1,127 research outputs found

    Measuring cortical connectivity in Alzheimer's disease as a brain neural network pathology: Toward clinical applications

    Get PDF
    Objectives: The objective was to review the literature on diffusion tensor imaging as well as resting-state functional magnetic resonance imaging and electroencephalography (EEG) to unveil neuroanatomical and neurophysiological substrates of Alzheimer’s disease (AD) as a brain neural network pathology affecting structural and functional cortical connectivity underlying human cognition. Methods: We reviewed papers registered in PubMed and other scientific repositories on the use of these techniques in amnesic mild cognitive impairment (MCI) and clinically mild AD dementia patients compared to cognitively intact elderly individuals (Controls). Results: Hundreds of peer-reviewed (cross-sectional and longitudinal) papers have shown in patients with MCI and mild AD compared to Controls (1) impairment of callosal (splenium), thalamic, and anterior–posterior white matter bundles; (2) reduced correlation of resting state blood oxygen level-dependent activity across several intrinsic brain circuits including default mode and attention-related networks; and (3) abnormal power and functional coupling of resting state cortical EEG rhythms. Clinical applications of these measures are still limited. Conclusions: Structural and functional (in vivo) cortical connectivity measures represent a reliable marker of cerebral reserve capacity and should be used to predict and monitor the evolution of AD and its relative impact on cognitive domains in pre-clinical, prodromal, and dementia stages of AD. (JINS, 2016, 22, 138–163

    Brain structural connectivity and neurodevelopment in post-Fontan adolescents

    Full text link
    Congenital heart disease (CHD) is the most common congenital anomaly, with single ventricle (SV) defects accounting for nearly 10% of all CHD. SV defects tend to be the most severe forms of CHD: all patients born with SV require multiple open heart surgeries, often beginning in the neonatal period, ultimately leading to the Fontan procedure. Due to improvements in surgical procedures and medical care, more patients are surviving into adolescence and adulthood. Brain imaging and pathology studies have shown that patients with SV have differences in brain structure and metabolism even before the first surgery, and as early as in utero. Furthermore, a significant number of patients have new or more severe lesions after the initial surgery, and many still have brain abnormalities into early childhood. However, there are no detailed brain structural data of SV patients in adolescence. Our group recruited a large cohort of post-Fontan SV patients aged 10-19 years. Separate analyses of neuropsychological and behavioral outcomes in these patients show deficits in multiple areas of cognition, increased rates of attention deficit-hyperactivity disorder (ADHD), and increased use of remedial and/or special education services compared to a control group. Post-Fontan adolescents have more gross brain abnormalities, including evidence of chronic ischemic stroke. Furthermore, there are widespread reductions in cortical and subcortical gray matter volume and cortical thickness, some of which are associated with medical and surgical variables. Diffusion tensor imaging (DTI) analyses show widespread areas of altered white matter microstructure in deep subcortical and cerebellar white matter. In this dissertation, I use graph theory methods to characterize structural connectivity based on gray matter (cortical thickness covariance) and white matter (DTI tractography), and examine associations between brain structure and neurodevelopment. I found that brain network connectivity differs in post-Fontan patients compared with controls, both at the global and regional level. Additionally, deficits in overall network structure were associated with impaired neurodevelopment in several domains, including general intelligence, executive function, and visuospatial skills. These data suggest that early neuroprotection should be a major focus in the care of SV patients, with the goal of improving long-term neurodevelopmental outcomes

    The Structural Basis for Brain Health

    Get PDF
    Cardiovascular disease (CVD) remains the leading cause of mortality in the United States. Stroke and dementia are the leading causes of adult disability worldwide, and the 5th and 6th leading causes of mortality respectively in the United States. Furthermore, CVD annually accounts for approximately $330 billion in direct and indirect costs in the United States: approximately one in seven health care dollars is spent on CVD. While these diseases have different etiologies, and present with different clinical manifestations and prognosis, converging evidence increasingly supports the idea of CVD as a common pathophysiological origin of cerebrovascular disease, potentially indicating a complex interplay between brain health and cardiovascular health. In this thesis, we leverage methodological advancements in systems and computational neurosciences related to the human brain connectome to assess individual topological network organization and integrity in acute and chronic stroke cohorts, and in a non-stroke cohort with varying CV risk factor burden, using graph theory and network analysis. We propose measures that underly neuroanatomical mechanisms that constitute efficient transfer of information and brain health. We demonstrate the impact of cardiovascular risk factors on brain health, even before overt clinical manifestation, and the resulting impact on cognitive performance, and further determine the underlying pathophysiology relating white matter disease and post-stroke outcomes

    Mapping the Impact and Plasticity of Cortical-Cardiovascular Interactions in Vascular Disease Using Structural and Functional MRI

    Get PDF
    There is growing interest in the role of vascular disease in accelerating age-related decline in cerebrovascular structural and functional integrity. Since an increased number of older adults are surviving chronic diseases, of which cardiovascular disease (CVD) is prevalent, there is an urgent need to understand relationships between cardiovascular dysfunction and brain health. It is unclear if CVD puts the brains of older adults, already experiencing natural brain aging, at greater risk for degeneration. In this thesis, the role of CVD in accelerating brain aging is explored. Because physical activity is known to provide neuroprotective benefits to brains of older adults, the role of physical activity in mediating disease effects were also explored. Using novel neuroimaging techniques, measures of gray matter volume and cerebrovascular hemodynamics were compared between groups of coronary artery disease patients and age-matched controls, to describe regional effects of CVD on the brain. In a sub-set of patients, imaging measures were repeated after completion of a 6-month exercise training, part of a cardiac rehabilitation program, to examine exercise effects. Differences in cerebrovascular hemodynamics were measured as changes in resting cerebral blood flow (CBF) and changes in cerebrovascular reactivity (CVR) to hypercapnia (6% CO2) using a non-invasive perfusion magnetic resonance imaging technique, arterial spin labelling (ASL). We found decreased brain volume, CBF and CVR in several regions of the brains of coronary artery disease patients compared to age-matched healthy controls. The reductions in CBF and CVR were independent of underlying brain atrophy, suggesting that changes in cerebrovascular function could precede changes in brain structure. In addition, increase in brain volume and CBF were observed in some regions of the brain after exercise training, indicating that cardiac rehabilitation programs may have neurorehabiliation effects as well. Since, CBF measured with ASL is not the [gold] standard measure of functional brain activity, we examined the regional correlation of ASL-CBF to glucose consumption rates (CMRglc) measured with positron emission tomography (PET), a widely acceptable marker of brain functional activity. Simultaneous measurements of ASL-CBF and PET-CMRglc were performed in a separate study in a group of older adults with no neurological impairment. Across brain regions, ASL-CBF correlated well with PET-CMRglc, but variations in regional coupling were found and demonstrate the role of certain brain regions in maintaining higher level of functional organization compared to other regions. In general, the results of the thesis demonstrate the impact of CVD on brain health, and the neurorehabiliation capacity of cardiac rehabilitation. The work presented also highlights the ability of novel non-invasive neuroimaging techniques in detecting and monitoring subtle but robust changes in the aging human brain

    Brain networks reorganization during maturation and healthy aging-emphases for resilience

    Get PDF
    Maturation and aging are important life periods that are linked to drastic brain reorganization processes which are essential for mental health. However, the development of generalized theories for delimiting physiological and pathological brain remodeling through life periods linked to healthy states and resilience on one side or mental dysfunction on the other remains a challenge. Furthermore, important processes of preservation and compensation of brain function occur continuously in the cerebral brain networks and drive physiological responses to life events. Here, we review research on brain reorganization processes across the lifespan, demonstrating brain circuits remodeling at the structural and functional level that support mental health and are parallelized by physiological trajectories during maturation and healthy aging. We show evidence that aberrations leading to mental disorders result from the specific alterations of cerebral networks and their pathological dynamics leading to distinct excitability patterns. We discuss how these series of large-scale responses of brain circuits can be viewed as protective or malfunctioning mechanisms for the maintenance of mental health and resilience

    Identification of neurobiological mechanisms associated with attention deficits in adults post traumatic brain injury

    Get PDF
    Traumatic Brain Injury (TBI) is one of the major public health concerns with approximately 70 million new cases occurring worldwide per year. It is often caused by a forceful bump, blow, or jolt to the head, resulting in brain tissue damage and normal brain functions disruption. All grades of TBI, ranging from mild to severe, can cause wide-ranging and long-term effects on affected individuals, resulting in physical impairments, and neurocognitive consequences that permanently affect their abilities to perform daily activities. Attention deficits are the most common persisting neurocognitive consequences following TBI, which significantly contribute to poor academic and social functioning, and life-long learning difficulties of affected individuals. However, attention deficits have been evaluated and treated based on symptom endorsements from subjective observations, with few therapeutic interventions successfully translated to the clinic. The consensus regarding appropriate evaluation and treatment of TBI induced attention deficits in this cohort is rather limited due to the lack of investigations of the neurobiological substrates associated with this syndrome. The overall aim of this dissertation research is to systematically investigate the neurobiological mechanisms associated with attention deficits in adults post TBI by utilizing multiple powerful neuroimaging techniques including the functional near-infrared spectroscopy (fNIRS) and multimodal magnetic resonance imaging (MRI), with an ultimate goal of translating hypothesis-driven neurobiological correlates into the quantitatively measurable biomarkers for diagnosis of TBI-induced attention deficits and development of more refined long-term treatment and intervention strategies. This dissertation research is conducted through three specific projects. Project 1 focuses on the investigation of brain functional patterns including the regional cortical brain activation and between-regional pairwise functional connectivity responding to visual sustained attention processing in individuals with and without TBI, by utilizing the fNIRS technique. Project 2 continues the examination of brain functional patterns by assessing the whole brain network topological properties responding to visual sustained attention processing in a larger sample of individuals with and without TBI, by utilizing the functional MRI technique and a graph theoretic approach. Project 3, on the other hand, investigates the brain structural characteristics based on the same sample involved in Project 2, by utilizing the structural MRI and diffusion tensor imaging techniques. For all these three projects, the differences of these brain imaging measures are compared between the groups of TBI and control. Correlation analyses are further conducted between those brain imaging measures which shows significant between-group differences and attention-related behaviors. In addition, Project 3 additionally investigates gender-specific patterns of the altered brain structural properties in TBI patients, relative to controls. The outcome of this novel and valuable dissertation research may shed light on the neural mechanisms of attention deficits in adults post TBI, and may suggest the neurobiological targets for treatment of this severe and common condition. It may also provide important neural foundation for future research to develop effective rehabilitation strategies to improve attention processing in adults post TBI

    Resting-state abnormalities in heroin-dependent individuals

    Get PDF
    Drug addiction is a major health problem worldwide. Recent neuroimaging studies have shed light into the underlying mechanisms of drug addiction as well as its consequences to the human brain. The most vulnerable, to heroin addiction, brain regions have been reported to be specific prefrontal, parietal, occipital, and temporal regions, as well as, some subcortical regions. The brain regions involved are usually linked with reward, motivation/drive, memory/learning, inhibition as well as emotional control and seem to form circuits that interact with each other. So, along with neuroimaging studies, recent advances in resting-state dynamics might allow further assessments upon the multilayer complexity of addiction. In the current manuscript, we comprehensively review and discuss existing resting-state neuroimaging findings classified into three overlapping and interconnected groups: functional connectivity alterations, structural deficits and abnormal topological properties. Moreover, behavioral traits of heroin-addicted individuals as well as the limitations of the currently available studies are also reviewed. Finally, in need of a contemporary therapy a multimodal therapeutic approach is suggested using classical treatment practices along with current neurotechonologies, such as neurofeedback and goal-oriented video-games

    ApoE4 effects on the structural covariance brain networks topology in Mild Cognitive Impairment

    Get PDF
    The Apolipoprotein E isoform E4 (ApoE4) is consistently associated with an elevated risk of developing late-onset Alzheimer's Disease (AD). However, little is known about his potential genetic modulation on the structural covariance brain networks during prodromal stages like Mild Cognitive Impairment (MCI). The covariance phenomenon is based on the observation that regions correlating in morphometric descriptors are often part of the same brain system. In a first study, I assessed the ApoE4-related changes on the brain network topology in 256 MCI patients, using the regional cortical thickness to define the covariance network. The cross-sectional sample selected from the ADNI database was subdivided into ApoE4-positive (Carriers) and negative (non-Carriers). At the group-level, the results showed a significant decrease in characteristic path length, clustering index, local efficiency, global connectivity, modularity, and increased global efficiency for Carriers compared to non-Carriers. Overall, I found that ApoE4 in MCI shaped the topological organization of cortical thickness covariance networks. In the second project, I investigated the impact of ApoE4 on the single-subject gray matter networks in a sample of 200 MCI from the ADNI database. The patients were classified based on clinical outcome (stable MCI versus converters to AD) and ApoE4 status (Carriers versus non-Carriers). The effects of ApoE4 and disease progression on the network measures at baseline and rate of change were explored. The topological network attributes were correlated with AD biomarkers. The main findings showed that gray matter network topology is affected independently by ApoE4 and the disease progression (to AD) in late-MCI. The network measures alterations showed a more random organization in Carriers compared to non-Carriers. Finally, as additional research, I investigated whether a network-based approach combined with the graph theory is able to detect cerebrovascular reactivity (CVR) changes in MCI. Our findings suggest that this experimental approach is more sensitive to identifying subtle cerebrovascular alterations than the classical experimental designs. This study paves the way for a future investigation on the ApoE4-cerebrovascular interaction effects on the brain networks during AD progression. In summary, my thesis results provide evidence of the value of the structural covariance brain network measures to capture subtle neurodegenerative changes associated with ApoE4 in MCI. Together with other biomarkers, these variables may help predict disease progression, providing additional reliable intermediate phenotypes

    Brain network alterations due to cardiometabolic risk factors:insights from population magnetic resonance imaging

    Get PDF
    This thesis investigated whether life style related risk factors are associated with novel neuronal imaging markers and evaluated the value of structural and functional brain network measures for that purpose. The life style related risk factors, also called cardiometabolic risk factors, studied in this thesis are (pre)diabetes, physical inactivity, high sedentary time, high blood pressure, obesity, and high cholesterol. The research summarized and extended the existing evidence on associations between cardiometabolic risk factors and subtle brain changes as assessed by structural and advanced Magnetic Resonance Imaging (MRI). More specifically, it was found that high blood sugar was associated with structural brain alterations, even in the prediabetes phase. Physical inactivity was also associated with structural brain alteration, especially in brain regions highly specialized in motor function. Furthermore, the research found an interrelation of brain damage in the form of white matter lesions (WML), structural brain alterations, and cognitive function. In particular, WMLs in structural brain connections important for information processing speed were associated with cognitive slowing. Finally, the research observed that neuronal and non-neuronal physiological signals could be recognized in the functional MRI signal, and that this signal is altered in people with cardiometabolic risk factors
    corecore