
 

 

 

Brain network alterations due to cardiometabolic risk
factors
Citation for published version (APA):

Vergoossen, L. W. M. (2021). Brain network alterations due to cardiometabolic risk factors: insights from
population magnetic resonance imaging. Drukkerij Econoom. https://doi.org/10.26481/dis.20210401lv

Document status and date:
Published: 01/01/2021

DOI:
10.26481/dis.20210401lv

Document Version:
Publisher's PDF, also known as Version of record

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can
be important differences between the submitted version and the official published version of record.
People interested in the research are advised to contact the author for the final version of the publication,
or visit the DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these
rights.

• Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
• You may not further distribute the material or use it for any profit-making activity or commercial gain
• You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above,
please follow below link for the End User Agreement:

www.umlib.nl/taverne-license

Take down policy
If you believe that this document breaches copyright please contact us at:

repository@maastrichtuniversity.nl

providing details and we will investigate your claim.

Download date: 06 May. 2021

https://doi.org/10.26481/dis.20210401lv
https://doi.org/10.26481/dis.20210401lv
https://cris.maastrichtuniversity.nl/en/publications/b99f24d6-e054-47bd-af13-747cde9f06ce


 

 

 

Brain Network Alterations due to 

Cardiometabolic Risk Factors 
 

Insights from Population Magnetic Resonance 

Imaging 

  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

© 2021 Laura Wilfrieda Maria Vergoossen – All rights reserved. 

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or 

by any means, electronic, mechanical, photocopying, recording or otherwise, without the prior 

permission of the author. 

Printed by Drukkerij Econoom, Beek, The Netherlands 

Layout by Laura Vergoossen 

Cover design by leukerDESIGN Susteren and Laura Vergoossen 

ISBN: 978-94-6423-171-7 

 

Printing of this thesis was financially supported by Maastricht University.  



 

 

 

Brain Network Alterations due to 

Cardiometabolic Risk Factors 
 

Insights from Population Magnetic Resonance 

Imaging 
 

 

 

PROEFSCHRIFT 

 

ter verkrijging van de graad van doctor aan de Universiteit Maastricht, 

op gezag van de Rector Magnificus, Prof dr. Rianne M. Letschert 

volgens het besluit van het College van Decanen, 

in het openbaar te verdedigen 

op donderdag 1 april 2021 om 12.00 uur 

 

door 

 

Laura Wilfrieda Maria Vergoossen 

 

Geboren 7 januari 1992 te Geleen 

  



Promotor 

Prof. dr. ir. W.H. Backes 

 

Copromotores 

Dr. J.F.A. Jansen 

Dr. M.T. Schram 

 

Beoordelingscommissie 

Prof. dr. P.A.M. Hofman (voorzitter) 

Prof. dr. F.R.J. Verhey 

Prof. dr. G.J. Biessels (University Medical Center Utrecht) 

Prof. dr. S.A.R.B. Rombouts (Leiden University Medical Center) 

  



Table of Contents 

 

Chapter 1: General introduction ........................................................................................... 1 

 

Chapter 2: Cardiometabolic determinants of early and advanced brain alterations:           

Insights from conventional and novel MRI techniques ....................................................... 15 

 

Chapter 3: White matter connectivity abnormalities in prediabetes and type 2                

diabetes: The Maastricht Study ........................................................................................... 47 

 

Chapter 4: Association of physical activity and sedentary time with structural brain      

networks – The Maastricht Study ........................................................................................ 77 

 

Chapter 5: Interplay of white matter hyperintensities, cerebral networks, and                  

cognitive function in an adult population – Diffusion Tensor Imaging in                                       

The Maastricht Study ......................................................................................................... 105 

 

Chapter 6: Exploring the neuronal and systemic physiological contribution to           

spontaneous cerebral fluctuations – Insights from functional MRI in                                           

The Maastricht Study ......................................................................................................... 135 

 

Chapter 7: General discussion ........................................................................................... 157 

 

Summary ........................................................................................................................... 169 

Samenvatting .................................................................................................................... 175 

Impact Paragraph .............................................................................................................. 181 

Dankwoord ........................................................................................................................ 187 

Curriculum Vitae ............................................................................................................... 191 

Publications ....................................................................................................................... 195 



 

  



 

 

Chapter 1 
 

General Introduction 

 
 

 

 

 

 

 

 

 

 



CHAPTER 1 

2 

   1  

1 

  



General Introduction 

3 

1 Cardiometabolic risk and lifestyle 

Chronic diseases, such as diabetes, cardiovascular disease, and dementia, are one of the main challenges 

for the health system (1, 2), partly through the ageing population and increasing prevalence of obesity 

and paucity of physical activity. Wide scale prevention of these diseases remains elusive, because they 

are caused by multiple, often additive, complications arising from cardiometabolic risk factors. 

Cardiometabolic risk factors include hyperglycemia, physical inactivity, sedentary behavior, central 

obesity, hypertension, and dyslipidemia, and are factors that increase the risk of cardiovascular 

problems, including (pre)diabetes, and dementia. 

What is (pre)diabetes? 

Type 2 diabetes is a chronic disease that occurs when the body has become resistant to the 

hormone insulin, which leads to raised blood glucose levels called hyperglycemia. Additionally, the 

insulin producing cells become damaged and stop the production. Prediabetes is an intermediate 

hyperglycemic condition between normal glucose metabolism and type 2 diabetes. Subjects with 

prediabetes have an increased risk of developing type 2 diabetes (3, 4). Over time, hyperglycemia 

leads to tissue damage and macro- and microvascular complications such as cardiovascular disease, 

nephropathy, retinopathy, and neuropathy. The cardiovascular effects  are thought to disturb the 

blood supply in the brain (5). 

Accumulating evidence shows that cardiometabolic risk factors are associated with a higher risk of late-

life (65+ years) cognitive impairment and eventually brain diseases such as dementia and depression (6-

13). In particular, these risk factors affect the smallest brain vessels and are thought to lead to cerebral 

small vessel disease (cSVD) and neurodegeneration (brain atrophy) (14, 15), which represent early 

features in the pathophysiology of cognitive decline and dementia (16). More specifically, at mid-life age 

(40-65 years), the most important risk factor for cognitive decline is hypertension, while later in life 

(65+), diabetes imposes the greatest risk factor (17, 18). Currently, it is not fully understood how these 

risk factors exactly contribute to cognitive decline. Therefore, this thesis aims to gain more insight into 

the brain alterations underlying cognitive decline and brain pathology (Figure 1.1). 
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Figure 1.1: Schematic description of the underlying concept of this thesis on the association between 

cardiometabolic risk factors, the developing, or expressing alterations of the brain tissue and the 

emerging health detriments and disorders. 

Added value of MRI 

The brain tissue is difficult to access for scientific research, because it is protected by the skull. However, 

magnetic resonance imaging (MRI) enables the visualization of the anatomical structures within the skull. 

MRI is a noninvasive method that uses a powerful magnetic field to examine internal body structures. 

MRI provides information to describe shape, size, and integrity of white and gray structures in the brain. 

The gray matter contains most of the brain’s neuronal cell bodies and small vessels. The white matter is 

composed of long-range nerve fibers connecting the neurons. Structural brain MRI techniques can also 

detect macroscopically visible morphological brain abnormalities, such as atrophy and microvascular 

lesions. Brain lesions interfere with the trajectories of the white matter, and may disrupt the connections 

between gray matter regions. These changes in white matter connectivity may contribute to general 

cognitive decline, and decline in various specific cognitive domains, as information processing speed, 

executive function and attention, and memory (19, 20). Additionally, advanced MR imaging methods can 

provide detailed insights into subtle brain changes, and thus early development of pathology, enhancing 

our understanding of brain disease (21). Multiple advanced MRI techniques are available to assess 

different characteristics of the brain. Intermezzo 1 and 2 provides more information about the advanced 

imaging (Intermezzo 1) and image quantification (Intermezzo 2) methods to assess the brain’s network in 

this thesis. Intermezzo 3 explains how physiological information can be extracted from the rs-fMRI signal. 
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1 Intermezzo 1: Advanced MRI methods used in this thesis 

White matter structure and diffusion-weighted MRI 

The white matter is organized as a complex network of connected fibers, which is responsible for 

efficient information exchange between brain regions (22). Alterations in one region may affect the 

function of other regions to which they are connected via white matter fiber tracts. Diffusion weighted 

MRI (dMRI) can probe the white matter fiber architecture, based on the diffusion characteritics of 

water molecules. This technique yields quantitative measures that reflect microstructural properties 

related to preferences in diffusion direction relative to the fiber trajectories. 

The structure and efficiency of the constellation of the white matter fiber tracts, the so-called 

structural network, can be investigated by applying graph theory analysis (Intermezzo 2). In short, 

structural connectivity refers to the amount and integrity of white matter tracts between brain areas, 

thus in general, a lower structural connectivity is a marker of brain pathology. The use of dMRI-derived 

white matter tracts, in combination with graph theoretical analysis, addresses both the regional 

volumes, and their connections to other regions. 

Resting-state functional MRI 

To measure brain activity one can make use of the coupling between neuronal activity and 

microvascular blood supply that is expressed as spontaneous brain fluctuations (23). Functional MRI 

(fMRI) is sensitive to changes in blood oxygenation through the blood oxygen level dependent (BOLD) 

signal, which is related to brain function; more oxygenation consumption (indirectly) reflects higher 

brain activity. Neuronal activity can be measured during brain activation (task-based or stimulus-

induced) and in rest (resting-state). Resting-state fMRI is used to determine the so-called resting-state 

networks, consisting of functionally connected regions with comparable spontaneous fluctuation 

signatures, which show a high level of correlated BOLD time-signal activity such as the default mode 

network (Intermezzo 2). In task-based fMRI, a cognitive or behavioral task is performed while sensory 

stimuli (e.g., auditory or visual) are presented during scanning to visualize the brain regions that are 

involved in the specific tasks.  

The temporal correlations between the measured time signals of neuronal activity is used to assess 

collaborations between brain regions, which is termed as the so-called functional connectivity. The 

spatial organization of functional connectivity throughout the brain can also be expressed in terms of 

graph theoretical measures. 
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Intermezzo 2: Graph theory 

In graph theory the brain is represented as a graph, which is a network of gray matter regions (nodes) 

connected by white matter connections (edges). A simple representation of such a white matter 

network is depicted below; with in the red square an enlarged node connected with edges to five 

other nodes. The organization of such a graph can be quantitatively characterized by using graph 

measures that describe the efficiency and integrity of the white matter network. 

These connections can either be represented by streamlines or temporal correlations between dMRI 

of fMRI measurements, respectively. 

 

 

Node = Gray matter region 

 

Edge = Connection between brain regions  

 

Node degree = # edges connected to a node 

 

Sparsity = 1 –
number of edges

number of possible edges
 

 

Path = sequence of connections in the network  

which represent potential routes for  

communication between brain regions.   

 

Graph = network of nodes connected by edges.  

Calculation of graph measures 

In structural connectivity analysis, connectivity matrices are based on tractography. As a result, 

not all pairs of nodes will have white matter connections, which leads to ‘sparse’ connectivity 

matrices. The measure sparsity reflects the extent of a graph’s deviation from the corresponding 

fully connected graph. However, this differs between subjects and is also influenced by scan 

quality. Therefore, thresholding is applied, which ensures that each subject has the same number 

of nodes and edges. This is needed, because otherwise the differences in graph measures found 

are not due to differences in topological organization, but caused by differences in number of 

edges. The reference network was calculated from all individual binarized connectivity matrices, 

for a specific subset of subjects with the following steps (illustrated in the figure): 
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Step 1: Sum all individual binarized connectivity matrices. 

Step 2: Proportional thresholding to a selected sparsity, e.g., 0.8. This means selection of the 20% 

connections that are present in most of the participants, in other words, the 20% of the nodes with 

the highest sum score. 

Step 3: Creation of a binary mask containing the 20% nodes from step 2. 

Step 4: Application of the binary mask to select for each participant a weighted, undirected network 

with a sparsity close to the sparsity of the reference network. The actual sparsity in the individuals is 

a bit higher than 0.80, because not each individual has a white matter tract at each connection in the 

reference network.  

To describe network organization, measures indicative of network segregation, to assess the 

presence of local densely interconnected groups of brain regions, and indicative of integration, to 

assess large-scale communication between nodes, can be calculated: 

 Graph measures of segregation: local connectivity properties 

- Clustering coefficient = number of connections between nearest neighbors of a node as a 

proportion of the maximum number of possible connections. 

- Local efficiency = inverse shortest path length of connections to neighbors of a specific 

node. 

 Graph measures of integration: global connectivity properties 

- Characteristic path length = minimum number of connections that must be traversed on 

average to go from one region to another. 

- Global efficiency = average inverse shortest path length in the network. 

- Communicability = measure of all possible paths between regions weighted according to 

their length. 
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Intermezzo 3: Wavelet Transformation in resting-state fMRI. 

fMRI data consists of measured time signals of neuronal activity. A commonly used method to obtain 

insightful information from these time-series, by separating the signals related neuronal activity from 

nuisance, is to obtain a power spectrum by performing a Fourier transform. This power spectrum is 

usually dominated by nuisance signals, including the low frequency noise arising from physical 

sources (e.g., scanner drift, i.e., slowly varying changes in ambient temperature) and the high-

frequency physiological sources, such as respiratory and cardiac signals. By applying a band pass filter 

these “noise signals” can be removed to some extent. Unfortunately, by taking a Fourier transform 

from a time signal, all time information is lost in return for frequency information. As the BOLD signal 

is not purely harmonic but contains frequencies that vary over time, the use of the frequency 

components is far from ideal (24). The technique of wavelet transformation (WT) can offer a solution 

here, because it has a high resolution in both the frequency and time domain, and therefore provides 

information about at which frequency and time the signal oscillates. Moreover, it preserves the low 

frequencies, which can be used as a sensitive measure of a variety of physiological signals. WT splits 

the time signal in frequency subbands, which can be matched with the frequencies of physiological 

signals. Typical physiological signals and their frequency ranges are cardiac activity (0.6-2.0 Hz), 

respiration (0.145-0.6 Hz), myogenic activity (0.052-0.145 Hz), neurogenic activity (0.021-0.052 Hz), 

and endothelial activity (0.0095-0.021 Hz). In the figure below, we illustrate how the frequency 

subbands acquired with WT relate to the physiological measures. 
 

 

Brain imaging in population-based cohort studies 

Large population-based cohort studies play a key role in revealing pathways and underlying mechanisms 

of chronic diseases like type 2 diabetes, cardiovascular disease, brain dysfunction, and dementia. 

Particularly, the combination of advanced phenotyping, obtained by functional measurements, 

questionnaires, and medical history, in such studies with brain imaging is a major strength of population-

based cohort studies. Table 1.1 gives an overview of ongoing European population-based cohort studies 

with brain MRI scans available. The main goal of these studies is to find imaging biomarkers in order to 

on the one hand, predict and early diagnose diseases, and on the other hand develop treatment 

strategies. 
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1 Table 1.1: European population imaging studies with brain MRI scans available. 

Cohort and target Population Number* and age MRI scans: measures 

The Maastricht Study 
Maastricht, Netherlands 

Etiology, complications, and 
comorbidities of type 2 diabetes. 

General 
population, 

over-
sampling of 

T2DM 

N=5323, age 40-75 
2012-ongoing 

Structural: volumes, cSVD; 
DWI: tractography, SC; 

Rs-fMRI: FC 

Rotterdam Scan Study 
Rotterdam, Netherlands 

Causes of neurological disease. 

General 
population 

N=5886, age 45+ 
2005-ongoing 

Structural: volumes, cSVD; 
DWI: diffusion metrics, SC; 

Rs-fMRI: FC 

RUN DMC Study 
Nijmegen, Netherlands 

Risk factors and clinical consequences of 
brain changes during aging. 

cSVD 
N=503, age 50-85 

2006: baseline; 
2012: follow-up 

Structural: volumes, cSVD; 
DWI: diffusion metrics 

SMART-MR Study 
Utrecht, Netherlands 

Examine risk factors and consequences 
of brain MRI abnormalities in patients 

with manifest arterial disease. 

Arterial 
disease 

N=1300, age 18-79 
2001-2005 

Structural: volumes, cSVD; 

Lothian Birth Cohort 1936 
Scottland 

Genetic contributions to individual 
differences in normal cognitive ageing. 

General 
population 

N=729, age 65-75 
2004-2007 

Structural: volumes, cSVD; 
DWI: diffusion metrics, 

tractography 

UK Biobank 
United Kingdom 

Improving prevention, diagnosis and 
treatment of life-threatening illnesses. 

General 
population 

N=500000,  
age 40-69 
2006-2010 

Follow-up ongoing 

Structural: volumes, cSVD; 
DWI: diffusion metrics, 

tractography; 
Rs-fMRI: SC; Tb-fMRI: 

activation 

SNAC-K Study 
Kungsholmen, Sweden 

Detect influence of lifetime 
genetic/environmental/ 

biological factors on health in late 
adulthood. 

General 
population 

N=555, age 60+ 
2001-2003 

2004-2019 every 6 
years follow-up 

Structural: volumes, cSVD 

Ages-Reykjavik Study 
Reykjavik, Iceland 

Examine risk factors in relation to 
disease and disability in old age. 

General 
population 

N=5764, age 67+ 
2002-2006 

Structural: volumes, cSVD 

SHIP 
Northeast Germany 

Estimate prevalence/incidence of risk 
factors, subclinical disorders, and 

diseases and complex associations 
among them. 

General 
population 

N=2500, age 20-90 
1997-2013 

Structural: volumes, cSVD; 
DWI 

3C Study 
Bordeaux/Dijon/Montpellier, France 

Relation between vascular diseases and 
dementia. 

General 
population 

N=3442, age 65+ 
1999-2001 baseline 

2001-2012  
follow-up 

Structural: volumes, cSVD 

*Number is based on availability in June 2020. T2DM indicates type 2 diabetes mellitus; cSVD, cerebral small 
vessel disease; DWI, diffusion-weighted imaging; SC, structural connectivity; Rs-fMRI, resting-state functional 
MRI; FC, functional connectivity; Tb-fMRI, task-based functional MRI. 
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The Maastricht Study 

In this thesis, we use population data from The Maastricht Study. The Maastricht Study is an ongoing 

observational prospective population‐based cohort study that focuses on the etiology, pathophysiology, 

complications, and comorbidities of type 2 diabetes and other chronic diseases (25). Its extensive 

phenotyping approach is certainly suitable to study the mechanisms and determinants of brain 

alterations in a population‐based setting. Eligible for participation were all individuals aged between 40 

and 75 years and living in the southern part of the Netherlands. Participants were recruited through mass 

media campaigns and from the municipal registries and the regional Diabetes Patient Registry via 

mailings. Recruitment was stratified according to known type 2 diabetes status, with an oversampling of 

individuals with type 2 diabetes. This thesis includes cross-sectional data from the first 5083 participants, 

who completed the baseline survey between November 2010 and December 2017, and with complete 

MRI data without artifacts (Figure 1.2).  

 

Figure 1.2: Flowchart of the study population 



General Introduction 

11 

1 Objectives 

The main objectives of this thesis are twofold. 

1. To unveil novel neuronal imaging associations of cardiometabolic risk factors beyond visible 

brain lesions or abnormalities.  

2. To evaluate the value of structural and functional brain network measures for this purpose.  

Outline of thesis 

This thesis first summarizes the existing evidence on associations between cardiometabolic risk factors 

and subtle brain changes as assessed by structural and advanced imaging methods. Subsequently, we 

investigate in The Maastricht Study the associations of specific cardiometabolic and lifestyle factors with 

advanced MRI techniques, as these are thought to uncover more subtle tissue and vascular alterations 

than macroscopically visible lesions displayed by structural MRI. Finally, we unravel to what extent 

various systemic physiological influences are associated with the measured BOLD signal. Additionally, we 

investigate to what extent the BOLD signal components, particularly the neurogenic component, are 

altered in participants with cardiometabolic risk factors. Figure 1.3 gives a schematic overview of the 

associations investigated in this thesis. The next section describes the aims of each individual chapter. 

 

Figure 1.3: Schematic outline of the associations investigated in this thesis 

 

After the general introduction, a narrative review is conducted in Chapter 2 to summarize the existing 

evidence on associations between cardiometabolic risk factors and subtle brain changes as assessed by 

structural and advanced MRI. First, we introduce the different MRI techniques. Then we discuss the 

associations of the cardiometabolic risk factors hyperglycemia, physical inactivity, sedentary behavior, 
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central obesity, hypertension, and dyslipidemia, with changes on brain MRI. Finally, we discuss the 

findings and their currently available level of evidence. 

In Chapter 3, we investigate the association of prediabetes and type 2 diabetes, with white 

matter network characteristics, in terms of the number (node degree) and organization (graph measures) 

of the white matter connections. 

In Chapter 4, we investigate the association of objectively measured low- and high-intensity 

physical activity (LPA and HPA) and sedentary time (ST) with white matter connectivity, both throughout 

the whole brain, and in brain regions involved in motor function, as a measure of white matter integrity. 

In Chapter 5, we investigate if and, if so how, cSVD lesions, measures of the white matter tracts 

and network, and cognitive function are associated, and whether these associations dependent on 

cardiometabolic risk factors.  

In Chapter 6, we decompose the dynamic resting-state fMRI brain signal into wavelet 

components and explore whether the various frequency subbands are associated with physiological 

measures in the physiological frequency subbands cardiac activity, respiration, myogenic activity, 

neurogenic activity, and endothelial activity. 

Finally, in Chapter 7, we combine and discuss the key findings of this thesis. In addition, we 

address methodological considerations and directions for future research. 
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2 Abstract  

Cardiometabolic risk factors may be of key importance in the development of future brain diseases like 

dementia or depression. However, it remains unclear how these risk factors exactly affect the brain. 

Advanced MR imaging methods such as, diffusion weighted and functional MRI, can provide detailed 

insights into subtle brain changes, and potentially into early development of disease. In this narrative 

review, we summarize the available evidence on the associations of cardiometabolic risk factors with 

subtle changes in brain MRI measures. We found clear evidence that hyperglycemia, physical inactivity, 

central obesity, and hypertension are associated with both structural and functional brain alterations, 

while the role of dyslipidemia is far less clear. However, longitudinal evidence that assesses temporality 

of the associations with more advanced and thus more precise brain imaging methods is needed to 

improve our insights into the complex etiology of brain diseases. 
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   2 Introduction 

Cardiometabolic risk factors may be of key importance in the development of brain diseases like 

dementia and depression. However, it remains unclear how these risk factors exactly affect the brain. 

Advanced MR imaging methods can provide detailed insights into subtle brain changes, and thus early 

development of brain diseases, enhancing our understanding of disease pathology. Subtle brain changes 

are likely to precede brain dysfunction, and in a later stage, brain diseases (1). Cardiometabolic risk 

factors, like hyperglycemia, physical inactivity and sedentary behavior, central obesity, hypertension, and 

dyslipidemia, have been identified as risk factors of dementia and depression (2, 3), and their 

associations have been discussed in previous review articles (4, 5). However, no such summary is 

available on the cardiometabolic determinants of subtle brain alterations as visualized with advanced 

imaging methods. Therefore, in this narrative review, we summarize the existing evidence on 

associations between cardiometabolic risk factors and subtle brain changes as assessed by structural and 

advanced imaging modalities, such as, diffusion weighted MRI (dMRI) and functional MRI (fMRI). These 

advanced  techniques are thought to reflect more subtle tissue and vascular alterations than 

macroscopically visible lesions displayed by structural MRI.  

First, we will introduce the MRI techniques that are presented in literature. Second, we will 

discuss the association of well-known cardiometabolic risk factors, including hyperglycemia, physical 

inactivity, sedentary behavior, central obesity, hypertension and dyslipidemia, with structural changes on 

brain MRI, e.g., with measures of brain atrophy and cerebral small vessel disease (cSVD). Third, their 

associations with more advanced brain MRI measures, such as diffusion measures and brain connectivity 

derived from dMRI and fMRI, will be summarized. Finally, we will discuss the findings and their currently 

available level of evidence.  

Methods  

Literature search and study selection 

We performed an literature search by use of the search terms ‘brain’ and ‘MRI’, combined with specific 

search terms for each category of risk factors, as shown in Supplementary Figure 2.1. The inclusion 

criteria were: full-article research papers and English-written publications, published from inception to 

May 1, 2019. The following articles were excluded: animal studies, studies on subjects with a specific 

disease, with a small sample size (case-control N<10 per group; population-based N<100), focused on 

determinant(s) or outcome measures other than cardiometabolic risk factors or brain MRI, conference 

abstracts without a full text publication, and research protocols. In case of multiple studies on the same 

study population, the most recent or largest study was included in this review. When possible, we 

focused on studies performed in large observational population-based cohort studies to maximize 

generalizability. 
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Figure 2.1: Schematic overview of the associations between cardiometabolic risk factors, early brain 

alterations, brain dysfunction, and brain diseases.  

Conventional MRI techniques to detect macrostructural brain changes 

Structural brain MRI techniques can detect macroscopically visible morphological brain abnormalities, of 

which atrophy and features of cSVD are highly relevant for this review. These macrostructural changes 

are presumably irreversible, but nonetheless important for understanding development of brain 

diseases.  

Brain atrophy 

Brain atrophy is a decrease in total or regional brain volume, not caused by a specific macroscopic focal 

injury such as an infarction or trauma. In general, this loss of volume is thought to be the result of 

neurodegeneration, e.g., the loss of neurons or other brain cells due to cell death and/or apoptosis (6, 7). 

Cerebral small vessel disease 

cSVD refers to lesions in the brain, such as white matter hyperintensities, microbleeds, and lacunar 

infarcts. According to previous studies, presence of lacunes, white matter hyperintensities, and 

microbleeds are jointly indicative of an underlying cSVD state, and each measure has been associated 

with lower general cognitive ability (8). 

White matter hyperintensities 

White matter hyperintensities (WMH) are hyper-intense loci on T2-weighted (TSE and FLAIR) MRI scans 

(6). Larger WMH volumes are associated with worse cognitive function (9). Like brain atrophy, WMH 

occur more often in older individuals and are strongly associated with cerebrovascular disease and 

cognitive decline (10). Wardlaw et al. (11) previously discussed the pathogenesis of cSVD features. The 

main mechanism underling cSVD-related brain injury, especially WMH, is usually assumed to be ischemia, 

which results from narrowed or occluded (perforating) arteries. However arterial occlusion might already 

be a late-stage phenomenon. Currently, earlier phenomena of cSVD pathology are considered to be 

represented by, systemic endothelium dysfunction (12). For WMH this may be accompanied by 

demyelinisation and even axonal loss.  
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   2 Lacunar infarcts 

Lacunar infarcts, or in short lacunes, are round or oval, subcortical, fluid-filled cavities (3-15 mm in 

diameter) (6) and occur frequently in asymptomatic elderly individuals (13).  

Microbleeds 

Microbleeds are small, mostly 2-5 mm in diameter, hypo-intense lesions seen on T2*- or susceptibility-

weighted (gradient-echo) MRI (14). Microbleeds are generally located in the cortico-subcortical junction 

and deep gray or white matter in the cerebral hemispheres, brainstem, and cerebellum (6).  

Advanced MRI techniques to detect microstructural brain changes 

Diffusion MRI 

The white matter is organized as a complex network of connected fibers, responsible for efficient 

information exchange between various brain regions. Alterations in one region may thus affect the 

function of other regions via the connecting white matter tracts. Therefore, it is important to assess the 

microstructure of the white matter, which can be visualized by use of dMRI. dMRI can probe white 

matter fiber architecture, based on the diffusion of water molecules, and yields quantitative measures 

such as the fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity 

(RD). All these measures reflect microstructural changes related to preferences in diffusion direction 

relative to the fiber trajectories. It is recommended to analyze a combination of these diffusion metrics, 

due to their complicated mutual dependence (15).  

Fractional anisotropy 

With respect to the detection of brain changes, the FA is a highly sensitive measure for microstructural 

changes, however, not very specific to the type of change. FA indicates the directionality of a diffusion 

process (e.g., due to the orientation of white matter fibers). However, alterations in FA are not 

unambiguous, as reductions in FA can be either due to decreases in AD and increases in RD or vice versa; 

FA is furthermore highly influenced by the many crossings of fibers and alterations thereof.  

Mean diffusivity 

MD indicates the motility of the water molecules. To measure the locally preferred directionality of 

water diffusion, diffusion-motion sensitized field gradients in multiple angular directions is used, so 

called High-Angular-Resolution-Diffusion-Imaging (HARDI). The MD represents an inverse measure of 

membrane or border density, is independent of direction, and sensitive to cellularity, edema, and 

necrosis.  
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2 Axial and radial diffusivity 

AD reflects diffusion along the (long) fiber axis, and gives information about axonal injury and thus 

decreases when there is axonal damage. RD reflects the diffusion perpendicular to the fiber orientation, 

and is often most sensitive to impairment of the fiber structure. The RD is often suggested as a surrogate 

myelin marker and changes when there is myelin damage, and it can be influenced by the geometric 

properties of the axons (e.g., diameter and density). An increased RD is consistently found in many white 

matter pathologies, the AD tends to be more variable (16).  

Structural connectivity 

dMRI can be used to analyze the structure and efficiency of the constellation of white matter fiber tracts, 

the so-called structural network, by applying graph theory analysis. In graph theory, the brain is 

represented as a graph, which is a network of nodes (i.e., gray matter brain regions) connected by edges 

(i.e., white matter tracts between brain regions). The sequence of connections in the network which 

represent potential routes for communication between brain regions is called a path. The number of 

connections to one node is called the node degree. The organization of a graph can be characterized by 

use of graph measures, e.g., clustering coefficient, characteristic path length, global efficiency, and local 

efficiency. These graph measures describe the efficiency of the white matter network architecture (for an 

overview, see Table 1). In short, structural connectivity refers to the amount and integrity of white 

matter tracts between brain areas, thus in general, a lower structural connectivity is a marker of brain 

pathology. 

Functional MRI 

fMRI is sensitive to changes in blood oxygenation through the blood oxygen level-dependent (BOLD) 

signal, which is related to brain function; more oxygenation (indirectly) reflects higher brain activity. fMRI 

brain activity is thought to locally reflect the coupling between neuronal activity and microvascular blood 

supply (17). In contrast to structural connectivity, functional connectivity relies on statistical dependence 

of the time signals from different brain regions (which may not be structurally connected). Therefore, a 

lower functional connectivity is suggested to be a marker of brain dysfunction. fMRI can be used to 

analyze the temporal correlations between measured time-signals of neuronal activity, to assess 

collaborations between brain regions, the so-called functional connectivity. Functional connectivity can 

also expressed in terms of graph measures (Table 2.1). Neuronal activity can be measured during brain 

activation (task-based or stimulus-induced) and in rest (resting-state). The latter is used to determine the 

so-called resting-state networks, consisting of functionally connected regions, which show a high level of 

correlated BOLD time-signal activity, such as the default mode network (DMN). In task-based fMRI, a 

cognitive or behavioral task is performed while sensory stimuli (e.g., auditory or visual) are presented 

during scanning to visualize the brain regions that are involved in the specific tasks.  
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   2 Table 2.1: Glossary – Most used terms and measures in graph theory. 

Graph measure Description 

Of segregation 

Clustering 
coefficient 

Number of connections between nearest neighbors of a node as a 
proportion of the maximum number of possible connections. 

Local efficiency Inverse shortest path length of connections to neighbors of a specific node; 
related to clustering coefficient. 

Of integration 

Characteristic path 
length 

The minimum number of connections that must be traversed on average to 
go from one region to another. 

Global efficiency Average inverse shortest path length in the network; inversely related to 
characteristic path length. 

Perfusion MRI 

Perfusion weighted MRI can be used to investigate the blood perfusion of tissues, including ischemic 

conditions. Lower brain perfusion is a marker for brain diseases, and is associated with cognitive decline. 

The most used perfusion weigthed MRI techniques are dynamic susceptibility contrast (DSC), dynamic 

contrast enhanced (DCE), and arterial spin labeling (ASL) MR perfusion. Both DSC and DCE require 

administration of the contrast medium gadolinium, while ASL does not need exogenous contrast. ASL 

imaging is based on signal loss due to magnetization exchange of labeled water molecules in the blood 

vessels (18).  

Results  

Type 2 diabetes and hyperglycemia as risk factor for early brain alterations 

Several large cross-sectional and longitudinal observational cohort studies investigated the association of 

type 2 diabetes mellitus (T2DM) with brain atrophy. T2DM was found to be consistently associated with 

global brain atrophy in cross-sectional data of the Utrecht Diabetic Encephalopathy Study (19-22), The 

Framingham Heart Study (23, 24), The SMART MR study (25), The CARDIA Brain MRI study (26), The 

Mayo Clinic Study of Aging (27), UK Biobank (28), and The ARIC study (29). This has been confirmed in 

longitudinal analyses of the Utrecht Diabetic Encephalopathy Study (30), the SMART MR study (31), and 

in the PROSPER study, over 3 to 4 years of follow-up (32).  

More specific, T2DM has been associated with smaller gray matter (24, 28, 31, 33-36) and 

white matter volumes (36, 37), larger CSF volumes (31, 34), global cortical thinning (31, 38, 39), and also 

smaller hippocampus volumes (23, 24, 27, 36, 40-43) as compared to normal glucose metabolism (NGM) 

inthese, (some population-based) cohort studies. These associations have also been confirmed in 

longitudinal analyses for decreased gray matter volumes (31, 33); increased CSF volumes (31), and with 

global cortical thinning (31, 39). The follow-up duration of these studies ranged from 40 months (31) up 

to 12 years (39).  

T2DM has also been associated with cSVD characteristics. In multiple large cross-sectional 

cohort studies an association of T2DM with larger WMH (19-22, 24, 28, 29, 31, 37, 38) and ischemic 
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2 lesion volumes (34, 44), and more lacunar infarcts (29) has been established. In longitudinal analyses, 

T2DM has been associated with increased WMH (31), and ischemic lesion volumes (34). Surprisingly, 

T2DM has not (yet) been associated with microbleeds (36, 45, 46). 

A minority of studies used advanced MRI techniques to investigate the association of T2DM 

with white matter microstructure and (both structural and functional) brain connectivity. By use of dMRI, 

several case-control studies observed lower FA (24, 28, 37, 47-53), and higher MD (28, 37, 47, 49-51), 

which indicate altered or impaired fiber microstructure in T2DM. Furthermore, two case-control studies 

found higher AD (47, 51), and higher RD (47, 51), similarly indicative of injured white matter by axonal 

injury and disruption of fibre structure. 

Van Bussel et al., reported lower structural connectivity, in terms of lower tract volumes 

between the hippocampi and the frontal lobe, temporal lobe and subcortical gray matter in T2DM 

compared to NGM as measured by dMRI (50). fMRI findings in subjects with T2DM included altered 

neuronal activity (54), lower functional connectivity (51, 55-57) (mainly in frontal and parietal lobes) and 

lower degree centrality (DC) (56) compared to NGM. However, in contradiction to expectations, T2DM 

was associated with lower characteristic path length (58), higher normalized clustering coefficient (CC) 

(58, 59), and higher local efficiency (Elocal) (59) as compared to NGM. A possible explanation for those 

findings is a compensatory mechanism to counteract (subtle or even subconsciuous) cognitive 

impairment. The authors hypothesized that this compensation is achieved by mobilizing additional neural 

resources, such as excessive activation of the network and the efficient networking of multiple brain 

regions. Furthermore, one study found a weaker FC of the posterior cingulate cortex (PCC) and stronger 

FC to several brain regions in T2DM compared to controls (60). Finally, T2DM has been associated with 

lower blood perfusion (61-64) measured by use of perfusion and flow MRI techniques. 

Very few studies investigated the association of prediabetes, defined as a disturbed fasting or 

non-fasting glucose metabolism, but not yet full-blown diabetes, with structural or functional brain MRI 

measures. In the large cross-sectional ARIC Neurocognitive Study, no association of prediabetes with 

smaller brain volumes or larger burden of brain vascular pathology was found (29). Meanwhile, in the 

large cross-sectional population-based Maastricht Study, prediabetes was associated with smaller WM 

volumes, but not with differences in GM volumes (46). In one case-control study, patients with 

prediabetes and those with T2DM showed lower GM volumes in the hippocampus, amygdala, and the 

putamen compared with controls, while no significant differences were found between participants with 

T2DM and prediabetes (65). This indicates that brain changes in T2DM compared to normal glucose 

metabolism were already present in prediabetes. Only one study reported an association of prediabetes 

with larger WMH volumes and presence of lacunar infarcts, but found no significant association with 

cerebral microbleeds (46). In the case-control study of Liang et al., a lower FA was found in prediabetes 

compared to controls (53). Using resting-state fMRI, higher normalized local efficiency was found in 

participants with prediabetes compared to NGM, hinting at reorganization of the functional networks as 

compensation for potential cognitive decrements (59). 

Furthermore, some studies investigated also the association of blood glucose levels on a 

continuous scale with MRI brain measures. A cross-sectional study reported that higher HbA1c levels 

were associated with smaller brain volumes and a higher burden of WMH and lacunar infarctions (29). 

Additionally, elevated glucose levels were associated with lower FA in the right inferior and bilateral 

superior longitudinal fasciculi (66). In large population-based studies, higher fasting blood glucose levels 

were associated with lower cortical thickness (39, 46, 67, 68) and lower GM density and FA (24). One of 

these was a 12-year follow-up study (39). 
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   2 In summary, several large cross-sectional and longitudinal population-based studies 

investigated the association of T2DM with brain changes, and found more atrophy both in gray and white 

matter, and more severe characteristics of cSVD in T2DM compared to NGM. Fewer studies investigated 

the association of T2DM with white matter microstructure and connectivity, and found impaired white 

matter microstructure, and lower structural and functional connectivity in T2DM compared to NGM, 

which may already be present in prediabetes. Unfortunately, only a few studies investigated continuous 

glucose measures in relation to brain changes, and most had a cross-sectional design, but did find clear 

associations. Allthough these results suggest a causal role for hyperglycemia in early brain changes, 

longitudinal population-based studies using continuous measures of hyperglycemia are needed to 

confirm a temporal, and thus potential causal, association of hyperglycemia with early brain damage.  

Physical inactivity and sedentary behavior as risk factor for early brain 

alterations 

The association of physical inactivity with structural MRI brain measures has been investigated in large 

cross-sectional population-based studies, e.g., the AGES-Reykjavik (69), SMART-MR (70), Framingham 

(71, 72), LADIS (73, 74), SHIP (75), MAP (76), and NOMAS (77) study. These studies found clear 

associations between physical inactivity and lower cortical thickness (78, 79), specifically in the left 

prefrontal lobe (78), more brain atrophy (70, 72, 80-85), and smaller white matter (69, 86) and gray 

matter volumes (69, 75, 76, 84, 87-91). Most of these studies used self-reported physical activity 

measures, while some used objective data as measured by accelerometric devices (69, 72, 76, 79, 80, 

82). PA questionnaires only collect subjetive information and may therefore over- or underestimate PA 

levels. Especially light- to moderate-intensity PA are difficult to measures with questionnaires. The 

longitudinal population-based AGES-Reykjavik study showed that objectively measured physical inactivity 

was associated with more 5-year GM and WM atrophy (69). Comparable results were found in the 

Cardiovascular Health Study, namely, a longitudinal association of lower self-reported physical activity 

intensity with more loss of total brain volume over a 9-year period (83). The longitudinal Korean Genome 

and Epidemiology study found that physical inactivity is associated with brain atrophy (92).  

Considering cerebral small vessel disease, more physical inactivity has been associated with the 

presence of silent brain infarcts (77), and larger WMH volumes (82, 88, 93) in cross-sectional cohort 

studies. However, others did not find any association of physical activity with WMH (70, 77, 84). None of 

these studies on cerebral small vessel disease used objectively measured data on physical activity. 

Physical inactivity has also been associated with diffusion MRI metrics, e.g. a significantly higher 

FA, and lower MD, AD and RD (80, 91, 93, 94). Only one study investigated the association of physical 

inactivity on structural connectivity measures. Kim et al. (95) found in a cross-sectional study that 

subjects with a lower level of self-reported physical activity showed significantly lower regional nodal 

strength in the bilateral middle frontal, bilateral inferior parietal, medial orbitofrontal,  and superior and 

middle temporal gyri, compared to subjects with high levels of self-reported physical activity. In addition, 

this study found that physical inactivity was associated with lower local efficiency. Using functional MRI 

measurements, an association of physical inactivity with less fMRI activation was found in a study on 

obese women after a six-month hypo caloric Mediterranean diet and increased physical activity program 

(96). In the 1-year, single-blinded, multicenter randomized controlled LIFE-p trial, an intervention to 

improve physical activity was compared to health education in sedentary elderly. The intervention on PA 



Cardiometabolic determinants of early and advanced brain alterations: Insights from MRI 

25 

2 was associated with higher fMRI signal only in the inferior frontal gyrus as compared to sedentary groups 

with health education, 2 years after the intervention ended (97). 

Recently, sedentary time has been proposed as an independent risk factor for health outcomes 

(98, 99). Evidence on the association of sedentary behavior and MRI measures is still scarce; however, 

results from the AGEs Reykjavik study indicate that objectively measured PA and sedentary behavior late 

in life are associated with current and prior cross-sectional measures of white and gray matter atrophy, 

and that these brain changes over time are associated with PA and sedentary behavior in expected 

directions (69). 

In summary, physical inactivity has been associated with more atrophy, the manifestation of 

cerebral small vessel disease, and lower structural connectivity. Information on sedentary behavior is 

scarce, but indicates an association with more brain atrophy. Furthermore, longitudinal studies are 

needed, to further investigate the brain changes over time, and whether lifestyle changes could improve 

the condition of the brain. 

Central adiposity as risk factor for early brain alterations 

A number of large population-based studies have investigated the association between central adiposity 

and structural brain changes. The studies included in this section focus on both simple, anthropometric 

methods, such as waist circumference (WC), and waist-hip-ratio (WHR), and on more advanced, direct 

measures of central obesity, such as visceral fat accumulation (VFA) as measured with dual-energy X-ray 

absorptiometry (DXA), computed tomography (CT), and abdominal MRI scans, all in combination with 

brain MRI measures. In large cross-sectional (100-102) and longitudinal (103-106) population-based 

cohort studies, larger WC and WHR have been associated with lower total brain volume and lower gray 

matter volume. The Framingham Heart Study Offspring assessed VFA by use of CT, and found an 

association of more visceral adipose tissue with lower total brain volumes (100). Higher VFA measured 

with abdominal MRI was also associated with global cortical thinning in large cross-sectional population-

based studies (107, 108). Visceral adiposity has also been associated with lower white matter volumes. 

More specifically, larger WC and WHR were associated with less frontal lobe volume in cross-sectional 

studies (101, 102) , and with lower frontal and temporal lobe volume in one longitudinal study (104). 

More visceral adipose tissue measured with abdominal MRI was associated with lower hippocampal and 

larger ventricular volume in a large cross-sectional population-based study (108). Larger WHR was also 

associated with lower hippocampal volume according to another cross-sectional population-based study 

(108, 109).  

Furthermore, several large cross-sectional population-based cohort studies found an 

association of VFA with markers of cSVD. In these studies, larger WHR, waist circumference, and VFA 

have been associated with larger WMH volumes (102, 109-112) and lacunar infarcts (110, 112-114). 

Higher BMI and WHR were associated with larger deep WMH volumes, and to a lower extend with 

periventricular WMH volumes in the population-based LIFE study (115). A higher visceral-to-

subcutaneous fat ratio measured with abdominal CT was associated with cerebral microbleeds (116) in 

neurologically healthy people. The longitudinal ARIC study found an association of higher WC and WHR 

with more incident lacunar infarcts after 10-year follow-up, but not with WMH progression (117). 

Evidence on the association of VFA with more advanced measures of brain function is scarce, 

only associations with diffusion metrics were reported. Higher WC has been associated with lower FA in 
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   2 cross-sectional population-based (48, 118-122) and case-control studies (118); with higher apparent 

diffusion coefficient (ADC) in one case-control study (48); lower AD in one cross-sectional population-

based study (122); and higher RD in another cross-sectional population-based study (123). In contrast, 

Birdsill et al. found different results, i.e., an association of higher WC with higher FA, and lower MD, AD, 

and RD (124). 

In short, several large cross-sectional population-based studies assessed the association of 

central obesity with brain alterations, and found that central obesity was associated with atrophy and 

markers of cSVD. Only a few longitudinal studies on these associations were conducted, which indicated 

that central obesity precedes the development of brain atrophy, cSVD, and changes in white matter 

microstructure. These longitudinal associations need to be investigated further, because this could be a 

potential target for prevention of brain deterioration. No studies were found that investigated the 

association of central obesity with structural and functional connectivity, and other functional MRI 

measures. 

Hypertension and high blood pressure as risk factor for early brain 

alterations 

The brain is known to be more vulnerable to elevated blood pressure or hypertension than other organs, 

because its microcirculation is characterized by low impedance, which allows the pressure load to 

penetrate deeply into its microvascular bed (125, 126). This (pulsatile) pressure load may cause damage 

to the smallest blood vessels and thereby cause ischemia and neurodegeneration. Hypertension has 

been cross-sectionally associated with smaller gray matter volumes (127), left hemisphere (128) and 

total brain atrophy (129-131), thinner cortex(132, 133) and larger ventricles (128, 130, 131, 134) in 

population-based cohort studies. Furthermore, both population-based cohort studies (134-141), case-

control studies (142, 143), and studies on hypertensive patients (144-148) found an association between 

hypertension and larger WMH volumes. Only two of these studies had a longitudinal population-based 

design, and could assess temporality. One study found an association of higher mean arterial pressure 

with increased WMH volumes after a 28-year follow-up period (135), while the other reported 

progression of periventricular WMHs in participants with hypertension over 4 years of follow-up (146). 

Hypertension has also been associated with silent cerebral infarctions (134, 143, 149, 150), lacunar 

infarctions (134, 151), and larger perivascular spaces (151) in both cross-sectional (134) and longitudinal 

(151)  population-based studies (134), and large cross-sectional studies including hypertensive patients 

(149), in addition to smaller case-control studies (143, 150). 

Evidence on the association of hypertension or blood pressure with more advanced measures 

of brain function is scarce, only associations with diffusion metrics and changes in cerebral blood flow 

have been reported. Associations of hypertension with impaired white matter microstructure (152-154), 

higher MD (152) and lower FA in normal appearing white matter (152, 154, 155) have been observed. All 

these studies had a cross-sectional design, three of these had a large sample size (153, 155, 156), and 

two were smaller (n<100) (152, 154). The study by Gons et al. found a lower FA in both normal appearing 

white matter and white matter hyperintensities, and higher MD in white matter hyperintensities for both 

categorical (i.e., based on hypertensive status), and continuous blood pressure measures (i.e., systolic 

and diastolic)(156). The study by Fennema-Notestine et al., also had data on hypertension status at an 

earlier time-point (approximately 5.5 years earlier), and used this information to categorize participants 
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2 in groups of recent or longer duration of hypertension (153). However, no differences between these 

two groups were observed. Furthermore, an association of hypertension with lower FA (152, 156), and 

hypertension and higher systolic and diastolic blood pressure with lower FA and higher MD in WMH 

(156) was found. Finally, in three case-control studies, hypertension has been associated with lower 

cerebral blood flow (63, 157-159). 

Taken together, hypertension and elevated blood pressure have been associated with brain 

atrophy, lower cortical thickness, and cSVD characteristics mostly in cross-sectional studies. Longitudinal 

population-based analyses are scarce, but do indicate that higher mean arterial pressure is associated 

with increased WMH volume over time. Furthermore, hypertension has been associated with impaired 

white microstructure, and functional changes in cross-sectional studies. No large population-based 

studies have investigated the association of hypertension with white matter microstructural impairment 

yet. To increase knowledge about the temporal, and potentially causal aspects of the association 

between elevated blood pressure and brain changes, longitudinal population-based studies are needed. 

Dyslipidemia as risk factor for early brain alterations 

A number of population-based, case-control, and case studies investigated the association of an adverse 

lipid profile with early brain changes. In most studies, lipid profiles included information on total, LDL and 

HDL cholesterol levels, and triglycerides, and for brain outcome measures cortical thickness and markers 

of cSVD, while studies on atrophy were scarce. We here first summarize findings on total and LDL 

cholesterol, second on HDL cholesterol and finally on triglycerides. The Strong Heart Study investigated 

the cross-sectional association of LDL cholesterol levels with brain volumes in a population of American 

Indians, but found no significant association of LDL cholesterol with total brain and hippocampus volume 

(134). In contrast to what one might expect, lower LDL cholesterol levels have been associated with GM 

atrophy in the precentral gyrus and insula cortex in a cross-sectional study (160). In agreement with this, 

in other cross-sectional studies lower LDL cholesterol was associated with cortical thinning in fronto-

parietal and occipital areas (161), within the (left) caudal-middle frontal cortex (66), and for the total 

cortex (133). Higher total cholesterol (162-165) was reported to be associated with larger WMH volume, 

in three large population-based and one smaller cross-sectional study. However, another study found no 

association of LDL cholesterol with WHH volumes, but the majority of their study population used lipid-

modifying medication, which might decrease their cholesterol level-associated risk for cSVD (166). Less 

information is available on the association of cholesterol profile with lacunar infarctions. However, 

Bezerra et al. (167) found an association of higher LDL cholesterol with larger lacunes in the cross-

sectional population-based ARIC study. Several longitudinal studies have investigated the association of 

levels of LDL cholesterol with the prevalence of microbleeds, but not all found significant associations. In 

the population-based Rotterdam Study (168), a borderline association of high LDL cholesterol levels with 

prevalence of lobar microbleeds was found. In addition, Lee et al. (169) found lower concentrations of 

LDL cholesterol in patients with a severe degree of microbleeds compared to those without, in a 

longitudinal study with a follow-up period of 1-5 years. However, in the Strong Heart Study, high serum 

LDL was not significantly associated with WMH volume, (lacunar) infarcts, and microbleeds (134). 

In case-control studies by Cohen et al. (170) and Lou et al. (118), obesity-related abnormal 

plasma cholesterols (both high LDL and low HDL) with lower FA in prefrontal brain regions was found. 

This might indicate that elevated LDL levels contribute to obesity-associated impairment of white matter 
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   2 microstructure. Information on the association of cholesterol levels with functional connectivity is scarce. 

Only one small cross-sectional study reported a stronger functional connectivity in the DMN in a high 

total cholesterol group compared to a low cholesterol group, and lower functional connectivity was 

found in the salience network (SN) (171). With regard to HDL cholesterol, Coutinho et al. (161) reported 

that lower HDL cholesterol levels were associated with decreased cortical thickness in various brain 

regions in middle-aged and older adults (40-86 years), which was expected. Lower HDL cholesterol levels 

were reported to be associated with higher WMH volume, in one large longitudinal and three large cross-

sectional population-based studies and two smaller cross-sectional studies (111, 172-176). Lower HDL 

cholesterol was found to be associated with lacunar infarctions, in one large 3-year follow-up population-

based (177), and one smaller cross-sectional study (178). In the longitudinal AGES-Reykjavik Study (179) 

an association of higher levels of HDL cholesterol with increased risk for lobar, but not deep, microbleeds 

was found after 5 years. With regard to triglyceride levels, two cross-sectional studies (161, 180) found 

that higher triglyceride levels were associated with thinner cortex in multiple  brain regions. Three 

longitudinal studies investigated the association of triglyceride levels with cerebral small vessel disease. 

In the population-based Rotterdam Study, lower triglyceride levels were associated with an increased 9-

year incidence of microbleeds (168, 181). This longitudinal association was confirmed in the AGES-

Reykjavik Study (179) over 5-years of follow-up. Furthermore, the multicenter LADIS study reported that 

higher triglyceride levels could predict the occurrence of new lacunes over a three-year period (177). 

These differential results for lacunar infarcts and microbleeds may fit with the hypothesis that 

microbleeds and lacunes have distinct etiologies.   

Studies using advanced MRI techniques were scarce. Only one small cross-sectional study found that 

lower levels of triglycerides were associated with higher levels of cerebral blood flow as measured with 

ASL (182). 

In conclusion, high LDL cholesterol has been associated with thinner cortex, but higher incidence of 

lacunar infarcts and microbleeds. On the contrary, high HDL cholesterol was associated with thicker 

cortex and less white matter hyperintensities, but also with incidence of lacunar infarcts and potentially a 

higher risk for lobar microbleeds. Studies on diffusion or functional MRI measures are scarce. One study 

found an association of higher total cholesterol with lower functional connectivity, and one study found 

an association of higher triglyceride levels with lower cerebral blood flow. 

Discussion 

Overview and in-depth analysis of the findings  

Table 2.2 provides a condensed systematic overview of the findings in literature about cardiometabolic 

risk factors in relation to brain volumes and cSVD. The many omissions in the table indicate that not all 

risk factors have been studied in relation to brain alterations. In general, higher levels of cardiometabolic 

risk factors considered in this review have been associated to markers of brain atrophy, i.e., smaller total, 

gray matter and white matter, and larger CSF volumes. Although, the association of altered lipid profile 

and sedentary behavior with WM, GM, and CSF volumes has been studied too little and needs further 

investigation. Furthermore, all cardiometabolic risk factors were associated with globally thinner cortex, 

except for an altered lipid profile. Higher LDL and total cholesterol levels were associated to thicker 

cortex in some brain regions. With respect to the cSVD characteristics, all cardiometabolic risk factors 
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2 were associated with larger WMH volumes and the presence of lacunar infarctions. Visceral fat 

accumulation, altered lipid profile, and hypertension were associated with the presence of microbleeds, 

while hyperglycemia was not, and for PA and sedentary time, no information was found. These results 

suggest that all cardiometabolic risk factors are associated with early pathological changes in the brain, in 

particular with brain volumes and the presence of particular cSVD features. This fits with the notion that 

all risk factors that are harmful for heart and vasculature, are also harmful for the brain. 

 

Table 2.2: Overview of evidence on the associations between cardiometabolic risk factors and markers of 

brain atrophy and small vessel disease.  

 
 

Table 2.3 provides an overview of the main findings for diffusion measures, structural connectivity, and 

functional connectivity. All cardiometabolic risk factors were associated with lower FA and MD, indicating 

microstructural changes. For an adverse lipid profile, an association with lower FA was found, but no 

information was available on MD. Hyperglycemia, less PA and more sedentary behavior were also 

associated with higher AD and RD, indicating impaired white matter microstructure; and visceral fat 

accumulation was associated with lower AD and higher RD, indicating axonal and myelin damage. 

Regarding structural connectivity, limited data were available, as only studies on hyperglycemia and PA 

were found. Hyperglycemia has been associated with lower overall structural connectivity. In addition, 

less physical activity and sedentary behavior have been associated to lower nodal strength and local 

efficiency, indicating less efficient networks. For fMRI, several associations of hyperglycemia with 

functional MRI measures were found, e.g., lower overall functional connectivity, higher clustering 

coefficient, higher local efficiency, lower degree centrality, all indications of network alterations, and 

lower cerebral blood flow. Furthermore, less physical activity and sedentary behavior have been 

associated to lower fMRI activation, and a higher functional connectivity in the default mode network 

(DMN). In addition, an adverse lipid profile was associated to a lower decreased functional connectivity 

in the salience network (SN). Finally, hypertension was associated with lower functional connectivity. 

Most omissions in Table 2.3 are in the field of structural connectivity. Studies on associations of risk 

factors with white matter structure could probably lead to more insights in microstructural changes.  
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   2 Table 2.3: Overview of evidence on the associations between cardiometabolic risk factors and diffusion 

measures and structural and functional connectivity.  

 
 

In addition to the overviews in Table 2.2 and 2.3, we visualised the level of evidence of the observed 

associations by depicting the study designs found in litereature by risk factors in Figure 2.2. This figure 

shows that despite to what we may think, the evidence that cardiometabolic risk factors have a temporal 

association with brain atrophy. This has been evaluated in longitudinal data for diabetes and physical 

inactivity, but not for obesity, hypertension, and dyslipidemia. In addition, the association of physical 

inactivity with cSVD needs to be investigated in larger longitudinal studies, to investigate temporal 

associations. Assessing the associations of cardiometabolic risk factors with more advanced MRI 

measures as diffusion metrics, structural or function connectivity are in their infancy but coming.  
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2 

 
Figure 2.2: Highest level of evidence in the available literature on the associations between 

cardiometabolic risk factors and conventional (white symbols) and advanced (gray symbols) MRI 

measures. Large indicates N>100; small, N<100. The size of the symbols indicates the amount of studies in 

that category: small indicates 1-4; medium, 5-10; large: >10 studies. 

Future outlook and clinical relevance 

As we observe several lacunes in this review, there are a number of opportunities for future studies. 

First, advanced MRI techniques, including microstructural, functional, and perfusion MRI, may provide 

more detailed insight into underlying mechanisms that lead from cardiometabolic risk factors to brain 

dysfunction and disease. These insights may help to develop better treatment strategies to delay or even 

prevent brain alterations and eventual disease. In addition, the longitudinal association of obesity, 

hypertension and dyslipidemia with volumetric data needs investigation in order to find support for 

potential causality. Second, reduction of residual confounding is of key importance to interpret the 

results of studies. The studies included in this review did this to some extent, at least by matching or 

adjustments for age and sex. However, cardiometabolic risk factors are interrelated, therefore, an 

integrated approach where cardiometabolic risk factors are taken into account jointly, would advance 

this field of research. Third, most advanced MRI outcome measures may represent early changes prior to 

end-organ damage, which makes them potentially more useful as response markers for intervention 

studies than volumetic data. This is of particular interest, because cardiometabolic risk factors are 

modifiable. Fourth, early biomarkers for brain disease may enable us to identify people at risk, to prevent 

further escalation to functional decrements and eventual disease. Thus, future longitudinal studies are 

needed to address the usefulness of these novel biomarkers in relation to disease outcomes and risk 

prediction. Finaly, other novel MRI approaches, such as dynamic contrast enhanced (DCE) MRI, to 

investigate blood-brain-barrier leakage; magnetic resonance spectroscopy (MRS), to investigate the 

metabolic characteristics of brain alterations; or ultra-high field MRI (>3Tesla) might provide alternative 

ways to elucidate the early signs and complex pathophysiology of brain diseases. 
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   2 Conclusions 

This narrative review indicates clear evidence on the associations of hyperglycemia, central obesity, 

hypertension, and physical inactivity on brain atrophy, cSVD, and white matter microstructure 

alterations, although longitudinal data is often lacking. The associations of an adverse lipid profile with 

MRI markers of the brain are far less clear, as well as the association of relatively novel risk factors as 

physical inactivity and sedentary behavior. In particular, the evidence from more advanced MRI 

measures, such as microstructural, functional, and perfusion MRI needs to be applied in longitudinal 

studies, as insight into more subtle brain alterations, development over time, and subsequent brain 

dysfunction and disease is needed. 
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3 Abstract 

Objective  

Prediabetes and type 2 diabetes are associated with structural brain abnormalities, often observed in 

cognitive disorders. Besides visible lesions, (pre)diabetes might also be associated with alterations of the 

intrinsic organization of the white matter. In this population-based cohort-study, the association of 

prediabetes and type 2 diabetes with white matter network organization was assessed. 

Research Design and Methods 

In The Maastricht Study, a type 2 diabetes-enriched population-based cohort-study (1361 normal glucose 

metabolism, 348 prediabetes, 510 type 2 diabetes assessed by OGTT, 52% men, aged 59±8 years) 3 Tesla 

structural and diffusion MRI was performed. Whole brain white matter tractography was used to assess 

the number of connections (node degree) between 94 brain regions and the topology (graph measures). 

Multivariable linear regression analyses were employed to investigate the associations of glucose 

metabolism status with network measures. Associations were adjusted for age, sex, education, and 

cardiovascular risk factors.  

Results  

Prediabetes and type 2 diabetes were associated with lower node degree after full adjustment 

(standardized [st]βPrediabetes[95%CI]=-0.055[-0.172,-0.062], stβType2diabetes[95%CI]=-0.256[-0.379,-

0.133],Ptrend<0.001). Prediabetes was associated with lower local efficiency (stβ[95%CI]=-0.084[-0.159,-

0.008],P=0.033) and lower clustering coefficient (stβ[95%CI]=-0.097[-0.189,-0.005],P =0.049), while type 

2 diabetes was not. Type 2 diabetes was associated with higher communicability 

(stβ[95%CI]=0.148[0.042,0.253], P=0.008). 

Conclusions  

These findings indicate that prediabetes and type 2 diabetes are associated with fewer white matter 

connections, and weaker organization of white matter networks. Type 2 diabetes was associated with 

higher communicability, which was not yet observed in prediabetes, which may reflect the use of 

alternative white matter connections.  
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   3 Introduction 

Type 2 diabetes is associated with cognitive decline (1-3) and poses an increased risk for brain diseases, 

such as Alzheimer’s disease and depression (4; 5). As type 2 diabetes is associated with abundant macro- 

and microvascular disease, it may also affect brain vessels leading to cerebral small vessel disease (e.g., 

white matter lesions (WML)) and neurodegeneration (brain atrophy)(6; 7), which represent early 

features in the pathophysiology of cognitive decline and dementia (8), and can be measured by brain 

MRI. Some studies even show that prediabetes is already associated with alterations in the brain (9; 10), 

more specifically with presence of lacunar infarcts, larger WML volumes, and smaller white matter 

volumes, with further deterioration in type 2 diabetes, as previously reported (7). The white matter is 

organized as a complex network of connected fibers, which is responsible for efficient information 

exchange between brain regions. Alterations in one region may affect the function of other regions to 

which they are connected via white matter tracts. Thus, to understand the organization of white matter 

networks entirely, assessment of regional brain volumes is insufficient. The use of diffusion MRI-derived 

white matter tracts, in combination with graph theoretical analysis, does address both the regional 

volumes, and its connections to other regions. 

Type 2 diabetes might also be associated with alterations in the intrinsic organization of the white matter 

(11-14). However, whether changes in the intrinsic network organization of the white matter already 

occur in prediabetes is currently unknown (15-17). We hypothesize that brain abnormalities comparable 

to those found in type 2 diabetes are, to a lesser extent, already present in prediabetes, possibly already 

before onset of cognitive decline. The main objective of this study is to assess the association of 

prediabetes and type 2 diabetes, with white matter network characteristics, in terms of the number 

(node degree) and organization (graph measures) of the white matter connections. 

Research Design and Methods 

The Maastricht Study: population and design 

We used data from The Maastricht Study, an observational prospective population-based cohort study. 

The rationale and methodology have been described previously (18). In brief, the study focuses on the 

etiology, pathophysiology, complications, and comorbidities of type 2 diabetes and is characterized by an 

extensive phenotyping approach. Eligible for participation were all individuals aged between 40 and 75 

years and living in the southern part of the Netherlands. Participants were recruited through mass media 

campaigns and from the municipal registries and the regional Diabetes Patient Registry via mailings. 

Recruitment was stratified according to known type 2 diabetes status, with an oversampling of 

individuals with type 2 diabetes, for reasons of efficiency. Participants with type 1 diabetes or other 

types of diabetes were excluded from the analysis. The present report includes cross-sectional data from 

the first 3451 participants, who completed the baseline survey between November 2010 and September 

2013. The examinations of each participant were performed within a time window of three months. MRI 

measurements were implemented from December 2013 onwards until February 2017 and were available 

in 2318 out of 3451 participants. Of the 2318 participants with MRI measurements available, 2302 

subjects had complete data without artifacts [Flowchart in Supplementary material Figure 3.1]. The study 

has been approved by the institutional medical ethical committee (NL31329.068.10) and the Dutch 
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3 Ministry of Health, Welfare and Sports of the Netherlands (Permit 131088-105234-PG). All participants 

gave written informed consent. 

Glucose metabolism status 

To determine glucose metabolism status, all participants, except those who used insulin, underwent a 

standardized 2-h 75g oral glucose tolerance test (OGTT) after an overnight fast. For safety reasons, 

participants with a fasting blood glucose (FBG) level above 11.0 mmol/L, as determined by a finger prick, 

did not undergo the OGTT. For these individuals, fasting glucose level and information about diabetes 

medication were used to determine glucose metabolism status. Glucose metabolism status was defined 

according to the WHO 2006 criteria into NGM, prediabetes, and type 2 diabetes (19). Participants were 

considered to have type 2 diabetes if they had a fasting blood glucose ≥7.0 mmol/l, or a 2-h post-load 

blood glucose ≥11.1 mmol/l or used oral glucose-lowering medication or insulin, prediabetes if they had 

a FBG ≥6.1 mmol/l and/or a 2-h post-load blood glucose ≥7.8 mmol/l, and NGM if they had a FBG <6.1 

mmol/l, and a 2-h post-load blood glucose <7.8 mmol/l and no use of diabetes medication. 

Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) was performed on a 3T MRI scanner (MAGNETOM Prisma-fit Syngo 

MR D13D; Siemens Healthcare, Erlangen, Germany) using a 64-element head/neck coil for parallel 

imaging with an acceleration factor of two. A 3D T1-weighted magnetization prepared rapid acquisition 

gradient echo (MPRAGE) sequence (TR/TI/TE 2300/900/2.98 ms, 176 slices, 256x240 matrix size and 1.00 

mm cubic voxel size) was acquired for anatomic reference. Diffusion-weighted MRI (dMRI) data were 

acquired using a diffusion sensitized echo-planar imaging (EPI) sequence (TR/TE 6100/57 ms, 65 slices, 

100×100 matrix size, 2.00 mm cubic voxel size, and 64 diffusion sensitizing gradient directions (b=1200 

s/mm2)). In addition, three minimally-diffusion-weighted images (b=0 s/mm2) were acquired. 

Image preprocessing 

To define N=94 regions, the automatic anatomical labeling 2 (AAL2) atlas (20) was used. The AAL2 

volumes of interest were transformed to diffusion space for each individual subject. First, affine 

registrations of the dMRI image to the T1 image and of the T1 image to T1 MNI-152 standard space (21) 

were performed. These two transformations were combined and the inverse transformation matrix was 

applied to the AAL2 template. T1-weighted and Fluid Attenuated Inversion Recovery (FLAIR) images were 

segmented by use of an ISO13485:2012 certified, automated method (which included visual 

inspection)(22; 23) into white matter, gray matter, cerebrospinal fluid, and WML. Detailed methods are 

described in (7). dMRI data analysis was performed with the diffusion MR Toolbox ExploreDTI version 

4.8.6. (24) The main preprocessing steps were eddy current induced geometric distortions and head 

motion correction, and estimation of the diffusion tensor. After preprocessing, fiber orientation 

distributions (FOD) were estimated using constrained spherical deconvolution with a maximum harmonic 

degree of 8 (25), which allows fiber tracking through regions with crossing fibers. Whole brain 

deterministic tractography was performed using FOD sampling (26) with a seed point resolution of 2 
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   3 mm3, a step size of 1 mm, and an FOD and maximum deflection angle threshold of 0.1 and 30°, 

respectively. The next step was performing connectivity analysis to obtain white matter tracts from and 

to all the segmented regions. A previous study of our group confirmed the robustness of tract volume as 

a measure for the edge weighting (27), therefore, for each connection, the tract volume was calculated 

as the number of voxels visited by at least one tract between concerned areas multiplied by the voxel 

volume (in mm3). The obtained connectivity matrix with tract volumes was normalized to intracranial 

volume to reduce inter-subject variation (28). When regions were connected by only one or two 

streamlines, the corresponding tract volumes were removed from the connectivity matrix, as an 

additional noise filter. 

White matter networks 

Network analysis was performed using the Brain Connectivity Toolbox (version 2017-15-01)(29) in 

MATLAB (Release 2016a; The MathWorks, Inc., Natick, MA). In this method (for an overview, see Figure 

3. 1), the brain is represented as a graph, which is a network of nodes (i.e., gray matter brain regions) 

connected by edges (i.e., white matter connections between brain regions). The organization of such a 

graph can be characterized by use of graph measures, e.g., clustering coefficient, local efficiency, 

communicability, and global efficiency. These graph measures describe the efficiency and integrity of the 

white matter networks.  

The node degree is calculated for each AAL2 region and the mean value is defined as the 

average node degree, which is a measure for the average number of edges connected to a region (node). 

In a network with a high average node degree, nodes are connected to many other nodes in the network 

(i.e., strong innervation). The sparsity of a network is the ratio of the number of missing connections in a 

network to the possible number of connections and is closely, but inversely, related to the node degree. 

The sparsity ranges from 0 to 1, the higher the sparsity, the lower the density of the network (29). 

Graph measures 

To describe network organization, measures indicative of network segregation, to assess the presence of 

local densely interconnected groups of brain regions, and indicative of integration, to assess large-scale 

communication between nodes, were calculated [see Figure 3.1]. Measures of segregation describe the 

local connectivity properties of a network and comprise clustering and local efficiency. The clustering 

coefficient quantifies the number of connections between the nearest neighbors of a region as a 

proportion of the maximum number of possible connections (15). The local efficiency of a region is the 

inverse of the average shortest path connecting all neighbors of that region (30). Paths are sequences of 

connections in the network, which represent potential routes for communication between brain regions. 

Measures of integration describe the ease with which brain regions communicate in terms of 

paths and include global efficiency and communicability. The global efficiency is the inverse of the 

average shortest path length calculated over the entire brain, thus a high global efficiency reflects long 

paths between regions (30). However, neural communication does not necessarily follow the shortest 

paths only, but slightly longer paths might also be used (e.g., to bypass affected paths). Therefore an 

alternative measure of communication, the communicability, was calculated, which includes all possible 

paths between brain regions, weighted according to their length (31). 
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Figure 3.1: Glossary. 

White matter structural connectivity 

The node degree was first calculated for the full connectivity matrices of the groups, NGM, prediabetes, 

and type 2 diabetes, for comparison of the basic network architecture between them. Subsequently, a 

standard group averaged network was calculated for each group separately (32). Note that these 
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   3 standard networks may differ per group comparison. This standard network was proportionally 

thresholded to a sparsity of 0.80 (only the connections that were present in at least 80% of the 

participants in that group will be taken into account in the individual connectivity matrices), resulting in a 

weighted, undirected network with a sparsity close to the sparsity of the standard network. The standard 

networks were also thresholded for a range of sparsity values (0.65-0.9, step size 0.05) to assess the 

robustness over different sparsity values. Additionally, connections were identified with a significantly 

increased or decreased tract volume. First, we applied thresholding by a network based on only the NGM 

subjects, to check whether differences in basic network architecture were also present after exclusion of 

connections formed due to noise as opposed to pathology. As the networks of the type 2 diabetes group 

appeared to be most sparse, subsequently, the organization of this remaining (sub)network was 

analyzed. Hence, the resulting network contains only the connections of the sparser type 2 diabetes 

network of which the connections are also present in the other two groups. Otherwise the ‘true sparsity’ 

of the subjects with type 2 diabetes would be lower than for the NGM and prediabetes subjects, which 

again leads to different results in graph measures due to differences in sparsity. To investigate whether 

prediabetes is already associated with a structural reorganization, for the comparison of prediabetes and 

NGM, the average prediabetes derived network was applied.  

To investigate the structural organization in the white matter networks in type 2 diabetes and 

prediabetes, graph measures of segregation (i.e., clustering coefficient and local efficiency) and 

integration (i.e., global efficiency and communicability)(16; 17; 33) were calculated from the brain 

graphs. Graph measures were normalized to comparable values from randomly generated networks of 

equal size and similar connectivity distribution (N = 100) (34), and calculated over a range of six sparsity 

values, 0.65-0.9 (step size 0.05). 

General characteristics and covariates 

Educational level (low, intermediate, high), smoking status (never, current, former) and history of 

cardiovascular disease were assessed by questionnaires (18). Medication use was assessed in a 

medication interview where generic name, dose, and frequency were registered. We measured weight, 

height, BMI, waist circumference, blood pressure (measured in office [705IT; Omron, Kyoto, Japan]), and 

plasma lipid profile (18). 

Statistical analysis 

All statistical analyses were performed by use of the Statistical Package for Social Sciences (SPSS Statistics 

23.0; IBM, Chicago, IL). Clinical characteristics of the participants within the three groups of glucose 

metabolism status were compared using ANOVA and Pearson χ^2 tests, where appropriate. 

Multivariable linear regression was used to investigate the association of glucose metabolism status, with 

average node degree, and graph measures. For linear trend analyses, the categorical variable glucose 

metabolism status (NGM=0, prediabetes=1, and type 2 diabetes=2) was used in the regression models. 

To assess regression coefficients per glucose metabolism group, analysis with dummy variables for 

prediabetes and type 2 diabetes with NGM as reference group were used. Analyses were adjusted for 

potential confounders, notably age, sex, education level and MRI date (Model 1), and additionally 

adjusted for cardiovascular disease risk factors: BMI, total cholesterol-to-HDL-ratio, lipid-modifying 
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3 medication, office systolic blood pressure, antihypertensive medication, and prior cardiovascular disease 

(Model 2). Regression coefficients for normal aging (i.e., in participants with normal compared to 

abnormal glucose metabolism) were determined in the NGM group. Multiple linear regression with false-

discovery-rate (FDR) correction (q-value=0.05) was used to correct for multiple comparisons to 

determine which connections had significantly different tract volumes between groups, and were 

adjusted for age, sex, education level, and MRI lag time. In the type 2 diabetes-based standard networks, 

the associations of glucose metabolism groups and continuous measures of blood glucose with graph 

measures were analyzed by use of multiple regression analyses. Analyses on graph measures were 

adjusted for age, sex, education level, MRI date, and average node degree (Model 1), and additionally for 

cardiovascular disease risk factors (Model 2). Furthermore, we investigated the association of HbA1c, 

FBG, and 2-h post-load glucose levels, with average node degree and graph measures; and adjusted in an 

additional model for life style factors. Skewed variables (WML volumes) were log10 transformed. P-

values <0.05 were considered statistically significant. 

Results  

General characteristics of the study population 

Table 3.1 shows the general characteristics of the study population for subjects with NGM, prediabetes, 

and type 2 diabetes. The study population consisted of 2219 individuals; 1361 had NGM, 348 had 

prediabetes, and 510 had type 2 diabetes. Mean age was 59±8 years, and 48% were women. Individuals 

with prediabetes and type 2 diabetes were older, less often female, more often had an adverse 

cardiovascular risk profile, and more often had a low educational level [Table 3.1]. Individuals who 

underwent MRI were younger, less likely to have type 2 diabetes, less often current smokers, and less 

often had a low education level compared to those that did not undergo MRI [Supplementary Table 3.1]. 

Structural network characteristics 

After full adjustment, the average node degree for the full connectivity matrices (i.e., before 

thresholding) was significantly lower for type 2 diabetes subjects compared to NGM (1.3% lower, 

standardized [st]β[95% CI]=-0.111[-0.220,-0.002], Ptrend=0.047, Supplementary Table 3.2). Subsequent 

analysis using the standard network based on only NGM subjects, showed significantly different results 

for type 2 diabetes compared to prediabetes (0.7% lower, stβ[95% CI]=-0.256[-0.379,-0.133], 

Ptrend<0.001). Higher HbA1c, FBG, and 2-h post-load glucose levels were also associated with lower node 

degree in the unthresholded and NGM-based networks (Supplementary Table 3.3).  
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   3 Table 3.1: Clinical characteristics of participants according to glucose metabolism status. 

Characteristic  NGM Prediabetes Type 2 diabetes Ptrend 
 (n = 1361) (n = 348) (n = 510)  

Demographics     

Age (years) 57.6±8.1 61.2±7.5 62.5±7.6 <0.001 
Sex, male (%) 44.2 55.2 68.6 <0.001 
Education level (%), 
Low/Middle/High 

25.4/28.1/46.4 33.0/31.0/36.0 41.3/30.2/28.5 <0.001 

Glucose metabolism     

Fasting blood glucose (mmol/l) 5.2±0.4 5.9±0.6 7.8±1.9 <0.001 
2h post-load glucose* (mmol/l) 5.4±1.1 8.1±1.8 14.2±4.1 <0.001 
HbA1c (%) 5.4±0.3 5.7±0.4 6.9±1.0 <0.001 
HbA1c (mmol/mol) 36.0±3.7 38.6±4.4 51.4±11.0 <0.001 
Diabetes duration† (years) – – 6.9±7.2 – 

Cardiovascular risk factors     

BMI (kg/m2) 25.5±3.5 27.3±4.0 29.3±4.6 <0.001 
Waist circumference (cm) 90.2±10.9 96.8±11.3 104.3±12.9 <0.001 
Office systolic blood pressure 
(mmHg) 

131±17 136±16 141±17 <0.001 

Office diastolic blood pressure 
(mmHg)  

75±10 78±10 77±9 <0.001 

Hypertension, yes (%) 39.1 59.4 82.0 <0.001 
Ratio of total cholesterol to HDL 3.6±1.2 3.9±1.2 3.6±1.1 0.152 
History of cardiovascular disease, 
yes (%) 

8.9 11.3 21.3 <0.001 

History of CVA, yes (%)‡ 1.1 2.3 3.9 <0.001 

Medication use     

Insulin use, yes (%)† – – 19.6 – 
Antihypertensive medication, yes 
(%) 

20.6 38.8 70.2 <0.001 

Lipid-modifying medication, yes 
(%) 

14.8 29.0 72.5 <0.001 

Lifestyle factors     

Alcohol consumption (%), 
None/Low/High 

13.9/57.5/28.6 16.3/53.5/30.2 26.4/53.1/20.5 <0.001 

Smoking status (%), 
Never/Former/Current 

40.9/47.9/11.1 30.4/58.0/11.6 32.7/53.7/13.5 0.001 

Cognitive score     

MMSE total score§ 29.2±1.1 28.9±1.1 28.7±1.3 <0.001 

Data are presented as means ± standard deviation or percentage, and stratified for glucose metabolism status: 
normal glucose metabolism (NGM), prediabetes, and type 2 diabetes. P-values indicate trend analysis over 
glucose metabolism status. HbA1c indicates hemoglobin A1c; BP, blood pressure; HDL, high-density lipoprotein; 
LDL, low-density lipoprotein; CVA, cerebrovascular accident; MMSE, Mini-Mental State Examination. *2h post-
load glucose values were available in n=2098. †Available in 344 type 2 diabetes individuals. ‡History of CVA data 
was available is n=2191.§Five participants had a MMSE score of 22 or 23 (mild cognitive impairment) and none 
had dementia. Detailed protocols of the general measurements are presented in the supplementary material. 
Characteristics of variables used in the additional models (Supplementary Table 3.6-3.11) are given in 
Supplementary Table 3.12. 
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3 In Figure 3.2A, the standard network for the NGM group is schematically shown. Figure 3.2B 

and 3.2C indicate for which connections the tract volumes were significantly different in prediabetes 

compared to NGM, and in type 2 diabetes compared to NGM, respectively. These results indicate that in 

prediabetes, only intra-hemispheric connections had significantly smaller tract volumes. In type 2 

diabetes, both inter- and intra-hemispheric connections (of which 66% were inter-hemispheric) had 

significantly smaller tract volumes, especially between the frontal lobes and between the frontal and 

temporal lobe. 

 

 
Figure 3.2: Schematic representation of connections between the atlas regions present in the NGM-based 

standard network (A), and those connections which had a significantly different tract volume in (B) 

prediabetes or (C) type 2 diabetes compared to NGM subjects. Blue connection lines indicate connections 

with significantly smaller tract volumes (unstandardized β<0), and red lines with significantly larger tract 

volumes (unstandardized β>0). P<0.05, FDR corrected. Darker blue or red connection lines indicate lower 

p-values. (D) Brain regions that represent the color-coded brain regions. 
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   3 As an additional analysis, the association between WML volume and node degree was 

determined over all subjects. After full adjustment, relative WML volume (in % of intracranial volume) 

was negatively associated with the node degree of the NGM-based standard network (stβ[95%CI]=-

0.059[-0.101,-0.018], p=0.001). This association was not present for the smaller type 2 diabetes-based 

standard network (stβ[95%CI]=-0.010[-0.035,0.018], p=0.714). 

Graph measures of the type 2 diabetes-based standard network 

After thresholding all individual networks by use of the prediabetes-, or type 2 diabetes-based networks, 

graph analysis was performed. In Table 3.2, the associations of these graph measures at a sparsity of 0.8 

are shown. In the prediabetes-based standard network, prediabetes was significantly associated with a 

lower normalized clustering coefficient compared to NGM, which indicates a lower local connectivity. 

Prediabetes was also associated with a lower normalized average local efficiency. No association was 

found between prediabetes and the normalized global efficiency and communicability. In addition, type 2 

diabetes was associated with higher communicability as compared to NGM, despite the lower node 

degree. The other three graph measures were not significantly associated with type 2 diabetes. Graph 

measures for a range of sparsity thresholds are shown in Supplementary Figure 3.2. After full 

adjustment, only the association with higher communicability in type 2 diabetes remained significant. No 

associations remained significant for prediabetes. A higher communicability was also found for higher 

continuous glucose measures and this remained significant after full adjustment (Supplementary Table 

3.4). 

 

Table 3.2: Associations of prediabetes and type 2 diabetes with graph network measures at a sparsity 

value of 0.8. 

 Prediabetes* P Type 2 diabetes† P 

Normalized graph measures, β (95% CI) 

Clustering coefficient     
Model 1 -0.097 (-0.189, -0.005) 0.049 -0.026 (-0.111, 0.059) 0.562 
Model 2 -0.066 (-0.161, 0.028) 0.169 0.027 (-0.074, 0.128) 0.603 

Global efficiency     
Model 1 0.034 (-0.086, 0.151) 0.625 -0.056 (-0.164, 0.052) 0.212 
Model 2 0.032 (-0.092, 0.156) 0.615 -0.051 (-0.180, 0.077) 0.434 

Local efficiency     
Model 1 -0.084 (-0.159, -0.008) 0.033 -0.043 (-0.113, 0.027) 0.208 
Model 2 -0.060 (-0.137, 0.017) 0.128 0.010 (-0.073, 0.093) 0.816 

Communicability     
Model 1 0.026 (-0.092, 0.144) 0.475 0.148 (0.042, 0.253) 0.008 
Model 2 0.043 (-0.079, 0.165) 0.491 0.163 (0.037, 0.290) 0.011 

*Prediabetes-based standard network. †Type 2 diabetes-based standard network. Associations of prediabetes 
and type 2 diabetes with graph measures. Regression coefficients and 95% CI indicate the mean difference in 
clustering coefficient, global efficiency, local efficiency, and communicability of participants with prediabetes or 
type 2 diabetes compared with NGM. Model 1: Adjusted for age, sex, education, average node degree, and MRI 
date. Model 2: Model 1 + additionally adjusted for BMI, office systolic blood pressure, total cholesterol-to-HDL-
ratio, antihypertensive medication, lipid-lowering medication, history of cardiovascular disease. Bold values = 
p<0.05. 
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3 Diabetes and aging 

Multiple linear regression analysis was employed to determine the relative association of prediabetes 

and type 2 diabetes with node degree as compared to aging. Node degree was significantly lower in 

subjects with prediabetes or type 2 diabetes compared to NGM and corresponded to 2.3 or 10.4 years of 

aging, respectively (Supplementary Table 3.5). Adjustment for potential confounders (i.e., BMI, systolic 

blood pressure, total cholesterol-to-HDL-ratio, prior cardiovascular disease, and antihypertensive and 

lipid-lowering medication) did not substantially change these results.  

There were also connections where tract volumes were significantly associated with age 

[Supplementary Figure 3.3A]. Please note the large similarities between connection tract volumes 

associated with age and type 2 diabetes. However, in type 2 diabetes, the connections between the left 

and right hippocampus and between right frontal and temporal regions, had significantly smaller tract 

volumes compared to NGM, but these connections were not associated with age [Supplementary Figure 

3.3B]. 

Discussion  

In this study, we found that both prediabetes and type 2 diabetes were associated with a lower node 

degree, and thus fewer white matter connections, as compared to NGM. Continuous measures of 

hyperglycemia (HbA1c, FBG, and 2-h post-load glucose levels) were also associated with lower node 

degree. Moreover, prediabetes and type 2 diabetes were associated with smaller tract volumes of 

several connections between cortical regions, which were comparable to those associated with aging. 

The lower node degree of 0.4 and 1.3% in subjects with prediabetes and type 2 diabetes, respectively, 

compared to NGM, was equivalent to 2 and 9 years of aging, which fits with the idea that (pre)diabetes is 

accompanied by accelerated aging. We also investigated the association between prediabetes and type 2 

diabetes with structural organization. In prediabetes compared to NGM, the local efficiency and 

clustering coefficient were lower, which indicates that there was a weaker local connectivity. In type 2 

diabetes compared to NGM, a higher communicability was found, indicating that in type 2 diabetes more 

alternative white matter connections are used to facilitate structural connectivity between brain regions. 

In prediabetes, the clustering coefficient and local efficiency were lower compared to NGM, 

indicating that structural alterations can be observed already in prediabetes. These findings indicate that 

brain changes already occur, in prediabetes, before the clinical diagnosis of type 2 diabetes. Therefore, 

treatment of prediabetes should be considered as a potential target of intervention, for the prevention 

of complications of type 2 diabetes, including structural brain changes. In type 2 diabetes compared to 

NGM, a higher communicability was found. Communicability is a measure, which indicates the ease of 

communication between two brain regions, taking into account not only the shortest path, but also all 

other possible paths connecting them. A potential explanation for the higher communicability in type 2 

diabetes compared to NGM involves the increased WML load in type 2 diabetes and prediabetes (7).  The 

brain might be able to adapt to changing circumstances (to a small extent), and staying physically and 

mentally fit can possibly promote this effect (35; 36). However, the precise pathophysiological basis of 

white matter alterations in patients with (pre)diabetes remains to be elucidated, and a complex interplay 

of endocrinological, metabolic, and vascular mechanisms is likely involved (5; 7). 
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   3 Our findings are in line with previous studies that assessed the association between type 2 

diabetes and white matter connectivity. Previous reports showed lower white matter connectivity 

between the hippocampus and the frontal lobe (13), and microstructural abnormalities in four major 

white matter tracts connecting the frontal, parietal and temporal lobe (12) in type 2 diabetes compared 

to a control group. In contrast, a study comparing 55 age-, sex- and education-matched individuals with 

type 2 diabetes with 50 non-diabetes individuals (11), found that the mean clustering coefficients and 

global efficiency were lower in type 2 diabetes compared to controls. However, the total number of 

connections in the network did not differ between the groups, and these between-group differences 

were independent of vascular lesion load. This difference in observations may be due to the much 

smaller sample size and the differences in the specific networks, which were analyzed in that study. 

Interestingly, altered functional connectivity, in terms of a higher clustering coefficient and high local 

efficiency, was found in type 2 diabetes and at a lower level in prediabetes (37), which was interpreted as 

a compensatory mechanism in the form of functional reorganization to counteract a decrease in 

cognitive performance. This is in agreement with the altered structural connectivity observed in the 

present study, which is indicative of alternative white matter connections in type 2 diabetes. 

Study considerations 

Strengths of this study are the sample size and population-based design with an oversampling of 

participants with type 2 diabetes, which enables an accurate comparison between the three glucose 

metabolism groups. The large amount of diffusion MRI scans available, were semi-automatically 

processed blinded to group status, which ensures an objective analysis. Other strengths were the use of 

HbA1c levels and a 2-hr OGTT to accurately characterize glucose metabolism; and the extensive 

assessment of potential confounders. In this study, most findings were robust over a large sparsity range 

and remained statistically significant after adjustment for potential confounders.  

There are also some limitations. First, the time between baseline measurements and MRI scan 

might have influenced the associations observed. However, when we additionally adjusted for this, 

associations did not significantly change. Second, we used a single OGTT to assess (pre)diabetes status, 

which may result in misclassification of long-term glucose tolerance status (38). When group sizes and 

misclassification estimates (38) are taken into account, the net result of this misclassification is likely to 

be underestimation of brain abnormalities in the prediabetes group. Furthermore, individuals who 

underwent MRI were younger, were less likely to have type 2 diabetes, were less often current smokers 

and less often had a low educational level, as compared to the study population which did not undergo 

MRI. However, as included individuals with MRI data were relatively more healthy compared to those 

without MRI, our current selection may have caused us to underestimate any of the associations 

between glucose metabolism status with network measures. And finally, due to the cross-sectional 

design of the study we cannot infer any conclusion about the causality of this association. Therefore, 

future longitudinal studies are needed to address if hyperglycemia precedes the development of the 

observed brain abnormalities, which may infer causality. 



White matter connectivity alterations in prediabetes and type 2 diabetes 

61 

3 Conclusion  

We showed, in a population-based study, that prediabetes, type 2 diabetes and continuous measures of 

hyperglycemia are associated with fewer white matter connections, and weaker organization of white 

matter networks. In addition, type 2 diabetes was associated with higher communicability, which was 

not yet observed in prediabetes, and which may reflect the use of alternative white matter connections. 

These findings support the concept that hyperglycemia, even in the prediabetes phase, may be harmful 

to the brain, and that type 2 diabetes affects the global and local organization of brain structures.   
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   3 Supplementary Material 

Detailed protocols of the measurements performed within The 

Maastricht Study: 

Questionnaires. As described elsewhere (1), we used web-based questionnaires to obtain information 

regarding smoking status (never/former/current), alcohol consumption, educational level, physical 

activity, diet, prior CVD and cognitive impairment. Alcohol consumption was classified as none, low (1– 7 

glasses/wk for women and 1–14 glasses/wk for men) and high (> 7 glasses/wk for women and >14 

glasses/wk for men). Educational level was classified as low (no education, primary education, lower 

vocational education), intermediate (intermediate general secondary education, intermediate vocational 

education, higher general secondary education), or high (higher vocational education or university). 

Physical activity was assessed by means of a modified version of the Champs questionnaire. Diet was 

assessed by a tailor-made FFQ developed by use of the National FFQ Tool. Prior CVD was defined as a 

history of myocardial infarction; stroke; or vascular surgery (including angioplasty) on coronary, carotid, 

abdominal aortic, or peripheral arteries, and prior CVA as history of cerebrovascular accident (stroke, or 

TIA), both based on the Rose questionnaire. Cognitive impairment was measured using the Mini-Mental 

State Examination (MMSE). Five participants had a MMSE score of 22 or 23 (MCI) and none had 

dementia Medication use was assessed in a medication interview where generic name, dose, and 

frequency were registered. 

 

Laboratory assessments. Plasma glucose is measured with a standard enzymatic hexokinase reference 

method, and serum total cholesterol, HDL cholesterol, and triglycerides are measured with standard 

(enzymatic and/or colorimetric) methods by an automatic analyzer (until 9 May 2012: Beckman Synchron 

LX20, Beckman Coulter Inc., Brea, USA; after 9 May 2012: Cobas 6000, Roche diagnostics, Mannheim, 

Germany). When appropriate LDL cholesterol is calculated according to the Friedewald formula (2). 

HbA1c is measured with ion-exchange high performance liquid chromatography (HPLC) (Variant tm II, 

Bio-Rad, Hercules, California, USA).  

 

Physical examination. Weight and height are measured without shoes and wearing light clothing using a 

scale and stadiometer to the nearest 0.5 kg or 0.1 cm (Seca, Hamburg, Germany). Waist circumference is 

measured with a flexible plastic tape measure (Seca, Hamburg, Germany) in a duplicate midway between 

the lower rib margin and the iliac crest at the end of expiration, to the nearest 0.5 cm. 

 

Blood pressure. Office blood pressure is determined three times on the right arm after a 10-minute rest 

period, using a non-invasive blood pressure monitor (Omron 705IT, Japan). When the difference 

between measurement two and three is more than 10mmHg, a fourth measurement is performed. All 

available measurements are used to calculate the average blood pressure. Ambulatory 24-h blood 

pressure (WatchBP O3, Microlife, Switzerland, respectively) is measured at the non-dominant arm, using 

an ambulatory device that is programmed to take blood pressure readings every 15 minutes from 8.00 – 

23.00 and every 30 minutes from 23.00 – 8.00. 
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3 Additional analyses 

With regard to the node degree analyses, the associations of prediabetes and type 2 diabetes, remained 

unchanged when substituting office systolic blood pressure for 24- hour ambulatory systolic blood 

pressure (24-hour ambulatory blood pressure was available in n=1888 individuals; Supplementary Table 

6) or substituting BMI for waist circumference (Supplementary Table 7), or further adjustment for 

lifestyle factors, i.e., smoking status, alcohol use, physical activity, and diet score (data available for 

n=1825, Supplementary Table 8). Furthermore, in the analyses of graph measures, the association of 

prediabetes and type 2 diabetes remained also unchanged when substituting office systolic blood 

pressure for 24- hour ambulatory systolic blood pressure (24-hour ambulatory blood pressure was 

available in n=1888 individuals; Supplementary Table 9) or substituting BMI for waist circumference 

(Supplementary Table 10), or further adjustment for lifestyle factors (data available for n=1825, 

Supplementary Table 10).  

Commentary on Supplementary Figure 2 

We want to emphasize that we depicted the normalized graph measures in the figure. These normalized 

graph measured show a different behavior with varying sparsity values compared to the not normalized 

graph measures, and are more different to interpret. However, normalization is necessary for 

comparisons between groups (3). In more detail: Normalized clustering coefficient increased with 

sparsity, with the removal of connections at increasing sparsity, the proportion of connections between 

the nodes within its neighborhood divided by the number of connections that theoretically could exist 

between them, will decrease. However, since the clustering coefficient is normalized to a random 

network, for which the proportional decrease is larger, the normalized clustering coefficient thus 

increases at increasing sparsity (this was also found in the study of van Wijk et al. (4)). The normalized 

local efficiency is related to the normalized clustering coefficient, and will therefore show the same 

behavior. Since the connection-weights represent tract volumes, and since the structural connections 

taken into account are mostly short (intra-hemispheric) tracts with a small volume, the structural global 

efficiency is calculated using low connection strengths that increases with sparsity. 
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2002;296(5569):910-913. doi: 10.1126/science.1065103 
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   3 Supplementary Figures 

 

Supplementary Figure 3.1: Flowchart of the study population. The time lag between baseline assessment 

and MRI was 2.3±1.3 years (mean ± standard deviation). 
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Supplementary Figure 3.2: Normalized graph measures over a range a sparsity values for participants 

with type 2 diabetes, prediabetes, and NGM. SEM = standard error of mean.= sparsity values analyzed. 

All graph measures were normalized to random networks (see additional comment in the Supplementary 

Material on page 3). * = p-value<0.05, red for type 2 diabetes compared to NGM and green for 

prediabetes compared to NGM. (A) Clustering coefficient. (B) Communicability. (C) Global efficiency, and 

(D) Local efficiency. 

 

 
Supplementary Figure 3.3: Schematic representation of connections between the atlas regions which had 

a significantly different tract volume for (A) higher age, and (B) in type 2 diabetes compared to NGM. 

Blue lines indicate connections with significantly lower tract volumes (unstandardized β<0), and red lines 

with significantly higher tract volumes (unstandardized β>0). For the comparison of type 2 diabetes with 

normal aging only the 100 connections with the lowest p-values (all p-values were<0.05) were visualized. 

Darker blue or red lines indicate lower p-values.  
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   3 Supplementary Tables 

Supplementary Table 3.1: General characteristics of the study population with and without brain MRI 

data. 

Characteristic  Study population 
(n=2219) 

No brain MRI 
data available 
(n=1232) 

P value 

Demographics    

Age (years) 59.3±8.2 60.6±8.3 <0.001 
Sex, male (%) 51.5 51.3 0.905 
Education level (%), Low/Middle/High 30.2/29.0/40.7 39.7/26.8/33.5 <0.001 

Glucose metabolism    

Type 2 diabetes (%) 23.0 37.7 <0.001 
Fasting blood glucose (mmol/l) 5.9±1.5 6.5±2.2 <0.001 
2h post-load glucose (mmol/l) 7.5±4.0 8.8±4.6 <0.001 
HbA1c (%) 5.8±0.8 6.2±1.1 <0.001 
HbA1c (mmol/mol) 40.0±8.9 43.9±12.0 <0.001 
Diabetes duration* (years) 6.9±7.2 7.3±1.1 0.449 

Cardiovascular risk factors    

BMI (kg/m2) 26.6±4.2 27.9±5.1 <0.001 
Waist circumference (cm) 94.5±12.8 98.5±15.1 <0.001 
Office systolic blood pressure (mmHg) 133±17 137±20 <0.001 
Office diastolic blood pressure (mmHg)  76±10 76±10 0.320 
Hypertension, yes (%) 52.1 61.0 <0.001 
Total cholesterol (mmol/L)  5.3±1.1 5.0±1.2 <0.001 
HDL cholesterol (mmol/L) 1.6±0.5 1.5±0.5 <0.001 
LDL cholesterol (mmol/L) 3.2±1.0 2.9±1.0 <0.001 
Triglyceride levels (mmol/L) 1.4±0.8 1.5±0.9 <0.001 
Total cholesterol-to-HDL-ratio  3.7±1.2 3.7±1.2 0.283 
History of cardiovascular disease, yes (%) 12.1 25.1 <0.001 

Medication use    

Insulin use, yes (%)* 19.6 33.8 <0.001 
Antihypertensive medication, yes (%) 34.9 49.2 <0.001 
Lipid-modifying medication, yes (%) 30.7 47.0 <0.001 

Lifestyle factors    

Alcohol consumption (%), None/Low/High 17.1/55.9/27.9 21.3/54.6/24.1 0.003 

<0.001 Smoking status (%), Never/Former/Current 37.4/50.8/11.8 29.3/53.1/17.7 

Cognitive score    

MMSE total score 29.0±1.2 28.7±1.4 <0.001 

Data are presented as means ± standard deviation or percentage, and stratified for availability of MRI data. 
HbA1c indicates hemoglobin A1c; HDL, high-density lipoprotein; LDL, low-density lipoprotein; MMSE, Mini-
Mental State Examination. *Available in type 2 diabetes individuals. 
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3 Supplementary Table 3.2: Associations of prediabetes and type 2 diabetes with node degree. 

 Prediabetes Type 2 diabetes Ptrend 

Node degree  standardized β (95% CI) standardized β (95% CI)  

Unthresholded network    
Model 1 -0.044 (-0.164, 0.076) -0.111 (-0.220, -0.002) 0.047 
Model 2 -0.060 (-0.183, 0.063) -0.151 (-0.280, -0.022) 0.022 

NGM-based network    
Model 1 -0.066 (-0.181, 0.048) -0.296 (-0.400, -0.191) <0.001 
Model 2 -0.055 (-0.172, 0.062) -0.256 (-0.379, -0.133) <0.001 

Type 2 diabetes-based network    
Model 1 -0.055 (-0.174, 0.064) -0.135 (-0.243, -0.027) 0.015 
Model 2 -0.071 (-0.193, 0.050) -0.168 (-0.296, -0.040) 0.010 

Associations of prediabetes and type 2 diabetes with node degree, with NGM as reference. Regression 
coefficients and 95% CI indicate the mean difference in node degree of participants with prediabetes or type 2 
diabetes compared with NGM. Model 1: Adjusted for age, sex, education, and MRI date. Model 2: Model 1 + 
additionally adjusted for BMI, office systolic blood pressure, total cholesterol-to-HDL-ratio, antihypertensive 
medication, lipid-lowering medication, history of cardiovascular disease. Bold values = p<0.05. 
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3 Supplementary Table 3.5: Relative change for (pre)diabetes and age in node degree. 

  Node degree*  

  standardized β (95%) p-value 

Model 1† Prediabetes -0.024 (-0.065, 0.017) 0.258 
 Type 2 diabetes -0.134 (-0.181, -0.086) <0.001 
 Age -0.236 (-0.279, -0.194) <0.001 

 
𝜷𝑷𝒓𝒆𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔

𝜷𝑨𝒈𝒆
∙

𝑺𝑫𝑨𝒈𝒆

𝑺𝑫𝑷𝒓𝒆𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔
  2.3 years  

 𝜷𝑻𝒚𝒑𝒆𝟐𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔

𝜷𝑨𝒈𝒆
∙

𝑺𝑫𝑨𝒈𝒆

𝑺𝑫𝑻𝒚𝒑𝒆𝟐𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔
  10.4 years  

Model 2‡ Prediabetes -0.020 (-0.061, 0.022) 0.357 
 Type 2 diabetes -0.116 (-0.171, -0.060) <0.001 
 Age -0.219 (-0.264, -0.174) <0.001 

 
𝜷𝑷𝒓𝒆𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔

𝜷𝑨𝒈𝒆
∙

𝑺𝑫𝑨𝒈𝒆

𝑺𝑫𝑷𝒓𝒆𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔
  2.1 years  

 𝜷𝑻𝒚𝒑𝒆𝟐𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔

𝜷𝑨𝒈𝒆
∙

𝑺𝑫𝑨𝒈𝒆

𝑺𝑫𝑻𝒚𝒑𝒆𝟐𝒅𝒊𝒂𝒃𝒆𝒕𝒆𝒔
  9.7 years  

*Node degree for entire dataset (n=2219), calculated in NGM-based standard network. 
 †Additionally adjusted for sex, education, and MRI date. ‡Model 1 + additionally adjusted  
for BMI, office systolic blood pressure, total-cholesterol-to-HDL-ratio, antihypertensive  
medication, lipid-lowering medication, history of cardiovascular disease. Bold values = p<0.05. 

 

Supplementary Table 3.6: Associations of prediabetes and type 2 diabetes with node degree, with 

replacement of office by 24-h systolic ambulatory blood pressure in regression models. 

 Prediabetes Type 2 diabetes Ptrend 

Node degree  standardized β (95% CI) standardized β (95% CI)  

Unthresholded network    
Model 1 -0.058 (-0.189, 0.072) -0.169 (-0.287, -0.051) 0.005 
Model 2 -0.078 (-0.211, 0.055) -0.234 (-0.371, -0.097) 0.001 

NGM-based network    
Model 1 -0.068 (-0.194, 0.058) -0.279 (-0.393, -0.166) <0.001 
Model 2 -0.063 (-0.192, 0.065) -0.259 (-0.392, -0.127) <0.001 

Type 2 diabetes-based network    
Model 1 -0.057 (-0.189, 0.074) -0.150 (-0.269, -0.032) 0.013 
Model 2 -0.077 (-0.211, 0.057) -0.201 (-0.340, -0.063) 0.004 

Associations of prediabetes and type 2 diabetes with node degree, with NGM as reference. Regression 
coefficients and 95% CI indicate the mean difference in node degree of participants with prediabetes or type 2 
diabetes compared with NGM. Model 1: Adjusted for age, sex, education, and MRI date. Model 2: Model 1 + 
additionally adjusted for BMI, 24-h systolic ambulatory blood pressure, total cholesterol-to-HDL-ratio, 
antihypertensive medication, lipid-lowering medication, history of cardiovascular disease. Data were available 
in n=1888 individuals (type 2 diabetes/prediabetes/NGM, 437/293/1158, respectively). Bold values = p<0.05. 
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   3 Supplementary Table 3.7: Associations of prediabetes and type 2 diabetes with node degree, with 

replacement of BMI by waist circumference in regression models. 

 Prediabetes Type 2 diabetes Ptrend 

Node degree  standardized β (95% CI) standardized β (95% CI)  

Unthresholded network    
Model 1 -0.043 (-0.163, 0.077) -0.111 (-0.220, -0.002) 0.047 
Model 2 -0.054 (-0.177, 0.069) -0.139 (-0.270, -0.009) 0.037 

NGM-based network    
Model 1 -0.066 (-0.181, 0.049) -0.296 (-0.400, -0.191) <0.001 
Model 2 -0.055 (-0.172, 0.062) -0.256 (-0.380, -0.131) <0.001 

Type 2 diabetes-based network    
Model 1 -0.054 (-0.173, 0.065) -0.135 (-0.243, -0.027) 0.015 
Model 2 -0.070 (-0.192, 0.052) -0.168 (-0.295, -0.037) 0.012 

Associations of prediabetes and type 2 diabetes with node degree, with NGM as reference. Regression 
coefficients and 95% CI indicate the mean difference in node degree of participants with prediabetes or type 2 
diabetes compared with NGM. Model 1: Adjusted for age, sex, education, and MRI date. Model 2: Model 1 + 
additionally adjusted for waist circumference, office systolic blood pressure, total cholesterol-to-HDL-ratio, 
antihypertensive medication, lipid-lowering medication, history of cardiovascular disease. Data were available 
in n=2218 individuals (type 2 diabetes/prediabetes/NGM, 510/348/1360, respectively). Bold values = p<0.05. 

 

Supplementary Table 3.8: Associations of prediabetes and type 2 diabetes with node degree, additionally 

adjusted for lifestyle factors. 

 Prediabetes Type 2 diabetes Ptrend 

Node degree  standardized β (95% CI) standardized β (95% CI)  

Unthresholded network    
Model 1 -0.009 (-0.139, 0.120) -0.126 (-0.246, -0.006) 0.054 
Model 2 -0.030 (-0.162, 0.103) -0.179 (-0.321, -0.037) 0.020 
Model 3 -0.027 (-0.160, 0.106) -0.174 (-0.318, -0.031) 0.026 

NGM-based network    
Model 1 -0.066 (-0.188, 0.055) -0.320 (-0.433, -0.207) <0.001 
Model 2 -0.047 (-0.171, 0.078) -0.264 (-0.397, -0.130) <0.001 
Model 3 -0.041 (-0.165, 0.084) -0.253 (-0.388, -0.118) 0.001 

Type 2 diabetes-based network    
Model 1 -0.035 (-0.163, 0.093) -0.168 (-0.287, -0.049) 0.008 
Model 2 -0.048 (-0.179, 0.083) -0.188 (-0.329, -0.047) 0.012 
Model 3 -0.044 (-0.175, 0.087) -0.176 (-0.318, -0.034) 0.020 

Associations of prediabetes and type 2 diabetes with node degree, with NGM as reference. Regression 
coefficients and 95% CI indicate the mean difference in node degree of participants with prediabetes or type 2 
diabetes compared with NGM. Model 1: Adjusted for age, sex, education, and MRI date. Model 2: Model 1 + 
additionally adjusted for BMI, office systolic blood pressure, total cholesterol-to-HDL-ratio, antihypertensive 
medication, lipid-lowering medication, history of cardiovascular disease. Model 3: Model 2 + additionally 
adjusted for smoking status, alcohol use, physical activity and diet score. Bold values = p<0.05. Physical activity 
and diet score data were available in n=1825 individuals (388/294/1143 for type 2 diabetes/prediabetes/NGM, 
respectively). 
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3 Supplementary Table 3.9: Associations of prediabetes and type 2 diabetes with graph network measures 

at a sparsity value of 0.8, with replacement of office by 24-h systolic ambulatory blood pressure in 

regression models. 

 Prediabetes* P Type 2 diabetes† P 

Normalized graph measures, β (95% CI) 

Clustering coefficient     
Model 1 -0.110 (-0.210, -0.009) 0.032 -0.036 (-0.128, 0.056) 0.448 
Model 2 -0.085 (-0.188, 0.017) 0.103 0.024 (-0.083, 0.131) 0.665 

Global efficiency     
Model 1 0.015 (-0.117, 0.147) 0.820 -0.071 (-0.188, 0.046) 0.235 
Model 2 0.028 (-0.107, 0.163) 0.683 -0.021 (-0.158, 0.116) 0.762 

Local efficiency     
Model 1 -0.093 (-0.175, -0.011) 0.027 -0.050 (-0.126, 0.025) 0.191 
Model 2 -0.073 (-0.157, 0.011) 0.087 0.012 (-0.076, 0.099) 0.794 

Communicability     
Model 1 0.032 (-0.097, 0.162) 0.622 0.165 (0.048, 0.282) 0.006 
Model 2 0.047 (-0.086, 0.179) 0.490 0.173 (0.037, 0.310) 0.013 

*Prediabetes-based standard network. †Type 2 diabetes-based standard network. Associations of prediabetes and type 
2 diabetes with graph measures. Regression coefficients and 95% CI indicate mean difference in clustering coefficient, 
global efficiency, local efficiency, and communicability of participants with prediabetes or type 2 diabetes compared 
with NGM. Model 1: Adjusted for age, sex, education, node degree, and MRI date. Model 2: additionally adjusted for 
BMI, 24-h systolic ambulatory blood pressure, total cholesterol-to-HDL-ratio, antihypertensive medication, lipid-
lowering medication, history of cardiovascular disease. Data were available in n=1888 individuals (type 2 
diabetes/prediabetes/NGM, 437/293/1158, respectively). Bold values p<0.05. 

 

Supplementary Table 3.10: Associations of prediabetes and type 2 diabetes with graph network 

measures at a sparsity value of 0.8, with replacement of BMI by waist circumference in regression 

models. 

 Prediabetes* P Type 2 diabetes† P 

Normalized graph measures, β (95% CI) 

Clustering coefficient     
Model 1 -0.092 (-0.185, 0.000) 0.050 -0.025(-0.112, 0.061) 0.562 
Model 2 -0.067 (-0.162, 0.028) 0.168 0.035 (-0.067, 0.137) 0.500 

Global efficiency     
Model 1 0.030 (-0.091, 0.151) 0.624 -0.069 (-0.178, 0.040) 0.212 
Model 2 0.049 (-0.076, 0.173) 0.445 -0.014 (-0.144, 0.116) 0.836 

Local efficiency     
Model 1 -0.082 (-0.157, -0.006) 0.034 -0.045 (-0.116, 0.025) 0.208 
Model 2 -0.057 (-0.135, 0.020) 0.148 0.022 (-0.062, 0.105) 0.615 

Communicability     
Model 1 0.029 (-0.090, 0.147) 0.475 0.146 (0.039, 0.253) 0.008 
Model 2 0.035 (-0.087, 0.157) 0.577 0.154 (0.026, 0.282) 0.018 

*Prediabetes-based standard network. †Type 2 diabetes-based standard network. Associations of prediabetes and type 
2 diabetes with graph measures. Regression coefficients and 95% CI indicate mean difference in clustering coefficient, 
global efficiency, local efficiency, and communicability of participants with prediabetes or type 2 diabetes compared 
with NGM. Model 1: Adjusted for age, sex, education, node degree, MRI date. Model 2: additionally adjusted for waist 
circumference, office systolic blood pressure, total cholesterol-to-HDL-ratio, antihypertensive medication, lipid-
lowering medication, history of cardiovascular disease. Data were available in n=2218 individuals (type 2 
diabetes/prediabetes/NGM, 510/348/1360, respectively). Bold values p<0.05. 
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   3 Supplementary Table 3.11: Associations of prediabetes and type 2 diabetes with graph network 

measures at a sparsity value of 0.8, additionally adjusted for lifestyle factors. 

 Prediabetes* P Type 2 diabetes† P 

Normalized graph measures, β (95% CI) 

Clustering coefficient     
Model 1 -0.077 (-0.177, 0.023) 0.130 -0.014 (-0.109, 0.081) 0.771 
Model 2 -0.047 (-0.150, 0.056) 0.371 0.046 (-0.066, 0.158) 0.425 
Model 3 -0.049 (-0.152, 0.054) 0.349 0.034 (-0.079, 0.146) 0.560 

Global efficiency     
Model 1 0.023 (-0.107, 0.152) 0.733 -0.042 (-0.161, 0.077) 0.490 
Model 2 0.021 (-0.113, 0.155) 0.755 -0.014 (-0.155, 0.128) 0.847 
Model 3 0.023 (-0.111, 0.157) 0.737 -0.015 (-0.157, 0.128) 0.839 

Local efficiency     
Model 1 -0.072 (-0.154, 0.009) 0.083 -0.039 (-0.117, 0.039) 0.326 
Model 2 -0.048 (-0.132, 0.036) 0.259 0.017 (-0.075, 0.109) 0.712 
Model 3 -0.049 (-0.133, 0.035) 0.252 0.010 (-0.082, 0.103) 0.828 

Communicability     
Model 1 0.082 (-0.046, 0.211) 0.208 0.171 (0.052, 0.290) 0.005 
Model 2 0.103 (-0.030, 0.235) 0.128 0.199 (0.059, 0.340) 0.005 
Model 3 0.097 (-0.036, 0.229) 0.154 0.184 (0.042, 0.326) 0.011 

*Prediabetes-based standard network. †Type 2 diabetes-based standard network. Associations of prediabetes and type 
2 diabetes with graph measures. Regression coefficients and 95% CI indicate the mean difference in clustering 
coefficient, global efficiency, local efficiency, and communicability of participants with prediabetes or type 2 diabetes 
compared with NGM. Model 1: Adjusted for age, sex, education, node degree, and MRI date. Model 2: Model 1 + 
additionally adjusted for BMI, office systolic blood pressure, total cholesterol-to-HDL-ratio, antihypertensive 
medication, lipid-lowering medication, history of cardiovascular disease. Model 3: Model 2 + additionally adjusted for 
smoking status, alcohol use, physical activity, and diet score. Bold values = p<0.05. Physical activity and diet score data 
were available in n=1825 individuals (388/294/1143 for type 2 diabetes/prediabetes/NGM, respectively). 

 

Supplementary Table 3.12: Additional clinical characteristics of participants according to glucose 

metabolism status. 

Characteristic  NGM Prediabetes Type 2 diabetes Ptrend 
 (n = 1361) (n = 348) (n = 510)  

Cardiovascular risk factors     

24-h ambulatory systolic BP (mmHg)* 118±11 121±12 123±11 <0.001 
24-h ambulatory diastolic BP (mmHg)* 75±7 76±7 74±7 0.114 
Total cholesterol (mmol/L)  5.6±1.0 5.5±1.1 4.5±1.0 <0.001 
HDL cholesterol (mmol/L) 1.7±0.5 1.5±0.4 1.3±0.4 <0.001 
LDL cholesterol (mmol/L) 3.4±0.9 3.3±1.0 2.4±0.9 <0.001 
Triglyceride levels (mmol/L) 1.2±0.7 1.6±1.0 1.7±1.0 <0.001 

Lifestyle factors     

Physical activity (hours/week)† 15.2±8.1 14.4±7.7 12.1±7.1 <0.001 
Diet (Greek Mediterranean diet score, 1-9)‡ 4.6±1.7 4.5±1.7 4.1±1.6 <0.001 

Data are presented as means ± standard deviation or percentage, and stratified for glucose metabolism status: normal 
glucose metabolism (NGM), prediabetes, and type 2 diabetes. P-values indicate trend analysis over glucose 
metabolism status. BP indicates blood pressure; HDL, high-density lipoprotein; LDL, low-density lipoprotein. *24-h 
ambulatory blood pressure data was available in n=1888. †Physical activity data was available in n=1969. ‡Diet score 
was available in n=2104. Detailed protocols of the general measurements are presented in the supplementary 
material. 
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4 Abstract 

Objective  

We assessed whether objectively measured low- and high-intensity physical activity (LPA and HPA) and 

sedentary time (ST) were associated with white matter connectivity, both throughout the whole brain, 

and in brain regions involved in motor function. 

Methods 

In the large population-based Maastricht Study (n=1715, age 59.6±8.1 (mean ± standard deviation) years, 

and 48% woman), the amounts of LPA, HPA, and ST were objectively measured during 7 days by an 

activPAL accelerometer. In addition, using 3T structural and diffusion MRI, we calculated whole brain 

node degree, and node degree of the basal ganglia and primary motor cortex. Multivariable linear 

regression analysis was performed and we report standardized regression coefficients (stβ) adjusted for 

age, sex, education level, wake time, diabetes status, BMI, office systolic blood pressure, 

antihypertensive medication, total-cholesterol-to-HDL-cholesterol ratio, and lipid-modifying medication, 

alcohol use, smoking status, and history of cardiovascular disease. 

Results  

Lower HPA was associated with lower whole brain node degree after full adjustment (stβ [95%CI]=-0.062 

[-0.101, -0.013]; p=0.014), whereas lower LPA (stβ [95%CI]=-0.013 [-0.061, 0.034]; p=0.580) and higher ST 

(stβ [95%CI]=-0.030 [-0.081, 0.021]; p=0.250) were not. In addition, lower HPA was associated with lower 

node degree of the basal ganglia after full adjustment (stβ [95%CI]=-0.070 [-0.121, -0.018]; p=0.009).  

Conclusions  

Objectively measured lower HPA, but not lower LPA and higher ST, were associated with lower whole 

brain node degree and node degree in specific brain regions highly specialized in motor function. Further 

research is needed to establish whether more HPA may preserve structural brain connectivity.  
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   4 Introduction  

It is increasingly acknowledged that low physical activity is not only harmful for general health (1), but 

also for the brain (2-4). In addition, sedentary behavior, which is a risk factor independent of physical 

activity, may also be associated with cognitive decline (5, 6). However, how both physical activity and 

sedentary behavior exactly affect early changes in brain function is not yet clear. 

A growing body of evidence shows a clear association between low physical activity and 

sedentary behavior and structural brain changes, such as brain atrophy (7-10) and cerebral small vessel 

disease (cSVD) (11) at the population level. However, both atrophy and cSVD are likely to represent 

irreversible damage, while novel markers of early reversible brain changes may be available. Previous 

studies have indicated that the structural organization of brain networks, also named connectivity, may 

represent such a marker, which is also affected in dementia (12). However, data on the association 

between physical activity and structural brain networks are scarce (13), while the association of 

sedentary behavior and structural brain networks have not been reported yet.  

In this study, we hypothesize that both whole brain structural organization of brain networks 

and the organization of specific regions involved in motor function, as the basal ganglia and the primary 

motor cortex (14), are affected by low physical activity and high levels of sedentary time. Therefore, we 

assessed the association of objectively measured low- and high-intensity physical activity and sedentary 

time with both whole brain and regional white matter structural connectivity within the population-

based Maastricht Study. 

Research Design and Methods 

The Maastricht Study: population and design 

We used data from The Maastricht Study, an observational prospective population-based cohort study. 

The rationale and methodology have been described previously (15). In brief, the study focuses on the 

etiology, pathophysiology, complications, and comorbidities of type 2 diabetes mellitus (T2DM), and is 

characterized by an extensive phenotyping approach. Eligible for participation were all individuals aged 

between 40 and 75 years and living in the southern part of the Netherlands. Participants were recruited 

through mass media campaigns and from the municipal registries and the regional Diabetes Patient 

Registry via mailings. Recruitment was stratified according to known T2DM status, with an oversampling 

of individuals with T2DM, for reasons of efficiency. The present report considered cross-sectional data 

from the first 3451 participants, who completed the baseline survey between November 2010 and 

September 2013. The examinations of each participant were performed within a time window of three 

months [Supplementary Figure 4.1]. MRI measurements were implemented from December 2013 

onwards until February 2017 and were available in 2318 out of 3451 participants. Of the 2318 

participants with MRI measurements available, 2302 participants had complete data without artifacts, 

and 1715 participants of those also had objectively measured physical activity data available [Flowchart 

in Supplementary material Figure 4.2]. The study has been approved by the institutional medical ethical 

committee (NL31329.068.10) and the Minister of Health, Welfare and Sports of the Netherlands (Permit 

131088-105234-PG). All participants gave written informed consent.  
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4 Physical activity and sedentary time measures 

Daily activity levels were measured using the activPAL3™ physical activity monitor (PAL Technologies, 

Glasgow, UK). This device is a small (53 × 35 × 7 mm), lightweight (15 g) triaxial accelerometer that 

records movement in the vertical, anterio-posterior and mediolateral axes, and also determines posture 

(sitting or lying, standing and stepping) based on acceleration information. The device was attached 

directly to the skin on the front of the right thigh with (transparent 3M Tegaderm™) tape, after the 

device had been waterproofed using a nitrile sleeve. Participants were asked to wear the accelerometer 

for 8 consecutive days, without removing it at any time. To avoid inaccurately identifying non-wear time, 

participants were asked not to replace the device once removed. The method for determining the 

waking time has been described elsewhere (16). Data were uploaded using the activPAL software and 

processed using customized software (MATLAB R2013b, MathWorks, Natick, MA, USA). Data from the 

first day were excluded from the analysis because participants performed physical function tests at the 

research center after the device was attached. In addition, data from the final wear day providing ≤14 

waking hours of data were excluded from the analysis. Participants were included if they provided at 

least one valid day (≥10 h of waking data). 

The total amount of stepping time was based on the stepping posture, and calculated as the 

mean time spent in that position during waking time per day (17). The total stepping time was further 

classified into high-intensity physical activity (HPA, minutes with a step frequency >110 steps/min during 

waking time) (18) and low-intensity physical activity (LPA, minutes with a step frequency ≤110 steps/min 

during waking time). In this study, we aimed to identify risk factors for brain alterations. As physical 

activity may be protective and sedentary time a risk, we choose to consider high physical inactivity (low 

physical activity) and high sedentary time as risk factors. Therefore we inversed the physical activity data 

(e.g., multiplied by -1, and used the inverse of total, low-intensity, and high-intensity physical activity was 

used in statistical analyses, to represent low physical activity levels. The total amount of sedentary time 

(ST) was based on the sedentary posture (sitting or lying), and calculated as the mean time spent in a 

sedentary position during waking time per day. 

For descriptive purposes, we present the data in Table 4.1 according to the recently published 

physical activity guidelines (19, 20). These guidelines both recommend at least 150 minutes of high-

intensity physical activity per week for considerable health benefits, including brain health. Participants 

that were compliant with these guidelines were indicated as the high HPA group, and those that were 

not compliant as the low HPA group. We used these categories to assess the reference networks for 

white matter integrity, to address potential differences in connectivity between active and inactive 

participants. 

Magnetic Resonance Imaging 

Magnetic resonance imaging (MRI) was performed on a 3T MRI scanner (MAGNETOM Prisma-fit Syngo 

MR D13D, Siemens Healthcare, Erlangen, Germany) by use of a 64-element head/neck coil for parallel 

imaging with an acceleration factor of two. A 3D T1-weighted magnetization prepared rapid acquisition 

gradient echo (MPRAGE) sequence (TR/TI/TE 2300/900/2.98 ms, 176 slices, 256x240 matrix size and 1.00 

mm cubic voxel size) was acquired for anatomic reference. Diffusion-weighted MRI (dMRI) data were 

acquired with a diffusion sensitized echo-planar imaging (EPI) sequence (TR/TE 6100/57 ms, 65 slices, 
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   4 100×100 matrix size, 2.00 mm cubic voxel size, and 64 diffusion sensitizing gradient directions (b=1200 

s/mm2)). In addition, three minimally-diffusion-weighted images (b=0 s/mm2) were acquired. 

Image preprocessing 

To define N=120 brain regions, the Automatic Anatomical Labeling (AAL2) atlas (21) was used. The atlas 

volumes of interest were transformed to diffusion image space for each individual subject. First, affine 

registrations of the dMRI image to the T1 image and of the T1 image to T1 Montreal Neurological 

Institute-152 standard space (22) were performed. These two transformations were combined and the 

inverse transformation matrix was applied to the AAL2 template. T1-weighted images were segmented 

by use of a certified (ISO13485:2012), automated method (which included visual inspection) (23, 24). T1-

weighted images were segmented into gray matter, white matter and cerebrospinal fluid volumes (1 

voxel = 1.00 mm3 = 0.001 ml) (23). Intracranial volume was calculated as the sum of gray matter, white 

and cerebrospinal fluid volumes. Total brain parenchyma volume was calculated as the sum of gray and 

white matter volumes. dMRI (pre)processing was performed with the diffusion MR Toolbox ExploreDTI 

version 4.8.6 (25). The main preprocessing steps were eddy current induced geometric distortions and 

head motion correction, and estimation of the diffusion tensor. After preprocessing, fiber orientation 

distributions (FOD) were estimated using constrained spherical deconvolution with a maximum harmonic 

degree of 8, which allows fiber tracking through regions with crossing fibers (26). Whole brain 

deterministic tractography was performed using FOD sampling (27) with a seed point resolution of 2 

mm3, a step size of 1 mm, and FOD and maximum deflection angle threshold of 0.1 and 30°, respectively. 

The next step was to perform connectivity analysis to obtain white matter tracts from and to all the AAL2 

brain regions. A previous study of our group confirmed the robustness of tract volume as a measure for 

the edge weighting (28), therefore, for each connection, the tract volume was calculated as the number 

of voxels visited by at least one tract between the areas concerned multiplied by the voxel volume (in 

mm3) (as previously described (29)). The obtained connectivity matrix with tract volumes was normalized 

to intracranial volume to reduce inter-subject variation (30). When regions were connected by only one 

or two streamlines, the corresponding tract volumes were removed from the connectivity matrix, as an 

additional noise filter.  

White matter networks 

Network analysis was performed using the Brain Connectivity Toolbox (version 2017-15-01) (31) in 

MATLAB (Release 2016a, The MathWorks, Inc., Natick, Massachusetts, United States). In this method, the 

brain was represented as a graph, which is a network of nodes (i.e., gray matter brain regions) connected 

by edges (i.e., white matter connections between brain regions). The node degree was calculated for 

each atlas region and the mean value was defined as the whole brain node degree, which is a measure 

for the average number of edges connected to a node. In a network with a high whole brain node 

degree, brain regions are connected to many other brain regions in the network (i.e., strong innervation). 

The sparsity of a network is the ratio of the number of missing connections in a network to the possible 

number of connections and is closely, but inversely, related to the node degree. The sparsity ranges from 

0 to 1, the higher the sparsity, the lower the density of the network (31). 
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4 Subsequently, reference networks were calculated (32) based on predefined levels of physical 

activity and sedentary time. Note that these reference networks may differ per group comparison. The 

reference networks were proportionally thresholded to a sparsity of 0.80 (only the 20% connections with 

the highest occurrence in the individual connectivity matrices of the participants in that group), resulting 

in a weighted, undirected network with a sparsity close to the sparsity of the standard network (more 

detailed information can be found in the Supplementary Material). 

The first reference network was based on the high HPA group (participants who met the 

physical activity guidelines (19, 20), i.e., at least 150 minutes of high-intensity physical activity per week 

(21.4 minutes per day)). With regard to sedentary behavior, as mentioned above, the guidelines only 

advise reducing sitting without providing numbers. Therefore, the sedentary behavior reference network 

was based on the tertile of the participants with the lowest sedentary time (i.e., less than 512 minutes of 

sedentary time per day). Thereafter, we calculated the whole brain node degree for both reference 

networks. To investigate local connectivity changes we calculated the node degree for brain regions 

important for physical activity and motor functions (i.e., the basal ganglia (i.e., caudate nucleus, 

putamen, pallidum, and thalamus as defined by the AAL2 atlas) (Figure 4.1A)) and the primary motor 

cortex (Figure 4.1B), and for the four brain lobes (i.e., the frontal (without primary motor cortex), 

temporal, parietal, and occipital lobe). 

 

 
Figure 4.1: White matter tracts crossing the basal ganglia and primary motor cortex. Tracts crossing the 

basal ganglia (A1) are mainly projection fibers, and crossing the primary motor cortex (A2) pyramidal 

tracts (e.g., the cortico-spinal tract). Blue and red volumes indicate the locations of the basal ganglia (B1) 

and primary motor cortex (B2), respectively. The gray dots represent the centers of 120 atlas regions. 

Lines indicate connections from a subset of brain regions to these two volumes; the number of lines is 

equal to the node degree. 
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   4 General characteristics and covariates 

Educational level (low, intermediate, high), smoking status (never, current, former) and history of 

cardiovascular disease were assessed by questionnaires (33). Medication use was assessed in an 

interview where generic name, dose, and frequency were registered. We measured weight, height, BMI, 

waist circumference, blood pressure (measured in office [Omron 705IT, Japan]), and plasma lipid 

profile(33). 

Statistical analysis 

All statistical analyses were performed by use of the Statistical Package for Social Sciences (SPSS Statistics 

23.0, IBM, Chicago, IL, USA). Multivariable linear regression analysis was used to investigate the 

association of physical activity and sedentary behavior, with whole brain node degree, node degree of 

the basal ganglia (BG), and the primary motor cortex (PMC). Analyses were adjusted for potential 

confounders, notably age, sex, education level, MRI lag time, and wake time (model 1), additionally 

adjusted for diabetes status (model 2), and additionally adjusted for cardiovascular risk factors: BMI, 

office systolic blood pressure, antihypertensive medication, total-cholesterol-to-HDL-cholesterol ratio, 

and lipid-modifying medication, alcohol use, smoking status, and history of CVD (model 3). P-values <0.05 

were considered statistically significant. Interaction terms (e.g., HPA time*sex, and HPA time*diabetes) 

were incorporated in the regression models to test for interaction among, on the one hand, physical 

activity and sedentary time, and on the other hand, sex and diabetes status, on node degree. For 

interaction terms a P value ≤0.10 was considered statistically significant. 

Results 

General characteristics of the study population 

Table 4.1 shows the general characteristics of the study population stratified for low or high HPA. The 

study population consisted of 1715 participants, mean age was 59.6±8.1 years, and 48% were woman. 

The low HPA groups was older, had a higher BMI and waist circumference, more often had an adverse 

cardiovascular risk profile, and were more often smoker. Education levels did not differ significantly for 

individuals with different levels of physical activity [Table 4.1].  
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4 Table 4.1: General characteristics of participants stratified by low or high HPA measured by the ActivPAL.  

Characteristic  Total 
(n=1715) 

High HPA 
(n=780) 

Low HPA 
(n=935) 

P 

Demographics     

Age (years) 59.6±8.1 58.0±7.9 60.9±8.0 <0.001 
Sex, female (No. [%]) 830 [48.4] 447 [57.3] 383 [41.0] <0.001 
Education level (No. [%]), 
Low/Middle/High 

523/497/695 
[30.5/29.0/40.5] 

225/224/331 
[28.9/28.7/42.4] 

297/274/364 
[31.8/29.3/38.9] 

0.283 

Cardiovascular risk factors     

BMI (kg/m2) 26.6±4.2 25.5±3.7 27.6±4.4 <0.001 
Waist circumference (cm) 94.4±12.7 89.8±11.0 98.2±12.8 <0.001 
Systolic blood pressure (mmHg) 134.0±17.3 131.8±16.9 135.8±17.4 <0.001 
Diastolic blood pressure (mmHg)  76.1±9.7 75.3±9.8 76.7±9.6 0.003 
T2DM (No. [% of T2DM]) 400 [23.6] 99 [12.9] 301 [32.6] <0.001 
Hypertension, yes (No. [%]) 914 [53.3] 345 [44.2] 569 [60.8] <0.001 
Total-to-HDL-cholesterol-ratio  3.6±1.1 3.3±1.0 3.7±1.2 <0.001 
History of CVD, yes (No. [%]) 218 [12.7] 57 [7.3] 161 [17.2] <0.001 

Medication use     

Diabetes medication, yes (No. [%]) 308 [18.0] 72 [9.2] 236 [25.2] <0.001 
Antihypertensive medication, yes (No. 
[%]) 

619 [36.1] 199 [25.6] 420 [44.9] 
<0.001 

Lipid-modifying medication, yes (No. 
[%]) 

540 [31.5] 178 [22.9] 362 [38.7] 
<0.001 

Lifestyle factors     

Alcohol (No. [%]),  
None/Low/High 

291/980/444 
[17.0/57.2/25.9] 

108/452/220 
[13.8/58.0/28.2] 

183/528/224 
[19.6/56.5/23.9] 

0.003 

Smoking (No. [%]), 
Never/Former/Current 

651/854/210 
[38.0/49.8/12.3] 

326/380/74 
[41.7/48.8/9.6] 

325/474/136 
[34.8/50.7/14.5] 

0.001 

Diet (Dutch Healthy Diet, 0-100)‡ 85.6±14.3 83.1±14.8 82.3±14.0 <0.001 
Total PA (min/day) 124±41 145±37 106±35 <0.001 
LPA (min/day) 100±33 106±31 95±34 <0.001 
HPA (min/day) 24±19 39±18 11±6 <0.001 
Sedentary time (min/day) 558±99 530±93 581±99 <0.001 
Wake time (min/day) 945±53 951±50 940±54 <0.001 

Cognitive score     

MMSE total score 29.0±1.2 29.2±1.1 28.9±1.2 <0.001 

Node degree     

Whole brain 20.9±0.8 21.1±0.7 20.8±0.8 <0.001 
Frontal lobe 17.8±0.9 17.9±0.9 17.7±1.0 <0.001 
Temporal lobe 19.8±0.9 19.9±0.8 19.7±0.9 <0.001 
Parietal lobe 20.3±0.8 20.3±0.8 20.4±0.9 0.150 
Occipital lobe 24.4±1.3 24.4±1.3 24.3±1.3 0.354 
Basal ganglia 42.0±2.0 42.3±2.0 41.8±2.0 <0.001 
Primary motor cortex 25.0±2.7 25.3±2.6 24.8±2.8 0.001 

Other     

MRI lag time (years) 2.0±1.2 2.0±1.2 2.1±1.2 0.097 

General characteristics of the study population were evaluated by ANOVA (continuous variables with a normal 
distribution) or χ2 tests (categorical variables). Data are presented as means ± standard deviation, or percentages for 
categorical variables. No. indicates number; PA. physical activity; T2DM, type 2 diabetes mellitus; HDL, high-density  
lipoprotein; CVD, cardiovascular disease; MMSE, Mini-Mental State Examination. High HPA was defined as at least 150 
minutes of high-intensity physical activity per week (21.4 minutes per day). ‡Diet score was available in n=1613. 
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   4 Table 4.2 shows the associations of physical activity and sedentary time with total brain volume 

and white matter volume. None of these associations remained significant after adjustment for 

demographics and cardiovascular risk factors. Participants without MRI or accelerometry data (N=1736) 

had a higher BMI, more often had T2DM, a history of CVD and mobility (Supplementary Table 4.1), 

compared with the study population.  

 

Table 4.2: Associations of subtypes of PA and ST with volumes of the total brain, and white matter. 

 Total brain volume  White matter volume  

LPA time (high to low) stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.019 (-0.033, -0.006) 0.005 0.003 (-0.019, 0.025) 0.784 
Model 2 -0.012 (-0.025, 0.002) 0.092 0.011 (-0.012, 0.033) 0.353 
Model 3 -0.008 (-0.022, 0.005) 0.230 0.010 (-0.013, 0.033) 0.395 

HPA time (high to low) stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.013 (-0.027, 0.001) 0.065 0.003 (-0.020, 0.026) 0.821 
Model 2 -0.005 (-0.019, 0.009) 0.506 0.011 (-0.013, 0.034) 0.365 
Model 3 -0.003 (-0.017, 0.011) 0.687 0.010 (-0.014, 0.034) 0.423 

     

Sedentary time (low to high) stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.022 (-0.037, -0.008) 0.002 -0.008 (-0.032, 0.016) 0.492 
Model 2 -0.013 (-0.028, 0.001) 0.073 0.001 (-0.024, 0.025) 0.963 
Model 3 -0.010 (-0.024, 0.005) 0.200 0.001 (-0.024, 0.026) 0.944 

Associations between physical activity measures (minutes/day) with brain volumes.  
Regression coefficients and 95% CI indicate the mean difference in volume per SD  
Higher LPA, HPA or lower sedentary time. Model 1: Adjusted for age, sex,   
education level, MRI lag time, wake time, and ICV. Model 2: additionally adjusted for  
diabetes status. Model 3: additionally adjusted for BMI, systolic blood pressure,  
antihypertensive medication, total-to-HDL-cholesterol-ratio, lipid-modifying medication,  
smoking status, alcohol use, and history of cardiovascular disease. 

Figure 4.2 shows the node degree of the four lobes and specific motor regions for participants 

with high and low HPA. The low HPA group had a slightly, but significantly lower node degree of the 

frontal lobe (1.1%), temporal lobe (1.0%), basal ganglia (1.2%), and primary motor cortex (2.0%),  

compared to the high HPA group. The highest node degree was found in the basal ganglia, because these 

structures are centrally located in the brain and therefore connected to many other regions (Figure 4.1A 

and 4.1B).  
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Figure 4.2: Boxplot for the node degree of the whole brain, the four lobes, and the motor regions of the 

brain for participants with high (dashed) and low HPA time. Note the different scale for the node degree 

of the basal ganglia (BG). 

Physical activity, sedentary behavior and whole brain node degree 

Table 4.3 shows the associations of physical activity and sedentary time with whole brain node degree. 

Lower levels of HPA and higher amount of sedentary time were associated with lower whole brain node 

degree in model 1. After adjustment for diabetes status, the association between sedentary time and 

whole brain node degree was attenuated (model 2). After full adjustment for cardiovascular risk factors, 

the association of HPA with whole brain node degree remained statistically significant (model 3).  
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   4 Table 4.3: Associations of low and high-intensity physical activity time, and high sedentary time with 

whole brain node degree. 

 Whole brain node degree  

LPA time (high to low) stβ (95% CI) P-value 

Model 1 -0.035 (-0.081, 0.011) 0.137 
Model 2 -0.022 (-0.069, 0.025) 0.356 
Model 3 -0.013 (-0.061, 0.034) 0.580 

HPA time (high to low) stβ (95% CI) P-value 

Model 1 -0.081 (-0.128, -0.033) 0.001 
Model 2 -0.068 (-0.116, -0.021) 0.005 
Model 3 -0.062 (-0.112, -0.013) 0.014 

   

Sedentary time (low to high) stβ (95% CI) P-value 

Model 1 -0.052 (-0.101, -0.002) 0.039 
Model 2 -0.037 (-0.087, 0.013) 0.152 
Model 3 -0.030 (-0.081, 0.021) 0.250 

Associations of physical activity measures with whole brain node degree. 
Standardized regression coefficients and 95% CI indicate the mean difference in node 
degree per SD lower physical activity and higher sedentary time. Model 1: Adjusted for  
age, sex, education level, MRI lag time, and wake time. Model 2: additionally adjusted  
for diabetes status. Model 3: additionally adjusted for BMI, systolic blood pressure,  
antihypertensive medication, total-to-HDL-cholesterol-ratio, lipid-modifying 
medication, smoking status, alcohol use, and history of cardiovascular disease.  

Lower HPA was also associated with lower node degree of the temporal and frontal lobe in 

fully adjusted analyses, but not with node degree of the parietal and occipital lobe (Table 4.4). 

To put this into perspective, the difference in whole brain node degree associated with lower 

HPA time equivalent to one year of aging was 5.0 minutes less HPA time per day (Supplementary Table 

4.6). 

Physical activity, sedentary behavior and regional node degree 

Table 4.5 shows the associations of physical activity and sedentary time with specific node degree of the 

motor regions, i.e., the basal ganglia, and the primary motor cortex. Lower LPA and HPA, and higher 

sedentary time were associated with lower node degree of the basal ganglia (model 1). These 

associations remained statistically significant after adjustment for diabetes status, except for higher 

sedentary time (model 2). Lower HPA remained statistically significantly associated with lower node 

degree of the basal ganglia after additional adjustment for cardiovascular risk factors (model 3). Lower 

HPA was also associated with a lower node degree of the primary motor cortex in model 1, but this 

association attenuated after adjustment for diabetes status and other cardiovascular risk factors (model 

2 and 3). LPA and sedentary time were not associated with node degree of the primary motor cortex.  
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   4 Table 4.5: Associations of low- and high-intensity physical activity time, and high sedentary time with 

node degree of the basal ganglia and the primary motor cortex. 

 Degree 
Basal Ganglia 

 Degree 
Primary Motor Cortex 

 

LPA time (high to low) stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.067 (-0.116, -0.019) 0.006 -0.038 (-0.085, 0.010) 0.118 
Model 2 -0.053 (-0.102, -0.004) 0.032 -0.017 (-0.065, 0.031) 0.487 
Model 3 -0.049 (-0.098, 0.001) 0.056 -0.017 (-0.066, 0.032) 0.489 

HPA time (high to low) stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.085 (-0.134, -0.035) 0.001 -0.052 (-0.101, -0.003) 0.037 
Model 2 -0.070 (-0.121, -0.020) 0.006 -0.030 (-0.079, 0.019) 0.232 
Model 3 -0.070 (-0.121, -0.018) 0.009 -0.035 (-0.086, 0.016) 0.178 

     

Sedentary time (low to high) stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.052 (-0.103, 0.000) 0.049 -0.033 (-0.084, 0.017) 0.197 
Model 2 -0.034 (-0.087, 0.018) 0.203 -0.008 (-0.060, 0.044) 0.761 
Model 3 -0.029 (-0.082, 0.025) 0.295 -0.008 (-0.061, 0.045) 0.759 

Associations of physical activity measures with node degree of the basal ganglia and primary motor cortex. 
Regression coefficients and95% CI indicate the mean difference in node degree per SD lower physical activity 
and higher sedentary time. Model 1: Adjusted for wake time, age, sex, education level, MRI lag time. Model 2: 
additionally adjusted for diabetes status. Model 3: additionally adjusted for BMI, systolic blood pressure, 
antihypertensive medication, total-to-HDL-cholesterol-ratio, lipid-modifying medication, smoking status, 
alcohol use, and history of cardiovascular disease. 

Additional analyses 

Qualitatively similar associations of physical activity and sedentary time with node degree were observed 

in a range of additional analyses; when we used total PA (Supplementary Table 4.2), when we used PA 

data measured with questionnaires instead of accelerometry (Supplementary Table 4.3), when model 3 

was additionally adjusted for MRI quality, diet, (available in a smaller sample size), MMSE score , or white 

matter hyperintensity volume, and when we replaced BMI with waist circumference, or replaced office 

with 24h ambulatory blood pressure (available in a smaller sample size; Supplementary Table 4.4 and 

4.5). No interactions were observed with sex and diabetes status (Pinteraction>0.10 for all analyses). 

Discussion 

In this study, we found an association of lower HPA with lower whole brain node degree, independent of 

major demographic, cardiovascular and lifestyle risk factors. In other words, the difference in whole brain 

node degree associated with lower HPA time equivalent to one year of aging was 5.0 minutes less HPA 

time per day. LPA and ST were not significantly associated with whole brain node degree. In analyses on 

regional node degree, we found that lower HPA was associated with low node degree of the basal 

ganglia, but not of the primary motor cortex, independent of major demographic, cardiovascular and 

lifestyle risk factors. LPA and sedentary time were not associated with markers of regional node degree.  

We found that objectively measured lower HPA was associated with lower whole brain node 

degree. Our finding is in agreement with, and extends a prior cross-sectional study, which observed an 

association between lower levels of self-reported physical activity and lower regional connectivity (nodal 
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4 strength) in several frontal, parietal, temporal brain regions(13), and lower local white matter 

organization (local efficiency). We also found an association of lower physical activity with lower node 

degree in the primary motor cortex (which is located in the frontal lobe), other motor regions (i.e., the 

basal ganglia), and in the frontal and temporal lobe (Table 4.4). However, we did not find such an 

association for the parietal lobe. Our findings are also in line with a study, where lower aerobic fitness 

has been associated with lower structural connectivity in multiple cortical areas involving frontal, 

temporal, and motor regions (34).  

We found no association of sedentary time with whole brain or regional node degree after 

adjustment for cardiovascular and lifestyle risk factors. This may mean that the association between 

sedentary time and regional connectivity is mediated by up or down stream factors like BMI, blood 

pressure, lipid profile, prior cardiovascular disease and/or lifestyle risk factors. In addition, our findings 

may indicate that potential prevention strategies for preservation of brain function on increasing physical 

activity, in particular HPA, may be more beneficial to the brain, as opposed to reduction of sedentary 

time. However, standardized regression coefficient were very similar for HPA and ST in model 1, which 

may indicate that the association between ST and connectivity is more strongly affected by mediating 

factors. Furthermore, reducing sedentary time might be easier to achieve, than engaging in HPA. 

Therefore, studies on sedentary time remain of high relevance for the development of easy applicable 

prevention strategies. In addition, our study population consists of relatively healthy participants, with 

adequate cognitive function and relatively low cerebral small vessel disease load (35). Therefore, 

analyses in more diseased populations may yield differential results.  

In general, physical activity periodically increases blood flow to the brain, resulting in increased 

vascularization of the brain, improved supply of nutrients and removal of metabolic waste. More 

specifically, higher levels of physical activity or cardiorespiratory fitness have been associated with an 

increase in cerebral perfusion and cerebral oxygen supply to the prefrontal cortex (36), which is an area 

involved in motor function (37). Higher levels of physical activity stimulate processes of neurogenesis 

(formation of new neurons) and angiogenesis (formation of blood vessels), and reduce inflammation 

(38). Furthermore, being physically active has been shown to reduce cardiovascular risk factors such as 

type 2 diabetes and hypertension through increasing neurotrophic factors, reducing oxidative stress, 

and/or reducing beta-amyloid formation (39). These mechanisms may reduce the incidence of mild 

cognitive impairment and dementia (2, 3).  

Strengths of this study are the large sample size, the population-based design, the objective 

measurement of physical activity and sedentary behavior, the extensive assessment of potential 

confounders which enabled us to substantially reduce potential residual confounding, and the broad 

array of additional analyses, which all gave consistent results. Furthermore, the use of diffusion MRI 

scans to study structural connectivity measures, enabled us to find more subtle brain alterations, as we 

did not find associations with brain volumes in this population. The large number of diffusion MRI scans, 

were semi-automatically processed blinded to group status, which ensures an objective analysis.  

There are also some limitations. First, the cross-sectional design of the study implies that any 

conclusion about causality should be made with caution. Further longitudinal studies and intervention 

trials may be prompted to investigate whether specific connectivity loss can be reversed or prevented by 

increasing high-intensity physical activity. Second, the study population was oversampled for type 2 

diabetes. However, analyses were adjusted for diabetes status, and no consistent interaction with 

diabetes status was observed. Third, participants with missing data had a more adverse cardiovascular 

risk profile, which might have led to an underestimation of our findings. Fourth, although we cannot 
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   4 exclude the possibility of residual confounding by variables not included in this study, we have adjusted 

for many known confounding factors, which may have resulted in overadjustment, and thus 

underestimate the association of physical activity and sedentary time with node degree.  

We showed that objectively measured lower HPA, but not LPA and ST, were associated with 

lower whole brain node degree and node degree in specific brain regions highly specialized in motor 

function. Further research is needed to establish whether more HPA may preserve structural brain 

connectivity. 
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4 Supplementary Material 

1. Detailed protocols of the measurements performed within The Maastricht 

Study: 

Questionnaires. As described elsewhere (1), we used web-based questionnaires to obtain information 

regarding smoking status (never/former/current), alcohol consumption, educational level, physical 

activity, diet, prior CVD and cognitive impairment. Alcohol consumption was classified as none, low (1– 7 

glasses/wk for women and 1–14 glasses/wk for men) and high (> 7 glasses/wk for women and >14 

glasses/wk for men). Educational level was classified as low (no education, primary education, lower 

vocational education), intermediate (intermediate general secondary education, intermediate vocational 

education, higher general secondary education), or high (higher vocational education or university). Diet 

was assessed by a tailor-made FFQ developed by use of the National FFQ Tool. Prior CVD was defined as 

a history of myocardial infarction; stroke; or vascular surgery (including angioplasty) on coronary, carotid, 

abdominal aortic, or peripheral arteries based on the Rose questionnaire. Cognitive impairment was 

measured using the Mini-Mental State Examination (MMSE). Medication use was assessed in a 

medication interview where generic name, dose, and frequency were registered. Subjective physical 

activity was assessed by means of a modified version of the Champs questionnaire. 

 

Laboratory assessments. Plasma glucose is measured with a standard enzymatic hexokinase reference 

method, and serum total cholesterol, HDL cholesterol, and triglycerides are measured with standard 

(enzymatic and/or colorimetric) methods by an automatic analyzer (until 9 May 2012: Beckman Synchron 

LX20, Beckman Coulter Inc., Brea, USA; after 9 May 2012: Cobas 6000, Roche diagnostics, Mannheim, 

Germany). When appropriate LDL cholesterol is calculated according to the Friedewald formula(2). 

HbA1c is measured with ion-exchange high performance liquid chromatography (HPLC) (Variant tm II, 

Bio-Rad, Hercules, California, USA).  

 

Glucose metabolism status. To determine glucose metabolism status, all participants, except those who 

used insulin, underwent a standardized 2-h 75g oral glucose tolerance test (OGTT) after an overnight 

fast. For safety reasons, participants with a fasting glucose level above 11·0 mmol/L, as determined by a 

finger prick, did not undergo the OGTT. For these individuals, fasting glucose level and information about 

diabetes medication were used to determine glucose metabolism status. Glucose metabolism status was 

defined according to the WHO 2006 criteria into NGM, prediabetes, and T2DM(3). Participants were 

considered to have T2DM if they had a fasting blood glucose (FBG) ≥7.0 mmol/l, or a 2hr post-load blood 

glucose ≥11.1 mmol/l or used oral glucose-lowering medication or insulin, prediabetes if they had a FBG 

≥6.1 mmol/l and/or a 2hr post-load blood glucose ≥7.8 mmol/l, and NGM if they had a FBG <6.1 mmol/l, 

and a 2hr post-load blood glucose <7.8 mmol/l and no use of diabetes medication. Participants with type 

1 diabetes or other types of diabetes were excluded from the analysis. 

 

Physical examination. Weight and height are measured without shoes and wearing light clothing using a 

scale and stadiometer to the nearest 0.5 kg or 0.1 cm (Seca, Hamburg, Germany). Waist circumference is 
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   4 measured with a flexible plastic tape measure (Seca, Hamburg, Germany) in a duplicate midway between 

the lower rib margin and the iliac crest at the end of expiration, to the nearest 0.5 cm. 

 

Blood pressure. Office blood pressure is determined three times on the right arm after a 10-minute rest 

period, using a non-invasive blood pressure monitor (Omron 705IT, Japan). When the difference between 

measurement two and three is more than 10 mmHg, a fourth measurement is performed. All available 

measurements are used to calculate the average blood pressure. Ambulatory 24-h blood pressure 

(WatchBP O3, Microlife, Switzerland, respectively) is measured at the non-dominant arm, using an 

ambulatory device that is programmed to take blood pressure readings every 15 minutes from 8.00 – 23.00 

and every 30 minutes from 23.00 – 8.00. 

2. Detailed methods for calculation of reference networks and sparsity: 

In structural connectivity analysis, connectivity matrices are based on tractography. As a result, not all 

pairs of nodes will have white matter connections, which leads to ‘sparse’ connectivity matrices. The 

measure sparsity reflects the extent of a graph’s deviation from the corresponding fully connected graph. 

However, this differs between subjects and is also influenced by scan quality. Therefore, thresholding is 

applied, which ensures that each subject has the same number of nodes and edges. The reference 

network was calculated from all individual binarized connectivity matrices, for a specific subset of 

participants (e.g., the physical activity network was based on the participants who met the physical 

activity guidelines). This is illustrated in a simplified example, not a real network (Supplementary Figure 

4.3). First, all individual binarized connectivity matrices were summed (Step 1 in Supplementary Figure 

4.3). This reference network was proportionally thresholded to a sparsity of 0.80 (Step 2 in 

Supplementary Figure 4.3). This means that the 20% connections that were present in most of the 

participants were selected, in other words, the 20% of the nodes with the highest sum score. These 20% 

nodes were used to create a binary mask (Step 3 in Supplementary Figure 4.3) that was used to select for 

each participant a weighted, undirected network with a sparsity, close to the sparsity of the reference 

network (Step 4 in Supplementary Figure 4.3). The actual sparsity in the individuals is a bit higher than 

0.80, because not each individual has a white matter tract at each connection in the reference network. 

Supplemental References 
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4 Supplementary Figures 
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Supplementary Figure 4.2: Flowchart of the study population.  
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   4 Supplementary Tables 

Supplementary Table 4.1: General characteristics of participants stratified by availability of physical 

activity and/or brain MRI data.  

Characteristic  Total 
(n=3451) 

Physical activity and 
MRI data available 

(n=1715) 

Physical activity and/or 
MRI data not available 

(n=1736) 

P 

Demographics     

Age (years) 59.8±8.3 59.6±8.1 60.0±8.5 0.183 
Sex, female (%) 48.6 48.4 48.7 0.843 
Education level (%), 
Low/Middle/High 

33.6/28.2/38.2 30.5/29.0/40.5 36.6/27.5/35.9 <0.001 

Cardiovascular risk factors     

BMI (kg/m2) 27.1±4.6 26.6±4.2 27.5±4.8 <0.001 
Waist circumference (cm) 95.9±13.8 94.4±12.7 97.5±14.6 <0.001 
Systolic blood pressure 
(mmHg) 

135.1±18.2 134.0±17.3 136.1±19.0 0.001 

Diastolic blood pressure 
(mmHg)  

76.1±9.9 76.1±9.7 76.2±10 0.634 

T2DM (%) 23.0 23.7 20.9 <0.001 
Hypertension, yes (%) 56.4 53.3 59.4 <0.001 
Total cholesterol-to-HDL-
ratio  

3.6±1.2 3.6±1.1 3.9±1.3 <0.001 

History of CVD, yes (%) 16.7 12.7 20.7 <0.001 

Medication use     

Diabetes medication, yes 
(%) 

19.7 18.0 60.6 <0.001 

Antihypertensive 
medication, yes (%) 

35.1 36.1 32.1 0.079 

Lipid-modifying medication, 
yes (%) 

31.1 31.5 30.1 0.546 

Lifestyle factors     

Alcohol (%), None/Low/High 18.6/55.4/26.0 
 

17.0/57.2/25.9 20.2/53.7/26.1 0.001 

Smoking (%), 
Never/Former/Current 

34.5/51.6/13.8 38.0/49.8/12.3 31.1/51.9/15.4 <0.001 

Cognitive score     

MMSE total score 28.9±1.3 29.0±1.2 28.9±1.4 <0.001 

Other     

MRI lag time 2.3±1.3 2.0±1.2 2.9±1.4* <0.001 

Data are presented as means ± standard deviation, or percentages for categorical variables. T2DM, 
indicates type 2 diabetes mellitus; HDL, high-density lipoprotein; CVD, cardiovascular disease; MMSE, 
Mini-Mental State Examination. *n=699 (physical activity data not available). 
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4 Supplementary Table 4.2a: Associations of total physical activity time with whole brain node degree and 

node degree of the basal ganglia and primary motor cortex. 

 Whole brain  
node degree 

 Degree 
Basal Ganglia 

 Degree 
Primary Motor Cortex 

 

TPA time  
(high to low) stβ (95% CI) P stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.064 (-0.111, -0.018) 0.007 -0.093 (-0.142, -0.044) <0.001 -0.054 (-0.102, -0.006) 0.027 
Model 2 -0.049 (-0.097, -0.002) 0.042 -0.077 (-0.127, -0.027) 0.003 -0.028 (-0.077, 0.021) 0.265 
Model 3 -0.041 (-0.090, 0.009) 0.111 -0.075 (-0.127, -0.023) 0.005 -0.031 (-0.083, 0.020) 0.231 

Associations of total physical activity (minutes/day) with node degree. Regression coefficients and 95% CI indicate the  
mean difference in node degree per SD higher TPA. Model 1: Adjusted for age, sex, education level, MRI lag time, and  
wake time. Model 2: additionally adjusted for diabetes status. Model 3: additionally adjusted for BMI, systolic blood  
pressure, antihypertensive medication, total-to-HDL-cholesterol-ratio, lipid-modifying medication, smoking status,  
alcohol use, and history of cardiovascular disease. 

 

Supplementary Table 4.2b: Associations of total physical activity time with total brain and white matter 

volume. 

 Total brain volume  WM volume  

TPA time (high to low) stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.022 (-0.035, -0.008) 0.001 0.004 (-0.019, 0.026) 0.746 
Model 2 -0.012 (-0.026, 0.012) 0.092 0.014 (-0.009, 0.037) 0.241 
Model 3 -0.009 (-0.024, 0.005) 0.189 0.013 (-0.011, 0.037) 0.280 

Associations between physical activity measures (minutes/day) with brain volumes.  
Regression coefficients and 95% CI indicate the mean difference in volume per SD  
higher TPA time. Model 1: Adjusted for age, sex, education level, MRI lag time, wake time,  
and ICV. Model 2: additionally adjusted for diabetes status. Model 3: additionally  
adjusted for BMI, systolic blood pressure, antihypertensive medication,  
total-to-HDL-cholesterol-ratio, lipid-modifying medication, smoking status, alcohol use,  
and history of cardiovascular disease. 

 

Supplementary Table 4.2c: Associations of total physical activity time with node degree of the frontal, 

temporal, parietal and occipital lobe. 

 Degree 
Frontal lobe 

Degree 
Temporal lobe 

Degree 
Parietal lobe 

Degree 
Occipital lobe 

TPA time 
(high to low) stβ (95% CI) stβ (95% CI) stβ (95% CI) stβ (95% CI) 

Model 1 -0.050 (-0.098, -0.003) -0.056 (-0.105, -0.007) 0.031 (-0.017, 0.080) 0.013 (-0.036, 0.062) 
Model 2 -0.027 (-0.075, 0.022) -0.054 (-0.104, -0.003) 0.022 (-0.027, 0.072) 0.019 (-0.031, 0.069) 
Model 3 -0.019 (-0.070, 0.032) -0.054 (-0.106, -0.001) 0.014 (-0.038, 0.066) 0.016 (-0.037, 0.068) 

Associations of physical activity measures (minutes/day) with node degree. Regression coefficients and 95% CI indicate the mean 
difference in node degree per SD higher PA time. Model 1: Adjusted for age, sex, education level, MRI lag time, and wake time. Model 
2: additionally adjusted for diabetes status. Model 3: additionally adjusted for BMI, systolic blood pressure, antihypertensive 
medication, total-to-HDL-cholesterol-ratio, lipid-modifying medication, smoking status, alcohol use, and history of cardiovascular 
disease. 
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   4 Supplementary Table 4.3: Associations of physical activity time determined with CHAMPS questionnaire 

with whole brain node degree and node degree of the basal ganglia and primary motor cortex. 

 Whole brain  
node degree 

 Degree 
Basal Ganglia 

 Degree 
Primary Motor Cortex 

 

Total PA time (high to low) 
 stβ (95% CI) P stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.032 (-0.081, 0.016) 0.188 -0.055 (-0.106, -0.004) 0.033 -0.069 (-0.119, -0.020) 0.006 
Model 2 -0.023 (-0.072, 0.025) 0.343 -0.045 (-0.096, 0.006) 0.081 -0.056 (-0.106, -0.006) 0.027 
Model 3 -0.019 (-0.068, 0.029) 0.433 -0.041 (-0.092, 0.010) 0.113 -0.057 (-0.107, -0.007) 0.025 

MVPA time (high to low) 
 stβ (95% CI) P stβ (95% CI) P stβ (95% CI) P 

Model 1 -0.065 (-0.111, -0.018) 0.007 -0.104 (-0.153, -0.055) <0.001 -0.102 (-0.150, -0.054) <0.001 
Model 2 -0.054 (-0.101, -0.007) 0.026 -0.093 (-0.142, -0.044) <0.001 -0.087 (-0.135, -0.038) <0.001 
Model 3 -0.049 (-0.097, 0.001) 0.043 -0.075 (-0.140, -0.040) <0.001 -0.091 (-0.140, -0.041) <0.001 

Associations of physical activity (CHAMPS questionnaire) with node degree. Regression coefficients and 95% CI indicate the mean 
difference in node degree per SD higher PA. Model 1: Adjusted for age, sex, education level, and MRI lag time. Model 2: additionally 
adjusted for diabetes status. Model 3: additionally adjusted for BMI, systolic blood pressure, antihypertensive medication, total-to-
HDL-cholesterol-ratio, lipid-modifying medication, smoking status, alcohol use, and history of cardiovascular disease. MVPA indicates 
mild-to-vigorous physical activity (hours/week). CHAMPS questionnaire information available in n=1486.  

 

Supplementary Table 4.4: Associations of low and high-intensity physical activity time, and high 

sedentary time with whole brain node degree, additionally corrected for waist circumference, 24h blood 

pressure, MRI quality, diet, or white matter hyperintensity volume. 

 Whole brain node degree  

LPA time (high to low) stβ (95% CI) P-value 

Model 3 -0.013 (-0.061, 0.034) 0.580 
Model 3 + waist circ. for BMI -0.012 (-0.060, 0.036) 0.621 
Model 3 + 24h for office BP -0.010 (-0.062, 0.042) 0.705 
Model 3 + MRI quality -0.007 (-0.052, 0.038) 0.757 
Model 3 + DHD score -0.008 (-0.057, 0.041) 0.736 
Model 3 + WMH* + ICV -0.008 (-0.056, 0.039) 0.725 

HPA time (high to low) stβ (95% CI) P-value 

Model 3 -0.062 (-0.112, -0.013) 0.014 
Model 3 + waist circ. for BMI -0.056 (-0.107, -0.006) 0.027 
Model 3 + 24h for office BP -0.070 (-0.124, -0.015) 0.012 
Model 3 + MRI quality -0.054 (-0.102, -0.007) 0.023 
Model 3 + DHD score -0.064 (-0.115, -0.014) 0.013 
Model 3 + WMH* + ICV -0.061 (-0.110, -0.012) 0.015 

   

Sedentary time (low to high) stβ (95% CI) P-value 

Model 3 -0.030 (-0.081, 0.021) 0.250 
Model 3 + waist circ. for BMI -0.019 (-0.070, 0.033) 0.478 
Model 3 + 24h for office BP -0.026 (-0.083, 0.030) 0.362 
Model 3 + MRI quality -0.019 (-0.068, 0.030) 0.448 
Model 3 + DHD score -0.022 (-0.075, 0.031) 0.414 
Model 3 + WMH* + ICV -0.025 (-0.076, 0.026) 0.327 

Associations of physical activity measures (minutes/day) with whole brain node degree. Standardized regression coefficients and 95% 
CI indicate the mean difference in node degree per SD lower physical activity and higher sedentary time. Model 3: Adjusted for age, 
sex, education level, MRI lag time, wake time, diabetes status, BMI, systolic blood pressure, antihypertensive medication, total-to-HDL-
cholesterol-ratio, lipid-modifying medication, smoking status, alcohol use, and history of cardiovascular disease. Waist circ. Indicated 
waist circumference; 24h BP, 24-hour ambulatory blood pressure; DHD, Dutch Healthy Diet index; WMH, white matter hyperintensity 
volume; ICV, intracranial volume. 24h BP available in n=1408. MRI quality available in n=1657. DHD score available in n=1581. *log-
transformed WMH volume. 
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4 Supplementary Table 4.5: Associations of low- and high-intensity physical activity time, and high 

sedentary time with node degree of the basal ganglia and the primary motor cortex. 

 Degree 
Basal Ganglia 

 Degree 
Primary Motor Cortex 

 

LPA time (high to low) stβ (95% CI)  stβ (95% CI)  

Model 3 -0.049 (-0.098, 0.001) 0.056 -0.017 (-0.066, 0.032) 0.489 
Model 3 + waist circ. for BMI -0.048 (-0.098, 0.002) 0.059 -0.017 (-0.066, 0.032) 0.490 
Model 3 + 24h for office BP -0.062 (-0.116, -0.009) 0.022 -0.015 (-0.068, 0.038) 0.574 
Model 3 + MRI quality -0.045 (-0.094, 0.004) 0.074 -0.018 (-0.067, 0.031) 0.475 
Model 3 + DHD score -0.044 (-0.096, 0.007) 0.092 -0.005 (-0.056, 0.046) 0.838 

HPA time (high to low) stβ (95% CI)  stβ (95% CI)  

Model 3 -0.070 (-0.121, -0.018) 0.009 -0.035 (-0.086, 0.016) 0.178 
Model 3 + waist circ. for BMI -0.066 (-0.119, -0.014) 0.014 -0.035 (-0.087, 0.016) 0.181 
Model 3 + 24h for office BP -0.080 (-0.136, -0.023) 0.006 -0.052 (-0.108, 0.004) 0.068 
Model 3 + MRI quality -0.066 (-0.117, -0.014) 0.012 -0.036 (-0.087, 0.015) 0.172 
Model 3 + DHD score -0.069 (-0.112, -0.016) 0.011 -0.033 (-0.086, 0.020) 0.219 

     

Sedentary time (low to high) stβ (95% CI)  stβ (95% CI)  

Model 3 -0.029 (-0.082, 0.025) 0.295 -0.008 (-0.061, 0.045) 0.759 
Model 3 + waist circ. for BMI -0.023 (-0.077, 0.031) 0.402 -0.008 (-0.061, 0.045) 0.766 
Model 3 + 24h for office BP -0.036 (-0.094, 0.023) 0.233 -0.019 (-0.076, 0.039) 0.531 
Model 3 + MRI quality -0.025 (-0.078, 0.028) 0.358 -0.009 (-0.062, 0.044) 0.738 
Model 3 + DHD score -0.020 (-0.075, 0.036) 0.482 0.002 (-0.052, 0.057) 0.930 

Associations of physical activity measures with node degree of the basal ganglia and primary motor cortex. 
Regression coefficients and95% CI indicate the mean difference in node degree per SD lower physical activity 
and higher sedentary time. Model 3: wake time, age, sex, education level, MRI lag time, diabetes status, BMI, 
systolic blood pressure, antihypertensive medication, total-to-HDL-cholesterol-ratio, lipid-modifying 
medication, smoking status, alcohol use, and history of cardiovascular disease. 24h BP available in n=1408. MRI 
quality available in n=1657. DHD score available in n=1581.  

 

 

Supplementary Table 4.6: Relative change for HPA time and age in whole brain node degree. 

 Node degree*  

 standardized β p-value 

HPA time 0.081 0.001 
Age -0.177 <0.001 
𝑠𝑡𝛽𝑎𝑔𝑒

𝑠𝑡𝛽𝐻𝑃𝐴
∙
𝑆𝐷𝐻𝑃𝐴

𝑆𝐷𝑎𝑔𝑒
  

5.0 years  

Adjusted for age, sex, education level, MRI lag time, and wake time.  
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5 Abstract 

Background  

Lesions of cerebral small vessel disease in individuals with cardiometabolic risk factors, such as white 

matter hyperintensities (WMH), interfere with the trajectories of the white matter, and eventually 

contribute to cognitive decline. However, there is no consensus yet about the precise underlying 

topological mechanism. 

Purpose 

To examine whether WMH and cognitive function are associated, and whether any of such association is 

mediated or explained by structural connectivity measures in an adult population. Additionally, 

underlying local abnormalities in white matter are investigated, by assessing the tract-specific WMH 

volumes and their tract-specific association with cognitive function. 

Materials and methods 

In the prospective type-2 diabetes-enriched population-based Maastricht Study, structural and diffusion 

tensor MRI was performed (December 2013-February 2017). Total and tract-specific WMH volumes, 

network measures, cognition scores, and demographic, cardiovascular, and lifestyle characteristics were 

determined. Multivariable linear regression and mediation analyses were employed to investigate the 

association of WMH volume, tract-specific WMH volumes, and network measures with cognitive 

function. Associations were adjusted for age, sex, education, diabetes-status, and cardiovascular risk 

factors.  

Results 

A total of 5083 participants (59 ± 9 years, 2592 men, 1027 with diabetes) were evaluated. Larger WMH 

volumes were associated with stronger local (standardized beta [stβ], 0.065, p<0.001), but not global, 

network efficiency and lower information processing speed (stβ, −0.073, p<0.001). Moreover, lower local 

efficiency (stβ, −0.084, p<0.001) was associated with lower information processing speed. In particular, 

the relationship between WMHs and information processing speed was mediated (percentage mediated 

7.2% [95% CI: 3.5, 10.9], p<0.05) by the local network efficiency. Finally, WMH load was larger in the 

white matter tracts important for information processing speed. 

Conclusion 

White matter hyperintensity volume, local network efficiency, and information processing speed scores 

are interrelated, and local network properties explain lower cognitive performance due to white matter 

network alterations. 
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   5 Introduction 

Cerebral small vessel disease (cSVD) is a major cause of vascular cognitive impairment (1). The 

characteristic lesions, of which white matter hyperintensities (WMHs) are the most prevalent, interfere 

with the trajectories of the white matter, and may disrupt the connections between distributed gray 

matter regions. Well-known risk factors for the occurrence of these lesions are of cardiometabolic origin 

and include diabetes, hypertension, abdominal obesity, dyslipidemia, physical inactivity, and ageing (2, 

3). The changes in white matter connectivity may contribute to general cognitive decline, and decline in 

various specific cognitive domains, including information processing speed, executive function and 

attention, and memory (3, 4). Cognitive function generally relies on the integrity and spatiotemporally 

orchestrated interplay of large-scale structural white matter connections of the underlying brain network 

(5).  

Previously it was shown in a population based study of elderly individuals that periventricular 

WMHs are related to worse cognitive function in contrast to more deeply located, subcortical WMHs (6). 

This finding is of interest because periventricular WMHs are located in areas with a high density of long-

association white matter tracts that connect various widely distributed cortical regions supporting 

multiple cognitive functions. Similarly, initially it was thought that only the extensive level of WMH load 

would impair cognitive function, while currently it is clear that cardiovascular risk factors are associated 

with cSVD and cognitive performance (7). 

Previous studies provided some insight in the mechanisms underlying cSVD-related cognitive 

decline (8-10). However, the precise topological manner in which white matter connectivity is disrupted, 

how cSVD contributes, and consequently how strong cognitive function is affected remains unknown. 

Similarly, it is unclear to what extent variations in locations of cSVD lesions in a population affect 

cognitive function. To unravel these interrelations, more information about the underlying local and 

tract-specific characteristics of the white matter network is needed. 

The Maastricht Study provides the opportunity to investigate the associations between cSVD 

MRI markers and cognitive function in a large population with extensive availability of cardiometabolic 

risk factors. Therefore, the aim of the present study was to investigate whether cSVD lesions and 

cognitive function are associated, and whether this association is mediated, or explained by structural 

connectivity measures (ie global and local network efficiency). To investigate underlying local changes in 

white matter, we assessed the tract-specific WMH volumes in the three types of white matter tracts (ie 

association, projection, and commissural tracts) and their tract-specific association with cognitive 

function.  

Materials and Methods 

The Maastricht Study 

We used data from The Maastricht Study, an observational prospective population-based cohort study. 

The rationale and methodology have been described previously (7). In brief, the study focuses on the 

etiology, pathophysiology, complications, and comorbidities of type 2 diabetes and is characterized by an 

extensive phenotyping approach. Eligible for participation were all individuals aged between 40 and 75 

years living in the southern part of the Netherlands. Participants were recruited through mass media 
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5 campaigns, from the municipal registries, and regional Diabetes Patient Registry by mail. Recruitment 

was stratified according to known type 2 diabetes status, with an oversampling of individuals with type 2 

diabetes, for reasons of efficiency. The present report includes cross-sectional data from the first 7689 

participants, who completed the baseline survey between November 2010 and December 2017. The 

examinations of each participant were performed within a time window of three months. MRI 

measurements were implemented from December 2013 onwards until February 2017. 5547 participants 

were invited for MRI, 464 were excluded due to contra-indications (Supplementary Material 2), and 5083 

participants had complete data without artifacts (Figure 5.1). The study was approved by the institutional 

medical ethical committee (NL31329.068.10) and the Dutch Ministry of Health, Welfare and Sports 

(Permit 131088-105234-PG). All participants gave written informed consent.  

 

 
 

Figure 5.1: Flowchart of the study population. 

MRI Scans 

MRI was performed on a 3T scanner (MAGNETOM Prisma-fit Syngo MR D13D, Siemens Healthcare, 

Germany) using a 64-element head and neck coil. A three-dimensional T1-weighted magnetization-

prepared rapid acquisition gradient echo sequence (repetition time, 2300 ms; inversion time, 900 ms; 

echo time, 2.98 ms; 176 slices; 256 x 240 matrix; and 1.00 mm voxel size) was acquired for anatomic 
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   5 reference. Diffusion-weighted MRI comprised a diffusion sensitized echo-planar imaging sequence 

(repetition time, 6100 ms; echo time, 57 ms; 65 slices; 100 × 100 matrix; 2.00 mm voxel size; and 64 

diffusion sensitizing gradient directions [b = 1200 s/mm2]), with  three b=0 images. 

Image Preprocessing 

Ninety-four regions were defined by a standard (AAL2) atlas software (11). After transformation (12), 

images were segmented into gray and white matter, WMH volume and intracranial volume were 

calculated, and cSVD lesions were identified (13) (Supplementary Material 1). Periventricular WMHs 

were automatically defined as WMHs < 3 mm, and deep WMHs as WMHs ≥ 3 mm from the cerebrospinal 

fluid in the ventricles (14). We focused on WMH volume, as these are prominent in aging, and centrally 

and deeply located in the cerebrum (analyses for periventricular and deep WMHs separately are 

provided in Supplementary Table 5.1, 5.2, and 5.4)(15). Diffusion-weighted MRI analysis comprised 

tractography as described previously (12). 

White Matter Networks 

Graph measures served to describe the network topology (15-17) using specialized software (Brain 

Connectivity Toolbox, version 2017-15-01 (18)). Local efficiency was calculated as the inverse of the 

average shortest path connecting all neighbors of a region (excluding that region) and determines a 

network’s resistance to failure at small scale. Global efficiency was determined by the inverse of the 

average shortest path length calculated over the entire brain and quantifies the exchange of information 

on the whole network scale (19). Also, whole brain node degree was calculated as the average number of 

connections per region. Subsequent steps were calculation of a standard network frame by proportional 

sparsity thresholding (80%), and normalization of the network measures to random networks (12). 

White Matter Tract Segmentation 

We determined the spatial distribution of WMHs, and the WMH volumes of a number of well-known 

tracts with automated atlas-guided tract reconstruction (20) (Figure 5.2). Among the selected tracts are 

long association, projection, and commissural tracts (21). Volumes were merged for bilateral tracts. We 

transformed an atlas with 130 gray and white matter regions to diffusion-space (22), and selected for 

each tract a specific subset of streamlines (20). Individual WMH maps transformed to diffusion-space 

were used to determine the WMH volume traversed by the selected tracts (Flowchart with processing 

steps in Supplementary Figure 5.1). 



Interplay of white matter hyperintensities, cerebral networks, and cognitive function 

111 

5 

  

Figure 5.2: Three orthogonal views of the 13 preselected white matter tracts acquired with automated 

atlas-guided tract reconstruction. (A) Long association tracts shown for cingulum of cingulate gyrus 

(CGC), hippocampal part of cingulate gyrus (CGH), fronto-occipital fasciculus (IFO), inferior-longitudinal 

fasciculus (ILF), parietal part of the superior-longitudinal fasciculus (SLFPT), temporal part of the superior-

longitudinal fasciculus (SLFT), and the uncinate fasciculus (UNC). (B) Projection tracts shown for cortico-

spinal tract (CST), anterior thalamic radiation (ATR), posterior thalamic radiation (PTR), and the superior 

thalamic radiation (STR). (C) Commissural tracts shown for the forceps major (Fmaj) and the forceps 

minor (Fmin). 

Cognitive Performance 

Cognitive performance was assessed using a concise neuropsychological test-battery (23). Information 

processing speed was primarily reported as it is captures complex cognitive functioning (24), affects 

various major tracts simultaneously (25), and is strongly impaired in cSVD (10). Detailed descriptions of 

the tests and other cognitive domain scores are provided in Supplementary Material 3. 
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   5 Statistical analysis 

Multivariable Linear Regression 

Multivariable linear regression was used to investigate the association of (tract-specific) WMH volume 

and structural connectivity with cognitive function. Analyses were adjusted for age, sex, education level, 

MRI patch update, and intracranial volume (the latter only in models with WMH volume, as network 

measures were already adjusted for intracranial volume) (Model 1). Subsequent analyses were adjusted 

for diabetes-status (Model 2), and body-mass index, total cholesterol-to-high-density lipoprotein-ratio, 

systolic blood pressure, lipid-modifying and antihypertensive medication, and prior cardiovascular 

disease (Model 3). Skewed variables (WMH volumes) were log10 transformed. P-values < .05 were 

considered statistically significant. Interaction terms with sex and diabetes-status were incorporated in 

the fully adjusted model (Model 3). All analyses were performed by use of commercial software (SPSS 

Statistics 23.0, IBM, Chicago, IL, USA). 

Mediation analysis 

Mediation analysis was used to test whether alterations in structural connectivity are on the potential 

causal pathway of the association between WMH volume and cognition, as it is biologically plausible that 

the white matter network is affected by WMHs (more details can be found in Supplementary Material 4). 

For this, we used bootstrapping (5000 samples) to calculate bias-corrected 95% confidence intervals (CIs) 

using the PROCESS statistical package for SPSS (26). Analyses were fully adjusted (Model 3).   

Results 

General Characteristics of the Study Population 

Table 5.1 shows the general characteristics of the study population, which consisted of 5083 individuals 

(Flowchart, Figure 5.1), had a mean age of 59 ± 9 years, 2491 (49%) women and 1027 (20%) had type 2 

diabetes (oversampled by design). From the 5547 participants invited for MRI, 224 were excluded due to 

missing data (5 did not show up/too late; 24 did not fit in scanner/coil; 162 with claustrophobia; 20 with 

metal implant; 4 with epilepsy; 9 with other contra-indications or known brain abnormalities). MRI brain 

assessment was performed for 5323 participants, but 79 of them did not full-fill the whole scan protocol, 

or the data contained artefacts or other data processing errors. From 5144 participants with correct MRI 

brain data available, 61 had other data missing, which led to 5083 participants with complete data. 
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5 Table 5.1: Characteristics of the study population 

Characteristic  n = 5083 

Demographics  

Age (years) 59±9 

Sex, female (%) 2491 [49] 

Education level (%), Low/Middle/High 32/28/40 

Cardiovascular risk factors  

BMI (kg/m2) 26.6±4.2 

Waist circumference (cm) 94.1±13.0 

Systolic blood pressure (mmHg) 132.9±17.3 

Diastolic blood pressure (mmHg)  75.5±9.7 

T2DM (n, [%]) 

HbA1c (mmol/mol) 

1027 [20] 

38.9±8.9 

Hypertension, yes (%) 50 

Total cholesterol-to-HDL-ratio  3.6±1.2 

History of CVD, yes (%) 13 

Medication use  

Antihypertensive medication, yes (%) 34 

Lipid-modifying medication, yes (%) 28 

Lifestyle factors  

Alcohol (%), None/Low/High 17/59/24 

Smoking (%), Never/Former/Current 39/49/12 

Dutch Healthy Diet Index score 84.2±15.0 

Total physical activity (hours/week) 14.1±8.0 

Mild-to-vigorous physical activity (hours/week) 5.6±4.4 

Cognitive score  

MMSE total score [maximum score 30] 29 [29, 30] 

Information processing speed 0.11 [-0.41, 0.58] 

Executive function and attention 0.09 [-0.43, 0.61] 

Memory function 0.09 [-0.60, 0.75] 

Cerebral small vessel disease characteristics  

Total WMH volume (mL) 0.22 [0.07, 0.70] 

Periventricular WMH volume (mL) 0.15 [0.04, 0.48] 

Deep WMH volume (mL) 0.05 [0.01, 0.20] 

Fazekas 0/1/2/3 (%) 55.8/22.8/13.3/8.1 

Cerebral microbleeds present (%) 10.0 

Cerebral lacunar infarcts present (%)  4.3 

Structural connectivity graph measures  

Whole brain node degree 17.75±0.36 

Local efficiency 1.49±0.04 

Global efficiency 0.84±0.03 

Data are presented as means ± standard deviation, median [interquartile range] or percentage. BMI indicates body 

mass index; T2DM, type 2 diabetes; HbA1c, hemoglobin A1c; HDL, high-density lipoprotein; CVD, cardiovascular 

disease; MMSE, Mini-Mental State Examination; WMH, white matter hyperintensity. Detailed protocols of the general 

measurements are presented in Supplementary Material 2. 
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   5 White Matter Hyperintensities  

Median WMH volume was 0.22 mL (interquartile range [IQR], 0.07-0.70 mL); in 19.2% of the participants 

the total WMH volume was greater than or equal to 1 mL, and 44.2% had a Fazekas score greater than or 

equal to 1. Cerebral microbleeds and lacunar infarcts were less prevalent (in 10% and 4%, respectively). 

In Figure 5.5B, the spatial distribution of WMHs is depicted. Volumes of periventricular WMHs, near the 

lateral ventricles, were approximately three times larger compared to deep WMHs, located distant from 

the lateral ventricles in the subcortical white matter (Table 5.1).  

In the connectogram in Figure 5.3, the 100 connections between automated anatomical 

labeling atlas 2 regions with the largest difference in tract volume between subgroups with Fazekas 

scores 0 and greater than or equal to 1 are depicted. This figure indicates that in both hemispheres, 

especially the short connections between cortical regions located close to the corpus callosum, have 

smaller tract volumes in participants with WMHs. Connections between the left and right deep gray 

matters regions and cingulate cortex have larger tract volumes in participants with WMHs. 

 

Figure 5.3: Connectogram depicting qualitatively the 100 white matter tracts between AAL-atlas regions 

with the largest (absolute) difference in tract volume between groups with Fazekas scores. Red lines 

indicate the tracts with lower tract volumes in the group with WMHs (Fazekas score ≥ 1 versus 0), and 

blue lines the higher tract volumes. 
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5 Association Between WMH Volumes and Cognitive Function 

Larger WMH volumes were associated with lower information processing speed scores (standardized 

beta [stβ], -0.073 [95% CI: -0.101, -0.046], p<0.001) after adjusting for demographical and cardiovascular 

risk factors (Model 3, Supplementary Table 5.1). The associations were present for periventricular as well 

as deep WMHs. 

Association Between WMH Volumes and Network Measures 

Larger WMH volumes were associated with higher local network efficiency (0.065 [95% CI: 0.035, 0.096, 

p<0.001]), but not with whole brain node degree (-0.027 [95% CI: -0.058, 0.003], p=0.08) and global 

efficiency (-0.011 [95% CI: -0.044, 0.021], p=0.48). A comparable association was found for both 

periventricular and deep WMHs (Supplementary Table 5.2).  

Association Between Network Measures and Cognition 

Higher whole brain node degree (stβ, 0.113 [95% CI: 0.089, 0.1438], p<0.001) and lower local efficiency 

(stβ, -0.084 [95% CI: -0.109, -0.059], p<0.001) were associated with higher information processing speed 

scores. Global efficiency was not associated with information processing speed scores (stβ, -0.014 [95% 

CI: -0.038, 0.010], p=0.25, Supplementary Table 5.3).  

Mediation Analysis 

Local efficiency mediated for 7.2% ([95% CI: 3.5, 10.9], p<0.05; indirect effect: stβ, -0.005 [95% CI: -0.009, 

-0.002], p<0.05) the association between WMH volume and information processing speed (Figure 5.4, 

Supplementary Table 5.4). 

 

 
Figure 5.4: Associations between white matter hyperintensity (WMH) volume, local network efficiency, 

and information processing speed (IPS) score, and the mediation by local efficiency. Solid lines indicate 

direct effects (c’); dashed lines indicate indirect effects (a∙b) and percentage mediated (percentage 

mediated [PM] = indirect/total =indirect/[indirect+total]). Associations are given as standardized 

regression coefficients (standardized β), and are adjusted for age, sex, education, intracranial volume, 

diabetes status, MRI patch update, BMI, total cholesterol-to-HDL-ratio, systolic blood pressure, lipid-

modifying and antihypertensive medication, and prior cardiovascular disease.  

*P-value < .01. 
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   5 Characteristics in Type 2 Diabetes 

The population‐based design, with oversampling of participants with type 2 diabetes, enabled an 

accurate comparison of individuals with and without diabetes. Participants with diabetes had 

approximately two times larger WMH volumes (without diabetes: median 0.19 [IQR, 0.06-0.58]; with 

diabetes: 0.38 [IQR, 0.13-1.28]) (27). Furthermore, participants with diabetes had slightly higher local 

efficiency (with diabetes: mean ± standard deviation, 1.51 ± 0.05; without diabetes: 1.49 ± 0.04, P < .01) 

and slightly lower information processing speed scores (with diabetes: median [IQR], -0.20 [IQR, -0.80-

0.29]; without diabetes: 0.18 [IQR, -0.32-0.62], P < .01 compared to participants without diabetes in the 

fully adjusted regression model (Model 3). We did not find interactions with diabetes-status or sex. 

Tract specific analysis 

For the majority of the tracts (9 out of 12) a larger WMH volume was significantly associated with slower 

information processing, and a comparable effect was found for the other cognitive domains 

(Supplementary Table 5.5, Supplementary Figure 5.1, and Supplementary Material 5). 
 

 
Figure 5.5: Tracts with significant associations (P < .05) of tract-specific WMH volume, with information 

processing speed (A) scores, adjusted for age, sex, education, diabetes-status, and cardiovascular risk 

factors (Model 3). (B) White matter hyperintensity prevalence map of the study sample. Note the higher 

prevalence and overlap of the white matter lesions in the periventricular region, while the deep lesions 

are more spread. Colors indicate the number of participants that had WMHs in that voxel. 
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5 Long Association Tracts 

We found the largest WMH volumes in the tracts fronto-occipital fasciculus and temporal-part of 

superior-longitudinal fasciculus (respectively 40 and 18% of the total WMH in the selected tracts). From 

Figure 5.5 can be appreciated that, the fronto-occipital fasciculus and temporal-part of superior-

longitudinal fasciculus (Figure 5.5A) both cross the anterior and posterior horns, which are regions with a 

high WMH prevalence (Figure 5.5B). For almost all association tracts (cingulum of cingulate gyrus, 

parietal- and temporal-part of superior-longitudinal fasciculus, uncinate fasciculus [P-values < .01], 

fronto-occipital fasciculus, and inferior-longitudinal fasciculus [P-values < .05]) larger WMH volumes 

(Figure 5.5A) were, after adjustment for demographic and cardiovascular risk factors, still strongly 

associated with lower information processing speed. 

Projection Tracts 

We did not find large WMH volumes in the projection tracts. However, the WMH volume in the superior 

thalamic radiation covers approximately 7% of the total WMH volume over all selected tracts 

(Supplementary Table 5.5). This tract traverses regions with WMHs that are mainly located in the deep 

subcortical structures of the frontal and parietal lobe. Larger WMH volumes in the superior thalamic 

radiation and cortico-spinal tract, but not in the anterior thalamic radiation and posterior thalamic 

radiation, were associated with lower information processing speed (P-values < .01).  

Commissural Tracts 

The forceps major and forceps minor have small absolute WMH volumes, which however cover a 

substantial part of their relatively small total tract volume (7 and 9%, respectively). The forceps major 

crosses the regions with high WMH prevalence located near the posterior horns, and the forceps minor 

near the anterior horns. Associations between WMH volumes and information processing speed were 

only found for the forceps major (P-value < .01). More details are provided in Supplementary Table 5.5. 

Discussion  

We set out to find interrelations between white matter hyperintensity (WMH) volumes, white matter 

connectivity, and domain specific cognitive function in a large adult population with cardiometabolic risk 

factors. Larger WMH volumes were associated with stronger local network efficiency and slower 

information processing. The relationship between WMHs and information processing speed was partly 

mediated by the local network efficiency. Additionally, larger WMH load in white matter tracts important 

for information processing were associated with cognitive slowing. 

In the white matter, the local but not the global network efficiency, acted as a mediator 

between WMHs and cognitive slowing. WMHs are focally isolated lesions that disturb connections of 

specific tracts, while the global brain network topology is preserved. We found a higher local efficiency 

for more WMHs, which indicates that the local network organization is compensated by use of 

alternative white matter pathways that strengthen connections (higher tract volume in Figure 5.3) with 

the neighboring regions (12). 
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   5 Two previous studies found that both lower local and global efficiency were associated with 

lower processing and/or psychomotor speed and mediated the associations between MRI markers for 

cSVD and cognition (8, 9). However, these studies involved participants with more severe (eg, 

symptomatic) cSVD as compared to our study population. In contrast, the current study comprises milder 

or commencing cSVD pathology without obvious global network impairment but with local adaptations. 

The majority of tracts with a substantial amount of WMHs, reveal negative effects on 

information processing speed for higher WMH load. In this study, we focused on the cognitive domain 

information processing speed as this is important for fluent execution of perceptual, cognitive, and 

psychomotor processes (28). Therefore, information processing speed is associated with the properties 

of connections between many distributed brain regions and does not appeal to highly distinctive tracts 

but more a variety of tracts (21, 29, 30).  

To put the degree of the cognitive decline into perspective, a 0.51 mL larger WMH volume was 

equivalent to 10 years of cognitive aging in the association between WMH volume and information 

processing speed, while 1.69 mL more WMHs was equivalent to 10 years of network aging in terms of 

local efficiency. This comparison suggests that the impact of WMHs on the local network topology is 

approximately three times stronger than would be expected for cognitive decline, which can be 

explained by compensatory network adaptations outside the lesions. Cerebral lacunar infarcts and 

microbleeds were less prominent in comparison to WMHs, and also provided associations with both 

cognitive function and structural connectivity, as expected from literature (8, 31), though less evident as 

for WMHs. Participants with type-2 diabetes had larger WMH volumes, higher local efficiency, and lower 

information processing speed scores compared to participants without. The lower cognitive scores were 

equivalent to 3.3 years of cognitive aging. For the other cardiometabolic risk factors no clear effects were 

found (only marginal differences between model 2 and 3), likely because these risk factors already led to 

higher WMH volumes. In addition, previous studies reported associations of hypertension (32, 33), 

visceral obesity (34), abnormal body-mass index (33), and metabolic syndrome (2) with increased risk of 

having WMHs. 

Strengths of this study were the large sample size, the population-based design, the extensive 

assessment of potential confounders, and the combined approach of whole-brain network and tract-

specific analysis to confirm the robustness of results. Furthermore, we used an automated atlas-guided 

tract reconstruction method based on whole brain fiber tractography, instead of a diffusion-weighted 

MRI atlas co-registered to a structural image to determine tract volumes. There were also some 

limitations. First, the cross-sectional design of the study implies that no conclusions about temporality of 

alterations in WMH, network properties and cognition can be made. Second, WMHs expressed at 

locations that are typical for ageing populations with cardiometabolic risk factors. Therefore, for the 

specific cognitive domains we are restricted to infer on the specific white tracts with the current 

distribution of WMHs and cannot infer on the susceptibility of other white matter regions, though the 

whole brain network analysis demonstrated widely distributed alterations. In line with this, standardized 

regression coefficients were small (<0.1), likely because of the relatively healthy population. The 

pathology of cSVD is rather limited, and cognition scores were relatively high. Therefore, the associations 

that were found, indicate that the first signs of cSVD pathology already relate to alterations in the 

structural network organization and cognitive decrements. 

In conclusion, we found that WMH volume, local efficiency, and information processing speed 

scores are interrelated. More specifically, the detrimental effect of larger WMH volume on cognitive 

function was mediated by local efficiency. Locally, we found that larger WMH volumes in white matter 
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5 tracts that are important for information processing were associated with cognitive slowing, which 

reflects cognitive decrements due to white matter pathology in aging individuals with cardiometabolic 

risk factors.  
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   5 Supplementary Material 

1. Identification and scoring of cSVD lesions 

1.1 Identification of white matter hyperinsities 

WMHs identified were summed to assess total WMH burden in mL. Two types of WMHs were 

distinguished, periventricular WMHs (pWMHs) are located around the horns of the ventricles, and deep 

WMHs (dWMHs) are located in the subcortical white matter distinct from the periventricular area. 

pWMHs were automatically defined as WMHs < 3 mm, and dWMHs as WMHs ≥ 3 mm from the 

cerebrospinal fluid (1).  

1.2 Scoring lacunar infarct and microbleeds 

Lacunar infarcts were defined as focal lesions of ≥3 mm and <15mm in size with a similar signal intensity 

as cerebrospinal fluid on all sequences and a hyperintense rim on T2 and FLAIR images (2).   

Cerebral microbleeds were rated on three-dimensional T2* GRE imaging with SWI by use of the 

Microbleed Anatomical Rating Scale (3), and were defined as focal lesions of ≥2 mm and ≤10mm in size 

with a hypointense signal on T2* GRE and SWI images (2). The number and location of lacunar infarcts 

and cerebral microbleeds were rated manually by three neuroradiologists. The intraclass correlation 

coefficient for the three raters based on 50 randomly selected scans was 0.84 [0.74; 0.91] and 0.83 [0.72; 

0.90] for the presence of lacunar infarcts and cerebral microbleeds, respectively. 

2. Detailed protocols of measurements performed within The Maastricht 

Study 

Questionnaires. As described elsewhere (4), we used web-based questionnaires to obtain information 

regarding smoking status (never/former/current), alcohol consumption, educational level, physical 

activity, diet, prior cardiovascular disease (CVD) and cognitive impairment. Alcohol consumption was 

classified as none, low (1– 7 glasses/wk for women and 1–14 glasses/wk for men) and high (>  7 

glasses/wk for women and > 14 glasses/wk for men). Educational level was classified as low (no 

education, primary education, lower vocational education), intermediate (intermediate general 

secondary education, intermediate vocational education, higher general secondary education), or high 

(higher vocational education or university). Diet was assessed by a tailor-made food frequency 

questionnaire (FFQ) developed by use of the National FFQ Tool. Prior CVD was defined as a history of 

myocardial infarction; stroke; or vascular surgery (including angioplasty) on coronary, carotid, abdominal 

aortic, or peripheral arteries based on the Rose questionnaire. Cognitive impairment was measured using 

the Mini-Mental State Examination (MMSE). Medication use was assessed in a medication interview 

where generic name, dose, and frequency were registered. Subjective physical activity was assessed by 

means of a modified version of the Champs questionnaire. 

 

Laboratory assessments. Plasma glucose is measured with a standard enzymatic hexokinase reference 

method, and serum total cholesterol, HDL cholesterol, and triglycerides are measured with standard 
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5 (enzymatic and/or colorimetric) methods by an automatic analyzer (until 9 May 2012: Beckman Synchron 

LX20, Beckman Coulter Inc., Brea, USA; after 9 May 2012: Cobas 6000, Roche diagnostics, Mannheim, 

Germany). When appropriate LDL cholesterol is calculated according to the Friedewald formula(5). 

HbA1c is measured with ion-exchange high performance liquid chromatography (HPLC) (Variant tm II, 

Bio-Rad, Hercules, California, USA).  

 

Glucose metabolism status. To determine glucose metabolism status, all participants, except those who 

used insulin, underwent a standardized 2-h 75g oral glucose tolerance test (OGTT) after an overnight 

fast. For safety reasons, participants with a fasting glucose level above 11·0 mmol/L, as determined by a 

finger prick, did not undergo the OGTT. For these individuals, fasting glucose level and information about 

diabetes medication were used to determine glucose metabolism status. Glucose metabolism status was 

defined according to the WHO 2006 criteria into normal glucose metabolism (NGM), prediabetes, and 

type 2 diabetes mellitus (T2DM) (6). Participants were considered to have T2DM if they had a fasting 

blood glucose (FBG) ≥7·0 mmol/l, or a 2hr post-load blood glucose ≥11·1 mmol/l or used oral glucose-

lowering medication or insulin, prediabetes if they had a FBG ≥6·1 mmol/l and/or a 2hr post-load blood 

glucose ≥7·8 mmol/l, and NGM if they had a FBG <6·1 mmol/l, and a 2hr post-load blood glucose <7·8 

mmol/l and no use of diabetes medication. Participants with type 1 diabetes or other types of diabetes 

were excluded from the analysis. 

 

Physical examination. Weight and height are measured without shoes and wearing light clothing using a 

scale and stadiometer to the nearest 0.5 kg or 0.1 cm (Seca, Hamburg, Germany). Waist circumference is 

measured with a flexible plastic tape measure (Seca, Hamburg, Germany) in a duplicate midway between 

the lower rib margin and the iliac crest at the end of expiration, to the nearest 0.5 cm. 

 

Blood pressure. Office blood pressure is determined three times on the right arm after a 10-minute rest 

period, using a non-invasive blood pressure monitor (Omron 705IT, Japan). When the difference 

between measurement two and three is more than 10mmHg, a fourth measurement is performed. All 

available measurements are used to calculate the average blood pressure. Ambulatory 24-h blood 

pressure (WatchBP O3, Microlife, Switzerland, respectively) is measured at the non-dominant arm, using 

an ambulatory device that is programmed to take blood pressure readings every 15 minutes from 8.00 – 

23.00 and every 30 minutes from 23.00 – 8.00. 

MRI. Contra-indications for MRI assessments were the presence of a cardiac pacemaker or implantable 

cardioverter-defibrillator, neurostimulator, non-detachable insulin pump, metallic vascular clips or stents 

in the head, cochlear implant, metal-containing intra-uterine device, metal splinters or shrapnel, 

dentures with magnetic clip, an inside bracket, pregnancy, epilepsy, claustrophobia, or did not fit in 

scanner/coil. Data was excluded whether participants did not full-fill the whole scan protocol, or the data 

contained artefacts or other data processing errors.  
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   5 3. Description of the individual cognitive tests used in the present study 

3.1 Verbal Learning Test (7) 

Fifteen unrelated, monosyllabic, words were presented on a computer screen in five subsequent trials. 

After each trial, participants were instructed to recall as many words as possible in any order. Twenty 

minutes after the last trial, participants were asked again to reproduce the words. Outcomes recorded 

included the total number of words correctly recalled over the five trials (total immediate recall) and the 

number of correctly recalled words during delayed recall (delayed recall). 

3.2 Stroop Colour Word Test (8) 

In this test that consisted of three parts participants were firstly asked to read aloud colour names (i.e. 

red, blue, yellow, and green) that were printed in black ink (Part I). Secondly, they were instructed to 

name solid colour patches (Part II). Finally, participants had to name the ink color of colour names that 

were printed in an incongruent colour (e.g. participants were asked to say red when the word yellow was 

printed in red) (Part III). The time needed to complete Part III was adjusted for the average time needed 

to complete Part I and II. 

3.3 Concept Shifting Test (9) 

This test, a modification of the Trailing Making Test, consisted of four subtasks. During each subtask, 

participants were shown 16 small circles aligned along a larger imaginary circle. The small circles 

contained (a combination of) digits, letters, or were empty. Participants were instructed to cross-out as 

quickly as possible the digits in ascending order (Part A), the letters in alphabetic order (Part B), and the 

letters and digits in alternating order (Part C). Thereafter, participants were asked to cross-out empty 

circles in a clockwise fashion in two consecutive trials (Part 0). In this way, test results could be 

accounted for basic motor speed. The time needed to complete subtasks A and B was adjusted for the 

average time needed to complete Part 0, the time needed to complete Part C for the average time of 

Part A and B.     

3.4 Letter-Digit Substitution Test (10) 

Participants were requested to match digits to letters according to a given key. This key included the 

numbers 1 to 9, each paired with a different letter. The outcome of interest was the number of correct 

substitutions within 90 seconds. 

3.5 Methods used to calculate domain scores  

Briefly, information processing speed was derived from the Stroop Color-Word Test, Part I and II (31), the 

Concept Shifting Test, Part A and B (32), and the Letter-Digit Substitution Test (33). Executive function 

and attention was assessed with the Stroop Color-Word Test Part III and the Concept Shifting Test Part C. 

The composite score for memory function was evaluated using the Verbal Learning Test (34) by 

calculating the average of standardized total immediate and delayed recall scores. Other domain scores 
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5 were calculated analogously. If necessary, individual test scores were log-transformed to fulfil the 

normality assumption and/or inverted so that higher scores indicated better cognitive performance. 

4. Additional explanation of the concept underlying the mediation analysis: 

In a mediation model, the relationship of an independent variable (e.g., WMH volume) with an outcome 

(processing speed) is hypothesized to be indirect and due to the influence of a mediator variable (local 

efficiency). Thus, the mediation analysis modelled the relationship by assuming that WMH volume 

affects the local efficiency, which in turn affects processing speed. The total effect of WMH volume on 

processing speed was decomposed into the natural direct effect (NDE) and the natural indirect effect 

(NIE) and the percentage mediated (PM) was computed as the ratio of the total effect to NIE, PM = 

NIE/(NIE + NDE). PM provides an estimate of the extent to which the total effect of WMH volume on 

processing speed is accounted for by the pathway through local efficiency. However, the PM is probably 

an underestimation of the influence of WMH, because according to the literature, WMHs affect also the 

white matter adjacent to the lesion (Reginold et al., 2018; Wardlaw et al., 2017). 

5. Additional discussion about tract-specific findings: 

More specifically, previous studies showed that impairments in the association tracts cingulum of 

cingulate gyrus, fronto-occipital fasciculus, inferior-longitudinal fasciculus, parietal- and temporal-part of 

superior-longitudinal fasciculus, the projection tract cortico-spinal tract, and the commissural tract 

forceps major were associated with lower information processing speed, but deficits in the association 

tracts hippocampal part of cingulate gyrus and uncinate fasciculus, the three thalamic radiations, i.e.,  

anterior thalamic radiation, superior thalamic radiation and posterior thalamic radiation, and the 

commissural tract forceps minor were not (11-13). Furthermore, previously associations of reduced 

white matter microstructure in terms of higher fractional anisotropy and lower mean diffusivity, with 

lower information processing speed scores were found, which were strongest in the association tracts 

fronto-occipital fasciculus, inferior-longitudinal fasciculus, parietal- and temporal-part of superior-

longitudinal fasciculus and uncinate fasciculus, in the projection tracts anterior thalamic radiation and 

posterior thalamic radiation, and in the commissural tracts forceps major and forceps minor (14-16). In 

the present study, we also found associations of higher WMH volumes in long association tracts between 

motor regions and the four lobes (cingulum of cingulate gyrus, fronto-occipital fasciculus, inferior-

longitudinal fasciculus, parietal- and temporal-part of superior-longitudinal fasciculus, and uncinate 

fasciculus) with lower information processing scores. Additional associations were observed in two 

projection tracts, i.e., superior thalamic radiation and cortico-spinal tract, and in the commissural tract 

forceps major, which connects the occipital lobes.  

5.1 Executive function and attention 

Larger WMH volumes (Supplementary Figure 1A) in a variety of long association tracts, i.e., cingulum of 

cingulate gyrus(p-value<0.01), fronto-occipital fasciculus, inferior-longitudinal fasciculus, parietal- and 

temporal-part of superior-longitudinal fasciculus, and uncinate fasciculus (p-values<0.05); projection 

tracts, i.e., superior thalamic radiation and cortico-spinal tract (p-values<0.001), were associated with 
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   5 lower executive function and attention scores. No associations between WMH volumes and executive 

function and attention scores were found in the association tract cingulum of cingulate gyrus, the 

projection tracts anterior thalamic radiation and posterior thalamic radiation, and in both commissural 

tracts.  

Executive function relies mainly on regions in the frontal and parietal lobes, cingulate gyrus and 

cerebellum (11, 17), and executive attention on the cingulate gyrus, prefrontal cortex, and basal ganglia 

(11, 18). The temporal part of the superior longitudinal fasciculus is a tract from angular gyrus to the 

temporal lobe, and is important for attention (19). In a previous cohort study, an association of lower 

executive attention scores with larger WMH volumes in the corticospinal tract and superior longitudinal 

fasciculus was found (13). Furthermore, another study found that WMHs in the frontal white matter 

adjacent to the frontal horns were much more pronounced in participants with worse performance in 

executive function, while participants with high cognitive performance in executive functions had less 

WMH in the frontal, periventricular white matter (12). This study found that all WMH locations with 

negative effects on cognition were bilateral with a symmetrical pattern. In the present study, 

associations were found between higher WMH volumes in a variety of long association tracts and lower 

executive function and attention scores. Furthermore, we found associations in the superior thalamic 

radiation and cortico-spinal tract, which are located adjacent to the frontal horns. 

5.2 Memory 

Higher tract-specific WMH volumes in all long association tracts, i.e., cingulum of cingulate gyrus, 

inferior-longitudinal fasciculus, parietal- and temporal-part of superior-longitudinal fasciculus, uncinate 

fasciculus (p-values<0.001), hippocampal part of cingulate gyrus, and fronto-occipital fasciculus(p-

values<0.05); in several projection tracts, i.e., anterior thalamic radiation, superior thalamic radiation, 

and cortico-spinal tract (p-values<0.05); and in the commissural forceps major (p-value<0.01) were 

associated with lower memory function scores (Supplementary Figure 1B). No associations were found in 

the projection tract posterior thalamic radiation and the commissural tract forceps minor. 

Memory function (short-term/working) is mainly facilitated by connections between the 

prefrontal cortex, regions in the parietal lobe, cerebellum, and basal ganglia (11, 20). The temporal part 

of the superior longitudinal fasciculus is a tract important memory function (19). One population based 

study found an association of lower memory function with more WMHs in the bilateral parietal-temporal 

white matter junctions adjacent to the posterior horns of the lateral ventricles (12). However, another 

cohort study found no associations for memory (13), but this study used a white matter tractography 

atlas instead of tract tracking on diffusion-weighted MRI scans. In our study, we found associations of 

higher WMH volumes in several long association tracts connecting the frontal and occipital lobe (fronto-

occipital fasciculus), the frontal, temporal and parietal lobe (parietal-and temporal-part of superior-

longitudinal fasciculus) and the basal ganglia (uncinate fasciculus), with lower memory scores. We also 

found associations in all the projection and commissural tracts, except for the posterior thalamic 

radiation, and the commissural tract forceps major. Another population-based study found similar 

associations between larger WMH volumes in association and projection tracts and worse memory 

function, but this study also used a white matter tract atlas instead of tractography (21). 
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Supplementary Figures 

 
Supplementary Figure 5.1: Flowchart with most important image processing steps. Left side: calculation 

of graph measures and total WMH volumes for mediation analysis. Right side: automated atlas-guided 

tract reconstruction for calculated of tract volumes and tract-specific WMH volumes.  
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Supplementary Figure 5.2: Tracts with significant associations (p<0.05) of tract-specific WMH volume, 

with executive function and attention (A) and memory (B) scores, adjusted for age, sex, education, 

diabetes-status, and cardiovascular risk factors (Model 3). 
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   5 Supplementary Tables 

Supplementary Table 5.1: Associations of cSVD markers with cognition scores.  

 

Supplementary Table 5.2: Associations of cSVD markers with structural connectivity measures.  
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   5 Supplementary Table 5.5: Total tract and tract-specific WMH volumes, and associations of tract specific 

WMH volume with domain-specific cognition. 

 WMH  

Volume [μL] 

Tract 

Volume [mL] 
IPS EF&A MEM 

 Median [IQR] Median [IQR] stβWMH stβWMH stβWMH 

Association      

CGC 3 [0, 74] 23.8 [14.7, 39.7] -0.084** -0.090** -0.064** 

CGH 0 [0, 2] 8.6 [6.5, 11.2] -0.023 -0.021 -0.034* 

IFO 278 [41, 1226] 31.8 [24.7, 38.4] -0.027* -0.038* -0.028* 

ILF 52 [3, 320] 28.6 [23.1, 34.7] -0.030* -0.035* -0.041** 

SLFPT 1 [0, 39] 18.5 [14.5, 23.0] -0.046** -0.029* -0.050** 

SLFT 123 [5, 1208] 60.1 [51.6, 69.0] -0.049** -0.030* -0.058** 

UNC 18 [1, 145] 17.1 [11.9, 23.0] -0.048** -0.036* -0.060** 

Projection      

ATR 19 [1, 140] 6.8 [4.9, 9.1] -0.022 0.017 -0.033* 

STR 48 [3, 347] 20.6 [15.3, 27.0] -0.054** -0.056** -0.048* 

PTR 36 [2, 255] 10.4 [7.3, 13.8] -0.032 -0.023 -0.030 

CST 0 [0, 27] 18.0 [14.1, 21.8] -0.049** -0.042** -0.039* 

Commissural      

Forceps major  51 [1, 499] 6.7 [3.7, 10.7] -0.044** -0.025 -0.044** 

Forceps minor  62 [3, 315] 8.0 [6.2, 9.7] -0.008 -0.026 -0.021 

Adjusted for tract volume, age, sex, education level, MRI date, intracranial volume, diabetes-status, BMI, total-

cholesterol-to-HDL-ratio, lipid-modifying medication systolic blood pressure, antihypertensive medication, and prior 

cardiovascular disease. *indicates p<0.05; **indicates p<0.01. WMH = white matter hyperintensity, IPS = information 

processing speed, EF&A = executive function & attention, MEM = memory, CGC = cingulum of cingulate gyrus, CGH = 

hippocampal part of cingulate gyrus, IFO = fronto-occipital fasciculus, ILF = inferior-longitudinal fasciculus, SLFPT = 

parietal part of the superior-longitudinal fasciculus, SLFT = temporal part of the superior-longitudinal fasciculus, UNC = 

uncinate fasciculus, CST = cortico-spinal tract, ATR = anterior thalamic radiation, PTR = posterior thalamic radiation, 

STR = superior thalamic radiation, Fmaj = forceps major, Fmin = forceps minor. 
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7 Outline  

Multiple cardiometabolic risk factors are associated with chronic diseases, including type 2 diabetes and 

cardiovascular conditions. Accumulating evidence shows that these risk factors are associated with a 

higher risk of late-life cognitive detriments and eventually brain diseases such as dementia. Brain imaging 

in population-based cohort studies plays a key role to reveal underlying mechanism between life style, 

cardiovascular risk factors, and brain alterations, by use of the combined data provided by brain imaging 

and advanced phenotyping. The main objectives of this thesis were twofold. We investigated whether 

cardiometabolic risk factors are associated with novel neuronal imaging markers and evaluated the value 

of structural and functional brain network measures for that purpose. 

This final chapter summarizes, combines, and discusses the main outcomes of this thesis in two 

parts:  

 The influences of cardiometabolic risk factors on brain imaging markers in a population-based 

cohort study; 

 A motivated selection of MR imaging measures and techniques. 

Influences of cardiometabolic risk factors on brain imaging 

markers 

Findings in population-based imaging studies 

In Chapter 2 of this thesis, we conducted a narrative review. In this review, we collected evidence from 

(mostly) cross-sectional MR imaging studies on the associations between cardiometabolic risk factors 

and brain atrophy, cerebral small vessel disease (cSVD), and white matter microstructure alterations. 

Less clear were the associations of an adverse lipid profile, as well as the association of relatively novel 

risk factors including physical inactivity and sedentary behavior, with MRI markers of the brain. In 

particular, the evidence from more advanced MRI measures, such as microstructural, functional, and 

perfusion MRI needs to be extended. Insight into more subtle brain alterations, which may represent 

early markers of brain disease, their change over time, and subsequent brain dysfunction and disease is 

needed to find new treatment targets. 

In Figure 7.1, the gray symbols indicate findings from studies as described in the review in 

Chapter 2. Our results were generally in agreement with literature. However, with this thesis, we were 

able to add to almost all the cardiometabolic risk factor categories structural connectivity and functional 

MRI insights from a large cross-sectional study, as indicated with blue symbols in Figure 7.1. 
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Figure 7.1: Highest level of evidence in the available literature and in this thesis on the associations 

between cardiometabolic risk factors and conventional and advanced MRI measures. Gray symbols 

indicate findings from other studies, and blue symbols the additions from this thesis. 

Findings in The Maastricht Study 

In Chapter 3, we investigated whether hyperglycemia was associated with structural brain connectivity. 

We observed already in the prediabetes phase weaker white matter connections and altered 

organization of white matter networks. More specifically, we found that prediabetes, type 2 diabetes, 

and continuous measures of hyperglycemia were associated with a lower node degree, and thus globally 

fewer or weaker white matter connections. Furthermore, in prediabetes, the local efficiency and 

clustering coefficient were lower, which indicates that there was a weaker local connectivity. In addition, 

type 2 diabetes was associated with higher communicability, which was not yet observed in prediabetes, 

and which may reflect the use of alternative white matter connections to facilitate structural connectivity 

between brain regions. These outcomes support the concept that hyperglycemia, even in the 

prediabetes phase, may be harmful to the brain, and that type 2 diabetes affects the global and local 

organization of brain structures. 

In Chapter 4, we investigated whether physical inactivity and sedentary behavior were 

associated with markers of brain connectivity. We found that objectively measured lower high intensity 

physical activity, but not low intensity physical activity and sedentary time, were associated with lower 

whole brain node degree and node degree in specific brain regions highly specialized in motor function. 

This suggests that high intensity physical activity can slow down structural deterioration in the brain. 

In Chapter 5, we focused on the interrelations of white matter hyperintensities (WMH), white 

matter connectivity, and cognitive function. We found that WMH volume, white matter connectivity, and 

various cognitive functions display significant inter-relationships. In particular, larger WMH volumes were 

associated with lower local network efficiency and worse information processing. The relationship 

between WMHs and information processing speed was mediated by the local network efficiency. In tract 

specific analysis, we found that more WMHs in those white matter tracts that are important for 

information processing, were associated with cognitive slowing. 
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7 In Chapter 6, we investigated whether we could recognize physiological measures in the blood 

oxygen level dependent (BOLD) signal. We found that both neuronal and systemic non-neuronal 

physiological measures are associated with frequency subbands of the measured dynamic fMRI signal. 

Most importantly, the subband analysis showed an association of cognitive performance as well as blood 

pressure variations with the signal of the subband with the frequency range 31.2-62.5 mHz, which is 

usually thought to reflect the signal of spontaneous neuronal fluctuations. Finally, the measured BOLD 

signal is altered in participants with cardiometabolic risk factors, consistent with what was expected from 

vascular impairment which is characteristic for cardiometabolic risk factors. These findings highlight the 

strong intertwining of neuronal and cardiometabolic activity, emphasize the importance of a proper 

selection of the resting-state frequency range, and also advice cautiousness in the interpretation fMRI 

signal changes as pure neuronal signals, especially when  cardiometabolic risk factors are involved. 

Imaging measures and techniques 

In this thesis we used a number of MRI techniques, e.g., structural, diffusion-weighted, and resting-state 

functional MRI, and a variety of analysis techniques, e.g., graph theory, automated atlas-guided fiber 

tractography, and wavelet transformation, which provided various new insights. More specifically, the 

use of diffusion MRI scans to study structural connectivity measures enabled us to find more subtle brain 

alterations than gross brain volume changes. For example in Chapter 4, by using dMRI we were able to 

capture structural alterations, while there were no significant changes in white matter volumes found 

yet. Moreover, we used an automated atlas-guided tract reconstruction method based on whole brain 

fiber tractography, instead of a DTI atlas co-registered to a structural image to determine tract volumes. 

The automated atlas-guided tract reconstruction method has several advantages. Compared to manual 

ROI selection, it is automated, and thus better reproducible and less time consuming for the operator, 

and it enables the selection of tracts for which manual ROI placement is very difficult. Compared to a DTI 

atlas, it uses dMRI data, and thus actual streamlines instead of only structural scans. 

However, the imaging protocol used in this study also has some limitations. In Chapter 5, we 

investigated local tract changes due to WMHs, but as is known, WMHs are situated at locations that are 

typical for ageing populations with cardiometabolic risk factors. Therefore, for specific cognitive domains 

(e.g., information processing speed or memory function), we are restricted to infer on the specific white 

matter tracts with the current distribution of WMHs in this population and cannot infer on the 

susceptibility of other white matter regions, though the whole brain network analysis demonstrated 

widely distributed alterations. To investigate this in more detail a scan protocol with a smaller voxel size 

could be used to refine the fiber tractography, and participants with more severe WMHs could be 

included to study the influence of more widespread WMHs.  

In Chapter 3, 4, and 5, we employed structural connectivity analysis, which is easy to interpret, 

as it describes the white matter network. However, functional MRI (fMRI) techniques can provide more 

insight in the underlying mechanisms, for example in how the brain adapts to white matter damage. It is 

also possible to combine structural and functional connectivity analysis, but that was beyond the scope 

of the current thesis. In line with that, other graph measures could possibly provide more insight. The 

graph measure communicability (used in Chapter 3) could have been added to the analysis in Chapter 5, 

as this measure provides information about the compensatory mechanisms in case of white matter 

damage (e.g., WMHs). 
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   7 A relatively new interesting technique is dynamic functional connectivity (DFC), which is based 

on the observation that functional connectivity changes over time (non-stationarity (Jones, Vemuri et al. 

2012)). Sliding window analysis is the most common used analysis technique in DFC. In this method, FC 

analysis is performed on several signal time series. However, this method is not very suitable for 

population-based research, as interpretation of the data from sliding window analysis is most accurate in 

case-control studies. Another method to conduct DFC analysis is time-frequency analysis. In Chapter 6 of 

this thesis, we employed a technique to perform time-frequency analysis: Wavelet Transformation.  

Clinical implications 

Health perspectives 

Most advanced MRI outcome measures may be able to detect early changes prior to end-organ damage, 

which makes them potentially more useful as response markers for intervention studies than gross 

volumetric data or structural deviations. In this thesis, most associations of cardiometabolic risk factors 

with brain markers were comparable to accelerated brain aging. For instance, in participants with 

prediabetes and type 2 diabetes we found a lower node degree that was equivalent to 2 and 9 years of 

aging, respectively, as compared to participants with a normal glucose metabolism. In terms of cognitive 

impairment, a 0.51 mL larger WMH volume was equivalent to 10 years of cognitive aging, while 1.69 mL 

more WMHs was equivalent to 10 years of network aging in terms of structural connectivity. This 

comparison suggests that the impact of WMHs on the local network topology is approximately three 

times stronger than the impact on cognitive decline. Participants with diabetes had larger WMH 

volumes, higher local efficiency, and lower information processing speed scores compared to non-

diabetic participants. The lower cognitive scores in participants with diabetes were equivalent to 3.3 

years of cognitive aging.  

Furthermore, for physical activity, we showed that objectively measured higher high intensity 

physical activity was associated with both higher global structural connectivity and in specific brain 

regions that are highly specialized in motor function. The difference in whole brain node degree with 5 

minutes less high intensity physical activity per day was equivalent to one year of aging. 

It is known from literature that physical activity increases blood flow to the brain, resulting in 

increased vascularization of the brain, improved supply of nutrients and removal of metabolic waste. 

More specifically, higher levels of physical activity or cardiorespiratory fitness have been associated with 

an increase in cerebral perfusion and cerebral oxygen supply to the prefrontal cortex (Dupuy, Gauthier et 

al. 2015), which is an area involved in motor function (Goldman-Rakic 1987).  

Prevention strategies 

In general, advanced MRI techniques, including microstructural, functional, and perfusion MRI, may 

provide more insight into underlying processes that lead from cardiometabolic risk factors to brain 

dysfunction and disease, compared to structural MRI. These insights may help to develop treatment 

strategies to delay or even prevent brain alterations and eventually brain disease. In addition, early 

biomarkers for brain disease may enable us to identify people at risk, to prevent further escalation to 
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occur in prediabetes, before the clinical diagnosis of type 2 diabetes. Therefore, treatment of 

prediabetes should be considered as a potential target of intervention for prevention of complications of 

type 2 diabetes, including structural brain changes. Furthermore, stimulating physical activity should still 

be considered as target of intervention in the general population, because more high intensity physical 

activity was associated with higher structural connectivity. This can be substantiated, because higher 

levels of physical activity stimulate processes of neurogenesis (formation of new neurons) and 

angiogenesis (formation of blood vessels) (Lei, Wu et al. 2019), and reduce inflammation (Trigiani and 

Hamel 2017). In addition, being physically active has been shown to reduce cardiovascular risk factors 

such as type 2 diabetes and hypertension through increasing neurotropic factors, reducing oxidative 

stress, and/or reducing beta-amyloid formation (Zimmerman, Sutton et al. 2014). Another study based 

on The Maastricht Study data revealed that replacement of 30 minutes of sedentary time per day to 

standing or stepping was associated with lower risk for type 2 diabetes, and more favorable waist 

circumference and BMI, and improved levels of cholesterol and blood glucose (Van Der Berg, Van Der 

Velde et al. 2017). These mechanisms may reduce the incidence of mild cognitive impairment and 

dementia (Gallaway, Miyake et al. 2017, Kennedy, Hardman et al. 2017). 

Methodological considerations 

Population study of brain imaging markers and influences of cardiometabolic 

risk factors 

Strengths of the analysis of cardiometabolic risk factors in this thesis were the large sample size and 

population-based design, and the extensive assessment of the cardiometabolic profile and potential 

confounders. Reduction of residual confounding is of key importance to correctly interpret the results, 

also because cardiometabolic risk factors are interrelated. Specific strengths were the use of HbA1c 

levels and a 2-hr OGTT to accurately characterize glucose metabolism, and the objective measurement of 

physical activity and sedentary behavior as opposed to self-reported questionnaire data, because 

questionnaires are prone to over- or underestimation. 

Limitations were that we cannot infer any conclusion about the causality/temporality of the 

associations found yet due to the cross-sectional design of the study. Therefore, future longitudinal 

studies are needed to address if cardiometabolic risk factors really precede the development of the 

observed brain abnormalities, and interventional studies to study to what extent specific brain 

alterations can be reversed or prevented by improving lifestyle to lower cardiometabolic risk. The 

Maastricht Study is already planning a follow-up to investigate changes over time, but this is a very 

expensive and time-consuming process. Furthermore, participants of The Maastricht Study in general 

were highly educated, intensively treated with regard to cardiovascular risk factors, and mainly of 

Caucasian race, because they were recruited through mass media campaigns, from municipal registries, 

and the regional Diabetes Patient Registry via mailings. This might have led to selective non‐response 

bias, as individuals who choose to participate may be different from individuals who do not wish to 

participate. Additionally, only participants that fulfilled the inclusion criteria for undergoing MRI were 

included, and these individuals had less often a history of prior cardiovascular disease, were younger, 
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   7 were less likely to have type 2 diabetes, were less often smokers, and less often had a low educational 

level, as compared to the study population which did not undergo MRI. This may have led to an 

underestimation of the observed associations, as our study population may have had a lower exposure 

to cardiovascular risk factors as compared to a general population. 

Imaging measures and techniques 

Strengths of MR imaging used in this thesis were the large amount of MRI scans available, the broad 

array of additional analyses, which all gave consistent results, and most findings remained statistically 

significant after adjustment for potential confounders.  

Limitations were that the rs-fMRI scan protocol used in this study was designed for the large 

population-based Maastricht Study, and not for the very specific type of analysis described in Chapter 6. 

Therefore, a commonly used repetition time of 2000 ms was available. However, to filter out cardiac and 

respiratory influences, scans with a shorter repetition time (and thus higher sampling frequency) might 

provide more information, as we were not able to detect to actual cardiac and respiratory frequencies 

from the current dataset. Moreover, we did not acquire the cardiac/respiratory physiological measures 

simultaneously with the rs-fMRI, which might be a constraint of our analysis, but on the other hand, we 

have an extensive data set with longer measurements. Furthermore, biases introduced during MRI data 

acquisition and/or processing might affect the connectivity data used in most chapters of this thesis. In 

the study of de Jong et al. (de Jong, Jansen et al. 2019), the influence of signal-to-noise ratio (SNR), head 

motion, and spatial mismatch between MRI-based anatomy and a brain atlas were investigated. 

According to this study, more head motion and low SNR were negatively associated with structural and 

functional connectivity, respectively, and image quality metrics had larger effects on brain connectivity 

estimates than demographic variables such as age or sex. To minimize confounding effect image quality, 

we adjusted for these image quality metrics. 

Future outlook 

Future studies and follow-up 

Longitudinal studies are needed to address the usefulness of these novel biomarkers in relation to 

disease outcomes. Furthermore, it would be interesting to evaluate whether brain alterations could be 

delayed or even reversed in participants that improved their lifestyle. For this purpose, structural 

connectivity and tract-specific analysis should be repeated and compared between time points. 

Additionally, the suggestion of performing functional connectivity analysis on both baseline and follow-

up data, in comparison with the SC data could be of great additive value, as brain function relies on the 

interplay of both structure and function. The future plans of The Maastricht Study are to start in fall 2020 

with inviting all the participants for follow-up measurements and MRI assessments. 
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7 Other sequences and measures 

With respect to the scanning protocol, other novel MRI approaches, such as dynamic contrast enhanced 

(DCE) MRI, to investigate blood-brain-barrier leakage; magnetic resonance spectroscopy (MRS), to 

investigate the metabolic characteristics of brain alterations; or ultra-high field MRI (>3Tesla) might 

provide alternative ways to elucidate the early signs and complex pathophysiology of brain diseases. 

However, not all of these options (e.g., contrast, high field) are feasible in a population-based setting due 

to ethical issues as for instance potential side effects. Furthermore, it would be interesting whether we 

could improve the rs-fMRI scan protocol in order to distinguish systemic circulatory dysfunction in 

pathologies such as hypertension and diabetes from the intrinsic neurogenic and neurovascular coupling 

effects in the rs-fMRI signal. 

Conclusion  

This thesis summarizes and extends the existing evidence on associations between cardiometabolic risk 

factors and subtle brain changes as assessed by structural and advanced imaging modalities. More 

specifically, in participants with several cardiometabolic risk factors, we found structural and functional 

network alterations beyond visible brain lesions. Future studies should clarify to which extent the 

observed brain alterations are predictive for health regression and are suitable biomarkers for 

monitoring treatment and prevention strategies or are merely adaptive changes to compensate for initial 

brain impairments. 
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S Cardiometabolic risk factors, such as hyperglycemia, physical inactivity, sedentary behavior, central 

obesity, hypertension, and dyslipidemia, increase the risk of chronic diseases, such as (pre)diabetes and 

dementia. In particular, these risk factors may affect the smallest brain vessels and are thought to lead to 

cerebral small vessel disease (cSVD) and neurodegeneration (brain atrophy), which represent early 

features in the pathophysiology of cognitive decline and dementia. Currently, it is not fully understood 

how these risk factors exactly contribute to cognitive decline. Therefore, this thesis aims to gain more 

insight into the brain alterations underlying cognitive decline and brain pathology.  

Structural magnetic resonance imaging (MRI) techniques are able to detect macroscopically 

visible brain abnormalities, such as microvascular lesions and atrophy. More advanced MRI techniques 

also provide detailed insights into subtle brain changes, and thus early development of pathology. In this 

thesis, we focus on two advanced MRI techniques: diffusion-weighted MRI to analyze the structure and 

efficiency of the constellation of white matter fiber tracts, and functional MRI to study brain activity. We 

used population data from The Maastricht Study, which provided us a combination of advanced 

phenotyping and brain MRI data. 

Chapter 1 provides a general introduction on the associations between cardiometabolic risk 

factors, the developing, or expressing alterations of the brain tissue, and the emerging health detriments 

and disorders. Thereafter, the added value of MRI and brain population imaging studies is discussed. 

Furthermore, an explanation of the advanced MRI and analysis methods used in this thesis, and an 

overview of European population imaging studies with brain imaging are provided.  

In Chapter 2, a narrative review is conducted that summarizes the existing evidence on 

associations between cardiometabolic risk factors and subtle brain changes as assessed by structural and 

advanced MRI. Clear evidence was found that hyperglycemia, physical inactivity, central obesity, and 

hypertension are associated with both structural and functional brain alterations, while the role of 

dyslipidemia is far less clear. However, longitudinal evidence that assesses temporality of the 

associations with more advanced and thus more precise brain imaging methods is needed to improve 

insights into the complex etiology of brain diseases. 

In Chapter 3, the association of prediabetes and type 2 diabetes, with white matter network 

characteristics, in terms of the number (node degree) and organization (graph measures) of the white 

matter connections was investigated. The findings in this chapter indicated that prediabetes and type 2 

diabetes are associated with fewer white matter connections, and weaker organization of the 

corresponding networks. Additionally, type 2 diabetes was associated with higher communicability, 

which was not yet observed in prediabetes, which may reflect the use of alternative connections. These 

findings support the concept that hyperglycemia, even in the prediabetes phase, may be harmful to the 

connectivity of the brain, and that type 2 diabetes affects the global and local organization of brain 

structures.   

In Chapter 4, we investigate the association of objectively measured low- and high-intensity 

physical activity and sedentary time with structural connectivity, both throughout the whole brain, and in 

brain regions involved in motor function, as a measure of white matter integrity. Objectively measured 

lower high-intensity, but not lower low-intensity physical activity and higher sedentary time, were 

associated with lower node degree of the whole cerebrum and in specific brain regions highly specialized 

in motor function. These observations suggest that more high-intensity physical activity may preserve 

structural brain connectivity, which needs to be demonstrated in future studies following stimulation of 

physical activity. 
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  S In Chapter 5, we investigate the association between cSVD lesions, cerebral networks, 

cognitive function, and cardiometabolic risk factors. The association found between white matter 

hyperintensities and information processing speed was partly mediated by the local network efficiency. 

Locally, larger white matter hyperintensity volumes in white matter tracts that are important for 

information processing were associated with cognitive slowing. These observations provide insight in 

how white matter pathology in aging individuals with cardiometabolic risk factors are biologically related 

to cognitive decrements. 

In Chapter 6, we decompose the dynamic resting-state fMRI brain signal into wavelet 

components and explore whether the various physiological measures, including cardiac activity, 

respiration, myogenic activity, neurogenic activity, and endothelial activity, are associated with the 

wavelet frequency subbands. Physiological measures were associated with the energy of certain 

frequency subbands of the fMRI signal spectrum. Cognitive performance and blood pressure variations, 

as measures of neurogenic and myogenic activity respectively, were associated with the energy of the 

frequency subband 3 (31.2-62.5 mHz). Furthermore, cardiac and respiratory activity were associated with 

the energy of high frequency subband 1 (125-250 mHz), and endothelial activity with the energy of low 

frequency subbands 6 and 7 (<10 mHz). Finally, the measured BOLD signal, including the frequency 

component relevant for neurogenic activity, was associated with cardiometabolic risk factors. These 

findings highlight the influence of systemic physiologic fluctuations to the dynamic BOLD signal, the 

strong intertwining of neuronal, vascular, and cardiometabolic activity and emphasize the importance of 

a proper selection of the resting-state frequency range in studies on cognitive function applying brain 

fMRI. 

Finally, Chapter 7 combines and discusses the key findings of this thesis. In addition, 

methodological considerations and directions for future research are addressed. 
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S Cardiometabole risicofactoren, zoals hyperglykemie, lichamelijke inactiviteit, sedentair gedrag, 

overgewicht, hoge bloeddruk (hypertensie), en hoog cholesterol (dyslipidemie), vergroten het risico op 

chronische ziektes, zoals (pre)diabetes en dementie. Deze risicofactoren tasten vooral de kleine vaatjes 

in de hersenen aan en men vermoedt dat ze kunnen leiden tot “cerebral small vessel disease” (cSVD) en 

neurodegeneratie (hersenatrofie), wat vroege kenmerken zijn van het ontstaan van cognitieve 

achteruitgang en dementie. Momenteel is het nog niet volledig duidelijk hoe deze risicofactoren precies 

bijdragen aan cognitieve achteruitgang. Daarom is het doel van dit proefschrift meer inzicht krijgen in de 

hersenveranderingen die ten grondslag liggen aan cognitieve achteruitgang en hersenaandoeningen. 

Structurele magnetic resonance imaging (MRI) technieken zijn in staat om macroscopisch 

zichtbare hersenafwijkingen, zoals microvasculaire laesies en atrofie te detecteren. Meer geavanceerde 

MRI technieken kunnen ook inzicht geven in subtielere hersenverandering, en dus vroege ontwikkeling 

van pathologie. In dit proefschrift focussen we op twee geavanceerde MRI technieken: diffusie-gewogen 

MRI om de structuur en efficiëntie van witte stof verbindingen te analyseren, en functionele MRI om 

hersenactiviteit te onderzoeken. We hebben hiervoor populatie data van De Maastricht Studie gebruikt, 

wat ons een combinatie van geavanceerde fenotypering en hersen MRI scans overleverde. 

Hoofdstuk 1 geeft een algemene inleiding over de associaties tussen cardiometabole 

risicofactoren, de ontwikkelende of al tot uiting gekomen veranderingen van het hersenweefsel, en het 

ontstaan van gezondheidsschade. Daarna wordt de toegevoegde waarde van MRI en populatie studies 

met beeldvorming van het brein bediscussieerd. Bovendien worden de geavanceerde MRI en analyse 

methoden die gebruikt worden in dit proefschrift uitgelegd, en wordt er een overzicht gegeven van 

Europese populatie studies met hersenscans.  

In Hoofdstuk 2, wordt de beschikbare literatuur over associaties tussen cardiometabole 

risicofactoren en subtiele hersenveranderingen, onderzocht met structurele en geavanceerde MRI 

samengevat. Er werd gevonden dat hyperglykemie, lichamelijke inactiviteit, centrale obesitas, en 

hypertensie geassocieerd zijn met zowel structurele als functionele hersenveranderingen, terwijl de 

invloed van dyslipidemie veel minder duidelijk is. Er zijn echter longitudinale studies nodig die de 

temporaliteit van de associaties met meer geavanceerde en dus nauwkeurigere beeldvormingsmethoden 

voor de hersenen beoordelen, om inzichten in de complexe etiologie van hersenziekten te verbeteren. 

In Hoofdstuk 3 worden de associaties van prediabetes en type 2 diabetes met structurele 

netwerk eigenschappen, in termen van het aantal (node degree) en de organisatie (graafmaten) van de 

witte stof verbindingen onderzocht. De bevindingen in dit hoofdstuk gaven aan dat prediabetes en type 2 

diabetes geassocieerd zijn met minder witte stof verbindingen, en een slechtere organisatie van de 

bijbehorende netwerken. Daarnaast was type 2 diabetes geassocieerd met een hogere 

“communicability”, wat het gebruik van alternatieve verbindingen reflecteert, en dit werd nog niet 

waargenomen in het voorstadium prediabetes. Deze bevindingen ondersteunen de opvatting dat 

hyperglykemie, zelfs in de prediabetes fase, schadelijk kan zijn voor de verbindingen in de hersenen, en 

dat type 2 diabetes de globale en lokale organisatie van hersenstructuren beïnvloedt. 

In Hoofdstuk 4 onderzoeken we de associatie tussen objectief gemeten laag- en hoog-

intensieve lichamelijke activiteit en zittijd en structurele connectiviteit, zowel voor het hele brein als in 

hersengebieden die belangrijk zijn voor motor functie. Objectief gemeten lagere hoog-intensieve, maar 

niet laag-intensieve lichamelijke activiteit en zittijd, waren geassocieerd met lagere node degree voor het 

hele cerebrum en in specifieke hersengebieden die gespecialiseerd zijn in motor functie. Deze 

bevindingen suggereren dat meer hoog-intensieve lichamelijke activiteit structurele hersen connectiviteit 
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   S kan behouden. Dit moet worden bevestigd door toekomstige studies na het stimuleren van meer 

lichamelijke activiteit. 

In Hoofdstuk 5, onderzoeken we de associatie tussen cSVD laesies, cerebrale netwerken, 

cognitieve functie, en cardiometabole risicofactoren. De associatie die gevonden werd tussen witte stof 

laesies en informatie verwerkingssnelheid werd deels gemedieerd door de lokale netwerk efficiëntie. 

Lokaal, waren grotere witte stof laesie volumes in verbindingen belangrijk voor informatie 

verwerkingssnelheid geassocieerd met cognitieve vertraging. Deze bevindingen geven inzicht in hoe 

witte stof pathologie in oudere personen met cardiometabole risicofactoren biologisch gerelateerd is aan 

cognitieve achteruitgang. 

In Hoofdstuk 6, ontbinden we het dynamische resting-state fMRI signaal in wavelet 

componenten en onderzoeken we of verschillende fysiologische maten, zoals hartactiviteit, ademhaling, 

myogene activiteit, neurogene activiteit, en endotheel activiteit, geassocieerd zijn met wavelet 

frequentie subbanden. Fysiologische maten waren geassocieerd met de energie van bepaalde frequentie 

subbanden van het fMRI signaal spectrum. Cognitieve functie en bloeddruk variaties, als maten van 

respectievelijk neurogene en myogene activiteit, waren geassocieerd met de energie van frequentie 

subband 3 (31.2-62.5 mHz). Bovendien waren hartactiviteit en ademhaling geassocieerd met de energie 

van hoge frequentie subband 1 (125-250 mHz), en endotheel activiteit met de energie van lage 

frequentie subbanden 6 en 7 (<10 mHz). Tenslotte was het gemeten BOLD signaal, inclusief de frequentie 

component relevant voor neurogene activiteit, geassocieerd met cardiometabolic risicofactoren. Deze 

bevindingen benadrukken de invloed van systemische fysiologische schommelingen op het dynamische 

BOLD signaal, de sterke verstrengeling van neuronale, vasculaire, en cardiometabole activiteit, en 

accentueren het belang van een goede selectie van de resting-state frequentie range in studies naar 

cognitieve functie met fMRI. 

Tenslotte worden in Hoofdstuk 7 de belangrijkste bevindingen van dit proefschrift 

gecombineerd en bediscussieerd. Daarnaast worden methodologische overwegingen en ideeën voor 

toekomstig onderzoek gesproken. 
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IP Main findings 

In this thesis, we investigated whether life style related risk factors are associated with novel neuronal 

imaging markers and evaluated the value of structural and functional brain network measures for that 

purpose. The life style related risk factors, also called cardiometabolic risk factors, studied in this thesis 

are (pre)diabetes, physical inactivity, high sedentary time, high blood pressure, obesity, and high 

cholesterol. We summarized and extended the existing evidence on associations between 

cardiometabolic risk factors and subtle brain changes as assessed by structural and advanced MRI. More 

specifically, we found that high blood sugar was associated with structural brain alterations, even in the 

prediabetes phase. Physical inactivity was also associated with structural brain alteration, especially in 

brain regions highly specialized in motor function. Furthermore, we found an interrelation of brain 

damage in the form of white matter hyperintensities (WMH), structural brain alterations, and cognitive 

function. In particular, WMHs in structural brain connections important for information processing speed 

were associated with cognitive slowing. Finally, we observed that neuronal and non-neuronal 

physiological signals could be recognized in the functional MRI signal, and that this signal is altered in 

people with cardiometabolic risk factors. To show the relevance of our findings, we can express brain 

changes in years of aging. The impact on the amount of connections between regions in prediabetes and 

type 2 diabetes was equivalent to 2 and 9 years of aging, respectively, as compared to participants with a 

normal glucose metabolism, and for cognition scores of participants with diabetes this was equivalent to 

3.3 years of cognitive aging. Physical inactivity also led to brain changes, participants with on average 5 

minutes less high intensity physical activity per day had a lower node degree equivalent to one year of 

aging. As cardiometabolic risk factors are also associated with small lesions in the brain, we also made 

such a comparison in participants with WMH presence. A larger WMH volume of 0.51 mL was equivalent 

to 10 years of cognitive aging, while a larger WMH volume of 1.69 mL was equivalent to 10 years of 

network aging. 

Relevance 

Due to the aging population, there is an increase in age-associated conditions such as cognition problems 

and Alzheimer’s disease. However, there is currently no medication available for treatment of cognitive 

decline. Accumulating evidence shows that cardiometabolic risk factors are associated with a higher risk 

of late-life cognitive detriments and eventually brain diseases such as dementia. Additionally, 

cardiometabolic risk factors are associated with chronic diseases, including type 2 diabetes, heart 

disease, and renal failure. In The Netherlands, more than 1.2 million people have type 2 diabetes, which 

is 1 in 14, and this group increases with 1000 every week. Even more people, over 1.6 million, suffer from 

cardiovascular conditions. As cardiometabolic risk factors are often behavioural and therefore 

modifiable, these are an interesting target for prevention of brain diseases. Therefore, it is important to 

reveal underlying mechanism between life style, cardiovascular risk factors, and brain alterations. Brain 

imaging in population studies is ideal for this due to the use of the combined data provided by brain 

imaging and the availability of multiple other characteristics of the participants.  

The results from the advanced MRI techniques presented in this thesis, provide more insight 

into underlying processes that lead from cardiometabolic risk factors to brain dysfunction and disease, 
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  IP compared to structural MRI. Since we were able to detect early brain changes, these insights may help to 

develop treatment strategies to delay or even prevent brain alterations and eventually brain disease. 

Simply stimulating a healthier lifestyle, by for example more physical activity or a diet, might already 

contribute to prevention of future brain alterations. In addition, early signs for brain disease may enable 

us to identify people at risk, to prevent further escalation to functional problems and eventual disease. 

Additionally, these findings acquired from advance brain MRI also emphasize the importance of further 

development of MRI scan protocols and analysis techniques. 

Target group 

The findings from this thesis are important for the general aging population, but probably also for more 

specific target groups. This thesis extended the insight into the association of cardiometabolic risk factors 

and brain alterations, and the results underline the importance of promoting a healthier lifestyle and its 

importance in the battle to prevent brain disorders. More specifically, the finding that modifiable 

cardiometabolic risk factors are associated with brain alterations might be interesting for healthcare 

policy makers, for instance, to promote physical activity in order to prevent for brain alterations. The 

new insights on the early MR imaging markers is interesting for neuroscientists, in order to early detect 

brain abnormalities before onset of cognitive problems, but also for the MRI vendors, to improve their 

software, and finally, the pharmaceutical industry might be interested, as these new insights emphasize 

the importance of treatment of cardiometabolic risk factors. All studies in this thesis were conducted in 

the large population-based Maastricht Study. The Maastricht Study is characterized by an extensive 

phenotyping approach. This made it possible to obtain findings that are likely also applicable to the 

general population, in particular to middle-aged people with cardiometabolic risk factors.  

Activities 

The findings from this study could be used by policy makers to inform, to comprehend and to convince 

people that improving lifestyle is not only good for their general health, but also specifically for their 

brain. The Maastricht Study is also committed to informing the participants by its website and the local 

media. For instance, the findings from Chapter 3 of this thesis were published in a local newspaper (de 

Limburger), and national media (Elsevier and Libelle). Furthermore, there is an annual Maastricht Study 

symposium, which is an interactive meeting for the participants of the study to inform them about the 

current state of the study and the most recent findings.  
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IP Future directions 

Future longitudinal studies should clarify the usefulness of novel biomarkers in relation to disease 

outcome and to which extent the observed brain alterations are predictive for health regression. 

Furthermore, the suitability of biomarkers for monitoring treatment and prevention strategies, and 

whether brain changes are merely adaptive and able to compensate for initial brain impairments, needs 

to be addressed. The Maastricht Study will start in fall 2020 with inviting all the participants of The 

Maastricht Study for follow-up measurements and MRI assessments. Finally, intervention studies will be 

essential to evaluate whether brain alterations could be delayed or even reversed in people that 

improved their lifestyle.  
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