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Maturation and aging are important life periods that are linked to drastic brain

reorganization processes which are essential for mental health. However, the

development of generalized theories for delimiting physiological and pathological brain

remodeling through life periods linked to healthy states and resilience on one side or

mental dysfunction on the other remains a challenge. Furthermore, important processes

of preservation and compensation of brain function occur continuously in the cerebral

brain networks and drive physiological responses to life events. Here, we review research

on brain reorganization processes across the lifespan, demonstrating brain circuits

remodeling at the structural and functional level that support mental health and are

parallelized by physiological trajectories during maturation and healthy aging. We show

evidence that aberrations leading tomental disorders result from the specific alterations of

cerebral networks and their pathological dynamics leading to distinct excitability patterns.

We discuss how these series of large-scale responses of brain circuits can be viewed

as protective or malfunctioning mechanisms for the maintenance of mental health and

resilience.
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INTRODUCTION

Aging is related to alterations of cognitive functioning accompanied by structural and functional
brain reorganization (1, 2). Maintained cognitive function late in life is generally achieved by
the integrated communication of specific brain regions (3, 4). The functional and structural
reorganization of brain circuits occur continuously during the lifespan and play an essential
role for preserving brain health (5–7). Hence, abnormal cognitive function may build upon
specific alterations of brain networks and their dynamic responses to life events or physiological
processes during maturation or aging (8–10). An exact understanding of structural and functional
longitudinal properties and a precise characterization of the tissue properties are crucial for
modeling the long-term processes and to distinguish between healthy and disease-specific
alterations. Hence, modeling interregional connectivity and specific reorganization of cerebral
networks topology is likely to promote our understanding of underlying mechanisms of mental
health and resilience to life events (11).

Functional connectivity patterns can be obtained from the temporal correlations of spontaneous
neurophysiological signal fluctuations between brain regions either by electroencephalography
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(EEG) or functional magnetic resonance imaging (fMRI), and
then analyzed within a graph-theoretical framework (7, 12, 13).
On the other hand, the structural network connectivity can be
accessed by pure structural MRI measures like cortical thickness
and volume or by white matter fiber tracts obtained through
tractography between predefined regions of interest (6, 14, 15)
as shown in Figure 1. These network fingerprints are predictive
measures of disease-related clinical symptoms (6, 7) or therapy
outcomes (16).

In this review, we present existing evidence for a profound
understanding of lifespan-related reorganization processes that
can be related to protective mechanisms that help our brain
to cope with age-related situations and reduce the burden
for brain alterations linked to mental disorders. Unraveling
complementary functional and structural fingerprints should
give important insight on inter-individual courses. On the basis
of our recent results on the importance of the cerebral networks
in disease outcome (6, 13, 16–19), we discuss the impact of
the structural gray matter tissue integrity and reorganization
of normal appearing white matter and evolving functional
adaptations for clinical phenotypes. Non-invasive structural and
fMRI characterization of the neuronal circuits will be discussed
from a longitudinal perspective.

We hypothesize that (i) cerebral networks in resilient
subjects with preserved mental health despite traumatic events
are characterized by a reorganization of the gray and white
matter compartments with a strengthening of distinct regional
connectivity patterns and preserved structural integrity in
the key anatomical regions (prefrontal cortex, hippocampus
and corpus callosum); (ii) these brain circuits remodeling
processes are partially mirrored in age-related reorganization
during maturation or healthy aging; (iii) neurocognitive and
clinical impairment of mental health is associated with
exhaustion of network compensation, which manifests in
divergent lifespan patterns of network reorganization or
a breakdown of functional responses; (iv) structural and
functional lateralization patterns together with inter-hemispheric
connections and the connectivity fingerprints in the above
mentioned networks together with their functional interactions
have a large impact on network compensation and thus
inter-individual mental status. The overall aim of this work
is to identify distinct network connectivity and integrity
patterns reflecting compensation processes for global network
functioning. We focus first on maturation processes and healthy
aging and drive parallels to mechanisms of resilience behavior.

AGE-RELATED BRAIN REMODELING AND
EXCITABILITY DYNAMICS DURING
MATURATION

Accurate synaptic transmission is a fundamental requirement
for normal brain function (20); signaling alterations at the
excitatory synapse leading to cortical hyperexcitability have been
related to psychiatric disorders such as schizophrenia (21–24).
However, to what extent alterations in brain maturation leading
to cortical miswiring and subsequent cortical hyperexcitability

contribute to psychiatric disorders has not been fully elucidated.
During brain development and maturation, neuronal activity is
an important regulator of cortical connectivity. Experimental
data suggests that disrupted neuronal activity during circuit
maturation results in a failure of the refining of the circuit,
inducing miswiring and increased network hyperexcitability due
to alterations of the postsynaptic compartment (25, 26). In
line with this, recent data shows that during juvenile brain
development neuronal activity is needed for the proper formation
of interhemispheric connections, while inhibition of neuronal
activity resulted in decreased neuronal connectivity (27). In
outgrowing axons, increased neuronal activity and proper
connectivity was suggested to depend on axonal Ca2+-signaling
leading to activation of the CaMKK/CaMKI alpha cascade,
thereby supporting axonal outgrowth (28). However, although
neuronal activity was shown to be also important for subcortical-
cortical projections, like the thalamo-cortical fibers (29), recent
data suggests that pathological increased cortical excitability
during juvenile brain development affects the formation of
cortical connections leading to decreased cortical connectivity
(30). Thus, neuronal activity during brain maturation has to
be balanced: too low or too high neuronal activity levels
are associated with cortical miswiring and cortical network
hyperexcitability and may lead to psychiatric disorders at further
adult ages. Indeed, alteration of cortical excitation/inhibition
(E/I) balance and subsequent alteration of cortico-cortical
modulation was shown to lead to increased cortical gamma
oscillations (31, 32).Moreover, recent human data has shown that
schizophrenia patients display increased spontaneous gamma
activity during auditory steady-state stimulation reflecting a
disrupted E/I balance (33).

A second critical period of cortical restructuring, which is
present in distinct and interrelated connectivity development
and cortical regions activity shaping, occurs during adolescence
(34). Twin studies suggest that these cortical growth trajectories
are determined by different sets of genes, which are active in
interconnected brain subregions (35). Further studies revealed
that regional alterations in the gray matter properties occurred in
specific brain networks, which are relevant for the development
of psychiatric disorders. Reorganization of these brain networks
in adolescence is suggested to result in a particular vulnerability
for psychiatric disorders (36, 37). Indeed, analyses in patients
with childhood-onset schizophrenia have identified an abnormal
pattern of cortical growth in the cingulo-fronto-temporal area
of these patients, and suggest a specific impact of genetic
systems in these neuroanatomical modules affecting their
connectivity (38). Interestingly, network-specific alterations,
which increase vulnerability to brain disorders, are not restricted
to developmental periods, but have also been found to be present
in different neurodegenerative disorders (39). These data suggest
that developmental disturbances during adolescence, leading
to increased vulnerability to psychiatric and neurodegenerative
disorders rely on network-driven alterations of specific brain
networks.

The idea that altered neuronal connectivity during brain
maturation may lead to psychiatric disorders is supported
by longitudinal studies focusing on delayed development
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FIGURE 1 | Overview of network reconstruction methods. (A) The electrical activity of the brain is recorded using electroencephalography (EEG). These recordings

(EEG time-series) are analyzed using time-frequency analysis approaches to investigate the spatiotemporal distribution of the frequency power. (B) From structural (T1)

magnetic resonance images (MRI) morphological measures (cortical thickness/volume) for different brain regions can be extracted according to a predefined atlas.

These measures are used to obtain a structural covariance matrix, from which the structural gray matter network is reconstructed. (C) The diffusion tensor images

(DTI) are used to derive white matter tracts, from either probabilistic or deterministic tractography algorithms, or fractional anisotropy maps. These measures are used

to obtain a connectivity matrix according to the brain atlas of choice, and subsequently, the structural white matter network is reconstructed. (D) The functional MRI

(fMRI) time series from different brain regions obtained can also be used to generate the functional connectivity matrix and subsequently to reconstruct the functional

brain network.
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of brain connectivity. Adolescents with childhood-onset of
schizophrenia, as well as their clinically unaffected siblings,
showed reduced structural integrity and connectivity deficits in
the left occipito-temporal areas (40). Although the maturation
deficits of cortical connectivity have been shown to become
normal with age in patients’ siblings (41), this is not the case
for the adolescents with childhood-onset schizophrenia (42).
These findings support the hypothesis that maturation of cortical
connectivity is an important factor for resilience to psychiatric
disorders, in which alterations in cortical connectivity at certain
life periods, as present in adolescents, may affect resilience toward
psychiatric disorders. This is further supported by a recent study
which correlated the microarchitecture of corpus callosum to
the ability of individuals, who were exposed to high stress, to
resist mental disorders (43). Here, young adolescents (mean age:
14.4 ± 1.31 years) with a high resilience to psychiatric disorders
displayed higher fractional anisotropy (FA) values in the anterior
corpus callosumwhen compared to adolescents at-risk formental
disorders or with controls (43).

In addition, findings showing altered morphological
connectivity following abnormal adolescent brain maturation
and associated with cortical hyperexcitability have taken a central
role for the current view on the development of psychiatric
disorders (24). This is in line with findings that early cortical
hyperexcitability has a deleterious effect on brain development
leading to sequelae later in life. For instance, Dube and co-
workers (44) have shown that stress during sensitive early life
periods led to cortical hyperexcitability at later life periods, where
57% of the individuals with early life stress developed epileptic
seizures (44). However, and despite the immediate drastic
effects like epileptiform discharges (5), continued and sustained
cortical hyperexcitablility may lead to psychiatric disorders, as
described in animal models for autism phenotypes (45), or may
contribute to the pathological cascade of events that contribute
to the development of Alzheimer’s disease (46). Interestingly,
not only generalized cortical excitability, but hyperexcitability of
specific brain regions was shown be involved in fear reactions
and reduced extinction suggesting an important link between
neuronal excitability of specific brain regions like the dentate
gyrus in the pathology of post-traumatic stress disorder. In sum,
proper maturation from the synaptic level up to the cortical
circuit level assuring correct neurotransmission and cortical
connectivity is a prerequisite for proper resilient behavior at
adult ages, while alterations in E/I balance and in cortico-cortical
connectivity may lead to psychiatric disorders.

BRAIN REORGANIZATION AND NETWORK
COMPENSATION DURING AGING

From early life through adulthood the brain is constantly
changing; later in life the physiological aging process (i.e.,
free from neurodegeneration) is associated with modification
of intrinsic neuronal excitability, together with functional
and structural connectivity reorganization. These processes
are typically associated with preservation or rather decline
in performance across several cognitive domains. In elderly

people, preserved function is thought to be underpinned by
compensatory mechanisms (47), in which proximal or distal
brain regions to those that decline over time because of natural
aging, are recruited to maintain function (48).

From the functional perspective, age-associated adaptations
of intrinsic neuronal excitability have been related with changes
in cellular micro-architecture (i.e., membrane ion channels,
receptors and vesicle fusion processes) and its molecular
signaling (49, 50). Although the mechanisms of action are not
yet fully understood, numerous evidence has shown involvement
of ion-gated channels (e.g., voltage-gated Ca2+ channels and
mechano-gated K+ channels) in mediating the loss of plasticity
in neurons, making neurons more susceptible to deleterious
processes such as oxidative stress (51). As an example, previous
studies have shown increased loss of dopamine synthesis with
healthy aging in the striatal system (52), which is particularly
vulnerable to oxidative stress (53, 54). At this stage in life, the
rate of dopamine loss is more prominent than the regional loss of
gray matter tissue (52) and is related to cognitive performance
(55), hence suggesting that this transition could be initiated
by changes in the ion channels. However, further research is
still needed in order to unveil the importance and to better
characterize the impact of molecular changes related to the wide-
spread functional and structural brain changes associated with
healthy aging.

At the macro level, extra-cephalic electrophysiological
recordings have repeatedly evidenced age-related alterations
of oscillatory activity across distributed portions of the cortex.
Since a loss of approximately 10% of all neocortical neurons
over the lifespan occurs (56), alterations of local activity can
be explained by an impaired synchronization of neuronal
activity in specific frequency ranges. One possible cause of
impaired synchronous firing activity can be an alteration of the
cortico-cortical neuromodularity mechanisms or imbalances in
the subcortico-cortical circuits, directly impacting spontaneous
neuronal firing rates and changing the E/I balance. This appears
to be the case for high frequency bands, for instance beta
(13–30Hz) and gamma (30–45Hz) bands, in which increased
power has been reported with increasing age (57), whereas
decreases in lower alpha (8–10.5Hz) and a slowing of peak
alpha frequency appear with aging (58). Here, age-related
interhemispheric asymmetry in power has been related to an
increased excitability within the sucortico-cortical circuits (57),
which is interpreted as a compensatory mechanism. However, a
less consistent scenario emerges for frequencies in the slow wave
range, delta (1–4Hz) and theta (4–7.5Hz) bands, in which both
increases and decreases have been reported (59–62). Notably,
apart from increased functional activity (47, 63), reduction of
brain lateralization has been described as an important age-
related mechanism for compensatory functions (64). However,
this view considers only detrimental aspects of aging toward
pathology and ignores a causal dynamical relationship with
neural adaptation (i.e., plasticity) to life events (e.g., education,
intellectual engagement and daily activities) during maturation.

On the structural part, although annual decreases on the
order of 0.2–0.5% are well documented (65), MRI-derived
morphometric measures (gray matter volume and thickness)
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have demonstrated heterogeneous effects of aging, in which
despite occurrence of disseminated atrophy across the whole
brain, changes vary from region to region and tissue type,
particularly over the cortical mantle (65, 66). Of all cortical
regions, the frontal and parietal cortices appear the most
susceptible to age-related changes (65, 67–70), with accumulating
evidence showing increased involvement of the temporal regions
(65). At the subcortical level, the hippocampus, caudate nucleus
and cerebellum are the most age-susceptible regions (67),
whereas involvement of regions belonging to the limbic system
appear only limited (71–74). How these changes participate
or guide aging processes is still unknown. For instance,
reduction of the integrity in the prefrontal cortex is related
with functional hyper-activation of the same region during
task performance, suggesting the existence of compensatory
mechanisms that support the maintenance of cognitive function
(1, 75). Anatomical brain lateralization also seems to be nontrivial
during aging, since for example, a trend for faster gray matter
loss of the left prefrontal cortex relative to the right one has been
described (76). Although this finding has not been consistently
reported (77), individuals with smaller left than right hemispheric
structural integrity are more likely to report cognitive deficits
(78). Furthermore, converging evidence exists that an aging-
related asymmetric loss of integrity in the parietal and temporal
cortices is associated with cognitive functioning (79).

Examination of the white matter tissue has pointed to reduced
microstructural integrity in the fiber tracts of the frontal and
parietal lobes, as well as in the corpus callosum in elderly
persons (80–82). White matter alterations are associated with
decrements in cognitive performance, speed of processing,
memory and executive functions (82). Moreover, age-related
metabolic decreases in the middle and superior temporal cortex,
albeit less pronounced than in frontal regions, have been
related to white matter disturbances in the long fronto-temporo-
occipital association pathways (83). Although these changes are
likely to be explained by changes in myelin content (84), due
to its influence on signal conduction (85), the effects of age
on myelin are complex; even though some reduction in myelin
sheaths is observed with age, themyelin is continuously produced
throughout life, but perhaps in an uncontrolled or dysfunctional
manner (86). Recent advances in MRI methods have successfully
ascertained the in-vivo assessment of myelin content, showing a
negative correlation with aging in the white matter (87, 88) and
also to a lesser extent the gray matter (89). Notably, separation
of myelin effects from cerebrovascular alterations is not easy
using MRI approaches (90), because focal age-related anatomical
changes in the white matter, e.g., white matter lesions, can also
result from changes in blood pressure (91).

IMPACT OF DIVERGENT PATTERNS OF
NETWORK REORGANIZATION FOR
RESILIENCE AND SUSTAINED MENTAL
HEALTH

Detection of altered brain circuits in the comparison between
healthy subjects and patients only partially captures the
neurobiological complexity of reorganization processes

associated with maturation and aging and their influence
on the development of pathological trajectories (92). The
modern, network view of the human brain envisions circuits that
are not only shaped by interactions (connections) between their
constituent elements (brain regions), but also by their complex
topological organization and temporal dynamics These factors
mainly determine the differentiation between physiological
vs. patholological processes and hold the key to describing
reorganization associated with resilience and sustained mental
health (11). Hence, the efficient organization of the brain
networks results from delicate balancing of the opposing
requirements for information integration and segregation,
allowing effective complex cognitive and perceptual functions
essential for mental health (93, 94).

Functional connectivity during resting state (i.e., individuals
are relaxed and awake, but not engaged in task-directed
cognition) has been increasingly applied to investigate the
reorganization of the brain across the lifespan, showing that
the network topology has a tendency to become randomly
organized with increasing age, losing its efficient organization.
Such dynamics seem to be good predictors of the individual
transition from young to middle age (95), where the information
flows from and to the frontal and parietal regions have a
primordial role for physiological preservation ofmental function.

Interestingly, despite the amount of research showing that
chronic exposure to high levels of stress is associated with
increased susceptibility to anxiety and other mental disorders
(96–98), there is compelling evidence that more graded exposure
to stress might reduce such vulnerabilities and promote resilience
(99) or may even positively influence several cognitive domains
such as memory functions influencing cerebral networks
encompassing the hippocampus and amygdala (100). Of note,
the stress responses mediated by the amygdala are regulated
by the medial prefrontal cortex and their coupling (101–
103); thus, stress exposure impairs prefrontal cortex-mediated
cognitive functions and switches the control of stress behavior
and emotion to interconnected brain circuits (104). These results
support the hypothesis of compensation (105), establishing
that the recruitment of secondary networks is a mediator of
the relationship between structural brain damage and memory
or targeted attacks (13). Hence, failure in the compensatory
processes related to stress could reduce the ability of the
brain circuits to compensate insults, increasing the rate at
which functioning is impaired by new challenges (106). Indeed,
sustained activation of the circuits involved in coping with stress
situations could pass from being an adaptive or compensatory
response, to lead to impairments in learning, memory, and the
ability to regulate future stress responses (107, 108) and increase
the vulnerability to a range of mental disorders over a lifetime
(109). On the contrary, forms of early enrichment could induce
an accurate heterotypic adjustment at molecular, synaptic and
brain circuits levels that could strengthen resilience behavior
(99, 110).

In some clinical conditions, such as depression or post-
traumatic stress disorder (PTSD), an impaired structural network
with abnormal hippocampal integrity and diminished function
was described and considered as disease landmarks (111, 112).
Smaller hippocampal volumes have been as well attested in
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women with major depression and related to experiences of
childhood trauma, while depressed individuals without similar
trauma events had hippocampal volumes similar to healthy
controls (113). Moreover, the unexposed twins of PTSD patients
show a similar degree of hippocampal decrease, but without
clinical implications (114). Hence, decreased hippocampal
volume in these patients cannot be considered a mere disease
outcome, but may be a pre-existing risk factor and could be
related to early and continued exposure to aversive situations
(115).

A further example largely associated with aging is that
of Alzheimer’s disease (AD), in which a continuum exists
comprising a preclinical stage, a symptomatic predementia stage
known as mild cognitive impairment (MCI), and the final stage
of dementia (116). The molecular hallmarks of MCI subjects
who progress to AD show positive biomarkers of amyloid-
β (Aβ) and tau-related neural injury (117, 118). Periphery
biomarkers, such as lower levels of cerebrospinal fluid (CSF) Aβ,
indicate increased accumulation in the brain, whereas increased
CSF tau levels indicate damaged neuronal microtubules, clearly
evidencing synaptic dysfunction (i.e., desynchronization and
hypersynchronization) due to AD (119) that negatively impacts
synaptic plasticity and causes synaptic loss, which in turn leads
to impairment of neural networks involved in memory and
cognition.

Studying network organization patterns in such conditions
offers the advantage of addressing developmental trajectories,
with causal and longitudinal interpretation and offering the
possibility to differentiate primary brain circuits alterations
from secondary wide-spread function loss and to highlight

FIGURE 2 | Model showing the likely developmental trends of resilience,

showing the maintenance or recovery of mental health during and after

exposure to significant adverse event results from a dynamic process of

adaptation to the given life circumstances (gray boxes), where global

reorganization (purple line) and mechanisms of compensation (yellow line)

across the whole brain network are in charge of maintaining optimal

functioning and efficiency (green line) in relation to cognitive ability and mental

health. However, increased or sustained exposure to adverse life events or

inadequate network reorganization will lead to exhaustion or collapse of the

network (black dashed line), which manifests as divergent lifespan patterns or

breakdown of functional responses leading to loss of mental health.

the involvement of particular brain regions as network nodes
or connectivity dynamics as active processes (120). In this
sense, network compensation as an adaptive mechanism for
resilience is not only of use to explain stress coping and
to closely track and predict preserved mental health (7), but
can be also illustratively studied to monitor adaptation and
compensation that occur during the lifespan (69, 121).While age-
related decreased connections from and to the frontal regions
and increased connections to the posterior (parietal) modules
have been described (122) these have been closely related with
maintained cognitive function (123, 124). Moreover, variations
in network efficiency predict memory function across different
life periods and are suggested to reflect differences in information
processing between association and sensorimotor systems (125).
This all points to the fact that the adjustment of network
organization is responsible for buffering alterations in cognitive
ability (126, 127), and the loss of optimal topological organization
is associated with disease development and impaired brain
function (128, 129). Hence, the capacity to react to threats is
built into specific brain circuits whose development is influenced
by multiple experiences and present differential susceptibility
during the lifespan.

BRAIN NETWORKS FINGERPRINTS OF
REORGANIZATION DURING LIFESPAN
AND RESILIENCE

The dynamics of brain reorganization during lifespan partly
mirror structural (130) and functional networks behavior (131,
132), increasing efficiency during maturation through young
adulthood until reaching a peak at about 30–40 years of age, that
acts as an inflection point, after which the efficiency of brain
circuits starts to decrease and physiological aging begins. More
broadly, the structural integrity of the brain, as measured by
the brain parenchymal fraction (BPF) presents a similar trend
across the lifespan (133), whereas the cognitive ability increases
throughout young adulthood and decreases in older adulthood
(134). Variations in the trajectories are expected in relation to
biological and environmental factors, such as genetics, lifestyle,
education, socio-cultural background, exercise engagements and
learning.

Despite the above mentioned age-related lifespan brain
reorganization processes that explain links from structure to
cognitive and mental function (1, 2), whether all these changes
result from modifications in earlier or later life periods remains
an open question. More importantly, which compensation
patterns occur at different life points and how brain circuits
can compensate for detrimental events is only partly understood
(135–137). This is a central point of resilience research,
which postulates that active processes of brain reorganization
play an essential role for preserved mental function (11),
where the connectivity patterns shaping excitability regulation
mechanisms are principally involved in sustaining mental
health and physiological trajectories of cognitive function (138).
Accordingly, we propose an integrative model as shown in
Figure 2.
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To confront the increased endogenous challenges (i.e.,
changes to neural anatomy and physiology), as well as exogenous
challenges (i.e., those brought about by traumatic events or
by changes to the environment), brain circuits must present
tremendous abilities to flexibly adapt. Maintained mental health
can be generally achieved by the integrated communication
between frontal and parietal brain regions (3, 4). Within
this view, reorganization principles of the brain’s topological
architecture, beyond being mere compensatory mechanisms
(47, 75), could be thought of as manifestations of neural
plasticity, synaptic adaptation and reorganization of information
flows (69, 139–142). This hypothesis is based on the fact that
age-related functional and structural reorganization processes
spatially correspond to evolving patterns of activation, and
that these structure-function patterns are tightly associated with
cognitive performance (1, 143). More supporting evidence shows
that adults who do not show age-related adjustment in EEG
theta-alpha power are more likely to exhibit cognitive deficits
than those who adapt (62). Accordingly, the process of resilience
cannot be restricted to early life but should operate throughout
the entire lifespan.

Recent studies have emphasized that the integral topological
architecture of the brain networks, i.e., modular organization,
supports increased cognitive demands (144–146) and that the
reorganization of its patterns are tightly related to aging (122,
125, 147). How this process of increased modularization of
brain networks is related to mental health or resilience is not
yet clear but should be a matter of future studies. Hence,
adaptation of interregional connectivity and specific changes
in network topology are likely to be contributing mechanisms
to healthy aging (147, 148). This phenomenon is characterized
by modification within different brain subsystems (122), which
contain regions critical for several cognitive functions and/or
are particularly sensitive to disease development. Specifically, the
prefrontal, anterior and posterior cingulate cortices, as well as the
precuneus and the inferior parietal lobe have been consistently
shown to present age-related changes in connectivity relevant to
preserved mental function and resilience (3, 4).

Common patterns of functional and structural network
reorganization have been reported at different time scales (149),
mainly involving reduced connectivity in the fronto-parietal or
default mode networks which seem to be the normal adaptation
to healthy aging. On the contrary, although the temporal cortex
shows a similar trajectory with age as other regions (150, 151)
the changes to this region show signs of neurodegeneration
(152, 153). These findings pinpoint the possibility of
specific regional contributions to differentiate healthy from
abnormal aging trajectories, and opens the possibility that
failures in age-related network reorganization predispose
the brain to the development of the so-called disconnection
syndromes.

In the same line, specific network topology patterns
have already been related to the disease course and clinical
progression in AD (154) and Parkinson’s disease (16), multiple
sclerosis (6, 15), schizophrenia (155, 156), depression (157) and
PTSD (158, 159). These observations emphasize that the network
adaptations are not merely a consequence of pathological

alterations, but should be seen as integrative processes of
functional and structural alterations and compensation for
optimal network functioning (123), which act until the set-point
at which the network performance cannot be maintained and
compensation abates (7). Furthermore, patterns of network
reorganization are linked to plasticity in the normal brain (160)
and with maintenance of function despite continuous damage
(161, 162). This suggests that the correct adaptation of distinct
brain circuits may be the key mechanism underlying resilience
(as in our proposed model shown in Figure 2), where parallel
processes of lifespan-related reorganization in brain circuits can
be drawn, and used to improve our understanding, under an
holistic framework, of the interrelation between physiological
and pathological developments and experienced life
events (7).

CONCLUSION

Clearly, brain networks development and reorganization across
the human lifespan are active and continuous processes, which
allow the emergence of resilience mechanisms across the entire
lifespan. Within these networks, the frontal and parietal regions
are certainly modulators of maintained health, where the
intrinsic dynamics and excitability patterns of these regions
and their connections, for instance to the temporal lobe and
hippocampus, are able to reduce vulnerability and risk for
damage. Hence, correct adaptation of these connectivity patterns
could be the key to healthy aging and diminish the risk for
developing neurological and neuropsychiatric disease at different
stages across the lifespan. Future research should aim for
multivariate full-brain investigations using not only larger study
populations, also with the help of combined biomarkers at the
micro-level, such as blood markers or genetic profiling, and
at macro-level, e.g., brain imaging and network analyses; all
together with longitudinal designs in order to better capture the
full dynamics of lifespan modifications.
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