15 research outputs found

    Relative generalized Hamming weights of one-point algebraic geometric codes

    Get PDF
    Security of linear ramp secret sharing schemes can be characterized by the relative generalized Hamming weights of the involved codes. In this paper we elaborate on the implication of these parameters and we devise a method to estimate their value for general one-point algebraic geometric codes. As it is demonstrated, for Hermitian codes our bound is often tight. Furthermore, for these codes the relative generalized Hamming weights are often much larger than the corresponding generalized Hamming weights

    Higher Hamming weights for locally recoverable codes on algebraic curves

    Get PDF
    We study the locally recoverable codes on algebraic curves. In the first part of this article, we provide a bound of generalized Hamming weight of these codes. Whereas in the second part, we propose a new family of algebraic geometric LRC codes, that are LRC codes from Norm-Trace curve. Finally, using some properties of Hermitian codes, we improve the bounds of distance proposed in [1] for some Hermitian LRC codes. [1] A. Barg, I. Tamo, and S. Vlladut. Locally recoverable codes on algebraic curves. arXiv preprint arXiv:1501.04904, 2015

    Relative generalized hamming weights and extended weight polynomials of almost affine codes

    Get PDF
    This is a post-peer-review, pre-copyedit version of an article published in Lecture Notes in Computer Science, International Castle Meeting on Coding Theory and Applications ICMCTA 2017: Coding Theory and Applications, 207-216. The final authenticated version is available online at: http://dx.doi.org/10.1007/978-3-319-66278-7_17 .This paper is devoted to giving a generalization from linear codes to the larger class of almost affine codes of two different results. One such result is how one can express the relative generalized Hamming weights of a pair of codes in terms of intersection properties between the smallest of these codes and subcodes of the largest code. The other result tells how one can find the extended weight polynomials, expressing the number of codewords of each possible weight, for each code in an infinite hierarchy of extensions of a code over a given alphabet. Our tools will be demi-matroids and matroids

    Message Randomization and Strong Security in Quantum Stabilizer-Based Secret Sharing for Classical Secrets

    Get PDF
    We improve the flexibility in designing access structures of quantum stabilizer-based secret sharing schemes for classical secrets, by introducing message randomization in their encoding procedures. We generalize the Gilbert-Varshamov bound for deterministic encoding to randomized encoding of classical secrets. We also provide an explicit example of a ramp secret sharing scheme with which multiple symbols in its classical secret are revealed to an intermediate set, and justify the necessity of incorporating strong security criterion of conventional secret sharing. Finally, we propose an explicit construction of strongly secure ramp secret sharing scheme by quantum stabilizers, which can support twice as large classical secrets as the McEliece-Sarwate strongly secure ramp secret sharing scheme of the same share size and the access structure.Comment: Publisher's Open Access PDF. arXiv admin note: text overlap with arXiv:1811.0521

    Minimum-weight codewords of the Hermitian codes are supported on complete intersections

    Full text link
    Let H\mathcal{H} be the Hermitian curve defined over a finite field Fq2\mathbb{F}_{q^2}. In this paper we complete the geometrical characterization of the supports of the minimum-weight codewords of the algebraic-geometry codes over H\mathcal{H}, started in [1]: if dd is the distance of the code, the supports are all the sets of dd distinct Fq2\mathbb{F}_{q^2}-points on H\mathcal{H} complete intersection of two curves defined by polynomials with prescribed initial monomials w.r.t. \texttt{DegRevLex}. For most Hermitian codes, and especially for all those with distance dq2qd\geq q^2-q studied in [1], one of the two curves is always the Hermitian curve H\mathcal{H} itself, while if d<qd<q the supports are complete intersection of two curves none of which can be H\mathcal{H}. Finally, for some special codes among those with intermediate distance between qq and q2qq^2-q, both possibilities occur. We provide simple and explicit numerical criteria that allow to decide for each code what kind of supports its minimum-weight codewords have and to obtain a parametric description of the family (or the two families) of the supports. [1] C. Marcolla and M. Roggero, Hermitian codes and complete intersections, arXiv preprint arXiv:1510.03670 (2015)

    Classical access structures of ramp secret sharing based on quantum stabilizer codes

    Get PDF
    corecore