,0,0,4,D,2).

Algorithm 11 Lock-free Dictionary Data Structure
1: class Dictionary
2: const int D
3: const int N
4: Node* head

5: struct Node
6: int key, k[D]
7: void* val

8: Node* child[D]
9: AdoptDesc* adesc

10: struct AdoptDesc
11: Node* curr
12: int dp
13: int dc

Algorithm 12 Pointer Marking

1: int Fadp ← 0x1, Fdel ← 0x2, Fall ← Fadp|Fdel

2: define SetMarkp, m (p | m)

3: define ClearMarkp, m (p & ∼ m)

4: define IsMarkedp, m (p & m)

Data Types

I define the structure of the concurrent dictionary and the auxiliary descriptor object in Algo-

rithm 11. The dimension of the dictionary is denoted by a constant integer D and the range of the

keys by N . A node contains a key-value pair, an array k[D] of integers that caches the coordinate

vector to avoid repetitive computation, a descriptor for the child adoption process (detailed in Sec-

tion 3), and an array of child pointers in which the dth pointer links to a dimension d child node. A

descriptor [57] is an object that stores operation context used by helping threads to finish a delayed

operation. For a dimension d node, only the indices in [d,D) of its child array are valid and the rest

48

are unused 3. The dictionary is initialized with a dummy head node, which has the minimal key

0. I employ the pointer marking technique [46] to mark adopted child nodes as well as logically

deleted nodes. The macros for pointer marking are defined in Algorithm 12. Fadp and Fdel flags

are co-located with the child pointers.

(3,0,3)

(3,0,2)

(3,0,1)

(3,3,3)

(3,3,2)

(3,3,1)(0,3,1)

(2,0,2)

(0,1,2)

(0,0,3)

(0,0,2)

(0,0,1)

(0,0,0) (3,0,0)(2,0,1)

(0,3,0)

(0,2,2)

(1,0,3)

(0,1,0)

(1,0,2)

(1,1,2)

(1,2,1)

(2,1,0)

(2,2,0)

(3,1,0)

(3,2,0)

(3,3,0)

D2

D1

D0

Figure 5: FIND operation in a 3DList (D = 3, N = 64)

Concurrent Find

I illustrate the FIND operation on an example 3DList in Figure 5. To locate the node with key 62

(coordinates (3,3,2)), the FIND operation traverse 3 sub-lists following the path highlighted by the

3Since nodes of higher dimensions have less children, for a d dimension node it is possible to allocate a child array
of size d to reduce memory consumption. In this paper, I demonstrate the use of constant size child array for simplicity.

49

green arrows. The worst-case time complexity of the search algorithm is O(D ·M) where M is

the maximum number of nodes in each dimension. If we use previously described KEYTOCOORD

to uniformly map the keys into the D-dimensional vectors, M is bounded by D
√
N . This gives

O(D · D
√
N), which is equivalent to O(logN), if we choose D ∝ logN (Note that logN

√
N = 2).

Algorithm 13 Concurrent Find
1: function FIND(int key)
2: Node* curr, pred
3: int dp, dc
4: pred← NIL, curr ← head, dp← 0, dc← 0
5: LOCATEPRED(KEYTOCOORD(key))
6: if dc = D then
7: return curr.val
8: else
9: return NIL

Algorithm 14 Predecessor Query

1: inline function LOCATEPRED(int k[])
2: while dc < D do
3: while curr 6= NIL and k[dc] > curr.k[dc] do
4: pred← curr, dp← dc
5: ad← curr.adesc
6: if ad 6= NIL and dp ∈ [ad.dp, ad.dc] then
7: FINISHINSERTING(curr, ad)
8: curr ← CLEARMARK(curr.child[dc], Fall)

9: if curr = NIL or k[dc] < curr.k[dc] then
10: break
11: else
12: dc← dc+ 1

I list the concurrent FIND function in Algorithm 13. The search begins from the head (line 13.4).

It then invokes LOCATEPRED listed in Algorithm 14 to perform the predecessor query. The LO-

CATEPRED function is an extension of the sequential MDList search function [97]. Given a co-

ordinate vector k, it tries to determine its immediate parent pred and child curr. In the case that

the node with the target coordinates already exists, curr points to the node itself. Together with

the dimension variables dp and dc, they amount to the context for inserting or deleting nodes. On

50

line 14.7, prior to reading curr’s child LOCATEPRED helps finish any child adoption tasks in or-

der to acquire the up-to-date values. Since a child adoption process updates the children indexed

from dp to dc, the function must help curr node if it intends to read the child node in this range

(line 14.6). The helping task does not alter already traversed nodes, so the search process can

continue without restart.

(3,0,3)

(3,0,2)

(3,0,1)

(3,3,3)

(3,3,2)

(3,3,1)(0,3,1)

(2,0,2)

(0,1,2)

(0,0,3)

(0,0,2)

(0,0,1)

(0,0,0) (3,0,0)(2,0,1)

(0,3,0)

(0,2,2)

(1,0,3)

(0,1,0)

(1,0,2)

(1,1,2)

(1,2,1)

(2,1,0)

(2,2,0)

(3,1,0)

(3,2,0)

(3,3,0)

(2,0,0)

Figure 6: INSERT operation in a 3DList (D = 3, N = 64)

Concurrent Insert

The lock-free INSERT operation takes one or two steps and updates no more than two consecutive

nodes. Figure 6 illustrates the insertion of key 32 (coordinates (2,0,0)). In the first step, the process

updates the predecessor node: the new node is spliced with its predecessor on dimension 0 (as

marked the by green arrows), and the old child of the predecessor becomes a dimension 2 child

of the new node. In the second step, the process updates the successor node if its dimensionality

51

has changed during the first step. In this case, the new node adopts child nodes of its successor

between dimension [0, 2) (as marked by the red arrows). I guarantee lock-free progress in the node

splicing step by atomically updating predecessor’s child pointer using CAS [46]. To provide for

lock-free progress in the child adoption step, it needs to announce the operation globally using

descriptor objects [57]. This allows the interrupting threads to help finish the operation in case the

insertion thread is preempted.

I list the concurrent INSERT function in Algorithm 15. After locating the target position (line 15.12),

the function updates the child pointer of the predecessor node (line 15.21). The dimension of the

node being inserted is kept in dp and the dimension of the child in dc (line 14.4 and 14.12). The

new node should be inserted at the dimension dp child of the pred node, while a non-empty curr

node will become the dimension dc child of the new node. The code between lines 15.13 and 15.15

reads the adesc fields from curr and tests if helping is needed. Like in LOCATEPRED, the insertion

need to help curr node if it is going to adopt children from curr node.

Prior to atomically updating the link to the new node, it fills the remaining fields of the new node

(line 15.27 and 15.35). If the new node needs to adopt children from curr node, I use an adopt

descriptor to store the necessary context (line 15.30). The pointers within the range [0, dp) of the

new node’s child array are marked with Fadp. This effectively invalidates these positions for future

insertions. The pointers within the range [dp,D] are set to NIL meaning they are available for

attaching child nodes. curr node is conditionally linked to the new node on line 15.34. dc can be

set to D on either line 15.19 or line 14.12. In the first case, curr must be logically deleted, and

the new node is immediately in front of curr. By not linking it with the new node, it effectively

discards curr. In the second case, the new node has the same key as curr and it essentially

updates the associated value by replacing curr with the new node. On line 15.21, the single-word

CAS atomic synchronization primitive is used to update the pred’s child pointer. The CAS would

fail under three circumstances: 1) the desired child slot has been updated by another competing

52

insertion; 2) the desired child slot has been invalidated by a child adoption process; and 3) the

desired child slot has been marked for logical deletion. If any of the above cases is true, the loop

restarts. Otherwise, the insertion proceeds to finish its own child adoption process.

Algorithm 15 Concurrent Insert
1: function INSERT(int key, void* val)
2: Node* node . the new node
3: Node* pred, curr . new node’s parent and child
4: int dp, dc . dimension of node in pred and curr
5: AdoptDesc* ad . descriptor for child adoption task
6: node← new Node
7: node.key ← key, node.val← val
8: node.k[0 : D]← KEYTOCOORD(key)[0 : D]
9: node.child[0 : D]← NIL

10: while true do
11: pred← NIL, curr ← head, dp← 0, dc← 0
12: LOCATEPRED(node.k)
13: ad← curr 6= NIL ? curr.adesc : NIL
14: if ad 6= NIL and dp 6= dc then
15: FINISHINSERTING(curr, ad)
16: if ISMARKED(pred.child[dp], Fdel) then
17: curr ← SETMARK(curr, Fdel)
18: if dc = D − 1 then
19: dc← D
20: FILLNEWNODE()
21: if CAS(&pred.child[dp], curr, node) then
22: if ad 6= NIL then
23: FINISHINSERTING(node, ad)
24: break
25:
26: inline function FILLNEWNODE()
27: ad← NIL
28: if dp 6= dc then
29: ad← new AdoptDesc
30: ad.curr ← curr, ad.dp← dp, ad.dc← dc

31: node.child[0 : dp]← Fadp

32: node.child[dp : D]← NIL
33: if dc < D then
34: node.child[dc]← curr

35: node.adesc← ad

53

The FINISHINSERTING function in Algorithm 16 performs child adoption on a given node n with

the descriptor ad. This is a helping procedure that must correctly handle duplicate and simulta-

neous executions. The function first reads the adoption context from the descriptor into its local

variables. It then transfers curr node’s children within the range of [dp, dc) to n. Before a child

pointer can be copied, it must be safeguarded so that the value cannot be changed while the copy

is in progress. This is done by setting the Fadp flag in the child pointers (line 16.5). Once the flag

is set, the function proceeds to copy the pointer to n (line 16.8). Finally, the descriptor field in n is

cleared to designate the operation’s completion.

Algorithm 16 Child Adoption
1: function FINISHINSERTING(Node* n, AdoptDesc* ad)
2: Node* child, curr ← ad.curr
3: int dp← ad.dp, dc← ad.dc
4: for i ∈ [dp, dc) do
5: child← FETCHANDOR(&curr.child[i], Fadp)
6: child← CLEARMARK(child, Fadp)
7: if n.child[i] = NIL then
8: CAS(&n.child[i], NIL, child)
9: CAS(&n.adesc, ad, NIL)

Concurrent Delete

The sequential DELETE and INSERT operations on an MDList [97] works reciprocally: the for-

mer may promote a node to a lower dimension while the latter may demote a node to a higher

dimension. This works well for sequential algorithms, but in concurrent execution where threads

help each other, bidirectional change of nodes’ dimension incurs contention and synchronization

issues. Consider a node n with an active child adoption descriptor (i.e., n.adesc 6= NIL). When

concurrency level is high, several threads may read this descriptor and proceed to help finish the

adoption by marking some children on node n.adesc.curr as invalid. One of them will eventually

succeeds in finish the helping (as observed by setting n.adesc← NIL), but I have no way to know

54

if all threads have finished the helping. If a DELETE operation promotes the node n.adesc.curr

by re-enabling the invalid child pointers, an unfinished helping process may erroneously disable

them again. Additional synchronization is required to prevent threads from interfering with each

other when they perform helping task on the same node. I found the simplest solution is to keep

dimensionality change unidirectional.

Algorithm 17 Concurrent Delete
1: function DELETE(int key)
2: Node* curr, pred, child, marked
3: int dp, dc
4: while true do
5: pred← NIL, curr ← head, dp← 0, dc← 0
6: LOCATEPRED(KEYTOCOORD(key))
7: if dc 6= D then
8: return NIL
9: marked← SETMARK(curr, Fdel)

10: child← CASval(&pred.child[dp], curr, marked)
11: if CLEARMARK(child, Fdel|Fadp) = curr then
12: if !ISMARKED(child, Fdel|Fadp) then
13: return curr.val
14: else if ISMARKED(child, Fdel) then
15: return NIL

My lock-free DELETE operation is thus asymmetrical in the sense that it dose not remove any node

from the data structure nor alter the nodes’ dimensionality. It only marks a node for logical dele-

tion [46], and leaves the execution of physical removal to subsequent INSERT operations. When a

new node (nn) is inserted immediately before a logically deleted node (nd), nn expunge nd from

the data structure by skipping nn and linking directly into all of the child nodes of nd. Since the

physical deletion is embedded in the insertion operation, I reduce the interaction between insertion

and deletion operations to a minimal and achieved an overall simple design of lock-free dictio-

nary. This may sound counterintuitive, but the list-like partition strategy of MDList allow us to

efficiently discard nodes by simply skipping links. Since a logically deleted node only gets purged

when an insertion take place immediately in front of it, there will be a number of zombie nodes. I

55

thus trade memory consumption for scalability.

In Algorithm 17, the concurrent DELETE operation traverses the dictionary starting from the head

looking for target node. It shares the same CAS-based loop as the INSERT function. The process

terminates on line 17.8 if it fails to find the target node. Otherwise, it marks the target node for

logical deletion using CAS 17.10. A node is considered logically deleted once the pointer in its

parent’s child array is marked with Fdel. The CASval returns the value store on the address before

the update. It is considered successful if the return value child is equal to the expected value curr,

which is detected by the conditional statement on line 17.11 and 17.12. Otherwise, the function

checks if the target node has already been marked for deletion by examine the Fdel flag on child

(line 17.14). If so, the function returns. Finally, the child pointer in pred must have been updated

by concurrent insertions, DELETE would start anew from the head.

56

CHAPTER 4: LIBRARY IMPLEMENTATION

Exploring opportunities for future multicore scalability requires fully harnessing potential con-

currency that is latent in software interfaces. Recent researches theorize that software systems

can be implemented in a way that scales when their interface operations commute [16, 52]. This

posits an baseline for software scalability. Nevertheless, how to implement software systems that

exceeds the baseline remains an open research challenge. I adopt a holistic approach for develop-

ing transactional data structures — building a reusable open source library named libtxd. In this

library, I integrated four data structures — a linked list, a skiplist, a hash table, and an MDList

each supporting two interfaces (set and map). I also developed a software framework for sup-

porting composable transaction across multiple data structures, and necessary code templates for

continuous integration of new data structures.

Interface Design

The lock-free transactional transformation described in Section 3.3 supports transaction execution

of operations for a single data structure. The transaction execution and descriptor management is a

built-in module of the data structure. This design is shaped by the focus on standalone application

— granting users flexibility to obtain self-contained transaction data structure that has minimal

external dependencies. To allow for executing transactions that involves operations across multi-

ple data structures, I externalized the transaction execution and create a dedicated framework for

transaction descriptor management. Libtxd serves as a unified data structure pool where different

instances of data structures have mutual awareness of the existence of each other. I also devel-

oped an extended transaction descriptor format that encodes the data structure instances besides

operation and operands. All transactional data structures within the library support the same trans-

57

action descriptor format, which enables co-operative transaction execution across multiple data

structures.

Algorithm 18 Libtxd Transaction Descriptor

1 enum TxStatus{
2 ACTIVE,
3 COMMITTED,
4 ABORTED
5 };
6
7 struct TxInfo{
8 TxInfo(TxDesc* _desc, uint8_t _opid);
9 TxDesc* desc;

10 uint8_t opid;
11 };
12
13 typedef std::function<void()> TxCall;
14
15 struct TxOp{
16 virtual bool Execute(TxInfo* info) = 0;
17 TxCall onCommit;
18 TxCall onAbort;
19 };
20
21 struct TxDesc{
22 TxDesc(std::initializer_list<TxOp*> _ops)
23 bool Execute();
24 bool Execute(uint8_t opid);
25 std::atomic<TxStatus> status;
26 std::vector<TxOp*> ops;
27 };

Unified Transaction Descriptor

I list the extended transaction descriptor in Algorithm 18. It is mostly C++ translation of the

pseudo-code listed in Algorithm 6. The major improvement is that I designed an inheritance in-

terface for TXOP using C++ polymorphisms. Instead of giving each operation an type number

as in Algorithm 6, I allow users to implement their own operations as long as they fully override

the pure virtual EXECUTE method. The advantage an inheritance based design is the ability to

58

extend the functionality of transaction operations modularly. As I will demonstrate in the SET in-

terface design in Algorithm 20, the new TXOP interface allows me to write as many set operation

as needed without them interfering with each other. Whereas in Algorithm 8 and 10, with intro-

duction of each new operation type, care must be take to extend the switch cases. Furthermore,

this essentially gives user freedom to implement any operation besides data structure operation.

For example, numeric computation can be implement as a valid TXOP so that computation can be

done between data structure operations.

Algorithm 19 Libtxd Usage Example

1 TxList set1;
2 TxSkiplist set2;
3 TxMDList set3;
4
5 TxDesc* desc = new TxDesc({
6 new Set<int>::InsertOp(3, set1),
7 new Set<int>::DeleteOp(6, set2),
8 new Set<int>::FindOp(5, set1),
9 new Set<int>::InsertOp(7, set3)});

10 desc->Execute();

Another improvement is that I extracted the transaction execution function and made it a member

function of TXDESC class. The EXECUTE function follows the same flow as Algorithm 10, but

now user can execute transaction independently from any instance of data structure. This is impor-

tant as TXDESC must be logically decouple from data structure instances so that cross-container

transactions are possible. Algorithm 19 shows a code snippet to create and execute a transaction

across three containers. The construction of the transaction descriptor involves instantiating mul-

tiple (in this case, four) operations in one batch. The operations can be in any form as long as they

are subclasses of TXOP. Here I show set operation on three different types of containers. The

whole transaction will successfully commit if and only if every operation in it succeeds.

59

Algorithm 20 Libtxd Set Interface

1 template<typename T> class Set{
2 public:
3 struct KeyPredicate{
4 virtual bool IsKeyExist(const TxDesc* desc, const TxDesc* obsr)=0;
5 };
6 struct InsertOp : public TxOp, public KeyPredicate{
7 InsertOp(const T& _key, Set& _s);
8 virtual bool Execute(TxInfo* info){
9 return s.Insert(key, info, onAbort);

10 }
11 virtual bool IsKeyExist(const TxDesc* desc, const TxDesc* obsr){
12 return (desc->status == COMMITTED) || (desc->status == ACTIVE

&& desc == obsr);
13 }
14 Set& s;
15 T key;
16 };
17 struct DeleteOp : public TxOp, public KeyPredicate
18 {
19 DeleteOp(const T& _key, Set& _s);
20 virtual bool Execute(TxInfo* info){
21 return s.Delete(key, info, onCommit);
22 }
23 virtual bool IsKeyExist(const TxDesc* desc, const TxDesc* obsr){
24 return desc->status == ABORTED;
25 }
26 Set& s;
27 T key;
28 };
29 struct FindOp : public TxOp, public KeyPredicate{
30 FindOp(const T& _key, Set& _s);
31 virtual bool Execute(TxInfo* info){
32 return s.Find(key, info);
33 }
34 virtual bool IsKeyExist(const TxDesc* desc, const TxDesc* obsr){
35 return true;
36 }
37 Set& s;
38 T key;
39 };
40 protected:
41 virtual bool Insert(const T& key, TxInfo* info, TxCall& onAbort) = 0;
42 virtual bool Delete(const T& key, TxInfo* info, TxCall& onCommit) = 0;
43 virtual bool Find(const T& key, TxInfo* info) = 0;
44 };

60

Set Interface

I demonstrate how to design data structure interfaces that is compliant with the LIBTXD descriptor

structure using set abstract data type as an example. In Algorithm 20, I list the C++ code for

the set data type defined in LIBTXD. SET is the base class for all data structures that implement

the set abstract date type. It is advantages to utilize C++ inheritance as it allows me to distill

common functionality from all linked data structure and put them in the SET class to reduce code

duplication. In practice, subclasses such as a linked list only needs to override the three pure

virtual member functions. I cover more details on how to implement these methods using provide

code template in the next section. The SET class also contains the definition for three operations

that it supports: INSERTOP, DELETEOP, and FINDOP. As mentioned in the previous section, there

operations are implemented as subclasses of TXOP and thus provide the actual method body for the

EXECUTE method. For example, when the INSERTOP is executed, it invokes the INSERT method

on the stored SET instance. Storing reference to the underlying container in the operation structures

allows the users to bind different container instances at runtime. This also simplifies transaction

execution in TXDESC because there is no need to identify container instances associated with each

operation since they are bound together.

Applying MRLock

I listed the auxiliary classes that allow users to synchronize transaction execution of multiple

method calls on a single concurrent data structure in Algorithm 21. In order to apply MRLock

as the transaction manager for lock-based concurrent data structures, I define a resource to be a

key in a set, and each key is dynamically mapped to a bit in a bitset. Prior to the execution of any

data structures operations, users determines all the keys that will be access during the transaction

and store them in a vector. The vector is passed to RESOURCEALLOCATOR class to be converted

61

into a lockable object. A lockable object is a class that implements a LOCK and UNLOCK method.

The invocation of the LOCK method will be blocked until all required resources have been granted

exclusive access. Once the users obtains a lockable object, they invoke LOCK method and proceed

with any intended data structure operation as normal. The users then invoke UNLOCK after all op-

erations has finished. The operations executed between the response of LOCK and the invocation

of UNLOCK are guaranteed to satisfy atomicity and isolation as MRLock provide mutual exclusion

for resources being access during that period.

Algorithm 21 Libtxd MRLock Interface

1 class MRLockable
2 {
3 public:
4 MRLockable(const Bitset& _mask, MRLock* _mrlock)
5 : mask(_mask), lockHandle(-1), mrlock(_mrlock){}
6 void Lock(){
7 lockHandle = mrlock->Lock(mask);
8 }
9 void Unlock(){

10 mrlock->Unlock(lockHandle);
11 }
12 private:
13 BitsetType m_resourceMask;
14 int m_lockHandle;
15 MRLock<BitsetType>* mrlock;
16 };
17
18 class ResourceAllocator
19 {
20 public:
21 ResourceAllocator (int numResources){
22 mrlock = new MRLock(numResources);
23 }
24 MRLockable* CreateLockable(const vector<int>& resources){
25 Bitset mask;
26 for (unsigned i = 0; i < resources.size(); i++) {
27 mask.Set(resources[i]);
28 }
29 return new MRLockable(mask, mrlock);
30 }
31 private:
32 MRLock* mrlock;
33 };

62

Applying LFTT

In this section, I demonstrate how to apply LFTT on linked data structures. The process involves

two steps: 1) identify and encapsulate the base data structure’s methods for locating, inserting, and

deleting nodes; and 2) integrate the UPDATEINFO function (Algorithm 9) in each operation using

the templates provided in this section.

Code Transformation

The first step is necessary because I still rely on the base algorithm and its concurrency con-

trol to add, update, and remove linkage among nodes. This is a refactoring process, as I do

not alter the functionality of the base implementations. Although implementation details such

as argument types and return values may vary, I need to extract the following three functions:

DO LOCATEPRED, DO INSERT, and DO DELETE. I add a prefix DO to indicate these are the

methods provided by the base data structures. For brevity, I omit detailed code listings, but express

the general functionality specifications. Given a key, DO LOCATEPRED returns the target node

(and any necessary variables for linking and unlinking a node, e.g., its predecessor). DO INSERT

creates the necessary linkage to correctly place the new node in the data structure. DO DELETE

removes any references to the node. Note that some lock-free data structures [46, 35] employ a

two-phased deletion algorithm, where the actual node removal is delayed or even separated from

the first phase of logical deletion. In this case, I only expect DO DELETE to perform the logical

deletion as nodes will be physically removed during the next traversal. I also assume there will be

sentinel head and tail nodes so that the DO LOCATEPRED function will not return null pointers.

63

Algorithm 22 Template for Transformed Insert Function
1: function INSERT(int key, Desc* desc, int opid)
2: NodeInfo* info← new NodeInfo
3: info.desc← desc, info.opid← opid
4: while true do
5: Node* curr ← DO LOCATEPRED(key)
6: if ISNODEPRESENT(curr, key) then
7: ret← UPDATEINFO(curr, info, false)
8: else
9: Node* n← new Node

10: n.key ← key, n.info← info
11: ret← DO INSERT(n)

12: if ret = success then
13: return true
14: else if ret = fail then
15: return false

Algorithm 23 Template for Transformed Find Function
1: function FIND(int key, Desc* desc, int opid)
2: NodeInfo* info← new NodeInfo
3: info.desc← desc, info.opid← opid
4: while true do
5: Node* curr ← DO LOCATEPRED(key)
6: if ISNODEPRESENT(curr, key) then
7: ret← UPDATEINFO(curr, info, true)
8: else
9: ret← fail

10: if ret = success then
11: return true
12: else if ret = fail then
13: return false

Code Templates

Algorithm 22 lists the template for the transformed INSERT function. The function resembles the

base node insertion algorithm with a CAS-based while loop (line 22.4). The only addition is the

code path for invoking UPDATEINFO on line 22.7. The logic is simple: on line 22.6 I check if the

data structure already contains a node with the target key. If so, I try to update the node’s logical

64

status, otherwise I fall back to the base code path to insert a new node. Should any of the two code

paths indicate a retry due to contention, I start the traversal over again.

Algorithm 24 Template for Transformed Delete Function
1: function DELETE(int key, Desc* desc, int opid, ref Node* del)
2: NodeInfo* info← new NodeInfo
3: info.desc← desc, info.opid← opid
4: while true do
5: Node* curr ← DO LOCATEPRED(key)
6: if ISNODEPRESENT(curr, key) then
7: ret← UPDATEINFO(curr, info, true)
8: else
9: ret← fail

10: if ret = success then
11: del← curr
12: return true
13: else if ret = fail then
14: del← NIL
15: return false

16: function MARKDELETE(set delnodes, Desc* desc)
17: for del ∈ delnodes do
18: if del = NIL then
19: continue
20: NodeInfo* info← del.info
21: if info.desc 6= desc then
22: continue
23: if CAS(del.info, info, SETMARK(info)) then
24: DO DELETE(del)

The DELETE operation listed in Algorithm 24 is identical to INSERT except it terminates with fail-

ure when the target node does not exist (line 24.13). I also adopt a two-phase process for unlinking

nodes from the data structure: deleted nodes will firstly be buffered in a local set in EXECUTEOPS,

and when the transaction commits, the info field of buffered nodes will be marked (line 24.23) and

consequently unlinked from the data structure by invoking the base data structures’ DO DELETE.

One advantage of my logical status interpretation is that unlinking nodes from the data structure

is optional, whereas in transactional boosting nodes must be physically unlinked to restore the

65

abstract state. This opens up opportunities to optimize performance based on application scenar-

ios. Timely unlinking deleted nodes is important for linked lists because the number of “zombie”

nodes has linear impact on sequential search time. Leaving delete nodes in the data structure may

be beneficial for skiplists because the overhead and contention introduced by unlinking nodes may

outweigh the slight increase in sequential search time (O(logn)).

The FIND operation listed in Algorithm 23 also needs to update the node’s info pointer. Without

this, concurrent deletions may remove the node after FIND has returned and before the transaction

commits. Since I have extracted the core functionality of interpreting and updating logical status

into a common subroutine, the transformation process is generic and straightforward. To use a

transformed data structure, the application should first initialize and fill a DESC structure, then

invoke EXECUTETRANSACTION (Algorithm 10) with it as an argument. The allocation of the

transaction descriptor contributes to most of the transaction execution overhead.

66

CHAPTER 5: EXPERIMENTAL EVALUATION

All tests are conducted on a 64-core ThinkMate RAX QS5-4410 server running Ubuntu 12.04 LTS.

It is a NUMA system with four AMD Opteron 6272 CPUs (16 cores per chip @2.1 GHz) and 64

GB of shared memory (16 × 4GB PC3-12800 DIMM). Both the micro-benchmark and the lock

implementations are compiled with GCC 4.7 (with the options -o1 -std=c++0x to enable level

1 optimization and C++ 11 support).

Lock-based Transactions

In this section, I assess the overhead, scalability and performance consistency of my multi-resource

lock (MRLock) and compare it with the std::lock function from GCC 4.7 (STDLock), the

boost::lock function from Boost library 1.49 (BSTLock), the resource hierarchy protocol

combined with both std::mutex (RHSTD) and tbb::queue mutex from Intel TBB library

4.1 (RHQueue), and the extended TATAS lock (ETATAS) introduced in Algorithm 1. TBB’s

queue-based mutex is chosen as a representative queue lock implementation, and when combined

with the resource hierarchy protocol it is the state-of-the-art resource allocation solution, while the

Standard library and Boost library are two of the most widely used C++ libraries in practice.

Experiment Setup

Both std::lock and boost::lock implement a two-phase locking protocol to acquire mul-

tiple locks, but they have slightly different requirements for the input parameters: Boost’s ver-

sion accepts a range of lock iterators; the standard library’s version, which takes advantage of

the C++ 11 variadic templates, accepts a variable number of locks as function arguments. I im-

67

plement an interface adapter that encapsulates these differences. I use std::mutex as the un-

derlying lockable object for std::lock, and boost::mutex for boost::lock. For the

resource hierarchy protocol, I use two underlying mutex implementations: std::mutex and

tbb::queue mutex. ETATAS is implemented based on the standard std::atomic comp-

are exchange provided by GCC.

I employ the same micro-benchmark suggested by Scott et al. [89] to evaluate the performance

of these approaches for multiple resource allocation. It consists of a tight loop that acquires and

releases a predetermined number of locks. The loop increments a set of integer counters, where

each counter represents a resource. The counters are not atomic, so without the use locks their

value will be incorrect due to data races. When the micro-benchmark’s execution is complete, I

check each counter’s value to verify the absence of data races and validate the correctness of my

lock implementations. Algorithm 25 lists the benchmark function and related parameters.

Algorithm 25 Micro-Benchmark
1: function MAIN()
2: threads = CreateThreads(TestLock, n)
3: WaitForBarrier()
4: BeginTimer()
5: WaitForThreads(threads)
6: EndTimer()

7: function TESTLOCK(lock, resource, contention, iteration)
8: requested = Random(resources, contention)
9: WaitForBarrier()

10: for 1→ iteration do
11: lock.Acquire(requested)
12: requested.IncreaseCount()
13: lock.Release(requested)

When evaluating classic mutual exclusion locks, one may increase the number of concurrent

threads to investigate their scalability. Since all threads contend for a single critical section, the

contention level scales linearly with the number of threads. However, the amount of contention in

68

the resource allocation problem can be raised by either increasing the number of threads or the size

of the resource request per thread. Given k total resources with each thread requesting h of them,

I denote the resource contention by the fraction h/k or its quotient in percentage. This notation

reveals that resource contention may be comparable even though the total number of resources is

different. For example, 8/64 or 12.5% means each request needs 8 resources out of 64, which pro-

duces about the same amount of contention as 4/32. I show benchmark timing results in Section 5

that verifies this hypothesis. The product of the thread number p and resource contention level

roughly represents the overall contention level.

To fully understand the efficiency and scalability in these two dimensions, I test the locks in a wide

range of parameter combinations: for thread number 2 ≤ p ≤ 64 and for resource number 4 ≤

k ≤ 1024 each thread requests the same number of resources 2 ≤ h ≤ k. I set the loop iteration in

the micro-benchmark to 10,000 and get the average time out of 10 runs for each configuration.

Single-thread Overhead

To measure the lock overhead in the absence of contention, I run the micro-benchmark with a

single thread requesting two resources and subtract the loop overhead from the results. Table 2

shows the total timing for the completion of a pair of lock and unlock operations. In this scenario

MRLock is twice as fast as the two phase locks and the resource hierarchy locks. MRLock process

the two lock requests in one batch, and without obstruction the request handling process only takes

one CAS operation to complete, which brings the overhead of MRLock down to the same level as

a Standard or Boost mutex. The alternatives take about twice the time of MRLock because each

of them need to process two mutex locking operations in order to solve this non-trivial resource

allocation problem. MRLock is slightly slower than ETATAS because of the extra queue traversing

operation. Although std::mutex and boost::mutex does not solve the resource allocation

69

problem, I present them as a baseline performance metric.

Table 2: Lock overhead obtained without contention

MRLock STDLock BSTLock RHLock RHQueue ETATAS
std::mutex

boost::mutex

42ns 95ns 105ns 88ns 90ns 34ns 35ns

 0.001

 0.01

 0.1

 1

4 8 16 32 64

T
im

e
 (

s
e
c
o
n
d
s
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

RHQueue
ETATAS

(a) 2 threads

 0.01

 0.1

 1

 10

 100

4 8 16 32 64

T
im

e
 (

s
e
c
o
n
d
s
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

RHQueue
ETATAS

(b) 32 threads

 0.01

 0.1

 1

 10

 100

 1000

4 8 16 32 64

T
im

e
 (

s
e
c
o
n
d
s
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

RHQueue
ETATAS

(c) 64 threads

 0.01

 0.1

 1

 10

0% 25% 50% 75% 100%

T
im

e
 (

s
e
c
o
n
d
s
)

Resource Contention

MRLock
STDLock

BSTLock
RHLock

RHQueue
ETATAS

(d) 16 threads with 64 resources

Figure 7: Contention scaling up to 64 resources

70

Resource Scalability

My performance evaluation exploring the scalability of the tested approaches when increasing the

level of resource contention is shown in Figures 7a, 7b, and 7c. The y-axis represents the total time

needed to complete the micro-benchmark in a logarithmic scale, where a smaller value indicates

better performance. The x-axis represents the level of resource contention. Each tick mark on the

x-axis represents the beginning of the section to its right, and the tick mark label denotes the total

number of resources in that section. For example, the section between Ticks 32 and 64 represents

the executions with 32 resources, while the section to the right of Tick 64 represents executions

with 64 resources. Within each section, the level of contention increases from 1% to 100%. We

observe a saw pattern because the resource contention level alternates regularly as we move along

the x axis. In addition, we observe that the timing pattern is similar among different sections,

supporting my argument that the level of resource contention is proportional to the quotient of the

request size divided by total number of resources. I also show a zoomed-in view of a single section

in Figure 7d, which illustrates the timings of 16 threads contending for 64 resources. In this graph,

I mark the x-axis by contention level.

When increasing the number of requested resources per thread, the probability of threads request-

ing the same resources increases. This poses scalability challenges for both two-phase locks and

the resource hierarchy implementations because they rely on a certain protocol to acquire the re-

quested locks one by one. As the request size scales up, the acquiring protocol is prolonged thus

prone to failure and retry. At high levels of contention, such as the case with 64 threads (Figure 7c)

when the level contention exceeds 75%, STDLock is more than 50 times slower when compared to

MRLock. BSTLock exhibits the same problem, and its observed performance closely resembles

that of STDLock’s. Unlike the above two methods, RHLock acquires locks in a fixed order, and it

does not release current locks if a required resource is not available. This hold-and-wait paradigm

71

helps stabilize the timings and reduce the overall contention. RHLock resembles the performance

of STDLock in the two thread scenario (Figure 7a), but it outperforms both BSTLock and STD-

Lock by about three times under 50% resource contention on 16 threads (Figure 7d). RHQueue

achieves the best performance among the alternative approaches, due relieved contention introduce

by the queue-base mutex.

 0.001

 0.01

 0.1

 1

 10

128 256 512 1024

T
im

e
 (

s
e

c
o

n
d

s
)

Resource Contention

MRLock
BSTLock

RHLock
RHQueue

(a) 2 threads

 0.01

 0.1

 1

 10

 100

 1000

128 256 512 1024

T
im

e
 (

s
e

c
o

n
d

s
)

Resource Contention

MRLock
BSTLock

RHLock
RHQueue

(b) 32 threads

 0.01

 0.1

 1

 10

 100

 1000

128 256 512 1024

T
im

e
 (

s
e

c
o

n
d

s
)

Resource Contention

MRLock
BSTLock

RHLock
RHQueue

(c) 64 threads

 0.001

 0.01

 0.1

 1

 10

 100

0% 25% 50% 75% 100%

T
im

e
 (

s
e

c
o

n
d

s
)

Resource Contention

MRLock
BSTLock

RHLock
RHQueue

(d) 16 threads with 1024 resources

Figure 8: Contention scaling up to 1024 resources

While the time of all alternative methods show linear growth with respect to resource contention,

72

MRLock remains constant throughout all scenarios. In the case of 64 threads and contention

level 32/64, MRLock achieves a 20 times speed-up over STDLock, 10 times performance gain

over BSTLock, 2.5 times performance increase over RHLock, and is 30% faster than RHQueue.

The fact that MRLock provides a centralized manager to respond the lock requests from threads

in one batch contributes to this high degree of scalability. ETATAS also adopts the same all-or-

nothing protocol, thus it could be seen as an MRLock algorithm with a buffer size of one. It

outperforms MRLock on two threads by about 40% (Figure 7a), and almost ties with MRLock on

32 threads. However, MRLock is 1.7 time faster on 64 threads than ETATAS, because the queuing

mechanism relieves the contention of the CAS loop. In Figure 7d, we see that under low levels

of contention (less than 10% or 7/64), MRLock and ETATAS no longer hold an advantage over

the resource hierarchy locks, and the two-phase locks. For example, STDLock takes only 0.003s

under contention 2/64 on 64 threads, while MRLock takes 0.016s. When the resource contention

level is low, the lock requests are likely to spread out among the pool of resources. The locking

acquiring process using resource hierarchy or two phase locking are not likely to encounter any

conflicts, and may proceed optimistically, but for MRLock every thread has to enqueue its requests

even though they might not conflict with any outstanding request.

Figures 8a, 8b, 8c, and 8d show the time to complete the same benchmark with up to 1024 re-

sources. I exclude ETATAS from the comparison because it dose not support more than 64 re-

sources as explained in Section 2. I also exclude STDLock from this test because of the complier

constraint on the total number of arguments allowed in the variadic template. We observe that MR-

Lock exhibits clear performance advantage over the alternatives. In 2 treads scenario (Figure 8a)

for 1024 resources, MRLock obtains over ten times speed-up against the RHQueue which is the

best alternative, and it maintains an average speed-up of eight times for 32 threads (Figure 8b)

and 64 threads (Figure 8c) scenarios. As shown in Figure 8d, MRLock still maintains a roughly

constant execution time on all levels of contention, but I also notice a slight increase in time when

73

increasing the total number of resources in Figures 8b, and 8c. The execution time of MRLock

forms a series of steps in these two graphs. This is mainly because of the extra time spent on

reading and writing the resource request bitsets with increased length. Also notice that as the total

number of resources increases, the advantage of RHQueue over RHLock diminishes. For exam-

ple, in Figure 8c RHQueue almost has the identical performance as RHLock in the region of 1024

resources. This is an indication that at larger scale the contention among the resources outweighs

the benefit of applying queuing strategy on a single resource.

 0.001

 0.01

 0.1

 1

 10

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
 (

s
e

c
o

n
d

s
)

MRLock
STDLock
BSTLock
RHLock
RHQueue
ETATAS

(a) resource contention 4/64

 0.01

 0.1

 1

 10

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
 (

s
e

c
o

n
d

s
)

MRLock
STDLock
BSTLock
RHLock
RHQueue
ETATAS

(b) resource contention 12/64

 0.01

 0.1

 1

 10

 100

 1000

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
 (

s
e

c
o

n
d

s
)

MRLock
STDLock
BSTLock
RHLock
RHQueue
ETATAS

(c) resource contention 48/64

Figure 9: Thread Scaling Trends for 64 Resources

74

Thread Scalability

Figures 9a, 9b, and 9c show the execution time for my benchmark in the scenarios where the

threads experience contention levels of 4/64, 12/64, and 48/64 respectively. In these graphs, the

contention level is fixed and I investigate the performance scaling characteristics by increasing the

number of threads. I cluster five approaches on the x-axis by the number of threads, while the

y-axis represents the total time needed to complete the benchmark in logarithm scale.

 0.01

 0.1

 1

 10

 100

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
 (

s
e

c
o

n
d

s
)

MRLock
BSTLock
RHLock
RHQueue

(a) resource contention 64/1024

 0.01

 0.1

 1

 10

 100

 1000

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
 (

s
e

c
o

n
d

s
)

MRLock
BSTLock
RHLock
RHQueue

(b) resource contention 256/1024

 0.01

 0.1

 1

 10

 100

 1000

2 Threads

4 Threads

8 Threads

16 Threads

32 Threads

64 Threads

T
im

e
 (

s
e

c
o

n
d

s
)

MRLock
BSTLock
RHLock
RHQueue

(c) resource contention 512/1024

Figure 10: Thread Scaling Trends for 1024 Resources

75

When the level of resource contention is low, MRLock and ETATAS do not exhibit performance

advantages over the other approaches. This is shown in Figure 9a. In this scenario we observe that

when using 32 threads, MRLock is 3.7 times slower than STDLock. The difference in performance

decreases to about 2 times on 64 threads, which implies that my approach has a smaller scaling

factor. I also observe better scalability of the MRLock approach against ETATAS; when moving

from 32 threads to 64 threads the performance of ETATAS degrades threefold resulting in a 2 times

slowdown compared to MRLock.

For 64 resources, the resource contention level that is a pivot point for my algorithm’s performance

is 12/64 or 18% as shown in Figure 9b. MRLock ties with RHQueue up to 16 threads and outper-

forms the other algorithms. MRLock is 4 times faster than STDLock and twice as fast as ETATAS

on 64 threads. In addition, MRLock exhibits better scalability compared to its alternatives. The

time needed to complete the benchmark for ETATAS, BSTLock and STDLock almost tripled when

the number of threads is increased from 32 to 64, while the time of MRLock only increases by

100%. However, we do observe good performance for RHQueue when the number of threads in-

creases. Using the resource hierarchy protocol as oppose to a centralized manager, RHQueue is

more efficient handling the contention among threads, because memory access is spread among

a number of mutexes assigned to each resource. However, as the level of resource contention in-

creases the benefit of handling resource requests in batches outweighs the slowdown introduced

by contending threads. This is shown in Figure 9c, and further illustrated in Figures 10b and 10c

where I test the algorithms up with a pool of 1024 resource. In Figure 9c STDLock takes more than

20 times longer than MRLock while RHQueue is 40% slower than MRLock on average. MRLock

also outperforms the other approaches on all scales except for ETATAS. ETATAS exhibits poor

scalability when increasing the number of threads. As a light weight algorithm it dose not provide

any fairness guarantee, but it is surprisingly the fastest when there are less than 16 threads. In

Figures 10b, and 10c I exclude ETATAS and STDLock due their inapplicability to 1024 resources.

76

MRLock outperforms the alternatives on all scales by an average of 8 times with slightly larger

performance advantage towards scenarios with fewer threads (to the left of x-axis). This is, again,

due to the centralized manager handling the contention among competing threads. Note that the

pivot contention level becomes smaller when increasing the total number of resources. As shown

in In Figures 10a and 8d, MRLock outperforms the alternatives starting from resource contention

level 64/1024 or 6% as oppose to 18% in the 64 resources scenario.

Performance Consistency

It is often desirable that an algorithm produces predicable execution time. I demonstrated in Sec-

tion 5 that my multi-resource lock exhibits reliable execution time regardless the level of resource

contention. Here, I further illustrate that my lock implementation achieves more consistent timings

among different runs when compared to the competing implementations.

Figures 11a and 11b display the standard deviation of execution times from 10 different runs. I

generate randomized resource requests at the beginning of each test run (Algorithm 25), so the

actual resource conflicts might be different for each run. I show the absolute value of the standard

deviation on the y axis, and the number of threads on the x axis (both are in logarithm scale).

Overall, the deviation of all approaches grows slightly as the number of threads increases. This is

expected because in regions of high parallelism, the operating system itself contributes in large part

to this overhead. By looking at the absolute values, MRLock achieves the lowest variation, which

means it also outperforms TATAS in terms of consistency. This indicates that the incorporation of

a FIFO queue stabilized my lock algorithm. Notably, the deviation of STDLock grows linearly. I

also include the percentage deviation in Figures 11d and 11c. The y axis gives the percentage error

normalized by the average time, the variation of MRLock is within 2% or its executing time.

77

 0.0001

 0.001

 0.01

 0.1

 1

 10

2 4 8 16 32 64

Number of Threads

MRLock
STDLock
BSTLock
RHLock
ETATAS

(a) Resource contention 16/32

 0.001

 0.01

 0.1

 1

 10

2 4 8 16 32 64

S
ta

n
d

a
rd

 D
e

v
ia

ti
o

n
 (

s
e

c
o

n
d

s
)

Number of Threads

MRLock
STDLock
BSTLock
RHLock
ETATAS

(b) Resource contention 32/64

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

20 %

2 4 8 16 32 64

P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n

Number of Threads

MRLock
STDLock
BSTLock
RHLock
ETATAS

(c) Resource contention 32/64

0 %

2 %

4 %

6 %

8 %

10 %

12 %

14 %

16 %

18 %

2 4 8 16 32 64

P
e

rc
e

n
ta

g
e

 D
e

v
ia

ti
o

n

Number of Threads

MRLock
STDLock
BSTLock
RHLock
ETATAS

(d) Resource contention 32/64

Figure 11: Standard deviation (11a, 11b) and relative error (11a, 11b) out of 10 runs

Lock-free Transactions

In this section, I compare the overhead and scalability of my lock-free transactional list and skiplist

against the implementations based on transaction boosting, NOrec STM from Rochester Software

Transactional Memory package [69] and Fraser’s lock-free object-based STM [35]. RSTM is the

best available comprehensive suite of prevailing STM implementations. Most of the algorithms

78

distributed with RSTM support building transactional data structures with a few exception such

as single lock algorithms and in-place write algorithms. Due to their lack of support for explicit

self-abort, transactions with failed operations cannot be revoked leading to potentially erroneous

behavior. In my test, TML [20] and its extension NOrec [20] are among the fastest on my platform.

They have extreme low overhead and good scalability due to elimination of ownership records. I

choose NOrec as the representative implementation because its value-based validation allows for

more concurrency for readers with no actual conflict.

For transaction boosting, I implement the lookup of abstract lock using Intel TBB’s concurrent hash

map. Although the transaction boosting is designed to be used in tandem with STMs for replaying

undo logs, it is not necessary in my test case as the data structures are tested in isolation. To

reduce the runtime overhead, I scrap the STM environment and implement a lightweight per-thread

undo log for the boosted data structures. I employ a micro-benchmark to evaluate performance in

three types of workloads: write dominated, read dominated, and mixed. This canonical evaluation

method [20, 46] consists of a tight loop that randomly chooses to perform a fixed size transaction

with a mixture of INSERT, DELETE and FIND operations according to the workload type. I also

vary the transaction size (i.e., the number of operations in a transaction) from 1 to 16 to measure

the performance impact of rollbacks. The tests are conducted on a 64-core NUMA system (4 AMD

opteron 6272 CPUs with 16 cores per chip @2.1 GHz). Both the micro-benchmark and the data

structure implementations are compiled with GCC 4.7 with C++11 features and O3 optimizations.

Transactional List

I show the throughput and the number of spurious aborts in Figure 12 for all three types of lists.

The throughput is measured in terms of number of completed operations per second, which is the

product of the number of committed transactions and transaction size. The number of spurious

79

aborts takes into account the number of aborted transactions except self-aborted ones (i.e., those

that abort due to failed operations). This is an indicator for the effectiveness of the contention

management strategy. Each thread performs 105 transactions and the key range is set up to 104.

My lock-free transactional list is denoted by LFT, the boosted list by BST, and the NOrec STM list

by NTM. The underlying list implementations for both LFT and BST were based on Harris’ lock-

free design [46]. The linked list for NTM is taken directly from the benchmark implementation

in RSTM suite. Since the lock-free list and the RSTM list use different memory management

scheme, I disable node reclamation for fair comparison of the synchronization protocols. For each

list legend annotation, I append a numeric postfix to denote the transaction size (e.g., BST-4 means

the boosted list tested with 4 operations in one transaction).

In Figure 12a, threads perform solely write operations. The upper half of the graph shows the

throughput with both y- and x-axes in logarithm scale. Starting with transaction of size 1, the

throughput curve of BST-1 and LFT-1 essentially expose the overhead difference between the two

transaction synchronization protocols. Because each transaction contains only one operation, the

code paths for transaction rollback in BST and transaction helping in LFT will not be taken. For

each node operation, BST-1 needs to acquire and release a mutex lock, while LFT-1 needs to al-

locate a transaction descriptor. For executions within one CPU chip (no more than 16 threads),

LFT-1 maintains a moderate performance advantage to BST-1, averaging more than 15% speedup.

As the execution spawns across multiple chips, LFT-1’s performance is setback by the use of de-

scriptor, which incurs more remote memory accesses. This trend can be observed for all scenarios

with different transaction sizes. Another noticeable trend is that LFT lists gain better performance

as the transaction size grows. For example, on 64 threads the throughput of LFT-2 slightly falls

short behind that of BST-2, then the performance of LFT-4 is on par with BST-4, and finally LFT-8

and LFT-16 outperforms their BST counterpart by as much as 50%. Two factors contribute to

the great scalability of LFT lists in handling large transactions: 1) its helping mechanism manages

80

conflict and greatly reduces spurious aborts whereas in BST such aborts cause a significant amount

of rollbacks; 2) the number of allocated transaction descriptors decreases as the transaction size

grows whereas in BST the number of required lock acquisitions stays the same.

1k

10k

100k

1M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
NTM-1

LFT-2
BST-2
NTM-2

LFT-4
BST-4
NTM-4

LFT-8
BST-8
NTM-8

LFT-16
BST-16
NTM-16

1 2 4 8 16 32 64 128
1

100

10k

1M

100M

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST
NTM

(a) 50% INSERT, 50% DELETE, 0% FIND

1k

10k

100k

1M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
NTM-1

LFT-2
BST-2
NTM-2

LFT-4
BST-4
NTM-4

LFT-8
BST-8
NTM-8

LFT-16
BST-16
NTM-16

1 2 4 8 16 32 64 128

100

10k

1M

100M

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST
NTM

(b) 33% INSERT, 33% DELETE, 34% FIND

1k

10k

100k

1M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
NTM-1

LFT-2
BST-2
NTM-2

LFT-4
BST-4
NTM-4

LFT-8
BST-8
NTM-8

LFT-16
BST-16
NTM-16

1 2 4 8 16 32 64 128

10k

1M

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST
NTM

(c) 15% INSERT, 5% DELETE, 80% FIND

Figure 12: Transaction Lists (10K Key Range)

Generally, we observe that for small transaction sizes (no more than 4 operations), BST and LFT

lists explore fine-grained parallelism and exhibit similar scalability trends. The throughput in-

creases linearly until 16 threads, and continues to increase at a slower pace until 64 threads. Be-

81

cause executions beyond 16 threads span across multiple chips, the performance growth is slightly

reduced due to the cost of remote memory accesses. The executions are no longer fully concur-

rent beyond 64 threads, thus the overall throughput is capped and may even reduce due to context

switching overhead. LFT lists obtain an average of 25% speedup over BST lists. For large trans-

actions, the throughputs of both LFT and BST list do not scale well. This could be attributed to

the semantic and the randomness of the benchmark. As the transaction size grows, the probability

of a randomly generated sequence of operations will all succeed is inherently smaller. Most of the

transactions were self-aborted due to some failed attempts to locate the target element. LFT lists

outperforms BST lists by an average of 40% in these scenarios. On the other hand, the throughput

of all NTM lists stagnates as the number of threads increases. Since NTM uses a single writer

lock, concurrency is precluded for this write-dominated test case. On 64 threads, both BST and

LFT lists are able to achieve as much as 10 times better performance than NTM lists.

On the bottom half of Figure 12a, I illustrate the histogram of spurious aborts across all transaction

sizes and cluster them by thread counts. The y-axis is in logarithmic scale. For BST lists and NTM

lists the number of spurious aborts grows linearly with the increase of threads. BST lists have about

100 times less aborts than NTM lists, which matches my intuition that semantic conflict detection

can remarkably reduce the number of false conflicts. Also as expected no approach incurs spurious

aborts in single thread scenario. Remarkably, LFT lists do not introduce spurious aborts until 32

threads, and the number of aborts is 4 orders of magnitude smaller than that of BST lists. The

helping mechanism of LFT is able to resolve majority of the conflicts in a cooperative manner, and

aborts only when cyclic dependencies exist among transactions.

I show the results from mixed and read-dominated workloads in Figure 12b and 12c. The through-

puts follow the same pattern as in Figure 12a with LFT lists’ performance advantage slightly di-

minishes in read-dominated workload. This is because the FIND operations in LFT lists also update

descriptors in nodes, which requires extra cycles compared with read-only BST FIND operations.

82

Nevertheless, LFT lists still maintain an average of 20% speedup over BST lists in these scenarios

and achieves as much as 40% throughput gain for large transactions. Because of allowing reader

concurrency, NTM lists also exhibit some degree of scalability in read-dominated scenarios.

Transactional Skiplist

In Figure 13, I show the throughput and the number of spurious aborts for three types of trans-

actional skiplists. All of them are based on Fraser’s open source lock-free skiplist [35], and the

epoch-based garbage collection is enabled in all three. The naming convention for BST and LFT

skiplists remain the same as in Figure 12. I denote the STM based skiplist as OTM because it

uses Fraser’s object-based STM. Compared with word-based STMs, an object-based STM groups

memory into blocks thus reducing metadata overhead. Since skiplists have logarithmic search time,

I am able to stress the algorithms with heavier workloads: each threads now performs 1 million

transactions and the key range is also boosted to 1 million.

Overall, with a peak throughput of more than 3 million (OP/s), transaction execution on skiplists

is considerably more efficient than on linked lists. Also both OTM and BST skiplists generates 2

orders or magnitude less spurious aborts than their list counterparts. Because skiplist algorithms

traverse exponentially less nodes than list algorithms, a single operation can finish much sooner,

which greatly reduces the probability of memory access conflicts in STM and lock acquisition time

out in transaction boosting. Another noteworthy difference is that the divergent scalability trends

of large and small transactions. As we can see in Figure 13a, large transaction such as LFT-8

and LFT-16 achieves maximum throughputs on a single thread, then their throughputs steadily fall

as the number of threads increases. On the contrary, the throughputs of small transactions such as

LFT-2 and LFT-4 start low, but gain momentum as more threads are added. Large transactions have

lower synchronization overhead but are vulnerable to conflict. As the number of threads increases,

83

a failed large transaction could easily forfeit a considerable amount of operations. On the flip side,

small transactions incur greater synchronization overhead, but are less likely to encounter conflicts

when more threads contend with each other.

100k

1M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
OTM-1

LFT-2
BST-2
OTM-2

LFT-4
BST-4
OTM-4

LFT-8
BST-8
OTM-8

LFT-16
BST-16
OTM-16

1 2 4 8 16 32 64 128

100

10k

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST
OTM

(a) 50% INSERT, 50% DELETE, 0% FIND

100k

1M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
OTM-1

LFT-2
BST-2
OTM-2

LFT-4
BST-4
OTM-4

LFT-8
BST-8
OTM-8

LFT-16
BST-16
OTM-16

1 2 4 8 16 32 64 128

100

10k

1M

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST
OTM

(b) 33% INSERT, 33% DELETE, 34% FIND

100k

1M

T
h

ro
u

g
h

p
u

t
(O

P
/s

)

LFT-1
BST-1
OTM-1

LFT-2
BST-2
OTM-2

LFT-4
BST-4
OTM-4

LFT-8
BST-8
OTM-8

LFT-16
BST-16
OTM-16

1 2 4 8 16 32 64 128

100

10k

1M

A
b

o
rt

e
d

 T
ra

n
s
a
c
ti

o
n

Number of Threads

LFT
BST
OTM

(c) 15% INSERT, 5% DELETE, 80% FIND

Figure 13: Transaction Skiplists (1M Key Range)

Despite the differences, we still observe performance results generally similar to that of transaction

lists. LFT and BST skiplists outperform OTM skiplists by as much as 3 times across all scenarios,

while LFT skiplists maintain an average of 60% speedup over BST for large transactions. For

84

example, in Figure 13a on 32 threads LFT-8 outperforms BST-8 by 125%. Even for small trans-

actions, LFT skiplists begin to set the throughput apart from BST skiplists further than what is in

Figure 12. For example, in Figure 13b on 32 threads LFT-2 achieves an 30% speedup over BST-2.

Lock-free Dictionaries

I compare the performance of MDList to the following concurrent skiplists and BSTs that are

available to me in C/C++ implementations.

1. The rotating skiplist (RTLIST) by Dick et al. [25]. Their implementation is build upon the

C port of Crain’s no hot-spot skiplist [19], which employs a background thread to maintain

balance and handle physical deletions.

2. Herlihy’s lock-free skiplist [57] (HLLIST) with lazy deletions. The tested version is derived

from Wicht’s C++ implementation [95].

3. Fraser’s publicly available lock-free skiplist [35] (FRLIST), which includes several opti-

mizations not found in HLLIST. It is often considered as the most efficient skiplist imple-

mentation.

4. The lock-based implementation of Bronson et al.’s relaxed AVL tree [11] (BRNBST) derived

from Wicht’s C++ implementation [95].

5. The lock-free unbalanced BST (ELNBST) based on Ellen et al’s algorithm [29]. The imple-

mentation is derived from Wicht’s C++ implementation [95].

6. The Citrus tree [4] (CTRBST) by Arbel et al, which employs the novel synchronization

mechanism read copy update (RCU). RCU allows updates to produce a copy of the data

85

they write so the read-only accesses can proceed without acquiring locks. Code is available

directly from the authors.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
ELNBST

(a) 1K keys

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

1 2 4 8 16 32 64 128
T

h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
ELNBST

(b) 1M keys

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
BRNBST
ELNBST

(c) 1G keys

Figure 14: 50% INSERT, 50% DELETE, 0% FIND on the NUMA System

The original implementation of FRLIST, RTLIST and my algorithm used the epoch based garbage

collection proposed by Fraser [35], while BRNBST, ELNBST and HLLIST used hazard point-

ers [75]. CTRBST, on the other hand, did not employ any memory management scheme. For fair

comparison of the algorithms themselves, I disabled memory reclamation for all approaches but

86

use thread-caching malloc 1 as a scalable alternative to the standard library malloc. I employ a

micro-benchmark to evaluate the throughput of these approaches for uniformly distributed keys.

This canonical evaluation method [46, 25, 76] consists of a tight loop that randomly chooses to

perform an INSERT, a DELETE or a FIND operation in each iteration. Each thread performs one

million operations and I take the average from four runs. As done in [76, 13] I pre-populate the

data structures to half capacity to ensure consistent result.

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
ELNBST

(a) 1K keys

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
ELNBST

(b) 1M keys

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
BRNBST
ELNBST

(c) 1G keys

Figure 15: 20% INSERT, 10% DELETE, 70% FIND on the NUMA System

1http://goog-perftools.sourceforge.net/doc/tcmalloc.html

87

Figures 14, 15 and 16 illustrate the algorithms’ throughput on the NUMA system. The y-axis

represents the throughput measured by operation per second, and the x-axis represents the number

of threads in logarithmic scale. Like the evaluations in [76, 59], I consider three different workload

distributions: a) write-dominated with 50% insertion, 50% deletion; b) mixed workload with 20%

insertion, 10% deletion and 70% find; c) read-dominated with 9% insertion, 1% deletion and 90%

find. I also consider three ranges of keys, 1000 (1K), 1 million (1M) and 1 billion (1G). The size

of key space affects the height of search trees, but it does not affect the tower height of a skiplist

nor the dimension of an MDList as those are chosen by users prior to execution.

Figures 14a, 14b and 14c depicted the write-dominated situation. We observe that the both skiplist-

based and BST-based dictionaries were able to explore fine-grained parallelism and exhibit similar

scalability trends. The overall throughput increases almost linearly until 16 threads, and contin-

ues to increase at a slower pace until 64 threads. Because executions beyond 16 threads span

across multiple chips, the performance growth is slightly reduced due to the cost of remote mem-

ory accesses. The executions are no longer fully concurrent beyond 64 threads, thus the overall

throughput is capped and may even reduce due to context switching overhead. For small key space

of 1K keys (Figure 14a, RCU-based Citrus trees stand out against the rest. This is because most

insertions would not update the data structures due to the existence duplicated keys, and they es-

sentially become read-only operations for which RCU is optimized. MDLIST has slightly larger

overhead for traversing operations if it is under-populated. To locate an existing node, the pre-

fix matching algorithm always needs to perform D comparison operations, whereas in a BST, the

search algorithm could terminate much earlier because of shallow depth. For 1M key space (Fig-

ure 14b, most approaches achieve similar throughput except for HLLIST. MDLIST outperform the

other approaches by an average of 25%. It continues to excel in large key space with one billion

keys. As shown by Figure 14c, MDLIST outperforms the best alternatives including FRLIST and

CTRBST by as much as 100%. For larger key space, insertions are less likely to collide with an

88

existing key. The size of the data structures grows much quicker too. Each insertion in MDLIST

modifies at most two consecutive nodes, incurring less remote memory access than the skiplist-

based and BST-based approaches.

 0

 2e+07

 4e+07

 6e+07

 8e+07

 1e+08

 1.2e+08

 1.4e+08

 1.6e+08

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
ELNBST

(a) 1K keys

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 4.5e+07

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
ELNBST

(b) 1M keys

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

1 2 4 8 16 32 64 128

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
BRNBST
ELNBST

(c) 1G keys

Figure 16: 9% INSERT, 1% DELETE, 90% FIND on the NUMA System

Figures 15a, 15b and 15c show the throughput for the mixed workload. The overall scalability

trends for all three key ranges mimic those of the write-dominated workload respectively. In key

spaces with 1M to 1G keys, MDLIST achieves 15% 30% speedup over FRLIST and ELNBST,

which are two of the best skiplist-based and BST-based algorithms in mixed workload. Fig-

89

ures 16a, 16b and 16c show the throughput for the read-dominated workload. As the distribution

of mutating operations further decreases to one tenth of the whole operations, the performance

gaps among different algorithms begin to diminish. For 1G keys (Figure 16c, RTLIST, FRLIST,

CTRBST, and ELNBST have almost identical performance up until 8 threads. This is because

all the data structures being tested implement logarithmic search. Less writes means less inter-

ference between concurrent updates and traverse. The performance characteristics of difference

algorithms thus converge towards an ideal straight line. They differ only in term of scalability at

high levels of concurrency. CTRBST achieves the best scalability among the alternatives but is still

20% slower than MDLIST. Note that in Figure 16a CTRBST’s performance degrades drastically

when the benchmark spawn more threads than the number of available hardware cores. CTRBST

employs a user level RCU library that uses global locks, which may delay running threads if the

threads holding the locks get preempted.

Figure 17a and 17b show the throughput of the algorithms on the SMP system. The x-axis in these

graphs is in linear scale. In Figure 17a, the executions consist solely of INSERT operations, which

insert keys in the range of 32-bit integers. For all approaches, the overall system throughput peaks

at 12 threads which is the maximum number of hardware threads. Executions beyond 12 threads

are preemptive, and the throughput slightly dropped due to unbalanced load causing increasing

amount of cache invalidation. MDLIST provides an average of 30% speedup over CTRBST on all

levels of concurrency. While the performance of the BST-based approaches closely resembles each

other, the performance of skiplist-based approaches varies. Notably, the throughput of RTLIST

drops significantly beyond 6 threads. The impact of a dedicated maintenance is clearly visible on

the SMP system, where the background thread has to compete with working threads for limited

hardware cores. Because the background thread is the only thread that does physical deletion, the

overall progress will stagnate once the it is suspended. In Figure 17b, I distribute the workload

by having 30% insertions, 20% deletions and 50% searches. MDLIST outperforms FRLIST by as

90

much as 60%. The throughput of CTRBST again drops drastically after exhausting all hardware

threads.

 0

 1e+06

 2e+06

 3e+06

 4e+06

 5e+06

 6e+06

 7e+06

 8e+06

 9e+06

 2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t
(O

P
/s

)

Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
BRNBST
ELNBST

(a) 4G keys, 100% INSERT

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 1.2e+07

 1.4e+07

 2 4 6 8 10 12 14 16 18 20 22 24

T
h
ro

u
g
h
p
u
t
(O

P
/s

)
Number of Threads

MDLIST
RTLIST
FRLIST
HLLIST
CTRBST
BRNBST
ELNBST

(b) 4M keys, 50% updates

 4
 8

 12
 16

 20
 24

 28
 32

 8
 16

 24
 32

 40
 48

 56
 64

 0
 5e+06
 1e+07

 1.5e+07
 2e+07

 2.5e+07
 3e+07

 3.5e+07
 4e+07

Throughput (op/s)

50% Insert 50% Delete

Dimensions Number of Threads

Throughput (op/s)

(c) Dimension sweep

Figure 17: Throughput on SMP system and dimension sweep on NUMA

In Figure 17c, I sweep the dimension of MDLIST from 4 to 32 on the NUMA system, and show

that the algorithm achieves maximum throughput with 20 dimensions on 64 threads. On all scale

levels, we see that the throughput converges towards 20 dimensions. This means that the way the

dimensionality of an MDLIST affects its performance is independent from the number of threads.

The performance of MDLIST can be optimized if the access pattern of the user application is taken

91

into account.

Overall, MDLIST excels at high levels of concurrency with large key spaces. The locality of its

operations makes it suitable for NUMA architectures where remote memory access incurs con-

siderable performance penalties. On an SMP system with low concurrency, MDLIST performs

equally well or even better than the state of the art skiplist-based and BST-based approaches.

92

CHAPTER 6: CONCLUSION

This dissertation presents a forward-looking and pragmatic approach that will lead to the discovery

of the key principles for effective multiprocessor algorithm and application development. I intro-

duced two methodologies for implementing high-performance transactional data structures based

on their linearizable counterparts.

My multi-resource lock algorithm (MRLock) provides a scalable solution to lock-based transac-

tional synchronization by solving the resource allocation problem on shared-memory multiproces-

sors. The MRLock algorithm guarantees FIFO fairness for contending threads, and is scalable with

significant performance increase over the best available solutions. As demonstrated by our experi-

mental evaluation, the MRLock algorithm exhibits reliability and scalability that can be beneficial

to applications experiencing high levels of resource contention.

My lock-free transactional transformation (LFTT), on the other hand, transforms lock-free linked

data structures into fast lock-free transactional data structures. My approach embeds the transac-

tion metadata in each node, which enables resolving transaction conflicts cooperatively through

thread-level synchronization. No undo logs nor rollbacks are needed because operations can cor-

rectly interpret the logical status of nodes left over by aborted transactions. Data structures that

guarantees lock-free or weaker progress will be able to maintain their progress properties during

the transformation. The performance evaluation results show that my transaction synchronization

protocol has low overhead and high scalability–providing more than 10 times over the alternative

word-based STM and 3 times over the object-based STM. Besides the performance advantages, my

approach decreases spurious aborts to a minimum, which is desirable because transaction success

rate is a decisive factor for a majority of the applications.

Furthermore, I presented a simple and efficient lock-free dictionary design based on MDList.

93

It maps keys into high dimensional vector coordinates and achieve deterministic layout that is

consistent with nodes’ logical ordering. I exploited spatial locality to increase the throughput of

the INSERT operations, and adopted asymmetrical logical deletion to address the synchronization

overhead of the DELETE operations. When compared to the best available skiplist-based and BST-

based algorithms, my algorithm achieved performance gains in scenarios with medium to large key

spaces. The performance of my dictionary can be tailored to different access patterns by changing

its dimensionality.

Finally, I integrated the above mentioned components and introduced my open source library

libtxd. It is a software framework to build future transactional data structures. The package in-

cludes four lock-free transactional data structures, two abstract data type interfaces, and helper

classes to support MRLock-based transactions. The library provides intuitive interface and is de-

veloped with sound software engineering practices to benefit both researchers and industry users.

94

APPENDIX A: CORRECTNESS PROOF OF MRLOCK

95

In this section, I reason about the safety and liveness of the multi-resource lock algorithm. My lock

manager is safe because it maintains the desired semantics under concurrent acquire and release: all

requests to acquire locks are served in FIFO order and a thread must wait until its resource request

is not in conflict with previous requests. The underlying lock-free queue guarantees starvation-

freedom for threads within the queue and deadlock-freedom for all contending threads.

Safety

By using the sequence number as a sentinel the following properties of my algorithm are guaran-

teed: 1) The head always precedes the tail, i.e., Hpos ≤ Tpos where Hpos and Tpos denote the value

of head and tail as defined on line 2.12 and 2.13 in Algorithm 2. The head advances only if the se-

quence number of the cell is equal to Hpos+1 (line 4.9 and 4.10 of Algorithm 4). This occurs when

a previous enqueue operation sets the sequence number to Tpos + 1 (3.line 18 of Algorithm 3). 2)

The tail is at most siz away from the head, i.e., Tpos−Hpos ≤ siz where siz denotes the size of the

ring buffer. In other words, the tail cannot overtake the head. The tail advances when the sequence

number of the cell is equal to Tpos (line 3.11 and 3.12 of Algorithm 3). When the tail wraps around

the buffer trying to overtake the head, the sequence number of the cell could be either Tpos − siz

or Tpos − siz + 1 depending on whether previous enqueue has updated the sequence number. This

enqueue will wait until the head advances. Therefore, the cells between head and tail are always

valid and store outstanding requests in FIFO order.

The queuing nature of my multi-resource lock allocates a cell exclusively for each contending

thread, which drops the limitation of atomic bitset access required by the extended TATAS lock

(Algorithm 1). In my algorithm, each bitset is set to 1 for all the bits during initialization (line 25

of Algorithm 2) and then alternates between 0s, 1s (lines 4 and 12 of Algorithm 4), and desired

lock values (line 3.17 of Algorithm 3). A bitset can have maximum one writer because each cell

96

is allocated to one thread. Regardless the duration of the writing, the bitset maintains its “locking

capability” throughout the whole procedure. Since occupied resources are denoted by 1, a bitset of

all 1s denotes the set of all resources and any other values denotes a subset of it. When updating

a bitset from all 1s to any specific request value, it’s essentially removing unwanted resources

from the set by filling in 0s, thus the intermediate values always represent some supersets of the

requested resources. Therefore, it is not possible for any overlapping reading thread to bypass with

conflicting request. Similarly, when the bitset is set to all 0s during lock release, the intermediate

values always represents some subsets of the requested resources. This prevents the unlocking

operation from blocking threads with no conflicting resource request.

Liveness

My lock algorithm is deadlock-free for all threads because the concurrent queue I use for my im-

plementation guarantees lock-free progress when it has not reached its capacity. This means that in

a scenario of contending threads, at least one thread succeeds when attempting to acquire or release

its desired resources. In Algorithm 3 a thread retries its enqueue operation when the CAS update

fails (3.line 13) or the sequence number mismatches (line 3.12). After loading the most recent

value of the tail (line 3.8), the CAS fails when the tail has been updated by an intervening thread.

The sequence number check fails if either the queue is full (dif < 0) or the cell has been taken

by an intervening thread (dif > 0). When an enqueue attempt fails while the queue is not full,

this is an indication that another thread must have succeeded in completing an enqueue operation.

Therefore, lock-free property is satisfied among all contending threads while starvation-freedom

is provided to the threads within the queue. If a wait-free queue is used in place of the lock-free

queue, my lock algorithm will provide starvation-freedom for all threads. Such an implementation

is possible based on the method proposed by Kogan [62], but it requires performance trade-off.

97

With my motivation being to construct a practical design, I choose to employ a lock-free queue

that strike a balance between performance and progress guarantee.

If the queue is full, any new enqueue operation waits to insert its request in the queue until some

thread relinquishes its locks. For threads with already enqueued requests, a full queue does not

impair the correct execution of lock acquisition/release in FIFO order. For threads that is waiting

to insert new requests, this may cause performance degeneration and loss of the FIFO fairness

guarantee. In practice, I can easily avoid this situation by allocating a sufficiently large buffer. If

the number of threads is know beforehand, then a buffer size equal to the thread count will suffice

because a thread can only file one request at a time. If, however, the number of thread is not

determined at runtime, I can allocate a buffer up to the size of maximum number of supported

threads by the operation system with acceptable memory overhead (with too many threads the

system would experience slowdown due to context switch and other scheduling overhead though).

For a typical Linux system, the maximal number of thread is determined by the amount of memory

and the size of the stack per thread. For example, a 32-bit system supports up to 4GB memory, that

is 4000 threads1 with stacks of 1MB. To support the same number of threads in the multi-resource

lock requires a buffer size of 12KB in total for 2-bytes bitset, a fraction of the available memory.

1It would be less considering memory reserved for the kernel.

98

APPENDIX B: CORRECTNESS PROOF OF LFTT

99

I base my correctness discussion on the notion of commutativity isolation [52], which states that

the history of committed transactions is strictly serializable for any transactional data structure

that provides linearizable operations and obeys commutativity isolation 1. STM systems may pre-

fer more strict correctness criteria, such as opacity [43], because they need to account for the

consistency of intermediate memory access. In the case of data structure transactions, the inter-

mediate computation is managed by linearizable methods, and only the end result of a transaction

is accessible to users. Strict serializability [80], which is the analogue of linearizability [58] for

transactions, provides enough semantics for such cases.

Definitions

I provide a brief recapitulation of the definitions and correctness rules from Herlihy and Koskinen’s

work [52]. A history of computation is a sequence of instantaneous events. Events associated with

a method call include invocation I and response R. For a transaction, events associated with

its status include 〈T init〉, 〈t commit〉, 〈T abort〉 indicating T start rolling back its effects, and

〈T aborted〉 indicating T finishes its rollback. I denote a sequence of events by concatenate them

with ·: A single transaction running in isolation defines a sequential history. A sequential specifica-

tion for a data structure defines a set of legal histories for that data structure. A concurrent history

is one in which events of different transactions are interleaved. A subhistory is a subsequence of

the events of h. The subhistory of h restricted to transaction T is denoted as h|T . The subhistory

committed(h) is the subsequence of h consisting of all events of committed transactions.

Definition 3. A history h is strictly serializable if the subsequence of h consisting of all events of

committed transactions is equivalent to a legal history in which these transactions execute sequen-

tially in the order they commit.

1I omit the discussion of rules on compensating actions and disposable methods because they are not applicable to
my approach

100

Definition 4. Histories h and h′ define the same state if, for every history g, h · g is legal if and

only if h′ · g is.

Definition 5. For a history h and any given invocation I and response R, let I−1 and R−1 be the

inverse invocation and response, such that the abstract state reached after the history h · I · R ·

I−1 ·R−1 is the same as the state reached after history h.

Definition 6. Two method calls I, R and I ′, R′ commute if: for all histories h, if h · I · R and

h · I ′ · R′ are both legal, then h · I · R · I ′ · R′ and h · I ′ · R′ · I · R are both legal and define the

same abstract state.

Commutativity identifies operations that have no dependencies on each other. Executing commu-

tative operations in any order yields the same abstract state. The commutativity specification for

set operations is as follows:

INSERT(x)↔ INSERT(y), x 6= y

DELETE(x)↔ DELETE(y), x 6= y

INSERT(x)↔ DELETE(y), x 6= y

FIND(x)↔ INSERT(x)/false↔ DELETE(x)/false

(B.1)

Rule 1. Linearizability: For any history h, two concurrent invocations I and I ′ must be equivalent

to either the history h · I ·R · I ′ ·R′ or the history h · I ′ ·R′ · I ·R

Rule 2. Commutativity Isolation: For any non-commut-ative method calls I1, R1 ∈ T1 and

I2, R2 ∈ T2, either T1 commits or aborts before any additional method calls in T2 are invoked,

or vice-versa.

Rule 3. Compensating Actions: For any history h and transaction T , if 〈T aborted〉 ∈ h, then it

must be the case that h|T = 〈T init〉·I0·R0 · · · Ii·Ri·〈T abort〉·I−1i ·R−1i · · · I−10 ·R−10 ·〈T aborted〉

where i indexes the last successfully completed method call.

101

Serializability and Recoverability

I now show that lock-free transactional transformation meets the two above correctness require-

ments. I denote the concrete state of a set as an node set N . At any time, the abstract state observed

by transaction Ti is Si = {n.key | n ∈ N ∧ ISKEYPRESENT(n.info, desci)}, where desci is the

descriptor of Ti.

I show the transformed operations are linearizable by identifying their linearization points. Addi-

tionally, I use the notion of decision points and state-read points to facilitate my reasoning. The

decision point of an operation is defined as the atomic statement that finitely decides the result of

an operation, i.e. independent of the result of any subsequent instruction after that point. A state-

read point is defined as the atomic statement where the state of the dictionary, which determines

the outcome of the decision point, is read.

Lemma 1. The set operations INSERT, DELETE, and FIND are linearizable.

Proof. For the transformed INSERT operation, the execution is divided into two code paths by

the condition check on line 22.6. The code path on line 22.7 updates the existing node’s logical

status. Note that if the operation reports failure on line 9.12 and 9.14, no write operation will be

performed to change the logical status of the node. The state-read point for the former case is when

the previous transaction status is read from oldinfo.desc.status on line 8.5. The state-read point

for the later case is when the current transaction status is read from info.desc.status on line 9.13.

The abstract states S ′ observed by all transactions immediately after the reads are unchanged, i.e.,

∀i, S ′i = Si. For a successful logical status update, the decision point for it to take effect is when

the CAS operation on line 9.15 succeeds. The abstract states S ′ observed by the transactions Td

executing this operation immediately after the CAS is i = d =⇒ S ′i = Si ∪ n.key. For all

other transactions i 6= d =⇒ S ′i = Si. In all cases, the update of abstract states conforms to the

102

sequential specification of the insert operation. The code path for physically adding linkage to the

new node (line 22.11) is linearizable because the corresponding DO INSERT operation in the base

data structure is linearizable.

The same reasoning process applies to the transformed DELETE and FIND operations because they

share the same logical status update procedure with INSERT.

The commutativity isolation rule prevents operations that are not commutative from being executed

concurrently.

Lemma 2. Conflict detection in lock-free transactional transformation satisfies the commutativity

isolation rule.

Proof. As identified in Equation B.1, two set operations commute if they access the different keys.

Because of the one-to-one mapping from node to keys, I have ∀nx, ny ∈ N, x 6= y =⇒ nx 6=

ny =⇒ nx.key 6= ny.key. This means that two set operations commute if they access two

different nodes. Let T1 denotes a transaction that currently accesses node n1, i.e., n1.info.desc =

desc1 ∧ desc1.status = Active. If another transaction T2 were to access n1, it must perform

EXECUTEOPS for T1 on line 9.7 because EXECUTEOPS always update the transaction status when

it returns on line 10.26 or 10.29 (note that failed CAS also means the transaction status has been

set, but another thread). I thus ensure that desc1.status = Committed∨ desc1.status = Aborted

before T2 proceeds.

Theorem 1. For a data structure generated by lock-free transactional transform, the history of

committed transactions is strictly serializable.

Proof. Follow Lemma 1, and 2, and the conclusion in Herlihy and Koskinen’s work [52], the

theorem holds.

103

Theorem 2. For a data structure generated by lock-free transactional transformation, any history

defines the same abstract state as a history with aborted transactions removed.

Proof. Let T1 be an aborted transaction with descriptor desc1. I denote S as the abstract state

immediately after T1 aborts. Let history h = F1 · F ′1 · · ·F2 · F ′2 · Fx · · ·F ′y be the sequence of

linearizable method calls after T1 starts and until T1 aborts, where Fi, 1 ≤ i ≤ x denotes the

method calls successfully executed by T1, and F ′i , 1 ≤ i ≤ y denotes the method calls executed

by other transactions. The interleaving of these method calls is arbitrary. Follow commutativity

isolation in Lemma 2 I assure that the method calls after Fx must commute with Fx, thus I can swap

them without changing the abstract state. By progressively doing this for Fi, 1 ≤ i ≤ x, I obtain an

equivalent history h = h′ = F ′1 · · ·F ′2 · · ·F ′y · · ·F1 · F2 · · ·Fx. Let nx be the node accessed by Fx

I denote S ′ as the abstract state before the invocation of Fx. Because of the inverse interpretation

of logical status I can assert nx.key ∈ S ′ =⇒ nx.key ∈ S ∧ nx.key /∈ S ′ =⇒ nx.key /∈ S.

Thus, I have S ′ = S and I can remove Fx from h′ without altering the abstract state. Doing this

for Fi, 1 ≤ i ≤ x, I obtain h = h′ = h′′ = F ′1 · · ·F ′2 · · ·F ′y · · · , hence T1 is removed from the

history.

Progress Guarantees

Lock-free transaction transform provides lock-free progress because it guarantees that for every

possible execution scenario, at least one thread makes progress in finite steps by either committing

or aborting a transaction. I reason about this property by examining unbounded loops in all possible

executions paths, which can delay the termination of the operations. For a system with i threads,

the upper bound of the number of active transactions is i. Consider the while loop that executes

the operations on line 10.13. This loop is bounded by the maximum number of operations in a

transaction, denoted as j, but threads may set out to help each other during the execution of each

104

of the operations. The number of recursive helping invocations is bound by the number of active

transactions. In the worst case where only 1 thread remains live and i − 1 threads have failed,

the system guarantees a transaction will commit in at most i ∗ j steps. In the presence of cyclic

dependencies among transactions, the system guarantees that a duplicate transaction descriptor

will be detected within i ∗ j steps.

My cooperative contention management strategy requires that the users specify all operations in a

transaction beforehand. It is possible to allow dynamic transaction executions by adopting aggres-

sive contention management (i.e., the later transaction always forcibly aborts the competitor). In

this case, the progress guarantee provided by the system degrades to obstruction-free. I focus on

the lock-free implementations because the obstruction-free versions can be trivially obtained by

disabling the helping mechanism in the lock-free version.

105

APPENDIX C: CORRECTNESS PROOF OF MDLIST

106

In this chapter, I sketch a proof of the main correctness property of the presented dictionary algo-

rithm, which is linearizability [58]. I begin by defining the abstract state of a sequential dictionary

and then show how to map the internal state of my concrete dictionary object to the abstract state. I

denote the abstract state of a sequential dictionary to be a totally ordered set P . Equation C.1 spec-

ifies that an INSERT operation grows the set if the key being inserted does not exist. Equation C.2

specifies that a DELETE operation shrinks a non-empty set by removing the key-value pair with

the specific key.

INSERT(〈k, v〉) =

P ∪ {〈k, v〉} ∀〈k′, v′〉 ∈ P , k′ 6= k

P ∃〈k′, v′〉 ∈ P : k′ = k

(C.1)

DELETE(k) =

P \ {〈k, v〉} 〈k, v〉 ∈ P

P 〈k, v〉 /∈ P

(C.2)

Invariants

Now I consider the concurrent dictionary object. By a node, I refer to an object of type Node that

has been allocated and successfully linked to an existing node (line 15.21). I denote the set of

nodes that are reachable from head by L. The following invariants are satisfied by the concrete

dictionary object at all times. Invariant 1 states that if a node has no pending child adoption task,

its dimension d child must have d invalid child slots leaving D − d valid ones.

Invariant 1. ∀n, n′ ∈ L, CLEARMARK(n.child[d], Fadp

|Fdel) = n′ ∧ n.adesc = NIL =⇒ ∀i ∈ [0, d), ISMARKED(

n′.child [i], Fadp) = true

107

Proof. By observing the statements at line 15.31 and 16.5 we see that the Fadp flags are properly

initialized before linking a new node to its predecessor and updated properly whenever a child is

adopted.

Invariant 2 states that any node in L can be reach by following a series child pointers with non-

decreasing dimensionality.

Invariant 2. ∀n ∈ L,∃p = {d0, d1, ..., dm} : d0 ≤ d1 ≤ ... ≤ dm ∧ head.child[d0].child[d1]...

child.[dm] = n

Proof. At the start, the structure contains a dummy head node and the invariant holds trivially.

Any new node is initially placed at a position reachable from head because the node traversed by

LOCATEPRED (Algorithm 14) form a consecutive path p′. Note the condition checks in (line 14.3

and 14.9), we have i < j =⇒ di ≤ dj ∀di, dj ∈ p′. Though subsequent insertions may alter

the path, they do not unlink nodes from the data structure. The claim follows by noting that an

insertion either adds a new node to p′ or replaces an existing node in p′.

Lemma 3. At any time, nodes in L, including those marked for logical deletion, form an MDList

that complies with Definition 1.

Proof. Invariant 1 shows that for any node n with dimension d, only children with dimension

greater or equal to d is accessible, thus the dimension of a node is always no greater than the

dimensions of its children. Follow Invariant 2, logically deleted key-value pairs still occupy valid

nodes in the structure before they are physically removed.

I now show that the nodes without deletion marks form a well-ordered set that is equivalent to P .

Invariant 3 states that the ordering property described by Definition 2 is kept at all times.

108

Invariant 3. ∀n, n′ ∈ L, n.child[d] = n′ =⇒ n.key < n′.key ∧ ∀i ∈ [0, d) n.k[i] = n′.k[i] ∧

n.k[d] < n′.k[d]

Proof. Initially the invariants trivially holds. The linkage among nodes is only changed by inser-

tion, and child adoption. Insert preserves the invariants because the condition checks on line 15.3

and 15.9 guarantee that ∀i ∈ [0, dp) pred.k[i] = node.k[i]∧pred.k[dp] < node.k[dp]. Child adop-

tion preserves the invariant because ∀i ∈ [dp, dc) node.k[i] = curr.k[i] < curr.child[i].k[i].

Lemma 4. Logically deleted nodes appear transparent to traversing operations.

Proof. Note that a pointer to logically deleted nodes is marked by flag Fdel, which renders the key-

value pair stored in that node obsolete. However, the node’s location withing the data structure is

still consistent with its embed coordinates, making it a valid routing node. The traversing operation

treat logically deleted nodes transparently by explicitly clearing the pointer markings on line 14.8.

Let us define the set of logically deleted nodes by S = {n|n′ ∈ L∧n′.child[d] = SETMARK(n, Fdel)}.

Following Lemma 3 and 4, the abstract state can then be defined as P ≡ L \ S.

Linearizability

I now sketch a proof that my algorithm is a linearizable dictionary implementation that complies

with the abstract semantics by identifying linearization points for each operation. The concurrent

operation can be viewed as it occurred atomically at its linearization point in the execution history.

Additionally, I use the notion of decision points and state-read points to facilitate reasoning [94].

The decision point of an operation is define as the atomic statement that finitely decides the result

109

of an operation, i.e. independent of the result of any subsequent instruction after that point. A state-

read point is define as the atomic statement where the state of the dictionary, which determines the

outcome of the decision point, is read.

Theorem 3. A FIND(k) operation takes effect atomically at one statement.

Proof. A find operation may return v if 〈k, v〉 ∈ P , or NIL otherwise. The decision point for

the first case is when the while loop terminates on line 14.2. The node with k must exist in P

because the coordinates up to dimension D have been exhaustively examined. The state-read point

is line 14.8 when curr is read from child pointers. The subsequent execution branches to line 14.12

after comparing curr.k with k. As the coordinate field k cannot be changed after initialization, the

state of the dictionary immediate before passing the state-read point must have been 〈k, v〉 ∈ P .

The decision point for the second case is when the condition check on line 14.9 fails. The state-

read point is when the value of curr is read on line 14.8. For both case, the linearization point is

the state-read point on line 14.8

Theorem 4. An INSERT(〈k, v〉) operation takes effect atomically at one statement.

Proof. An INSERT operation returns on line 15.24; given a legal key it must succeed by either

adding a new node or replacing an existing node. The decision point for both cases to take effect

is when the CAS operation on line 15.21 succeeds. The remaining atomic primitives in the child

adoption process will be executed at least once and successfully complete through the use of help-

ing mechanism. Equation C.1 holds for the first case because L = L ∪ 〈k, v〉. It holds for the

second case because L = L ∪ 〈k, v〉 \ 〈k, v′〉.

Theorem 5. A DELETE(k) operation takes effect atomically at one statement.

Proof. If 〈k, v〉 ∈ P , a successful DELETE(k) operation updates the abstract state by growing S.

The decision point for it to take effect is when the CAS operation on line 17.10 successfully marks

110

a node for deletion. Equations C.2 holds because S ′ = S ∪ 〈k, v〉 =⇒ P ′ = P \ {〈k, v〉}. The

decision points for a DELETE(k) operation to fail are on line 17.7 when it cannot find the node with

the target key, and on line 17.14 when the target node has been logically deleted by a competing

deletion operation. The state-read point for the former is on line 14.8, which causes LOCATEPRED

to abort before reaching the highest dimension. The state-read point for the latter is on line 17.10,

where child is read. The linearization points for failed deletions are either of the state-read points.

In these cases, Equations C.2 holds because S ′ = S =⇒ P ′ = P .

Lock Freedom

My algorithm is lock-free because it guarantee that for every possibly execution scenario, at least

one thread makes progress. I prove this by examining unbounded loops in all possible execution

paths, which can delay the termination of the operations.

Lemma 5. FINISHINSERTING (Algorithm 16) and LOCATEPRED (Algorithm 14) complete in finite

steps.

Proof. We observe that there is no unbounded loop in Algorithm 16. The for loop on line 16.4

is bounded by the dimensionality of data structure D, which in practice is a small number. For

LOCATEPRED, the while loop (line 14.2) is also bounded by D. The inner unbounded while

loop (14.3) ends after at most D
√
N retries, which is the maximum number of nodes in each

dimension. The maximum number of nodes to be examined by LOCATEDPRED is thus D · D
√
N .

Theorem 6. FIND operations are wait-free.

Proof. The FIND operations invoke LOCATEPRED and does not contain additional loops. The

111

theorem holds by following Lemma 5

Theorem 7. INSERT and DELETEMIN operations are lock-free.

Proof. Note that all shared variables are concurrently modified by CAS operations, and the CAS-

based unbounded loops (line 15.21, and 17.10 only retry when a CAS operation fails. This means

that for any subsequent retry, there must be one CAS that succeeded, which caused the termination

of the loop. All reads of child pointer are preceded by FINISHINSERTING, which completes child

adoption in finite steps to ensure consistency. Furthermore, my implementation does not contain

cyclic dependencies between CAS-based loops, which means that the corresponding operation will

progress.

112

REFERENCES

[1] Y. Afek, H. Kaplan, B. Korenfeld, A. Morrison, and R. E. Tarjan. Cbtree: A practical con-

current self-adjusting search tree. In Distributed Computing, pages 1–15. Springer, 2012.

[2] J. Anderson, Y. Kim, and T. Herman. Shared-memory mutual exclusion: Major research

trends since 1986. Distributed Computing, 16(2):75–110, 2003.

[3] T. E. Anderson. The performance of spin lock alternatives for shared-money multiprocessors.

Parallel and Distributed Systems, IEEE Transactions on, 1(1):6–16, 1990.

[4] M. Arbel and H. Attiya. Concurrent updates with rcu: Search tree as an example. In Pro-

ceedings of the 2014 ACM Symposium on Principles of Distributed Computing, PODC ’14,

pages 196–205, New York, NY, USA, 2014. ACM.

[5] H. Attiya. The inherent complexity of transactional memory and what to do about it. In

Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed com-

puting, pages 1–5. ACM, 2010.

[6] B. Awerbuch and M. Saks. A dining philosophers algorithm with polynomial response time.

In Foundations of Computer Science, 1990. Proceedings., 31st Annual Symposium on, pages

65–74. IEEE, 1990.

[7] J. Bar-Ilan and D. Peleg. Distributed resource allocation algorithms. In Distributed Algo-

rithms, pages 277–291. Springer, 1992.

[8] P. Bernstein and N. Goodman. Timestamp based algorithms for concurrency control in dis-

tributed database systems. In Proceedings 6th International Conference on Very Large Data

Bases, 1980.

113

[9] H.-J. Boehm and S. V. Adve. Foundations of the c++ concurrency memory model. In ACM

SIGPLAN Notices, volume 43, pages 68–78. ACM, 2008.

[10] S. Borkar. Thousand core chips: a technology perspective. In Proceedings of the 44th annual

Design Automation Conference, pages 746–749. ACM, 2007.

[11] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. A practical concurrent binary search

tree. In ACM Sigplan Notices, volume 45, pages 257–268. ACM, 2010.

[12] N. G. Bronson, J. Casper, H. Chafi, and K. Olukotun. Transactional predication: high-

performance concurrent sets and maps for stm. In Proceedings of the 29th ACM SIGACT-

SIGOPS symposium on Principles of distributed computing, pages 6–15. ACM, 2010.

[13] T. Brown, F. Ellen, and E. Ruppert. A general technique for non-blocking trees. In Proceed-

ings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel program-

ming, pages 329–342. ACM, 2014.

[14] C. Cascaval, C. Blundell, M. Michael, H. W. Cain, P. Wu, S. Chiras, and S. Chatterjee.

Software transactional memory: Why is it only a research toy? Queue, 6(5):40, 2008.

[15] S. Cherem, T. Chilimbi, and S. Gulwani. Inferring locks for atomic sections. In ACM SIG-

PLAN Notices, volume 43, pages 304–315. ACM, 2008.

[16] A. T. Clements, M. F. Kaashoek, N. Zeldovich, R. T. Morris, and E. Kohler. The scalable

commutativity rule: Designing scalable software for multicore processors. ACM Transactions

on Computer Systems (TOCS), 32(4):10, 2015.

[17] T. Craig. Building fifo and priorityqueuing spin locks from atomic swap. Technical report,

Citeseer, 1994.

[18] T. Crain, V. Gramoli, and M. Raynal. A contention-friendly binary search tree. In Euro-Par

2013 Parallel Processing, pages 229–240. Springer, 2013.

114

[19] T. Crain, V. Gramoli, and M. Raynal. No hot spot non-blocking skip list. In Distributed

Computing Systems (ICDCS), 2013 IEEE 33rd International Conference on, pages 196–205.

IEEE, 2013.

[20] L. Dalessandro, M. F. Spear, and M. L. Scott. Norec: streamlining stm by abolishing owner-

ship records. In ACM Sigplan Notices, volume 45, pages 67–78. ACM, 2010.

[21] D. Dechev, P. Pirkelbauer, and B. Stroustrup. Lock-free dynamically resizable arrays. In

Principles of Distributed Systems, pages 142–156. Springer, 2006.

[22] D. Dice, Y. Lev, M. Moir, D. Nussbaum, and M. Olszewski. Early experience with a com-

mercial hardware transactional memory implementation. 2009.

[23] D. Dice, V. J. Marathe, and N. Shavit. Flat-combining numa locks. In Proceedings of the

23rd ACM Symposium on Parallelism in Algorithms and Architectures, pages 65–74. ACM,

2011.

[24] D. Dice, O. Shalev, and N. Shavit. Transactional locking ii. In Distributed Computing, pages

194–208. Springer, 2006.

[25] I. Dick, A. Fekete, and V. Gramoli. Logarithmic data structures for multicores. 2014.

[26] E. Dijkstra. Hierarchical ordering of sequential processes. Acta informatica, 1(2):115–138,

1971.

[27] D. Drachsler, M. Vechev, and E. Yahav. Practical concurrent binary search trees via logical

ordering. In Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice

of parallel programming, pages 343–356. ACM, 2014.

[28] F. Ellen, P. Fatourou, J. Helga, and E. Ruppert. The amortized complexity of non-blocking

binary search trees. In Proceedings of the 2014 ACM symposium on Principles of distributed

computing, pages 332–340. ACM, 2014.

115

[29] F. Ellen, P. Fatourou, E. Ruppert, and F. van Breugel. Non-blocking binary search trees.

In Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed

computing, pages 131–140. ACM, 2010.

[30] M. Emmi, J. S. Fischer, R. Jhala, and R. Majumdar. Lock allocation. In ACM SIGPLAN

Notices, volume 42, pages 291–296. ACM, 2007.

[31] K. Eswaran, J. Gray, R. Lorie, and I. Traiger. The notions of consistency and predicate locks

in a database system. Communications of the ACM, 19(11):624–633, 1976.

[32] M. Fischer, N. Lynch, J. Burns, and A. Borodin. Resource allocation with immunity to

limited process failure. In Foundations of Computer Science, 1979., 20th Annual Symposium

on, pages 234–254. IEEE, 1979.

[33] M. J. Fischer, N. A. Lynch, J. E. Burns, and A. Borodin. Distributed fifo allocation of identical

resources using small shared space. ACM Transactions on Programming Languages and

Systems (TOPLAS), 11(1):90–114, 1989.

[34] M. Fomitchev and E. Ruppert. Lock-free linked lists and skip lists. In Proceedings of the

twenty-third annual ACM symposium on Principles of distributed computing, pages 50–59.

ACM, 2004.

[35] K. Fraser. Practical lock-freedom. PhD thesis, PhD thesis, Cambridge University Computer

Laboratory, 2003. Also available as Technical Report UCAM-CL-TR-579, 2004.

[36] K. Fraser and T. Harris. Concurrent programming without locks. ACM Transactions on

Computer Systems (TOCS), 25(2):5, 2007.

[37] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Concurrent libraries with foresight.

In ACM SIGPLAN Notices, volume 48, pages 263–274. ACM, 2013.

116

[38] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Automatic semantic locking. In

Proceedings of the 19th ACM SIGPLAN symposium on Principles and practice of parallel

programming, pages 385–386. ACM, 2014.

[39] G. Golan-Gueta, G. Ramalingam, M. Sagiv, and E. Yahav. Automatic scalable atomicity via

semantic locking. In Proceedings of the 20th ACM SIGPLAN Symposium on Principles and

Practice of Parallel Programming, pages 31–41. ACM, 2015.

[40] V. Gramoli, R. Guerraoui, and M. Letia. Composing relaxed transactions. In Parallel &

Distributed Processing (IPDPS), 2013 IEEE 27th International Symposium on, pages 1171–

1182. IEEE, 2013.

[41] K. Gudka, T. Harris, and S. Eisenbach. Lock inference in the presence of large libraries. In

ECOOP 2012–Object-Oriented Programming, pages 308–332. Springer, 2012.

[42] R. Guerraoui and M. Kapalka. On obstruction-free transactions. In Proceedings of the twenti-

eth annual symposium on Parallelism in algorithms and architectures, pages 304–313. ACM,

2008.

[43] R. Guerraoui and M. Kapalka. On the correctness of transactional memory. In Proceedings

of the 13th ACM SIGPLAN Symposium on Principles and practice of parallel programming,

pages 175–184. ACM, 2008.

[44] L. J. Guibas and R. Sedgewick. A Dichromatic Framework for Balanced Trees. In IEEE

Symposium on Foundations of Computer Science, pages 8–21, 1978.

[45] T. Harris, J. Larus, and R. Rajwar. Transactional memory. Synthesis Lectures on Computer

Architecture, 5(1):1–263, 2010.

[46] T. L. Harris. A pragmatic implementation of non-blocking linked-lists. In Distributed Com-

puting, pages 300–314. Springer, 2001.

117

[47] T. L. Harris, K. Fraser, and I. A. Pratt. A practical multi-word compare-and-swap operation.

In Distributed Computing, pages 265–279. Springer, 2002.

[48] A. Hassan, R. Palmieri, and B. Ravindran. Integrating transactionally boosted data structures

with stm frameworks: A case study on set. In 9th ACM SIGPLAN Workshop on Transactional

Computing (TRANSACT), 2014.

[49] A. Hassan, R. Palmieri, and B. Ravindran. On developing optimistic transactional lazy set.

In Principles of Distributed Systems, pages 437–452. Springer, 2014.

[50] M. Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages and

Systems (TOPLAS), 13(1):124–149, 1991.

[51] M. Herlihy. A methodology for implementing highly concurrent data objects. ACM Trans-

actions on Programming Languages and Systems (TOPLAS), 15(5):745–770, 1993.

[52] M. Herlihy and E. Koskinen. Transactional boosting: a methodology for highly-concurrent

transactional objects. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles

and practice of parallel programming, pages 207–216. ACM, 2008.

[53] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A provably correct scalable concurrent skip

list. In Conference On Principles of Distributed Systems (OPODIS). Citeseer, 2006.

[54] M. Herlihy, Y. Lev, V. Luchangco, and N. Shavit. A simple optimistic skiplist algorithm. In

Structural Information and Communication Complexity, pages 124–138. Springer, 2007.

[55] M. Herlihy, V. Luchangco, M. Moir, and W. N. Scherer III. Software transactional memory

for dynamic-sized data structures. In Proceedings of the twenty-second annual symposium

on Principles of distributed computing, pages 92–101. ACM, 2003.

118

[56] M. Herlihy and J. E. B. Moss. Transactional memory: Architectural support for lock-free

data structures. In Proceedings of the 20th Annual International Symposium on Computer

Architecture, ISCA ’93, pages 289–300, New York, NY, USA, 1993. ACM.

[57] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming, Revised Reprint. Elsevier,

2012.

[58] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condition for concurrent ob-

jects. ACM Transactions on Programming Languages and Systems (TOPLAS), 12(3):463–

492, 1990.

[59] S. V. Howley and J. Jones. A non-blocking internal binary search tree. In Proceedinbgs of the

24th ACM symposium on Parallelism in algorithms and architectures, pages 161–171. ACM,

2012.

[60] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B. Falsafi. Shore-mt: a scalable

storage manager for the multicore era. In Proceedings of the 12th International Conference

on Extending Database Technology: Advances in Database Technology, pages 24–35. ACM,

2009.

[61] B. Karlsson. Beyond the C++ standard library: an introduction to boost. Pearson Education,

2005.

[62] A. Kogan and E. Petrank. A methodology for creating fast wait-free data structures. In ACM

SIGPLAN Notices, volume 47, pages 141–150. ACM, 2012.

[63] E. Koskinen, M. Parkinson, and M. Herlihy. Coarse-grained transactions. ACM Sigplan

Notices, 45(1):19–30, 2010.

[64] H. T. Kung and P. L. Lehman. Concurrent manipulation of binary search trees. ACM Trans-

actions on Database Systems, 5:354–382, 1980.

119

[65] J. Lindén and B. Jonsson. A skiplist-based concurrent priority queue with minimal memory

contention. In Principles of Distributed Systems, pages 206–220. Springer, 2013.

[66] C. Lomont. Introduction to intel advanced vector extensions. Intel White Paper, 2011.

[67] N. Lynch. Fast allocation of nearby resources in a distributed system. In Proceedings of the

twelfth annual ACM symposium on Theory of computing, pages 70–81. ACM, 1980.

[68] V. J. Marathe, W. N. Scherer, and M. L. Scott. Design tradeoffs in modern software trans-

actional memory systems. In Proceedings of the 7th workshop on Workshop on languages,

compilers, and run-time support for scalable systems, pages 1–7. ACM, 2004.

[69] V. J. Marathe, M. F. Spear, C. Heriot, A. Acharya, D. Eisenstat, W. N. Scherer III, and M. L.

Scott. Lowering the overhead of nonblocking software transactional memory. In Workshop on

Languages, Compilers, and Hardware Support for Transactional Computing (TRANSACT),

2006.

[70] T. J. McCabe. A complexity measure. Software Engineering, IEEE Transactions on, (4):308–

320, 1976.

[71] B. McCloskey, F. Zhou, D. Gay, and E. Brewer. Autolocker: synchronization inference for

atomic sections. ACM SIGPLAN Notices, 41(1):346–358, 2006.

[72] J. Mellor-Crummey and M. Scott. Algorithms for scalable synchronization on shared-

memory multiprocessors. ACM Transactions on Computer Systems (TOCS), 9(1):21–65,

1991.

[73] M. Michael and M. Scott. Simple, fast, and practical non-blocking and blocking concurrent

queue algorithms. In Proceedings of the fifteenth annual ACM symposium on Principles of

distributed computing, pages 267–275. ACM, 1996.

120

[74] M. M. Michael. High performance dynamic lock-free hash tables and list-based sets. In Pro-

ceedings of the fourteenth annual ACM symposium on Parallel algorithms and architectures,

pages 73–82. ACM, 2002.

[75] M. M. Michael. Hazard pointers: Safe memory reclamation for lock-free objects. Parallel

and Distributed Systems, IEEE Transactions on, 15(6):491–504, 2004.

[76] A. Natarajan and N. Mittal. Fast concurrent lock-free binary search trees. In Proceedings

of the 19th ACM SIGPLAN symposium on Principles and practice of parallel programming,

pages 317–328. ACM, 2014.

[77] Y. Ni, V. S. Menon, A.-R. Adl-Tabatabai, A. L. Hosking, R. L. Hudson, J. E. B. Moss,

B. Saha, and T. Shpeisman. Open nesting in software transactional memory. In Proceedings

of the 12th ACM SIGPLAN symposium on Principles and practice of parallel programming,

pages 68–78. ACM, 2007.

[78] O. Nurmi and E. Soisalon-Soininen. Uncoupling updating and rebalancing in chromatic

binary search trees. In Proceedings of the tenth ACM SIGACT-SIGMOD-SIGART symposium

on Principles of database systems, pages 192–198. ACM, 1991.

[79] R. Oshman and N. Shavit. The skiptrie: low-depth concurrent search without rebalancing.

In Proceedings of the 2013 ACM symposium on Principles of distributed computing, pages

23–32. ACM, 2013.

[80] C. H. Papadimitriou. The serializability of concurrent database updates. Journal of the ACM

(JACM), 26(4):631–653, 1979.

[81] A. Prokopec, N. G. Bronson, P. Bagwell, and M. Odersky. Concurrent tries with efficient

non-blocking snapshots. In Acm Sigplan Notices, volume 47, pages 151–160. ACM, 2012.

121

[82] W. Pugh. Concurrent maintenance of skip lists. Technical Report CS-TR-2222.1, Department

of Computer Science, University of Maryland, 1990.

[83] W. Pugh. Skip lists: a probabilistic alternative to balanced trees. Communications of the

ACM, 33(6):668–676, 1990.

[84] M. Raynal. A distributed solution to the k-out of-m resources allocation problem. Advances

in Computing and Information-ICCI’91, pages 599–609, 1991.

[85] M. Raynal and D. Beeson. Algorithms for mutual exclusion. MIT Press, 1986.

[86] C. J. Rossbach, O. S. Hofmann, and E. Witchel. Is transactional programming actually easier?

In Proceedings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’10, pages 47–56, New York, NY, USA, 2010. ACM.

[87] L. Rudolph and Z. Segall. Dynamic decentralized cache schemes for mimd parallel proces-

sors. In Proceedings of the 11th annual international symposium on Computer architecture,

ISCA ’84, pages 340–347. ACM, 1984.

[88] B. Saha, A.-R. Adl-Tabatabai, R. L. Hudson, C. C. Minh, and B. Hertzberg. Mcrt-stm: a

high performance software transactional memory system for a multi-core runtime. In Pro-

ceedings of the eleventh ACM SIGPLAN symposium on Principles and practice of parallel

programming, pages 187–197. ACM, 2006.

[89] M. L. Scott and W. N. Scherer. Scalable queue-based spin locks with timeout. In Pro-

ceedings of the eighth ACM SIGPLAN symposium on Principles and practices of parallel

programming, PPoPP ’01, pages 44–52. ACM, 2001.

[90] O. Shacham, N. Bronson, A. Aiken, M. Sagiv, M. Vechev, and E. Yahav. Testing atomicity

of composed concurrent operations. ACM SIGPLAN Notices, 46(10):51–64, 2011.

122

[91] N. Shavit and D. Touitou. Software transactional memory. Distributed Computing, 10(2):99–

116, 1997.

[92] N. Shavit and A. Zemach. Scalable concurrent priority queue algorithms. In Proceedings of

the eighteenth annual ACM symposium on Principles of distributed computing, pages 113–

122. ACM, 1999.

[93] M. Spiegel and P. Reynolds. Lock-free multiway search trees. In Parallel Processing (ICPP),

2010 39th International Conference on, pages 604–613. IEEE, 2010.

[94] H. Sundell and P. Tsigas. Scalable and lock-free concurrent dictionaries. In Proceedings of

the 2004 ACM symposium on Applied computing, pages 1438–1445. ACM, 2004.

[95] B. Wicht and C. Evequoz. Binary trees implementations comparison for multicore program-

ming. Technical report, Information and Communications Technology, University of applied

sciences in Fribourg, 2012.

[96] D. Zhang, , and D. Dechev. An efficient lock-free logarithmic search data structure based

on multi-dimensional list. In Proceedings of the 36th IEEE International Conference on

Distributed Computing Systems (ICDCS). IEEE, 6 2016. Acceptance Rate: 17%.

[97] D. Zhang and D. Dechev. A lock-free priority queue design based on multi-dimensional

linked lists. IEEE Transactions on Parallel and Distributed Systems, 27(3):613–626, March

2016.

123

	High-Performance Composable Transactional Data Structures
	STARS Citation

	ABSTRACT
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF ALGORITHMS
	CHAPTER 1: INTRODUCTION
	Motivation
	Contribution
	Pseudo-Code Convention
	Outline

	CHAPTER 2: BACKGROUND
	Terminology
	Atomic Primitives
	Correctness Property
	Non-blocking Progress Assurance
	Mutual Exclusion
	Resource Allocation

	Related Work
	Lock-based Concurrency Control
	Resource Allocation Solutions
	Queue-Based Algorithms

	Transaction Synchronization
	Transactional Memory
	Lock Inference
	Semantic Conflict Detection

	Search Data Structures
	Search Trees
	Skiplists
	Tries

	CHAPTER 3: METHODOLOGY
	Multi-resource Lock
	Motivation
	A Naive Algorithm
	Queue-based Algorithm
	Acquiring Locks
	Releasing Locks
	Bitset Operations

	Lock-free Transactional Transformation
	Overview
	Data Type Definition
	Node-based Conflict Detection
	Logical Status Interpretation
	Logical Status Update
	Transaction Execution

	Multi-dimensional Linked List
	Motivation
	Overview

	Definition
	Data Types
	Concurrent Find
	Concurrent Insert
	Concurrent Delete

	CHAPTER 4: LIBRARY IMPLEMENTATION
	Interface Design
	Unified Transaction Descriptor
	Set Interface

	Applying MRLock
	Applying LFTT
	Code Transformation
	Code Templates

	CHAPTER 5: EXPERIMENTAL EVALUATION
	Lock-based Transactions
	Experiment Setup
	Single-thread Overhead
	Resource Scalability
	Thread Scalability
	Performance Consistency

	Lock-free Transactions
	Transactional List
	Transactional Skiplist

	Lock-free Dictionaries

	CHAPTER 6: CONCLUSION
	APPENDIX A: CORRECTNESS PROOF OF MRLOCK
	Safety
	Liveness

	APPENDIX B: CORRECTNESS PROOF OF LFTT
	Definitions
	Serializability and Recoverability
	Progress Guarantees

	APPENDIX C: CORRECTNESS PROOF OF MDLIST
	Invariants
	Linearizability
	Lock Freedom

	REFERENCES

