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   Introduction             1 
 

 
rain health can theoretically be defined as the capacity to perform cognitive tasks 

such as communication, decision making, learning and memory, sensation and 

perception, regulating emotions, and having the ability adapt to the environment. Poor 

brain health eventually manifests clinically as cognitive impairment or dementia, with 

underlying causes including a high burden of cardiovascular risk factors, stroke, 

Alzheimer’s disease, neurodegenerative disorders and other causes of vascular cognitive 

impairment. Cumulative evidence indicates that the accrual of sub-clinical injury and 

exposure to vascular risk factors throughout life diminishes optimal brain function and 

increases the risk for neurological disease.  

There is currently no clinical measure for brain health especially before overt clinical 

manifestation, leading to the increasing urgency for tools that can detect covert brain injury, 

and define optimal brain health. 

 
 
 
 
 
 
 
 
 
 

B 
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In Search of Brain Health 

Cardiovascular disease (CVD) remains the leading cause of mortality in the United 

States. Stroke and dementia are the leading causes of adult disability worldwide, and the 

5th and 6th leading causes of mortality respectively in the United States1. Furthermore, CVD 

produces a great health and financial burden globally, and accounts for about $351.2 billion 

in direct and indirect costs in the United States annually, with costs projected to increase 

sharply for adults 65 and older due to increasing life expectancy1.  

While these diseases have different etiologies and present with different clinical 

manifestations and prognosis, converging evidence increasingly supports the idea of CVD 

as a common pathophysiological origin of cerebrovascular disease. Regional variation in 

CVD, stroke, and Alzheimer Disease mortality has consistently followed a similar pattern 

(figure1) with greater age-adjusted mortality in the southern states, commonly called the 

“stroke belt”, potentially indicating a complex interplay between cerebrovascular and 

cardiovascular health. Modifiable Cardiovascular risk factors (CVRF) like diabetes, 

hypertension, hyperlipidemia, physical inactivity, obesity and smoking, have been 

continually associated with cognitive decline, cardiovascular, and cerebrovascular disease, 

stroke, and dementia.  Cumulative risk factors act synergistically and further increase the 

risk for cardio- and cerebrovascular diseases. An increasing majority of the population are 

living with CVRF that increase the risk for cardio- and cerebrovascular events.  

Although CVD is the leading cause of mortality in the US, there is evidence of 

declining rates of CVD mortality, resulting in a projected increase in life-expectancy, 

which creates the need for strategies to maintain cognitive health,  improve healthy ageing 

and brain health. Maintenance of cognitive health in ageing predicts quality of life, and 
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independence.  However, despite declining rates of CVD mortality2, there is an increasing 

prevalence of CVRF and cardio- and cerebrovascular disease in younger adults3. This trend 

also leads to the need for potential preventative therapies to maintain brain health, and ways 

to define, and detect suboptimal brain health before overt manifestation of clinical 

symptoms.  

 

 
Figure1. Age-adjusted patterns of CVD, Stroke, and Alzheimer Disease mortality among 
US states in 2017. (https://www.cdc.gov/nchs/pressroom/stats_of_the_states.htm ) 
 

There is vast observational evidence from longitudinal studies relating CVRF to 

development of cognitive impairment. The Maine-Syracuse Longitudinal Study followed 

972 community-based individuals (23-98 years) and showed that smoking, obesity, and 

poor diet were independently associated with poor cognitive performance even after 

adjusting for age, education and gender4. The Coronary Artery Risk Development in 

Young Adults5 (CARDIA) study followed 2,932 participants (18-30 years at baseline) for 

25 years and showed that participants who maintained cardiovascular health; measured 

through body mass index, diet score, smoking, physical activity, total cholesterol and blood 

pressure; in young adulthood had better cognitive function in midlife. The Framingham 

Heart Study - a 71 year ongoing CV study in Framingham, Massachusetts, has established 

extensive risk factors for CVD and stroke6. In a subset of the cohort, 2175 offspring from 
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the original Framingham cohort (mean age 60.7 years), individuals with multiple 

cardiovascular risk factors; measured as the Framingham 10 year stroke risk (calculated 

from age, systolic blood pressure, antihypertensive medication, diabetes, cigarette smoking 

status, history of cardiovascular disease, atrial fibrillation (AF), and left ventricular 

hypertrophy (LVH) as determined by ECG), as well as total serum cholesterol (mm/dL), 

body mass index, and self-reported mean number of drinks per day; exhibited greater 

cognitive deficits7. Furthermore, factors such as socioeconomic status, diet, psychological, 

medical and genetic factors may also influence brain integrity thus determining cognitive 

abilities, and cognitive changes through life. For instance, genetic factors may either 

predispose and individual to CVRF, or afford an individual a higher cognitive reserve, and 

with it a higher resistance to damage. The Lothian birth-cohort studies have demonstrated 

a relationship between WMH in late age to lower childhood IQ8. Childhood IQ was 

determined to be the strongest predictor of late life cognitive ability, indicating at least to 

some extent, a predefined brain architecture that may have neuroprotective properties, or 

influence cognitive decline later in life.  

These and many more longitudinal studies suggest that CVRF burden has a 

profound impact on cognition. While the etiopathogenesis of brain damage as a result of 

CVRF is still under investigation, one promising theory is that CVRF cause micro- and 

macroangiopathic damage that decrease central nervous system blood supply, causing 

cellular damage that in the white matter manifest as white matter hyperintensities (WMH) 

on T2-weighted magnetic resonance imaging, and is associated with cognitive decline. 

While the pathophysiology of WMH is not yet resolved, evidence suggests that 
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mechanisms of action involve hypoperfusion, and neuroinflammation, and elucidation of 

which may lead to better targeted preventative, or otherwise curative therapies. 

Pathway to neurodegeneration: Insight from animal models and histopathology 

An accumulation of evidence indicates that the genesis of cognitive decline 

involves the disruption of the cortical angiome, the three-dimensional microvasculature 

responsible for gaseous exchange in neuronal cells 9.  

The human brain, while making up only 2% of the human weight, consumes about 

20% of energy even at rest 10, 11. The energy consumed goes into generating action 

potentials, neurotransmitter release and recycling, however a large portion of the energy 

goes into maintaining resting potentials via active transport of ions across the membrane 

11. Neuronal computation is therefore energetically costly, requiring an extensive and 

reliable vascular architecture to meet these demands, and to dispose of by-products of brain 

activity and prevent toxic accumulation of waste products. The cortical vasculature 

transporting oxygenated blood to the brain begins from the circle of Willis, whence the 

great cerebral arteries including the posterior cerebral artery, the middle cerebral artery, 

and the anterior cerebral artery arise; forming a planar network of extensively 

interconnected pial arterioles that cover the entire surface of the cortical mantle and can 

compensate for blockage in a few branches of the network. Radially penetrating arterioles 

connect the cortical network to an underlying three-dimensional network of microvessels, 

which are in-turn drained by penetrating venules that transport the de-oxygenated blood to 

the cortical surface and into the central sinus12. The three-dimensional microvasculature is 

responsible for a majority of metabolite and gaseous exchange between the brain cells and 

the vascular network. While the topological organization of this vast network is yet 
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uncharted, recent promising animal work indicate a non-columnar, lattice network of the 

cortical angiome12 that deviates from the neural architecture, with a triad connectivity 

pattern and inbuilt loops that limits disruption of blood flow, and enables compensation to 

down- or upstream regions from the blockage.   

Cerebral hypoperfusion results in ischemia, accompanied by neuronal dysfunction  

and cell death, which undoubtedly leads to large- and small vessel pathologies as well as 

cerebral microinfarcts observed in aged cognitively normal individuals and those with high 

CVRF burdens, as well as in a myriad of cerebrovascular pathologies such as vascular 

dementia, AD, vascular parkinsonism, and stroke. Large- and small vessel pathologies may 

manifest as regions of hyperintensity on T2-weighted MRI scans, but cerebral 

microinfarcts cannot currently be observed in-vivo using neuroimaging techniques. 

Although brain microinfarcts can only be observed during autopsy, advances in 

neuroimaging now enable us to infer micro- and macro-structural changes on brain white 

matter in vivo.  

Early stages of CVRF maybe accompanied by microvascular ischemia and subtle 

reductions in blood flow that nonetheless already cause diffuse neuronal dysfunction and 

brain injury and could have far reaching disruption of brain function. Animal models of 

CVRF, and microvascular injury can help elucidate the pathophysiological consequences 

of CVRF13. The db/db mouse model for diabetic dyslipidemia develop obesity, fasting 

hyperglycemia, and hyperinsulinemia and present with severe cerebrovascular pathology, 

that includes aneurysms and small strokes that in turn leads to severe cognitive impairment 

14. A mixed model of vascular dementia, with elements of both AD and vascular 

pathologies; the db/db mouse model crossed with the Aβ overexpressing mouse line, to 
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produce a morbidly obese mouse, with hypertension, type 2 diabetes mellitus with 

hyperglycemia, that showed profound cognitive deficits in the Morris Water Maze13. The 

authors conclude that diabetes and obesity in the mice leads to aberrant angiogenesis and 

unstable vasculature that is prone to ischemia and strokes. Models of hypertension develop 

spontaneous lesions and hemorrhages at around 9-12 months of age 15, with persistent 

hypoperfusion, weakened microvasculature, hypertension induced vascular remodeling 

and thickening of vascular walls, increasing susceptibility to microhemorrhage, vascular 

occlusion, and stroke 16. Microinfarcts and small strokes observed in these models of 

CVRF; and usually observed in individuals with cerebrovascular diseases such as 

atherosclerosis, arteriolosclerosis, and cerebral amyloid angiopathy; have been shown to 

contribute to vascular cognitive impairment and dementia in humans, with greater 

microinfarct burden associated with an increased likelihood of antemortem cognitive 

impairment17. These microinfarcts are macroscopically invisible and largely go undetected 

by conventional neuroimaging. Postmortem studies show a widespread distribution of 

microinfarcts invisible to the naked eye17, suggesting that these silent lesions that result in 

asymptomatic cerebrovascular disease, should be identified before overt clinical 

symptoms. Animal models of cerebral microinfarcts such as laser- or optically induced 

microlesions, and targeted photothrombosis reveal diffuse and lasting neural and 

hemodynamic deficits 18, necessitating the elucidation of mechanisms by which 

microinfarcts contribute to vascular cognitive impairment. Other studies further 

demonstrate that distributed microinfarcts also disrupts the brain’s glymphatic system19; a 

perivascular network that recirculates CSF through the brain parenchyma and clears 

interstitial solutes like Aβ and tau during rest; and whose failure is widely thought to be 
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related to AD pathology. The authors conclude that microinfarcts may trap proteins and 

other interstitial solutes within the brain parenchyma, thereby enabling Aβ plaque 

formation. Microinfarcts also affect white matter myelin, cause axonal damage, and 

reduced protein synthesis, and result in atrophy of neuronal dendrites.  

Collectively, this data indicates that CVRF affects the cortical vasculature leading to 

chronic cerebral hypoperfusion, resulting in cortical microinfarcts and small vessel disease, 

and contributes to the development of several cerebrovascular diseases vascular dementia, 

vascular parkinsonism, stroke, and has also been shown to accompany AD pathology 20. 

White matter maybe particularly vulnerable to microvascular damage, 

hypoperfusion and ischemia because of low collateral supply and a reduction in the 

vascular density as suggested by the cortical angioma. Although one quarter of all stroke 

occur in the white matter, it is still of importance because even small white matter damage 

can cause disconnection between critical grey matter regions, causing diffuse, widespread 

damage beyond the location of the stroke lesion. In particular, long-range white matter 

fibers; which are energetically more demanding, and therefore less numerous; may have 

an increased vulnerability to damage, since they span a larger territory and may therefore 

be supplied by different pockets of the vasculature, and generally have a higher probability 

for infarction. Optimal brain health is considered as the absence of overt vascular and 

neurodegenerative injury; observed in stroke, AD and aging; and the absence of white 

matter hyperintensities and small vessel disease; as observed in CVRF 21. Recently, optimal 

brain health also includes the absence of subclinical injury, microinfarcts, and silent strokes 

that are not readily detected by existing neuroimaging techniques, demonstrating the need 

for development of quantifiable tools and methods that can detect brain injury even before 
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overt clinical manifestation; to either prevent further degeneration, or slow down cognitive 

decline; and to improve on predictive models of functional recovery after brain injury.  

Principle organization of complex networks 

The human brain is a self-adapting complex system that gives rise to a rich 

repertoire of functionality such as movement, sensation and perception, memory, emotion, 

and cognition, from an immutable neuronal architecture. The emergence of complex 

functionality from such a fixed anatomy remains one of the major mysteries of 

neuroscience. The emergence of this functionality may lie in the brain’s topological 

architecture; the organization of white matter tracts that link disparate grey matter regions; 

that is determined not only by evolutionary adaptation and the organism’s genetic code but 

is also heavily influenced by the organism’s ontology. This means that diverse 

functionality, resilience to damage, efficient information processing and ultimately brain 

health, is characterized by an optimal topological organization of the complex network, 

and deviations from this optimal topological structure may predict cognitive decline.  

Advances in neuroimaging and computational neuroscience now enable us to non-

invasively probe the macroscopic organization of the brain and using diffusion-weighted 

MRI or resting state functional MRI, build a comprehensive map of neural connections in 

the brain that describe the structural or functional connections respectively between cortical 

and sub-cortical brain regions. This map can then be abstracted into a connectivity matrix 

called the connectome, with the nodes representing brain regions and edges, the 

connections between the regions. Models of optimal structural and functional connectivity 

that give rise to behavior and cognition can then be tested using graph theory and complex 

network analysis, which provide a powerful measure of the topological organization, and 
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interaction between different brain regions. Metrics such global and local efficiency, 

modularity, small worldness are often used to characterize network properties, and provide 

measurements that can be compared between different groups and patient populations to 

provide insight into neurological and developmental conditions. Complex network analysis 

reveals that the human brain networks display characteristics of efficient wiring and an 

efficient communication architecture, with segregated, highly connected modules, 

integrated by a few highly connected hubs 22-24.  Modularity is a property that describes the 

segregation and integration of complex networks, where modules are made up of highly 

interconnected brain regions that are sparsely connected to other regions or modules 25. 

Segregation allows for functional specialization of highly specialized processes such as 

word production, while integration allows for transfer of information between functional 

modules, giving rise to distributed processes such as language, that involves integration of 

various domains of functional specialization. While brain networks are wired to minimize 

cost, optimization algorithms have shown that neural systems are not exclusively optimized 

for minimal global wiring due to the existence long-range projections in neural networks 

that increase total wiring cost, but facilitate short communication paths and minimize 

processing steps 26. The presence of these projections produces a non-random, non-regular, 

small world organization, with an underlying power law distribution that enables functional 

specialization, and functional integration of anatomically disparate regions. Brain networks 

are therefore wired to minimize wiring costs, while maximizing information processing 

and efficiency (figure 2).  
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Figure 2. Brain networks have a 
complex topology that favors 
global integration by including a 
few high-cost long-range 
connections that connect 
anatomically disparate regions, 
while minimizing wiring cost22. 
 

 

The topological organization changes with aging and development, brain injury, or 

as a result of genetic abnormality. Deviations from this optimal structure can be captured 

by network analysis and can either predict disease progression, recovery after injury, 

treatment efficacy, or detect neuronal correlates of cognitive deficits before overt clinical 

manifestation.   

Brain network analyses reveal diagnostic properties of network disorders that 

significantly differ from normally developing brain networks. Genetic disorders like 

Schizophrenia present with an altered structural and functional connectivity, with reduced 

modularity27 and small worldness28 compared to healthy controls, implying reduced local 

communication, but greater global communication, which would suggest a shift towards 

randomization of the topology and greater connection cost (figure 2), consistent with 

abnormal axonal growth and insufficient synaptic pruning29, that have been suggested as 

the pathogenesis of schizophrenia. Other clinical disorders such as autism, obsessive 

compulsive disorder, also show aberrant topological organization that deviated from 

normal populations. Furthermore, disorders that result from oxidative stress to the brain 

like Alzheimer’s disease, stroke, and CVRF also manifest with network topology 

abnormalities. If the pathology prevents sufficient supply of oxygen and nutrients to brain 

cells, and prevents the brain from meeting its metabolic demand, then it is expected that 
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metabolically expensive nodes (such as hubs), and edges (such as long-range connections), 

will be particularly vulnerable to functional disruption22. Alzheimer’s disease is 

characterized by a disrupted neuronal connectivity with network hubs such as the posterior 

cingulate, temporal and orbitofrontal cortices,  initially impacted by Aβ deposits30, and 

micro- and macrostructural white matter abnormalities31, resulting in the overall disruption 

of large-scale white matter networks. CVRF result in microinfarcts (that may not be 

detectable by standard neuroimaging methods), and small vessel damage that results in 

diffuse injury throughout the brain, undoubtedly affective global network connectivity, that 

can be detected using network analysis. In participants with CVRF, metabolically 

demanding long-range fibers are reduced with increasing CVRF co-occurrence compared 

to a non-CVRF cohort. This reduction in long-range fibers was found to be associated with 

pre-clinical cognitive decline 32.  

Network disruption therefore plays a central role in the pathogenesis of cognitive 

decline, both in dementia33, as well as predicting the severity of language deficit in chronic 

stroke34. This data suggests that network science offers compelling and reliable measures 

of the decline of brain health either as a result of a genetic condition, conditions acquired 

during development, or later in life.  Consequently, this emerging literature demonstrates, 

a compelling association between brain network organization and disease, providing a 

target for pharmacological and non-pharmacological interventions from a public health 

standpoint. In particular, the brain’s trade-off between wiring costs and topological 

efficiency seems to be an important element in the emergence and maintenance of 

cognition, with a foray towards the lattice or random arrangement resulting in overt clinical 

symptoms.  This optimal topology is made possible by a few costly elements (hubs and 
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long-range fibers) that are nonetheless vulnerable to pathological attack (e.g. 

hypoperfusion resulting from CVRF, or Aβ deposits), and abnormal development. 

Longitudinally, long-range fibers are disproportionately affected compared to short-range 

fibers in participants with symptomatic small vessel disease35. We therefore propose that 

the loss of metabolically costly long-range white matter fibers, that lead to the 

disorganization of optimal brain networks thus depriving the brain of its ability to adapt to 

cognitive demands, is a potential mechanism by which brain health is lost and cognitive 

decline begins. 

Pharmacological and non-pharmacological interventions to maintain brain health 

One major advantage of developing models to detect and predict the decline of 

brain health, especially as a result of modifiable risk factors associated with 

cerebrovascular health, is the potential to intervene and prevent cognitive decline, or stall 

its rapid progression. Furthermore, connectome-based therapeutic interventions should be 

utilized not only in diffuse brain injury such as those resulting from CVRF, but also after 

focal brain injury such as strokes due to the potential dysfunction of structurally or 

functionally connected regions that are otherwise anatomically disparate to the lesion 

location that would otherwise be undetected. Connectome-based treatment strategies can 

lead to the salvage of functionally connected, or homologous brain regions, or guide 

connectome change and plasticity, resulting in vicariation and functional recovery. 

There are several clinical trials aimed at reducing the progression of cognitive 

decline especially in elderly population by combating CVRF. The effect of anti-

hypertensive medication was demonstrated in the 9-year Honolulu-Asia Aging Study of 

2,197 cognitively normal (at baseline) community dwelling hypertensive Japanese men 
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(mean age 77 years) where β-blocker use was associated with a lower risk of cognitive 

impairment36.  

The 6-year Systolic Blood Pressure Intervention Trial (SPRINT) study aimed to compare 

the effect of lowering systolic blood pressure to <120mmHg (using a drug intensive control 

of SBP) compared to <140mmHg (using the standard control of SBP) in 9250 adults (>50 

years) with hypertension and at least one other CVRF. They demonstrated a significant 

reduction in stroke, myocardial infarction, and cardiovascular death in the intensive SBP 

control cohort37. Furthermore, SPRINT-MIND (454 participants) showed a significant 

reduction in the increase of white matter lesions in participants undergoing the intensive 

treatment that lowered BP to <120mmHg. 

The recently completed Candesartan vs. Lisinopril Effects on the Brain (CALIBREX) 

study likewise seeks to determine the effect of Candesartan and Lisinopril on the cognitive 

function, cerebral perfusion, vascular damage and endothelial function on 143 participants 

with high blood pressure and mild cognitive impairment (MCI) 

(https://www.nia.nih.gov/alzheimers/clinical-trials/candesartan-vs-lisinopril-effects-

brain-calibrex).   

The ongoing Candesartan’s Effects on Alzheimer’s Disease and Related Biomarkers 

(CEDAR) will determine the effect of the anti-hypertensive drug Candesartan on vascular 

stiffness, AD biomarkers (Aβ and tau), and cognitive function in a cohort of 62 participants 

with MCI (https://www.nia.nih.gov/alzheimers/clinical-trials/candesartans-effects-

alzheimers-disease-and-related-biomarkers). 

The risk reduction for Alzheimer’s Disease (rrAD) clinical trial will test the effect of 

controlling CVRF such as hypertension and high cholesterol on AD, in a high-risk cohort 
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of 640 participants (60-85 years). The study will determine if the addition of aerobic 

exercise to medical management of hypertension and high cholesterol will reduce the risk 

of cognitive decline over two years (http://www.rradtrial.org/participants/).  

There are also non-pharmacological intervention trials that seek to determine the impact of 

exercise, cognitive training, diet and lifestyle interventions on cognitive decline.  

The Lifestyle Enriching Activities for Research in Neuroscience Intervention Trial 

(LEARNit study)  will determine the effects of exercise and healthy living on brain health 

in 90 adults (60-80 years) (https://clinicaltrials.gov/ct2/show/NCT02726906). Likewise, 

the Exercise in Adults with Mild Memory Problems (EXERT) will evaluate the effects of 

physical exercise on cognition, functional status, brain atrophy and blood flow, and 

cerebrospinal fluid biomarkers of Alzheimer's disease in 300 older adults (65 – 89 years) 

with a mild memory impairment. 

Finally, the MIND diet intervention and cognitive decline (MIND) will test the effect of 

the MIND diet (Mediterranean-DASH Intervention for Neurodegenerative Delay) on 

cognitive decline and neurodegeneration on a cohort of 600 cognitively normal, overweight 

older individuals (65+ years) over a 3-year period.  

 These clinical trials provide evidence for the importance of CVRF management and 

prevention to brain health in older adults with clinical manifestations of cognitive decline. 

Completed studies show significant neuroprotective results of these interventions. 

Management of these risk factors in early adulthood (CARDIA) or before manifestation of 

clinical symptoms will undoubtedly increase the chances of maintaining cognitive health 

well into old-age, therefore shining a light on the importance of diagnostic tools that detect 

sub-clinical brain damage. 
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Cardiovascular risk factors and brain 
health 

 
 

ardiovascular risk factors are inextricably linked to cognitive decline, dementia 

and increased risk for stroke. CVRF are potentially modifiable and are therefore 

well positioned as targets of strategies to prevent cognitive decline, and stroke or reduce 

stroke severity. 

This chapter, based on the following peer-review publication, will determine the 

impact of increased CVRF burden on structural brain integrity and cognitive function: 

Marebwa BK, Adams RJ, Magwood GS, et al. Cardiovascular Risk Factors and Brain 

Health: Impact on Long-Range Cortical Connections and Cognitive Performance. Journal 

of the American Heart Association 2018;7:e010054. 

C 

2 
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Abstract 

Background 

Cardiovascular risk factor burden in the absence of clinical or radiological “events” is 

associated with mild cognitive impairment. MRI techniques exploring the integrity of 

neuronal fiber connectivity within white matter networks supporting cognitive processing 

could be used to measure the impact of cardiovascular (CV) disease on brain health, and 

be used beyond bedside neuropsychological tests to detect subclinical changes and select 

or stratify participants for entry into clinical trials.  

 

Methods and Results 

We assessed the relationship between verbal IQ and brain network integrity, and the effect 

of CV risk factors on network integrity by constructing whole brain structural connectomes 

from MRI diffusion images (n = 60) with various degrees of CV risk factor burden. We 

measured axonal integrity by calculating network density and determined the effect of fiber 

loss on network topology and efficiency, using graph theory. Multivariate analyses were 

used to evaluate the relationship between CV risk factor burden, physical activity, age, 

education, white matter integrity, and verbal IQ. Reduced network density, resulting from 

a disproportionate loss of long-range white matter fibers, was associated with white matter 

network fragmentation (r = -0.52, p < 10-4), lower global efficiency (r = 0.91, p < 10-20), 

and decreased verbal IQ (adjusted R2 = 0.23, p < 10-4).  

Conclusions 



P a g e  23 | 139 
 

CV risk factors may mediate negative effects on brain health via loss of energy dependent 

long-range white matter fibers, which in turn leads to disruption of the topological 

organization of the white matter networks, lowered efficiency, and reduced cognitive 

function.  

Introduction  

“Brain health” can be broadly defined as the physiological state in which sensorimotor and 

cognitive tasks are performed within a normal level that is comparable across healthy 

individuals. This definition can also be expanded to imply neurological functional reserve, 

i.e., the ability to learn and adapt to new knowledge, challenges, or to recover from 

neurological disease. 

Currently, brain health is largely assessed in the context of clinical neuroscience through 

behavioral measures. Cognitive performance is assessed using standard paper and pencil 

neuropsychological tests, while sensorimotor abilities are commonly assessed through the 

neurological exam 38, 39. Likewise, neurological adaptation is measured through the 

observation of learning rates or, through recovery after brain injury 40-42. 

These behavioral measures provide some insight into the underlying biological phenomena 

that are fundamentally related to brain health. However, behavioral measures do not yield 

specific information about the exact underlying neuroanatomical mechanisms that 

constitute brain health, and as a result, are limited in their ability to predict performance, 

or reserve, particularly in the context of neurological disease and subclinical changes, 

where identifying compromised neuroanatomical networks can be important for treatment 

considerations.  
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Cardiovascular (CV) risks factors, such as diabetes, hypertension, and hyperlipidemia are 

detrimental to general health and cognition in particular. They have pervasive and profound 

effects on end-organ function and peripheral vasculature 43. CV risk factors result in initial 

subtle brain structural changes and cognitive decline that may eventually lead to 

dementia44, 45. Likewise, the cumulative effect of microangiopathic changes and 

perivascular lipohyalinosis is commonly associated with white matter changes in the 

brain46. Although white matter has lower metabolic needs, it’s significantly more 

vulnerable to ischemic damage compared to grey matter. White matter receives less 

cerebrovascular perfusion 47, and has a declining anaerobic resistance associated with 

aging48. Despite the well-known relationship between white matter susceptibility and 

ischemic damage, the mechanisms linking small vessel disease, white matter network 

disruption, brain health and cognitive decline, are not well understood. Likewise, the 

impact of microangiopathic white matter loss on cognitive performance is not well defined 

in mild to moderate cases. Therefore, evidence of pre-morbid brain decline coupled with 

changes in brain structural integrity maybe an early indicator of cognitive decline and 

dementia.  

In this study, we examined the question whether cognitive function is related to CV risk 

factor burden and loss of network integrity, which can be understood as a biological 

measure of brain health.  

We leveraged methodological advancements in systems and computational neurosciences 

related to the human brain connectome. The structural connectome is a map of all medium- 

to large scale white matter connections across the entire brain derived from diffusion tensor 

Magnetic Resonance Imaging (DTI). The connectome reveals regional pairwise brain 
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connectivity between all defined brain regions and enables quantification of the topology 

of complex brain networks, beyond grey or white matter atrophy which may occur with 

healthy aging. The connectome is an individual map where the topological brain network 

organization can be compared across individuals in the context of health or disease49. By 

providing a comprehensive overview of neuronal network organization, the brain 

connectome has been applied successfully to improve the understanding of several broad 

categories of neurological diseases such as epilepsy, dementia and movement disorders 50-

53. However, it has not been evaluated thus far as a measure of brain health. 

Individualized connectomes can be assessed with regards to their integrity and topological 

network organization, leveraging knowledge from network analyses. Global and regional 

properties can be assessed with regards to efficiency of transfer of information via network 

integration and segregation54. We evaluated the association between CV risk factors, white 

matter integrity, and cognitive performance in a group of participants with varying CV risk 

factor burden. Cognitive performance was evaluated using verbal IQ, calculated from the 

National Adult Reading Test-Revised (NART-R)55 that has been standardized against other 

measures of intelligence (Wechsler adult intelligence scale )56 and serves as an accurate 

probe of pre-morbid cognitive performance. Specifically, we evaluated whether CV risk 

factor burden would be associated with loss of fiber density, especially among short- or 

long-range white matter connections, whose structural integrity entails a continuum from 

lower to higher metabolic demand, respectively. We hypothesized that high CV risk factor 

burden would be associated with loss of energy dependent long axonal projections, leading 

to lower verbal IQ. The confirmation of our hypothesis would lead to the proposal that 
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white matter network architecture could provide a singular, quantifiable measure of overall 

brain health by using imaging connectomics.     

Methods 

Anonymized data used in this study will be made available to investigators who provide 

written request to the corresponding author to analyze the data, indicating the study in 

which the data will be used. 

Participants 

We recruited 60 participants, (47 females, mean age 55.1 ± 8.6 years) without a history of 

neurological or psychiatric diseases from the local community through advertisement. All 

participants were self-reported cognitively normal adults. Thirty-three participants did not 

have a history of cardiovascular risk factors (healthy control group), while 27 participants 

had previously been diagnosed with at least one CV risk factor (CVD group): diabetes (14 

participants), hyperlipidemia (18 participants), and hypertension (20 participants) 

(Table1). Seven participants had been diagnosed with all cardiovascular risk factors, (a 

group henceforth referred to as the “cumulative morbidity” group). These diagnoses were 

obtained through medical chart review. The Charlson Comorbidity Index57 (CCI) was 

calculated for all participants. If participants reported a diagnosis of hypertension and/or 

hyperlipidemia, and extra point for each diagnosis was added to the overall CCI score. All 

participants except 4 had at least a high school diploma. The study was approved by the 

Institutional Review Board at the Medical University of South Carolina, and all participants 

gave written informed consent. 

 

Behavioral Evaluation 
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All participants underwent verbal performance assessment using the National Adult 

Reading Test-Revised (NART-R)55 as an estimator of pre-morbid cognitive function. 

Verbal intelligence was calculated in accordance with the NART-R as shown:  

Estimated Verbal Scale IQ = 128.7 – 0.89 x NART-R errors. 

All participants completed the Community Healthy Activities Model Program for Seniors 

(CHAMPS)58, which was used as a measure for physical activity. All behavioral testing 

was performed within the same week as the neuroimaging assessment. 

 

Image Acquisition 

Imaging was performed on a Siemens 3T TIM trio MRI scanner located at the Medical 

University of South Carolina. We used T1-weighted, and Diffusion images collected from 

each participant. T1 parameters: MPRAGE sequence with 1 mm isotropic voxels, 256x256 

matrix size, and a 9-degree flip angle. We used a 192-slice sequence with TR = 2250 ms, 

T1 = 925 ms, and TE = 4.15 ms.  DTI parameters: twice-refocused echo-planar imaging b 

= 0, 1000, 2000, 60 diffusion encoding directions, TR = 6100 ms, TE = 101 ms, FOV = 

222 x 222 mm2, matrix = 82 x 82, 2.7 mm slice thickness, and 45 axial slices. 

 

Structural connectome construction  

Each participant’s individual connectome was built from the neuroimaging data using the 

following steps: 1) T1 weighted images were segmented into probabilistic grey and white 

matter maps using SPM12’s unified segmentation-normalization; 2) each individual’s grey 

matter map was divided into 1358 regions using the Atlas of Intrinsic Connectivity of 

Homotopic Areas (AICHA) brain atlas 59;  3) the grey matter parcellation maps were non-
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linearly registered into the diffusion imaging (DTI) space; 4) pairwise probabilistic DTI 

fiber tracking was computed for all possible pairs of grey matter regions (further details on 

the DTI tractography parameters below); 5) the weight of each pairwise connectivity link 

was determined based on the number of probabilistic streamlines connecting the grey 

matter region pair, corrected by distance travelled by each streamline and by the total 

volume of the connected regions; and 6) a weighted adjacency matrix M of size 1358 x 

1358 was constructed for each participant with Mi,j representing the weighted link between 

region of interest (ROI) i and ROI j.  

Tractography was estimated using FSL’s FMRIB's Diffusion Toolbox (FDT) probabilistic 

method60 with FDT’s BEDPOST being used to assess default distributions of diffusion 

parameters at each voxel, and probabilistic tractography was performed using FDT’s 

probtrackX (parameters: 5000 individual pathways drawn through the probability 

distributions on principal fiber direction, curvature threshold set at 0.2, 200 maximum 

steps, step length 0.5mm, and distance correction). The waypoint mask was set as the 

white-matter probabilistic map. The weighted connectivity between the regions i and j was 

defined as the number of probabilistic streamlines arriving at j region when i was seeded, 

averaged with the number of probabilistic streamlines arriving at i region when j was 

seeded. The connection weight was corrected based on the distance travelled by the 

streamlines connecting i and j (probtrackX’s “distance correction”). The number of 

streamlines connecting each pair of regions was further divided by the sum of the volumes 

of these regions. In summary, each individual connectome was represented by a 1358 x 

1358 matrix, where the nodes corresponded to the AICHA anatomical regions and the 

edges to the structural connectivity between the nodes.  
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Network analysis 

Connectome density 

We assessed the overall connectivity of the networks by calculating the connectome 

density for each subject, which is defined as the ratio of all connections that exist in the 

network to all possible connections. Specifically, we assessed the total number of 

connections in the connectome and divided this by the number of possible connections. As 

such, a density of 100% indicates a highly connected network, where all potential 

connections exist. We then compared the connectome density of participants with vs. 

without CV risk factors. 

To determine which fibers were disproportionately lost, we calculated the percentage of 

short-, mid- and long- range white matter fibers. First, we calculated the Euclidean distance 

between each pair of node centroids in each connectome and designated all fibers with 

lengths below the 1st quartile (lowest 25%) “short distance” fibers, and all fibers with 

lengths above the 3rd quartile (75% and above) “long distance” fibers. Mid-range fibers 

had lengths above the 1st quartile and below the 3rd quartile (25-75%). We determined the 

proportion of all existing connections in each connectome that were either short, mid, or 

long-distance fibers. To determine the effect of CV risk factors on short-, mid- and long-

range white matter connectivity, we assessed differences in the percentage of short, mid 

and long-distance fibers between participants with vs. without CV risk factors.  

 

Connectome Measures 
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We extracted graph theoretical measures of network organization and efficiency using the 

Brain Connectivity Toolbox61.  

Each connectome was partitioned into communities or modules by optimizing Newman’s 

modularity algorithm25. Modularity (Q) is a value that quantifies the strength of the 

network’s modular organization by identifying groups of nodes that have stronger intra-

community coherence than inter-community coherence. Figure 1 provides a 

neuroanatomical overview of the parcellation scheme (A-D), how modules are calculated 

(E-H); where ROIs of the same color belong to the same module, and an example module 

and connectivity profile (G-H) of the pre-motor module.  

We also calculated global network efficiency, which quantifies the ease of information 

flow in the network and is the computed as the inverse of the shortest path length between 

two nodes62.  

 

Statistical analyses 

We performed general linear regression analyses to determine the effect of fiber loss on 

verbal IQ, with verbal IQ as the dependent variable, and whole brain fiber density as the 

predictor variable. We also constructed a second model to adjust for key covariates with 

whole brain fiber density, age, CCI, education, and physical activity (CHAMPS) predicting 

verbal IQ. We did not account for gender because the cohort was predominantly made up 

of women (80%). 

For each subject’s connectome, we extracted the global efficiency, modularity score, 

and the optimal community structure that indicates to which communities each ROI 

belongs. Due to stochasticity of network partitioning, which may lead to assignment of 
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ROIs to different communities with every run, we performed 100 runs of modularity 

assessment function for each individual and used the mean as the modularity score. To 

determine differences in network topology we performed a two-tailed t-test that compared 

the modularity scores of participants with vs. without CV risk factors. We also explored 

the community structure of three exemplar participants; one healthy control, a participant 

with only 1 CV risk factor, and one with all 3 CV risk factors. Finally, to determine the 

effect of fiber loss on network topology and efficiency, we performed Pearson correlation 

analyses between whole brain fiber density, and whole brain modularity and global 

efficiency. All statistical analyses were performed using MATLAB. The statistical 

significance was set at p ≤ 0.05 (two-sided), and the p-values were Bonferroni corrected at 

p ≤ 0.05.  

Results 

Participant demographics  

Table 1 provides the descriptive statistics of the participants included in this study.  

 

Relationship between connectome density and verbal IQ  

Our model revealed that connectome density alone accounted for about 23% of the variance 

in predicting verbal IQ: F(1,60) = 18.7, p < 10-4, adjusted R2 = 0.23. When age, years of 

education, CV risk factor burden, and level of physical activity were added, connectome 

density (p = 0.004), years of education (p < 10-6) and CCI (p = 0.05) were significant 

predictors and accounted for about 60% the variance in predicting verbal IQ: F(5,60) = 

18.2, p< 10-9, adjusted R2 = 0.59. Physical activity (p = 0.31), and age (p = 0.29) were not 

significant predictors in the model.   
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Pearson correlations revealed that connectome density was significantly correlated with 

verbal IQ scores (r = -0.49, p < 10-4 - figure 2a, 1st panel), such that subjects with densely 

connected networks performed better in the behavioral task, while subjects who had lost 

some fiber connections performed worse. The relationship was still significant even when 

controlling for other significant predictors of verbal IQ; for example, years of education (r 

= 0.45, p < 10-3), and CCI (r = 0.42, p < 10-3). The models were still significant when 

correcting for multiple comparisons (p = 0.025). 

 

Effect of CV risk factors on connectome density and long-range white matter connectivity. 

There was decreased connectome density in participants with CV risk factors, and a 

significant difference between participants with no CV risk factor, and the cumulative 

morbidity group (figure 2c, 1st panel - left hemisphere, t(38) = 2.0470, p = 0.048; right 

hemisphere, t(38) = 2.1154, p = 0.041). 

Across all subjects, 54.4%, 40.1%, and 4.9% of all fibers were classified as short, medium, 

or long-range fibers respectively. Subjects without CV risk factors had 54.3% short fibers; 

participants with at least one CV risk factor had 54.7% short fibers while participants with 

cumulative morbidities had 58.3% short fibers. There was a significant difference in the 

number of short fibers between healthy controls and participants with cumulative 

morbidities (p = 0.017).   

Subjects without CV risk factors had 40.3% medium fibers compared to 39.9% among 

participants with at least one CV risk factor and 37.6% among participants with cumulative 

morbidities. There was a significant difference in the number of medium fibers between 

healthy controls and participants with cumulative morbidity, p = 0.015. 
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Subjects without CV risk factors had 5.0% long fibers while participants with at least one 

CV risk factor and participants with cumulative morbidities had 4.9% and 3.4% long fibers, 

respectively. There was a significant difference in the number of long fibers between 

healthy controls and participants with cumulative morbidity, p = 0.028. 

These results indicate an overall loss of mid- and long-range connections due to multiple 

CV risk factors. The results were significant when correcting for multiple comparisons (p 

= 0.02). 

 

Effect of fiber loss on network topology and efficiency 

There was a significant correlation between connectome density and modularity (r = -0.52, 

p < 10-4), and connectome density and global efficiency (r = 0.91, p < 10-20) – figure 2a, 

panels 2 and 3. Furthermore, examination of community structures revealed a 

fragmentation pattern in both hemispheres of participants with CV risk factors. Figure 2b 

shows three example participants: 1 participant without CV risk factors, 1 participant with 

only 1 CV risk factor, and 1 participant with all 3 CV risk factors. There is a gradual 

decrease in the number of connections, or an increasing sparsity of the networks, and an 

increase in the number of modules (a fragmentation of the network) from the control on 

the left, to the participant with cumulative morbidities on the right. Likewise, there was an 

increase in the left and right hemisphere modularity scores with increasing CV risk factor 

burden (left hemisphere, t(38) = -3.6039, p < 10-3; right hemisphere, t(38) = -3.2001, p = 

0.0028) (figure 2c – 2nd panel). The results were significant when correcting for multiple 

comparisons (p = 0.01). 

Discussion 
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We examined the relationship between CV risk factors, the integrity of axonal fibers, and 

verbal IQ using structural connectomes from a cohort of participants with various degrees 

of CV risk factors. Our results supported our hypothesis that high CV risk factor burden 

would be associated with loss of energy dependent long axonal projections, leading to 

lower verbal IQ. This suggests that CV risk factor burden is associated with loss of longer-

range white matter fibers, disruption of network architecture and efficiency, and lower 

cognitive performance. Network density alone predicted 23% of cognitive performance 

and including sociodemographic and health variables increased the prediction accuracy to 

60%. We found that participants with CV risk factors showed network disruption and a 

reduction in network density. We further demonstrated a relationship between CV risk 

factors, brain integrity and functional outcomes, indicating that white matter integrity is 

one potential approach to measure brain health since it is associated with both CV risk 

factor status and cognitive performance. 

White matter is more vulnerable to injury due to hypoperfusion compared with grey matter 

63, with lower collateral blood supply in the deep white matter. For this reason, CV risk 

factors, particularly hypertension and diabetes mellitus, lead to microangiopathic white 

matter injuries that are conspicuously observed on routine MRIs in individuals with CV 

risk factors or in the elderly. These are commonly referred to as cerebral small vessel 

disease (SVD) 64 and are directly associated with amyloid angiopathy, atherosclerosis, and 

arteriolosclerosis 65. Cerebral small vessel disease can be detected on routine MRIs by 

white matter hyperintensities (WMH) and their progressive accumulation has been shown 

to be associated with the development of low white matter and low brain volume, dementia, 

mood disturbances and gait problems 66. The Radboud University Nijmegen Diffusion 
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Tensor and Magnetic Resonance Cohort (RUN DMC) study prospectively assessed 503 

individuals with SVD and observed that a high WMH volume was associated with a hazard 

ratio of 1.8 for the development of parkinsonism, most commonly vascular parkinsonism 

67. In the same cohort (503 subjects from the RUN DMC study), the investigators observed 

a 5.5-year cumulative risk of 11.1% of developing dementia, with white matter volume, 

WMH, and hippocampal volume explaining most of the variance 68. The same group also 

observed that SVD affecting fronto-subortical regions was more common in individuals 

with depressive symptoms 69.  

Interestingly, the associations described above are well-defined in cases of high or 

cumulative SVD burden, but in most cases, WMH are incidental findings on MRI and their 

clinical significance is vastly unknown 66. They likely represent the early manifestation of 

an insidious process whose consequences remain subclinical until a threshold of structural 

compromise is reached. The ability to accurately detect these changes in an early stage 

could lead to strategies to inform decisions about their significance, progression and 

treatment. Diffusion MRI is a promising technique for this goal since ongoing 

technological developments have increased its sensitivity to small changes in tissue and 

white matter microstructure 70. However, the findings from early studies were not able to 

definitely conclude whether they added benefit over the simple volume of WMH. For 

example, in the dementia study cited above, the authors concluded that Tract-Based Spatial 

Statistics (TBSS), which is a form of quantification of scalar diffusion parameters along 

the core of white matter pathways, did not reveal additional benefit in predicting dementia 

68. Similarly, the depression study did not observe an additional benefit of radial diffusivity 

after additional adjustment for WMH and lacunar infarcts 69. Nonetheless, several more 
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recent studies have started to disclose the important role of diffusion MRI in identifying 

subtle white matter changes in the context of SVD. As part of the PRESERVE DTI study, 

Croall and colleagues observed that after normalization for brain volume, WMH, lesion 

load, number of lacunes, and scalar diffusion measures such as fractional anisotropy and 

mean diffusivity were significantly associated with multiple cognitive domains, such as 

verbal fluency, mental flexibility and cognition 71. Moonen and colleagues, as part of the 

DANTE Study Leiden, observed that lower fractional anisotropy in white matter was 

associated with executive functioning after adjustment for normalized brain volume, but 

diffusion measures were not associated with mood scores72. Ciulii and colleagues observed 

that a predictor model built on white matter mean diffusivity could forecast executive 

function (Trail Making Test performance) in patients with mild cognitive impairment and 

SVD with an accuracy of 77.5%-80.0% 73. 

It is important to emphasize that the more recent studies mentioned above were performed 

using scalar measures (i.e., voxel wise metrics) of diffusion MRI, such as fractional 

anisotropy and mean diffusivity, whereas modeling of white matter networks and circuitry 

topology using diffusion tractography is the subsequent step to determine the complexity 

of brain networks. In a pilot study, Xie and colleagues demonstrated that depressive 

symptoms in patients with SVD were associated with impairment of global network 

efficiency, and lower nodal efficiency in several brain regions 74. More similarly to our 

approach, Tuladhar and colleagues demonstrated that SVD patients had less dense 

networks, with lower network strength and efficiency, and with reduced connectivity 

between hub (rich club) regions 75. This study did not test the relationship between white 

matter topology and cognitive symptoms but proposed their likely association. 
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Our study builds on the literature discussed above, combined with a risk factor determinant, 

and functional consequence to assess their tri-partite association: CV risk factors <-> white 

matter integrity <-> functional performance.  

We observed that CV risk factors were associated with reduced density. Connectome 

density gauges how well the network is connected and informs on the wiring or physical 

cost of connecting the network. Biological networks are sparsely connected, where only a 

fraction of possible connections occur. For instance, cortical fiber tract connectivity in 

mammalian brains is between 10 and 30%24. Density is dependent on the overall number 

of white matter projections and we observed that CV risk factors were associated with a 

reduction in connectome density, i.e., white matter fiber loss in general, with a 

disproportionate loss of longer connections.  The human brain, even at rest, consumes 

about 20% of energy while making up only 2% of the human weight. The energy consumed 

goes into generating action potentials, neurotransmitter release and recycling, however a 

large portion of the energy goes into maintaining resting potentials via active transport of 

ions across the membrane (about 28% for neurons) 11. The cost of forming and maintaining 

these connections increases with increasing surface area, volume, length and activity such 

that longer fibers are costlier, occupy more space, and generally require more energy. This 

suggests that to conserve energy and space, most connections in the brain should be short 

range (as supported by our analysis, 54.4% short range fibers, 40.1% mid-range fibers and 

4.9% long range fibers). However, minimizing energy costs must also be balanced against 

maintaining an efficient topological organization that allows for efficient information 

processing and transfer. Therefore, the inherent segregation or increased connectivity 

within modules (that utilizes short distance connections) must be accompanied by 



P a g e  38 | 139 
 

integration or communication between the modules, (that utilizes long distance 

connections), to allow for a globally efficient topology. We observed a significant loss of 

long-distance fibers in participants with CV risk factors, which led to a disruption of their 

topological organization and lowering of their overall network efficiency.  

We posit that decreased connectome density, and the loss of long-distance fiber 

connections in particular led to the observed fragmentation pattern and lowered efficiency 

of the white matter networks, which was in turn associated with lower verbal IQ. The 

association between density and verbal IQ remained significant even when accounting for 

potential confounders such as years of education and age.  

The topological organization of brain networks is thought to provide an insight into 

efficient  cognitive processing of the brain, where high intra-modular connectivity favors 

local processing and functional specialization, and connectivity between modules favors 

global integration 76. However, deviations from this optimal structure either with increased 

or decreased clustering may be the underlying cause or consequence of many cognitive and 

psychiatric disorders. Of note is that we cannot determine causality as this was a single 

cross-sectional study, however, we observed that loss of long-range fiber connections 

resulting from CV risk factors was associated with deviations from this optimal topological 

architecture that signifies a healthy brain. 
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Figures 

 
Figure 1. The grey matter regions are divided into 679 regions of interest (ROIs) in each 
hemisphere, corresponding to neuroanatomical boundaries defined by a parcellation atlas 
(A, where ROIs are indicated by different colors). To facilitate visualization of networks, 
each ROI can be represented by a sphere in the ROI’s center of mass (B, C, and D). 
Modularity is calculated by assessing the ROIs that are more closely integrated by their 
white matter networks, and relatively segregated from the other surrounding modules. 
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Using the example of one subject, In E,F, G and H, the ROIs that belong to the same module 
are represented using the same color (i.e., all ROIs in yellow belong to the same module, 
which is different than the module containing ROIs in green, and so on). G and H 
demonstrate the edges corresponding to the white matter networks integrating one module 
(with ROIs in yellow), largely representing pre-motor circuitry. 
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Figure 2a. Panel 1 - correlation between density and verbal IQ (r = 0.49, p < 10-4). Panel 2 
-correlation between density and modularity (r = -0.52, p < 10-4). Panel 3 - correlation 
between density and global efficiency (r = 0.91, p < 10-20), 
2b. Exemplar data – number of modules detected in the left and right hemispheres of one 
healthy control, 1 participant with CV risk factors (hypertension), and 1 participant who 
had all CV risk factors. Note the breakdown and increased number of modules (or 
fragmentation of the community structure) with increasing number of CV risk factors. Also 
note decreasing density with increasing CV risk factors, with the complete loss of 
connections in the participant with cumulative morbidities.  
2c. Panel 1- effect of CV risk factors on density. Decreasing left and right hemisphere 
density with increasing number of CV risk factors. Significant difference in density 
between controls and cumulative morbidity (p = 0.048), (p = 0.041) respectively. Panel 2 
- effect of CV risk factors on modularity. Increasing left and right hemisphere modularity 
with increasing number of CV risk factors. Significant difference in modularity between 
controls and cumulative morbidity (p < 10-3), (p = 0.0028) respectively. 
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Fibroblast growth factor 23 and brain 
health 

 
 

levated levels of FGF23 confers adverse health outcomes and is associated with 

CVD, cerebrovascular calcification, risk of stroke and mortality. The public health 

relevance of relevance of this problem is timely since one of the mechanisms leading to 

elevated FGF23 is the consumption of phosphate, typically present in elevated 

concentrations in processed foods that are high in phosphate-based preservatives which are 

cheaper, copious in food deserts and consumed by people with fewer resources. This 

dietary disparity may be directly associated with the disparities in health outcomes in 

neurology, mediated through FGF23.This knowledge could be used to change policies 

related to food products and dietary recommendations, and lead to targeted interventions 

concerning personal dietary habits that may lower decline of brain health, prevent strokes 

or improve recovery after stroke. 

This chapter, based on the following peer-review publication77, demonstrates the 

link between elevated FGF23 and brain health: 

Marebwa BK, Adams RJ, Magwood GS, et al. Fibroblast growth factor23 is associated 

with axonal integrity and neural network architecture in the human frontal lobes. PloS one 

2018;13:e0203460. 
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Abstract  

Elevated levels of FGF23 in individuals with chronic kidney disease (CKD) are associated 

with adverse health outcomes, such as increased mortality, large vessel disease, and 

reduced white matter volume, cardiovascular and cerebrovascular events. Apart from the 

well-known link between cardiovascular (CV) risk factors, especially diabetes and 

hypertension, and cerebrovascular damage, elevated FGF23 is also postulated to be 

associated with cerebrovascular damage independently of CKD. Elevated FGF23 

predisposes to vascular calcification and is associated with vascular stiffness and 

endothelial dysfunction in the general population with normal renal function. These factors 

may lead to microangiopathic changes in the brain, cumulative ischemia, and eventually to 

the loss of white matter fibers. The relationship between FGF23 and brain integrity in 

individuals without CKD has hitherto not been investigated. In this study, we aimed to 

determine the association between FGF23, and white matter integrity in a cohort of 50 

participants with varying degrees of CV risk burden, using high resolution structural human 

brain connectomes constructed from MRI diffusion images. We observed that increased 

FGF23 was associated with axonal loss in the frontal lobe, leading to a fragmentation of 

white matter network organization. This study provides the first description of the 

relationship between elevated levels of FGF23, white matter integrity, and brain health. 

We suggest a synergistic interaction of CV risk factors and FGF23 as a potentially novel 

determinant of brain health.  
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Introduction 

Fibroblast growth factor-23 (FGF23) is an osteocyte derived phosphaturic hormone that 

regulates calcium-phosphate and vitamin D metabolism by activating the FGF receptor-α-

klotho complex in the kidney78. FGF23 induces phosphaturia by decreasing renal 

reabsorption of phosphate in the proximal tubule, and inhibiting calcitriol (hormonally 

active metabolite of vitamin D) synthesis78, 79. Calcitriol functions to increase calcium and 

phosphate levels in the blood by increasing kidney and gastrointestinal absorption and 

increasing calcium and phosphate release from bone into the blood through bone 

resorption. Calcitriol inhibition by FGF23 induces calcium deficiency resulting in even 

more production of calcium from the bone.  Excess circulating calcium eventually leads to 

arterial and vascular calcification80. Chronic Kidney Disease (CKD) is possibly the most 

common cause of elevated FGF23, which has been implicated in increased cardiovascular 

mortality of CKD patients. Elevated FGF23 is also associated with cardiovascular disease, 

left ventricular hypertrophy 81, 82,  and is a putative indicator of Cardiovascular (CV) risk 

factors 83. Apart from CKD, high phosphorous diet stimulates FGF23 production, leading 

to elevated levels of FGF23 84. Even among individuals without CKD, elevated levels of 

FGF23 have been postulated to increase the risk of stroke 85. Nonetheless, the effects of 

elevated FGF23 on brain health in non-stroke individuals have not fully been determined. 

Compared with brain gray matter, white matter is significantly more susceptible to small 

vessel ischemic injury because it receives less perfusion when adjusting for metabolic 

demands, due to lower collateral blood supply to deep white matter 63. Moreover, the 

maintenance of structural integrity of medium to long range axonal projections is 

metabolically demanding. For these reasons, we postulated that FGF23 would lead to white 
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matter compromise particularly within the brain areas with long cortico-cortical, or cortico-

subcortical axonal projections, such as the frontal lobes. 

We therefore aimed to identify the effects of FGF23 independent of kidney disease by 

studying a prospective cohort with normal kidney function, but with CV risk factors that 

included diabetes, hypertension, and hyperlipidemia. We employed the novel 

neuroimaging method of the high-resolution human brain connectome to fully map white 

matter networks across the entire brain. We aimed to determine the relationship between 

FGF23 and neuronal network integrity, with the goal of elucidating the mechanistic aspects 

related to the impact of FGF23 on brain health. We postulated a synergistic interaction of 

CV risk factors and FGF23 as a determinant of brain health.  

 

Methods 

Participants 

We recruited 51 older participants, (40 females, mean age 55.3 ± 8.6 years) without a 

history of neurological or psychiatric diseases from the local community through 

advertisement. All participants were self-reported cognitively normal adults. There were 

23 African American and 28 white participants. Twenty-eight participants did not have a 

history of cardiovascular risk factors, while 23 participants had previously been diagnosed 

with at least one CV risk factor (CV group): diabetes (11 participants), hyperlipidemia (15 

participants), and hypertension (16 participants). Six participants had been diagnosed with 

all CV risk factors. These diagnoses were obtained through medical chart review. The 

Charlson Comorbidity Index57 (CCI) was calculated for all participants, including a 

diagnosis of hypertension and hyperlipidemia at a score of one each to the overall score. 
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BMI and smoking history were not available for all participants and therefore not included 

in the analyses. Participants were stratified into two groups: CV risk factor and normal 

controls based on a previous diagnosis of a cardiovascular disease. One participant had 

chronic kidney disease and was therefore excluded from further analysis. All participants 

included in the analysis had normal renal function. The study was approved by the 

Institutional Review Boards at the Medical University of South Carolina. Written informed 

consent was obtained from all participants, as approved by our institutions’ IRB.  

 

FGF23 Acquisition 

Circulating FGF23 was measured using the Human FGF23 ELISA kit from Millipore 

(EZHFGF23-32K).  Samples were collected in EDTA containing tubes and centrifuged at 

2-3K to obtain the plasma.  Samples were prepared as described by the manufacturer and 

the concentrations of FGF23 were determined from the standards provided.  FGF23 is 

presented as pg/ml of plasma. 

 

Image Acquisition 

Imaging was performed on a Siemens 3T TIM trio MRI scanner located at the Medical 

University of South Carolina. We used volumetric T1-weighted and Diffusion images 

collected from each participant. T1 parameters: MPRAGE sequence with 1 mm isotropic 

voxels, 256x256 matrix size, and a 9-degree flip angle. We used a 192-slice sequence with 

TR = 2250 ms, T1 = 925 ms, and TE = 4.11 ms.  DTI parameters: twice-refocused echo-

planar imaging b = 0, 1000, 30 diffusion encoding directions, TR = 8500 ms, TE = 98 ms, 

FOV = 222 x 222 mm2, matrix = 74 x 74, 3 mm slice thickness, and 40 axial slices. 
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Structural connectome construction  

Each participant’s individual high-resolution structural connectome was built from 

structural T1 and diffusion tensor imaging (DTI) neuroimaging data using the following 

steps:  1.T1 weighted images were spatially registered into standard space and segmented 

into probabilistic grey and white matter maps using SPM12’s unified segmentation-

normalization; 2.Each individual’s grey matter map was divided into 1358 approximately 

evenly sized regions using the Atlas of Intrinsic Connectivity of Homotopic Areas 

(AICHA) brain atlas 59; 3.The grey matter parcellation maps were then non-linearly 

registered into the diffusion imaging (DTI) space, and pairwise probabilistic DTI fiber 

tracking was computed for all possible pairs of grey matter regions 4. The weight of each 

pairwise connectivity link was determined based on the number of probabilistic streamlines 

connecting the grey matter region pair, corrected by distance travelled by each streamline 

and by the total volume of the connected regions. Finally, a weighted adjacency matrix M 

of size 1358 x 1358 was constructed for each participant with Mi,j representing the weighted 

link between region of interest (ROI) i and ROI j. Tractography was estimated through the 

software FSL FMRIB's Diffusion Toolbox (FDT), including eddy current correction, 

motion correction86, and probabilistic method 60 with BEDPOST being used to assess 

default distributions of diffusion parameters at each voxel, and probabilistic tractography 

was performed using FDT’s probtrackX (parameters: 5000 individual pathways drawn 

through the probability distributions on principal fiber direction, curvature threshold set at 

0.2, 200 maximum steps, step length 0.5mm, and distance correction). The weighted 

connectivity between the regions i and j was defined as the number of probabilistic 



P a g e  48 | 139 
 

streamlines arriving at j region when i was seeded, averaged with the number of 

probabilistic streamlines arriving at i region when j was seeded.  

 

Figure 1 provides a workflow of the connectome construction process and network 

analysis.  

 

Modular organization detection 

The integrity of neuronal network architecture can be assessed through the quantification 

of the modular parcellation of the network (modularity). Modularity provides a 

measurement of the balance between segregation and integration of the network in its 

entirety, or within regional sub-networks. This balance is known to be a fundamental 

principle in biological network organization, including neuronal networks 22. Our analysis 

was based on the modular organization of each brain region for every participant. For each 

participant the whole brain connectome was divided into the left and right frontal, temporal, 

parietal, and occipital lobe sub-networks. The lobe sub-networks were assessed regarding 

their modularity using Newman’s modularity algorithm 25 implemented in the Brain 

Connectivity Toolbox 61, (e.g. [Ci,Q] = modularity_und(W), where W is the weighted 

undirected connectivity matrix; gamma was maintained at the default: gamma = 1). 

 

Statistical analyses 

For each group (CV risk factor and healthy controls), we performed general linear 

regression analysis to examine the relationship between brain integrity and FGF23, 

adjusting for key covariates –sex, race, and CCI. Linear regressions were modelled for each 
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group separately to minimize noise inherent in the healthy control group, and to avoid type 

II error. Brain integrity measured via modularity was set as the dependent variable, and 

FGF23, sex, race and CCI as the predictor variables. We used this model to determine the 

association between FGF23, and the integrity of each brain region (modularity scores for 

the frontal, temporal, parietal and occipital regions) for both left and right hemispheres. 

Linear correlations were evaluated using a two-tailed Pearson correlation coefficient. We 

evaluated the association between FGF23 and modularity of the left and right frontal 

hemispheres. Correlation was performed independently on the CV risk factor group and 

the control group.  

We further assessed the overall connectivity of the frontal lobe by calculating the density; 

a measure of axonal integrity; as the number of all connections present. We then 

determined the relationship between FGF23 and fiber density of the left and right 

hemisphere frontal regions. 

 Of the 22 participants with CV risk factors, 17 had serum creatinine scores from the latest 

available comprehensive metabolic panel obtained from the hospital. We re-calculated the 

Pearson correlation for these participants, with partial correlations accounting for the 

creatinine score. Natural log transformed FGF23 scores were used in all analyses. All 

statistical analyses were performed using MATLAB. The statistical significance was set at 

p ≤ 0.05. 

Results 

To account for possible confounding by age, sex and race, we determined the association 

between these factors and FGF23. Pearson analysis revealed no correlation between age 

and FGF23 (r = 0.13, p = 0.17), and student’s t-test revealed no differences in FGF23 levels 
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between female and male participants two-sample t(48) = 0.91, p = 0.37, or between 

African American and Caucasian participants two-sample t(48) = 0.53, p = 0.6.  There was 

also no significant difference in FGF23 levels between the control and CV risk factor 

groups, two-sample t(48) = 0.69, p = 0.49.   

Relationship between modularity and FGF23 

Our model revealed that FGF23 was associated with left hemisphere frontal lobe 

modularity in the CV risk factor group: F(4,22) = 4.2, p = 0.015, adjusted 

R2 = 0.38. FGF23 was not associated with brain integrity among individuals without CV 

risk factors. In that group, brain integrity was associated with sex, race and CCI (table 1). A 

model of only FGF23 (predictor variable) and left hemisphere frontal lobe modularity 

(dependent variable) revealed that FGF23 levels alone accounted for about 29% of brain 

integrity in the left hemisphere frontal lobe of participants with CV risk factors: F(1,22) = 

9.46, p = 0.006, adjusted R2 = 0.29, while the same was not observed in the control group: 

F(1,22) = 0.6, p = 0.45, adjusted R2 = 0.015. 

Linear correlations revealed that left hemisphere frontal lobe modularity was significantly 

correlated with FGF23 (figure 2a left panel) in participants with CV risk factors, such that 

higher modularity was associated with higher FGF23 levels (r = 0.57, p = 0.006). This 

association was also significant when controlling for creatinine levels (n = 17) (partial 

correlation controlling for creatinine: r = 0.48, p = 0.03).  In the control group, the left 

hemisphere frontal lobe modularity was not associated with FGF23 levels (figure 2a right 

panel, r = 0.05, p = 0.4). 

 

Table 1a: Multiple linear regression models for modularity in participants with cardiovascular risk factors. 

Outcome Model Variables 
FGF23 Gender Race CCI 
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Female vs male White vs black 
LH frontal      
 Adj.R2=0.38 B (SE) 0.03 (0.01) -0.06 (0.03) -0.01 (0.03) 0.02 (0.01) 
 F=4.20 β  0.52* -0.43* -0.10 0.31 
RH frontal      
 Adj.R2=0.21 B (SE) 0.02 (0.02) -0.05 (0.04) 0.01 (0.04) 0.04 (0.02) 
 F=2.40 β  0.17 -0.26 0.05 0.55* 
LH parietal      
 Adj.R2=0.12 B (SE) -0.02 (0.02) -0.01 (0.04) 0.09 (0.04) -0.01 (0.02) 
 F=1.72 β  -0.25 -0.07 0.57* -0.10 
RH parietal      
 Adj.R2=0.03 B (SE) -0.01 (0.02) -0.05 (0.03) 0.03 (0.03) 0.01 (0.01) 
 F=1.19 β  -0.18 -0.36 0.23 0.14 
LH temporal      
 Adj.R2=-0.12 B (SE) -0.00 (0.01) -0.02 (0.02) -0.01 (0.02) 0.01 (0.01) 
 F=0.44 β  -0.07 -0.22 -0.10 0.30 
RH temporal      
 Adj.R2=0.12 B (SE) 0.01 (0.01) -0.05 (0.03) 0.01 (0.03) 0.01 (0.03) 
 F=1.70 β  0.11 -0.44 0.04 0.34 
LH occipital      
 Adj.R2=0.22 B (SE) -0.01 (0.01) -0.02 (0.03) 0.07 (0.03) 0.01 (0.01) 
 F=2.49 β  -0.21 -0.18 0.55* 0.10 
RH occipital      
 Adj.R2=-0.10 B (SE) 0.01 (0.01) -0.01 (0.03) 0.02 (0.03) 0.01 (0.01) 
 F=0.51 β  0.12 -0.07 0.20 0.12 

*p < .05. **p < .01.  
B=parameter estimate, SE=standard error, β= standardized estimate, CCI = Charlson Comorbidity Index, LH=left 
hemisphere, RH=right hemisphere 
 
 
Table 1b: Multiple linear regression models for modularity in healthy controls. 

Outcome Model 
Variables 

FGF23 Gender 
Female vs male 

Race 
White vs black CCI 

LH frontal      
 Adj.R2=0.38 B (SE) 0.03 (0.01) -0.06 (0.03) -0.01 (0.03) 0.02 (0.01) 
 F=4.20 β  0.52 -0.43 -0.10 0.31 
RH frontal      
 Adj.R2=0.32 B (SE) 0.02 (0.01) 0.08 (0.04) 0.10 (0.03) 0.02 (0.01) 
 F=4.12 β  0.17 0.29 0.62** 0.20 
LH parietal      
 Adj.R2=0.23 B (SE) -0.01 (0.02) 0.10 (0.06) 0.11 (0.04) 0.03 (0.02) 
 F=2.97 β  -0.04 0.31 0.52** 0.27 
RH parietal      
 Adj.R2=0.15 B (SE) 0.01 (0.02) 0.12 (0.07) 0.11 (0.04) 0.03 (0.02) 
 F=2.21 β  0.06 0.32 0.47 0.22 
LH temporal      
 Adj.R2=0.49 B (SE) 0.02 (0.01) 0.02 (0.03) 0.08 (0.02) 0.04 (0.01) 
 F=7.48 β  0.20 0.08 0.57** 0.50** 
RH temporal      
 Adj.R2=0.06 B (SE) 0.01 (0.01) 0.01 (0.04) 0.05 (0.02) 0.01 (0.01) 
 F=1.45 β  0.18 0.07 0.40 0.18 
LH occipital      
 Adj.R2=0.31 B (SE) -0.01 (0.01) 0.06 (0.03) 0.03 (0.02) 0.03 (0.01) 
 F=4.08 β  -0.20 0.37* 0.24 0.49** 
RH occipital      
 Adj.R2=0.23 B (SE) 0.01 (0.01) -0.02 (0.03) 0.05 (0.02) 0.02 (0.01) 
 F=3.07 β  0.16 -0.12 0.47* 0.24 

*p < .05. **p < .01.  
B=parameter estimate, SE=standard error, β=standardized estimate, CCI = Charlson Comorbidity Index, LH=left 
hemisphere, RH=right hemisphere 
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Relationship between density and FGF23 

Frontal Lobe 

There was a significant correlation between the left frontal lobe density and FGF23 (figure 

2b left panel) in participants with CV risk factors such that participants with elevated 

FGF23 had fewer fiber connections in their left frontal lobe (r = -0.42, p = 0.05). We further 

calculated correlation on 17 participants with creatinine scores (partial correlation 

controlling for creatinine: r = -0.40, p = 0.07).  An association was not observed in the left 

frontal hemisphere of participants without CV risk factors (r = -0.04, p = 0.58, figure 2b 

right panel). 

Discussion 

In this study, we aimed to determine the relationship between CV risk factors, FGF23 

levels, integrity of axonal fibers, and white matter network topological organization. We 

employed high resolution structural connectomes constructed from diffusion imaging to 

measure individual network integration and segregation via modularity. We hypothesized 

that elevated FGF23 levels would be associated with the reduction of white matter fiber 

connections, and loss of organization (fragmentation) of white matter networks. We 

demonstrated a relationship between FGF23 and left frontal lobe network integrity, and 

showed that in participants with CV risk factors, FGF23 levels accounted for up to 29% of 

left hemisphere frontal lobe network integrity, meaning that participants with elevated 

FGF23 levels and CV risk factor burden had higher modularity scores, indicating a 

disruption of the brain network organization. Sex, race, and CCI explained a further 9% of 

left frontal lobe integrity.  FGF23 was not significantly associated with brain integrity in 
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participants without CV risk factors, although race, sex and CCI were significantly 

associated with brain integrity in this group.  

Our results complement and help explain previous findings suggesting that elevated FGF23 

is associated with stroke and small vessel disease (SVD) independent of CKD.  SVD is 

routinely observed in normal ageing or individuals with CV risk factors and discovered 

incidentally on routine MRIs by white matter hyperintensities (WMH). The Northern 

Manhattan study (NOMAS) prospectively assessed 2,525 individuals from a racially 

diverse population and concluded that elevated FGF23 conferred an overall risk of stroke 

and intracerebral hemorrhage independent of CKD85. In a subset of the same cohort, (n = 

1170), they also showed that elevated FGF23 was associated with WMH, demonstrating a 

link between FGF23 and SVD in the absence of CKD87. The Professional Follow-up Study 

(n = 1261) further showed elevated FGF23 in individuals with established CV risk factors 

and higher dietary phosphate intake.   

Our study builds on this previous literature by employing an approach that quantifies 

network integrity; and may detect subclinical structural compromise; to assess the tripartite 

association between CV risk factors, FGF23, and white matter integrity. We employed a 

fine-grained atlas to improve our statistical power, and for a more detailed connectome; we 

did not assess the effect of using functionally relevant atlases, although whole brain 

tractography did yield functionally relevant modules (figure 1 panel C) 

We observed reduced network density, and a disorganization of the left frontal hemisphere 

network topology related to elevated FGF23, exclusively in participants with CV risk 

factors. Importantly, we showed that FGF23 is an independently associated with brain 

integrity in participants diagnosed with CV risk factors. Since FGF23 is a modifiable risk 
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factor, understanding this association may be an important step in reducing stroke 

incidences, stroke severity, and improving outcome after stroke. Brain integrity of normal 

ageing individuals was still explained by age and comorbidity (captured by CCI), sex, and 

race, although with the current limited sample size, we cannot conclusively draw any 

conclusions on the significance of sex and race. 

The frontal hemisphere supports several cognitive processes including problem solving, 

memory, language, judgement, social behavior and impulse control. Therefore, the 

association between FGF23 and compromised structural integrity of the frontal lobe further 

provides an interesting first step towards understanding the impact of FGF23 on cognition. 

The fiber loss localized to the left hemisphere, indicating that the relationship between 

FGF23 and network fragmentation is restricted to the dominant hemisphere (all participants 

except 1in the CV group were right handed). This observation may indicate a more 

pronounced susceptibility to injury in the dominant hemisphere.  

The limitations of this study are: 1) we did not assess the association between white matter 

network integrity and behavioral function since a comprehensive assessment of 

neuropsychological performance was not available in this cohort. We believe that this 

would be an important future direction, specifically testing the impact of FGF23 on 

cognitive control and executive function, which are frontal lobe dependent measures. 2) 

This is an initial pilot study with a relatively small sample size. Furthermore, the multiple 

linear regression models were not controlled for multiple comparisons, even though we did 

account for multiple confounders. 3) BMI and smoking history are important CV risk 

factors that were not included in the analyses. 4) Our cohort is made up of 80% women 

and is therefore not a not representative sample of the general population. 
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Based on the findings of this study, we believe that there are important possible future 

directions to continue to elucidate the impact of FGF23 on brain health, namely 1) the 

assessment of the cognitive impact of FGF23, and whether FGF23 leads to subclinical yet 

quantifiable cognitive compromise, particularly in frontal lobe functions; 2) the evaluation 

of the continuum between the impact of FGF23 on brain health across the spectrum ranging 

from normal kidney function to end-state CKD; 3) the assessment of the synergistic effects 

of FGF23 with other CV, electrolyte and kidney function biomarkers; and 4) the concurrent 

evaluation of connectome with other measures of brain integrity, including T2 weighted 

microangiopathic lesion burden. 

In summary, we demonstrated the association between elevated serum FGF23, fiber loss 

and network disintegration in the frontal region of the left hemisphere. This relationship 

between FGF23 and brain integrity was noted in individuals without CKD, but with CV 

risk factors. We postulate a synergistic interaction of CV risk factors and FGF23 as a 

potentially novel determinant of brain health.  
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Figures 

 
Fig 1. Connectome generation and network analysis. In A, the T1 image is normalized, and 
segmented (into CSF, gray and white matter). The gray matter is parcellated into 1358 
regions of interest (ROI). The T1 is warped into diffusion space where fiber tracking 
occurs, finding the connections between each pair of ROIs, generating a connectome, or 
network of connectivity between all brain regions.  C is an example of whole brain modular 
partition into modules using Newman’s modularity algorithm, which groups ROIs that are 
more closely associated by their white matter networks and relatively segregated from 
surrounding groups (each module is represented by the same color).  
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Fig 2a. Left panel – correlation between left hemisphere frontal lobe modularity and FGF23 
in the CV risk factor group. Right panel – correlation between left hemisphere frontal lobe 
modularity and FGF23 in the control group. 
Fig 2b. Left panel – correlation between left hemisphere frontal lobe density and FGF23 in 
the CV risk factor group. Right panel – correlation between left hemisphere frontal lobe 
density and FGF23 in the control group. 
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The impact of brain health on 
functional recovery in acute stroke 

 
 

rediction of functional recovery in the acute period after stroke is necessary especially 

for the development of more effective rehabilitation strategies. In this chapter, we 

examine the effect of brain health, determined by the presence of long-range fibers, on 

overall functional recovery after stroke. 

This chapter is based on the following manuscript: 

Marebwa BK, Adams RJ, Magwood GS, et al. Functional impairment in sub-acute strokes 

is related to damage in long-range white matter connections. 

 

Abstract 

Background Functional impairment after stroke is only partly explained by the size and 

the location of the lesion, age, and pre-stroke function. Brain plasticity and resilience to 

injury depends not only on the integrity of specific brain regions, but also on the 

organization of the connections between them. A balance between long- and short-range 

white matter connections is a marker of optimal topological network organization. We 

hypothesized fewer long-range fibers in individuals with worse functional outcomes, since 

long-range white matter fibers may be more vulnerable to ischemic injury from the stroke 

or from cumulative small vessel disease before the stroke.  

Methods We assessed probabilistic white matter connections in 30 stroke survivors and 

determined the relationship between remote (non-affected hemisphere) integrity of long-

P 

4 
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range white matter connections and functional impairment sub-acutely after stroke. 

Multivariate analyses were used to determine the relationship between long-range fibers 

and functional impairment measured through the Stroke Self-Efficacy Questionnaire 

(SSEQ), and the Stroke Impact Scale (SIS).  

Results Lower values of long-range connections were associated with higher SIS scores 

(SIS-physical R2 = 0.35, p = 0.02; SIS-mood R2 = 0.46, p = 0.003; SIS-communication R2 

= 0.25, p = 0.1); SIS-memory R2 = 0.22, p = 0.15, and lower SSEQ scores (R2 = 0.56, p = 

0.0003) controlling for the lesion, cardiovascular risk factors, and time since stroke.  

Conclusion Our findings support the mechanistic hypothesis that the imbalance between 

long- and short-range white matter connections is a pathophysiological variable associated 

with worse subacute outcomes after a stroke.  

Introduction 

Stroke is the 5th cause of death and the leading preventable cause of long-term adult 

disability in the United States 88. However, not all individuals who survive a stroke persist 

with debilitating sequelae. Unfortunately, our current models cannot fully explain the 

degree of functional impairment in the acute and subacute periods. They are only partly 

predicted by the size and the location of the stroke lesion, or by individual factors such as 

age, pre-stroke function and education. For this reason, there is pressing need for a better 

understanding of the pathophysiological mechanisms associated with stroke-related 

impairments. 

One promising theory regarding stroke recovery suggests that impairment depends as much 

on the health of the individual who suffered the stroke (“the host”) as on the type, size and 

location of the stroke. More specifically, resilience to injury is a concept that relates to the 
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integrity or health status of the remaining brain after a stroke has ensued, since the 

remaining brain is responsible for overcoming the functional limitations caused by the 

regional damage from the stroke34, 89-91 . 

Broadly stated, the structural integrity of the remaining brain can be compared to brain 

health. Its measurement could aid in refinement of the models to explain functional deficits 

after the stroke, taking into account other important variables such as stroke characteristics 

and age. 

In this study, we aimed to assess the relationship between residual brain integrity after the 

stroke and subacute functional impairment. We employed a neuroimaging approach, which 

permits a comprehensive assessment of the structural integrity of white matter networks 

across the entire brain, the brain connectome. We leveraged post-processing methods 

recently defined to accurately measure the structural connectome from post-stroke brains, 

aiming to test the specific hypothesis that long-range white matter structural integrity is 

directly associated with functional impairment. 

We focused on white matter for a few important pathophysiological reasons: 

cardiovascular risk factors (CVRF) such as diabetes, hyperlipidemia, 

hypercholesterolemia, hypertension and smoking are commonly observed among stroke 

patients and are known to result in atherosclerosis, small vessel disease and 

microangiopathic changes 92. White matter, compared to grey matter, is more vulnerable 

to ischemic damage due to hypoperfusion47, and lower collateral supply in the deep white 

matter 63. Many studies have demonstrated cumulative white matter disease in individuals 

with CVRF 92, and our group has previously shown that loss of white matter due to CVRF 

is associated with lower cognitive performance and verbal IQ.  
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Not only is white matter more vulnerable to injury, but we also postulate that long-range 

white matter connections may be particularly vulnerable to injury in cerebrovascular 

disease. Compared with short-range connections, long-range connections are less 

numerous as a result of higher metabolic demands but are nonetheless essential for network 

integration and efficiency. Fewer long-range white matter connections could impair 

functional integration and neuroplasticity. A lower balance between long- and short-range 

fibers as a result of fewer long-range fibers is therefore a proposed mechanism by which 

brain health is lost. 

In this study, part of the ongoing Wide Spectrum Investigation of Stroke Outcome 

Disparities on Multiple Levels 93 (WISSDOM), we aimed to test this proposed mechanism 

in a cohort of sub-acute stroke participants by determining the association between long-

range white matter connections and functional impairment evaluated by the Stroke Self-

Efficacy Questionnaire 94 (SSEQ), and the Stroke Impact Scale 95(SIS). 

Methods 

Participants 

We recruited 30 participants, (17 males, mean age 57.9 ± 9.2) as part of an ongoing 

disparity study aimed at determining the effect of a nurse guided intervention on stroke 

recovery (CINGS ClinicalTrials.gov Identifier: NCT02982278). Participants with mild or 

moderate ischemic stroke were recruited in the sub-acute stages (14-164 days). Twenty-six 

participants (87%) had previously been diagnosed with at least one CVRF: diabetes (15 

participants), hyperlipidemia, and hypercholesterolemia (22 participants), hypertension (24 

participants), and 6 smokers. Four participants had not been previously diagnosed with any 

CVRF and were non-smokers. The total Charlson Comorbidity index 57 (CCI) was 
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calculated for all participants. We also collected the year each participant had been 

diagnosed with the 1st CVRF and used this as a proxy for the minimum number of years 

they had lived with the risk factor. Over half the participants (51.9%) diagnosed with 

CVRF had lived with one or more CVRF for at least 10 years. Participant demographic, 

clinical and behavioral characteristics are presented in table 1. For comparison of identified 

white matter fibers to a non-stroke cohort, we included 58 age matched self-reported 

cognitively normal individuals (45 females, 54.9 ± 8.3 years) without a history of 

neurological or psychiatric illness, but with a similar cardiovascular risk profile to the 

stroke participants. Twenty-seven participants (47%) of the non-stroke cohort had 

previously been diagnosed with at least one CVRF: diabetes (14 participants), 

hyperlipidemia (18 participants), and hypertension (20 participants). Thirty-one 

participants did not have a history of CVRF.  

The study was approved by the Institutional Review Board at the Medical University of 

South Carolina, and all participants gave written, informed consent.  

Behavioral Evaluation 

All participants underwent functional performance assessment using the SIS to assess 

stroke specific functional outcomes that capture 8 individually scored domains: purpose, 

memory, mood, communication, typical daily activities, ability to be mobile at home or in 

the community, ability to use the most affected hand, and physical problems. Each section 

had a transformed score computed as:  

score = (actual raw score – lowest possible raw score)/(possible raw score range)  * 100. 

Transformed scores of the latter four domains (activities, ability, hand function and 

physical problems) were combined to form the physical domain. Participants also 
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completed the SSEQ that assesses an individual’s confidence in functional performance 

after stroke. Behavioral assessment was performed either on the same day, or within the 

same week of neuroimaging assessment.  

 
Table 1: Demographic, clinical and behavioral data of study participants (N=30). 
Race, N (%) 17(56.7) African American, 13(43.3) White 
Sex, N (%) 13 (43.3) females, 17 (56.7) males 
Age at test (years); mean (SD), range 58.3 (9.1), 35-75 
Time post-stroke± (days); mean (SD), range 55.3 (40.2), 14-164 
Time with CVRF (years); mean (SD), range  12.7 (14.2), 0-40 
Affected hemisphere 15 left, 14 right, 1 brainstem  
Lesion volume± (in ml); mean (SD), range 19.8 (30.8), 0.07-110.3 
BMI; mean (SD), range 31.1 (8.9), 21.3-55.8 
Pulse pressure; mean (SD), range 54.8 (22.9), 20-118 
SSEQ; mean (SD), range 104 (20.4), 63-130 
SIS physical; mean (SD), range 27.5 (23.0), 0-94.1 
SIS purpose; mean (SD), range 27.1 (26.0), 0-100 
SIS memory; mean (SD), range 23.9 (20.8), 0-64.3 
SIS mood; mean (SD), range 25.6 (21.3), 0-69.4 
SIS communication; mean (SD), range 18.0 (20.5), 0-82.1 

BMI=body mass index, SSEQ=stroke self-efficacy questionnaire, SIS=stroke impact scale. 
±clinical variables included in the regression models. 
 
Image Acquisition 

Imaging was performed on a Siemens 3T Prisma scanner with a 20-element head/neck 

(16/4) coil at the Medical University of South Carolina. We used whole-brain T1-weighted, 

T2-weighted, and Diffusion EPI images collected from each participant. T1 parameters: 

MPRAGE sequence with 1 mm isotropic voxels, a 256 x 256 matrix size, a 9-degree flip 

angle, and a 192-slice sequence with TR = 2250 ms, TI = 925 ms, TE = 4.11 ms with 

parallel imaging (GRAPPA = 2, 80 reference lines). T2-weighted images were acquired 

using a sampling perfection with application optimized contrasts using a different flip angle 

evolution (3D-SPACE) sequence, TR = 3200 ms, TE = 567 ms, variable flip angle, 256 × 

256 matrix scan with 176 slices (1 mm thick), using parallel imaging (GRAPPA = 80 
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reference lines). Diffusion parameters: mono-polar EPI scan that uses 43 volumes sampling 

36 directions with b = 1000 s/mm2 (with 7 volumes b = 0), TR = 5250 ms, TE = 80 ms, 

140 × 140 matrix, 90-degree flip angle, 210 × 210 mm field of view, with parallel imaging 

GRAPPA = 2, 80 contiguous 1.5 mm slices. This sequence was acquired twice, with phase 

encoding polarity reversed for the second series. Control data T1-weighted and Diffusion 

images and connectome generation had been described in our previous publication32.  

 

Image processing 

Lesion volume  

The sub-acute stroke lesions were manually drawn on T2-weighted scans using 

MRIcron (https://www.nitrc.org/projects/mricron) software by a researcher blinded to the 

functional scores at the time of lesion drawing.  

To spatially normalize the lesion maps to standard space, the T2 scan was co-registered 

with the individual’s T1 scan and the transforms used to resliced the lesion into native T1 

space. The resliced lesion maps were smoothed with a 3mm full-width half maximum 

Gaussian kernel to remove jagged edges associated with manual drawing. Finally, an 

enantiomorphic normalization 96 approach using SPM12's unified segmentation-

normalization 97 was applied to normalize the T1-weighted images into standard space. 

Lesion volume was determined as the sum of lesioned voxels (figure 1a).  

 

Structural connectome construction  

Each participant’s connectome was built from neuroimaging data as previously described 

by our group 98, as follows: 1) T1 weighted images were segmented into probabilistic grey 
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and white matter maps using SPM12’s unified segmentation-normalization; 2) each 

individual’s grey matter map was divided into 384 regions using the Atlas of Intrinsic 

Connectivity of Homotopic Areas (AICHA)59; 3) the grey matter parcellation maps were 

non-linearly registered into the diffusion tensor imaging (DTI) space; 4) pairwise 

probabilistic DTI fiber tracking was computed for all possible pairs of grey matter regions; 

5) the weight of each pairwise connectivity link was determined based on the number of 

probabilistic streamlines connecting the grey matter region pair, corrected by distance 

travelled by each streamline (using probtrackX’s “distance correction”) and by the total 

volume of the connected regions (to compensate for the unequal size of grey matter regions 

of interest (ROI s); 6) a weighted adjacency matrix M of size 384 x 384 was constructed 

for each participant with Mi,j representing the weighted link between ROI i and ROI j. 

Diffusion images were undistorted using TOPUP99 and Eddy86. Tractography was 

estimated using FSL’s FMRIB's Diffusion Toolbox (FDT) probabilistic method60 with 

FDT’s accelerated BEDPOST100 used to assess default distributions of diffusion 

parameters at each voxel. Probabilistic tractography was performed using FDT’s 

probtrackX (parameters: 5000 individual pathways drawn through the probability 

distributions on principal fiber direction, curvature threshold set at 0.2, 200 maximum 

steps, step length 0.5mm, and distance correction). The waypoint mask was set as the 

white-matter probabilistic map excluding the stroke lesion. In summary, each individual 

connectome was represented by a 384 x 384 matrix, where the nodes corresponded to the 

AICHA anatomical ROIs and the edges to the structural connectivity between the nodes.  

 

Network analysis 
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To access the quantity of fibers in each individual connectome, we calculated the number 

of all identified connections and separated them into short-, mid- and long-range 

connections. This was done by calculating the Euclidean distance between each pair of 

node centroids and designating all identified fibers with lengths below the 1st quartile “short 

range” fibers, and all fibers with lengths above the 3rd quartile “long range” fibers. Mid-

range fibers were between the 1st and 3rd quartiles. Long-range fibers were used as the 

primary connectome predictor (figure 1b). To ensure our primary predictor was not 

influenced by the lesion, we restricted our analysis to the contralesional hemisphere, except 

for the participant with a brainstem stroke, where we included whole brain long-range 

fibers. We further compared the number of identified short, mid, and long-range fibers to 

an age-matched non-stroke cohort with and without CVRF. Due to differing acquisition 

sequences, comparisons were only made between short, mid and long-range fibers 

normalized to the number of all identified fibers for each subject (figure 1c).  

 

Statistical analysis 

We performed bivariate analysis to determine correlations between the SSEQ, the five 

domains of the SIS, and long-range fibers.  

We further constructed 6 linear regression models with the SSEQ, SIS-physical, SIS-

purpose, SIS-memory, SIS-mood, and SIS-communication individually as the dependent 

variables for each model, and long-range fibers as the predictor variable. For each model, 

we adjusted for key covariates including time post stroke, cardiovascular risk factors, 

lesion volume and location. Specifically, the pre- and post-central gyri, Broca and 

Wernicke areas, optic radiation and the cortico-spinal tracts lesion volumes were included 



P a g e  67 | 139 
 

in the models. All statistical analyses were performed using MATLAB, and the statistical 

significance was set at p ≤ 0.05.  

 

Data Availability Statement 

Anonymized data used in this study will be made available to investigators who provide 

written request to the corresponding author to analyze the data, indicating the study in 

which the data will be used. 

Results 

Participants with stroke had significantly more short-range fibers (0.74 ± 0.03) than non-

stroke controls (0.65 ± 0.04) (p <10-11) and the CVRF group (0.65 ± 0.03) (p <10-15), but 

fewer mid-range fibers (0.24 ± 0.02) than non-stroke controls (0.29 ± 0.03) (p <10-8), and 

the CVRF group (0.30 ± 0.02) (10-10). Participants with stroke also had significantly fewer 

long-range fibers (0.023 ± 0.008) compared to the non-stroke controls (0.043 ± 0.014), and 

the CVRF group (0.042 ± 0.01) (both p <10-11) (figure 1c).  

 

Relationship between SSEQ, SIS, and long-range connections - Bivariate analysis 

Long-range fibers were significantly correlated with SSEQ (r = 0.49, p = 0.007), and the 

physical (r = -0.46 p = 0.01), memory (r = -0.44, p = 0.02), mood (r -0.51, p = 0.005) and 

communication (r = -0.47, p = 0.01) domains of the SIS.  This implies that participants 

with a lower number of long-range fibers had higher SIS scores, and lower SSEQ, i.e., 

were more severely impaired, and assessed themselves to be more functionally impaired. 

Purpose was not significantly correlated with long range-fibers (r = -0.12, p = 0.53) (table 

2).  
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Relationship between SSEQ, SIS, and long-range connections - Multivariate analysis 

Our model accounted for about 49% of variance in participant self-reported functional self-

efficacy, SSEQ: F(4,30) = 7.8, p = 0.0003, R2 = 0.56, adjusted R2 = 0.49. Time post stroke 

and long-range fibers were significant predictors in this model (p = 0.0005 and p = 0.01 

respectively).  

The physical, mood, memory and communication models were significant while the 

purpose model did not reach statistical significance. In the physical domain, our model 

accounted for about 25% of the variance in physical impairment: F(4,30) = 3.4, p = 0.02, 

R2 = 0.35, adjusted R2 = 0.25. In this model, the contralesional long range fibers were the 

only significant predictor (p =0.012). In the mood domain, our model accounted for about 

37% of the variance: F(4,30) = 5.21, p = 0.003, R2 = 0.46, adjusted R2  = 0.37. In this model, 

contralesional long-range fibers (p = 0.01) were a significant predictor. In the 

communication domain, our model account for about 13% of variance, F(4,30) = 2.06, p 

=0.1, R2 = 0.13, adjusted R2 = 0.25. The contralesional long-range fibers was also the only 

significant predictor in this model (p = 0.018). In the memory domain, our model accounted 

for 10% of the variance, F(4,30) = 1.84, p = 0.15, R2 = 0.22, adjusted R2  = 0.10. 

Contralesional long-range fibers were the only significant predictor (p = 0.02). 

 

Table 2: Partial Pearson correlations controlling for lesion size between Stroke Impact 

Scale scores and contralesional long-range fibers (N=30).  

 Long-range 
fibers 
r/p-value 

SSEQ 0.49/0.007 
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SIS physical -0.46/0.01 
SIS purpose -0.12/0.53 
SIS memory -0.44/0.02 
SIS mood -0.51/0.005 
SIS communication -0.47/0.01 

 
 
Table 3: Linear regression analyses  
Dependent variable: Stroke Self-Efficacy Questionnaire 

 b coefficients  Standard  
error t p 

Model (r2=0.49, p=0.0003)     
 Time post stroke* -0.28 0.07 -3.99 0.0005 
 Charlson index 2.55 2.85 0.89 0.38 
 Lesion volume 0.53 6.8 0.08 0.94 
 Long-range fibers* 0.01 0.004 2.66 0.01 

 
 
Dependent variable: SIS physical domain 

 b coefficients  Standard  
error t p 

Model (r2=0.25, p=0.02)     
 Time post stroke 0.1 0.10 1.0 0.31 
 Charlson index 8.36 3.89 2.15 0.04 
 Lesion volume 15.09 9.26 1.63 0.12 
 Long-range fibers* -0.02 0.006 -3.02 0.006 

 
Dependent variable: SIS purpose 

 b coefficients  Standard  
error t p 

Model (r2=-0.09, p=0.8)     
 Time post stroke 0.13 0.13 0.98 0.34 
 Charlson index 2.3 5.3 0.43 0.67 
 Lesion volume 5.67 12.62 0.45 0.66 
 Long-range fibers -0.004 0.008 -0.53 0.60 

 
Dependent variable: SIS memory 

 b coefficients  Standard  
error t p 

Model (r2=0.10, p=0.15)     
 Time post stroke 0.06 0.10 0.65 0.52 
 Charlson index 2.08 3.84 0.54 0.59 
 Lesion volume 11.05 9.15 1.21 0.24 
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 Long-range fibers* -0.01 0.006 -2.4 0.02 
 
Dependent variable: SIS mood 

 b coefficients  Standard  
error t p 

Model (r2=0.37, p=0.003)     
 Time post stroke 0.16 0.08 1.89 0.07 
 Charlson index -3.10 3.31 -0.94 0.36 
 Lesion volume 11.59 7.87 1.47 0.15 
 Long-range fibers* -0.01 0.005 -2.64 0.01 

 
Dependent variable: SIS communication 

 b coefficients  Standard  
error t p 

Model (r2=0.13, p=0.1)     
 Time post stroke 0.08 0.09 0.84 0.41 
 Charlson index 0.94 3.73 0.25 0.8 
 Lesion volume 2.29 8.88 0.26 0.8 
 Long-range fibers* -0.01 0.006 -2.54 0.018 

 
 

Discussion 

We aimed to determine the impact of residual brain health and integrity on functional 

outcome, quantified by the SSEQ, and the SIS, using structural brain connectomes 

constructed from a cohort of patients in the sub-acute stage of stroke. Our results supported 

our hypothesis that brain integrity, quantified by long-range fiber connections, is a 

significant predictor of functional deficit in both the self-reported measure of functional 

self-efficacy, and in 6 of the 8 domains of the SIS. Participants with a lower proportion of 

long-range fibers scored higher on all domains of the SIS and had lower self-efficacy 

scores. Our cohort consisted mainly of participants who had lived with at least one CVRF 

for several years. Converging evidence suggest that CVRF burden and the length of 

affliction maybe a major contributing factor in the decline of brain integrity. This is because 
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CVRF and established cardiovascular disease are known to be strongly related to the 

presence and progression of small vessel disease (SVD) and white matter injury 101. Greater 

burden of SVD is in turn associated with cognitive 102 and movement impairment 103, 

depression , higher incidences of stroke, and worse outcome after stroke.  While the 

pathophysiology of SVD remains undefined, studies correlating histopathology and 

postmortem MRI propose mechanisms that include hypoperfusion as a result of altered 

cerebrovascular autoregulation, hypoxia, blood-brain barrier leakage, inflammation, 

degeneration, amyloid angiopathy 104 and endothelial dysfunction 105. Indeed, this 

subsequent damage to the white matter leads to structural compromise that may determine 

the severity of functional impairment, and also hamper the potential for neuro-plasticity 

and functional recovery after stroke beyond the size and location of the lesion. As 

demonstrated in our cohort, associations between the proportion of long-range fibers and 

functional impairment after stroke was observed even after controlling for time post-stroke, 

CVRF, lesion size and location, implying that long-range fibers have an important, and 

independent contribution to functional recovery after stroke. Physical activity, memory, 

mood, and communication are domains that require extensive involvement of specialized 

functional modules and widespread networks, implying the need for functional segregation 

(short-range connections), and subsequent integration (long-range connections) for 

efficient transfer of information. The loss of these long-range white matter fibers, possibly 

as a result of CVRF disrupts the topological integrity of the brain network, causing diffuse 

but covert injury that can occur sub-clinically, before overt manifestation of clinical 

symptoms, stroke, and or cognitive decline. 
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From our results, we therefore posit that the loss of long-range fiber connections is a 

mechanism that captures a pattern of brain integrity decline that begins long before overt 

clinical damage, and subsequently determines severity of functional impairment and 

potential for recovery after stroke. 

Figures 

 
Figure1. a) Lesion overlay across all participants (N=30). Colors represent the number of 
patients with a lesion in that area, with the hotter colors indicating more overlap. Note the 
heterogeneity of the lesion locations. b) Example of short-range (anterior-cingulate to 
superior-frontal and) long-range (superior-temporal to superior-parietal) fibers c) 
Identified whole brain fibers. The stroke cohort had significantly more short-range fibers 
compared to the control and cardiovascular risk factor (CVRF) groups, and significantly 
fewer mid- and long-range fibers compared to the control group. 
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Figure2. Significant linear regression models.  
 

 
Figure3. Example subjects showing lesions and reconstructed whole brain connectomes: 
a) Subject 1 has a SIS index of 97.92, lesion volume of 43.51 ml with about 3.2% of long-
range fibers, while subject 2 has a smaller lesion volume (29.8 ml) but with fewer identified 
long range fibers (2.4%), and a SIS index of 159.47. Also note the occurrence of 
leukoaraiosis on subject 2’s contralesional hemisphere compared to subject 1.  
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Stroke as a network disorder: impact of 
stroke on brain network topology 

 
 

lthough stroke primarily affects the brain through a focal lesion, distant regions 

from the lesion location are nonetheless affected and may significantly contribute 

to functional impairment.  

This chapter, based on the following peer reviewed publication, examines the effect 

of stroke on the residual network topology and its impact on language recovery in chronic 

stroke: 

Marebwa BK, Fridriksson J, Yourganov G, Feenaughty L, Rorden C, Bonilha L. 

Chronic post-stroke aphasia severity is determined by fragmentation of residual white 

matter networks. Sci Rep 2017;7:8188. 

Abstract 

Many stroke survivors with aphasia in the acute period experience spontaneous recovery 

within the first six months after the stroke. However, approximately 30-40% sustain 

permanent aphasia and the factors determining incomplete recovery are unclear. 

Suboptimal recovery may be influenced by disruption of areas seemingly spared by the 

stroke due to loss of white matter connectivity and network integrity. We reconstructed 

individual anatomical whole-brain connectomes from 90 left hemisphere stroke survivors 

using diffusion MR images. We measured the modularity of the residual white matter 

network organization, the probability of brain regions clustering together, and the degree 

A 

5 



P a g e  75 | 139 
 

of fragmentation of left hemisphere networks. Greater post-stroke left hemisphere network 

fragmentation and higher modularity index were associated with more severe chronic 

aphasia, controlling for the size of the stroke lesion. Even when the left hemisphere was 

relatively spared, subjects with disorganized community structure had significantly worse 

aphasia, particularly when key temporal lobe regions were isolated into segregated 

modules. These results suggest that white matter integrity and disorganization of neuronal 

networks could be important determinants of chronic aphasia severity. Connectome white 

matter organization measured through modularity and other topological features could be 

used as a personalized variable for clinical staging and aphasia treatment planning.  

Introduction 

Human communication relies on complex interactions of higher-order processes, such 

as general knowledge, memory, semantic association, syntax, and phonological processing. 

Taken together, key cortical regions need not only to be preserved, but also connected and 

integrated into a neural network in order to permit language processing.  

Stroke is the leading cause of long-term language impairments (aphasia) in adults106. 

However, many stroke survivors with aphasia in the acute phase experience spontaneous 

recovery within the first six months after the stroke. Nonetheless, approximately 30-40% 

do not recover fully and experience aphasia for the rest of their lives 107. Even though 

ischemic stroke may lead to necrotic damage affecting specific brain areas, the functional 

impairment after stroke can be exacerbated by dysfunction of seemingly spared areas108.  

The neurobiological bases for loss of function in remote and spared areas are not 

completely understood. However, extensive work on disconnection syndromes, including 

from our group109 110, 111, have demonstrated that white matter loss and cortical 
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disconnection can extend beyond the stroke lesion108. Importantly, the degree of white 

matter disconnection of Broca’s area is an independent predictor of naming impairments 

after a stroke, controlling for the degree of cortical ischemic damage112, 113. Furthermore, 

residual anatomical connectivity of spared areas plays a significant role in therapy-related 

improvement in object naming in subjects with aphasia114. 

Nonetheless, it is still unclear whether post-stroke white matter damage can be used 

as personalized predictor of chronic aphasia severity.  

Our group has recently described how the comprehensive map of white matter 

connectivity (the connectome) can be measured in stroke survivors by combining 

innovations in image registration probabilistic tractography, diffusion tensor imaging and 

statistical assessment of residual networks98, 115. While understanding the effect of single 

elements such as node strength or degree, can explain some of the behavioral impairments 

after stroke, further understanding the complex topological organization of these elements 

may provide a valuable panoramic perspective that may not be captured otherwise.  

Examining the community organization via modularity is one such approach to assess 

the mesoscale organization in the network. Therefore, in this study, we applied connectome 

methods to test the hypothesis that post-stroke residual white matter connectivity in chronic 

stroke survivors is associated with long-lasting aphasia severity. We employed graph 

theory methods to assess the community structure of white matter networks and we 

hypothesized that the fragmentation of the connectivity structure of the networks in the 

dominant hemisphere, even when cortical regions are relatively spared, would be 

associated with more severe aphasia.  

Methods 
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Participants 

We recruited 90 participants, (mean age 58.8 ± 12.1 years, 34 women) with a single 

left hemisphere ischemic or hemorrhagic stroke at least 6 months before the study (mean 

42.8 ± 50 months post stroke). Participants were included in the study if they did not have 

a history of any other neurological illness apart from the stroke, could follow simple 

instructions, and were MRI compatible. All participants were right handed. The cohort of 

participants included in this study was also reported in previous study by our group98. The 

study was approved by the Institutional Review Boards at the Medical University of South 

Carolina and at the University of South Carolina. Written informed consent was obtained 

from all participants or their legal guardians, as approved by our institutions’ IRB. All 

methods were performed in accordance with guidelines and regulations from our 

institutions’ IRB.  

 

Behavioral Evaluation 

All the participants underwent language assessment using the Western Aphasia 

Battery (WAB-R)116. The variable of interest to the current study was the WAB Aphasia 

Quotient (WAB-AQ), which yields a global measure of aphasia severity on a scale of 0-

100, with lower scores indicating worse aphasia.  WAB-AQ reflects overall severity of 

language impairment in aphasia and is derived from various subtest scores including 

spontaneous speech fluency, auditory comprehension, speech repetition, and naming. Each 

subtest score was obtained by combining the data from its corresponding categories and 

calculated in accordance with the WAB-R manual. Aphasia types were classified according 

to the WAB. The following aphasia types were observed in our participant sample: anomic 
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(26 participants); Broca’s (30 participants); conduction (9 participants); global (8 

participants); Wernicke’s (5 participants); no aphasia (12 participants) with WAB-AQ > 

93.7; a cut-off typically applied in clinical grounds but may otherwise exclude individuals 

with milder deficits.  

Image Acquisition 

MRI scanning was performed within two days of behavioral testing. Images were 

acquired on a Siemens Trio 3T scanner equipped with a 12-element head coil located at 

the University of South Carolina. In this study, we used whole brain T1-weighted, T2-

weighted and Diffusion EPI images collected from each patient.  

1) T1-weighted image utilizing an MP-RAGE sequence with 1 mm isotropic 

voxels, a 256×256 matrix size, and a 9-degree flip angle. For the first 25 individuals 

we used a 160-slice sequence with TR=2250 ms, TI=900 ms, TE=4.52 ms. For the 

latter 65 individuals we used a 192-slice sequence with TR=2250 ms, TI=925ms, 

TE=4.15 with parallel imaging (GRAPPA=2, 80 reference lines). Each of these 

scans required approximately 7 minutes to acquire.  

2) T2-weighted image using a sampling perfection with application optimized 

contrasts using a different flip angle evolution (3D-SPACE) sequence. This 1 mm 

isotropic 3D TSE scan uses a TR=2800 ms, a TE of 402 ms, variable flip angle, 

256×256 matrix scan with 192 slices, using parallel imaging (GRAPPA x2, 120 

reference lines).  

3) Diffusion EPI scan which varied in terms of b-value (s/mm2), spatial 

resolution and other parameters across participants. Fifty-two participants had a 

sequence with 65 isotropic (2.0mm) volumes (x1 B=0, x64 B=1000), TR = 7700ms, 
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TE = 90ms, 112×112 matrix, with parallel imaging GRAPPA=2, 60 contiguous 

slices. Thirty-eight individuals had a monopolar sequence with 82 isotropic 

(2.3mm) volumes (x10 B=0, x72 B=1000), TR = 4987ms, TE = 79.2ms, 90×90 

matrix, with parallel imaging GRAPPA=2, 44 contiguous slices. This sequence was 

acquired in two series (41 volumes in each series) with opposite phase encoding 

allowing us to spatially undistort the images with TOPUP 99. 

 

Lesion Mapping 

Lesions were manually drawn on each individuals T2 scan by a neurologist (LB). The 

T2 scan was co-registered with the individual’s T1 scan with the transforms applied to the 

lesion map. The T1 scans were warped to standard space using enantiomorphic 

segmentation-normalization 96, with these transforms applied to the lesion maps. These 

normalized lesion maps were used to compute the proportion injury to each of the 189 

regions in the JHU as a ratio of lesioned voxels to the total number of voxels in that region.  

 

Brain parcellation  

Normalized brains were segmented into 189 regions using the Johns Hopkins 

University (JHU) brain atlas 117. We aligned the anatomical brain atlas containing the JHU 

parcellation with each individual’s T1-weighted images. The T1-weighted images were 

segmented into probabilistic grey and white matter maps, and the grey matter map was 

divided into regions according to the atlas. We then computed the percentage of damage 

for each grey matter region as a ratio of lesioned voxels to the total number of voxels in 

that region.  
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Anatomical connectome construction  

Each participant’s individual connectome was built using the following steps: 1) T1 

weighted images were segmented into probabilistic grey and white matter maps using 

SPM12’s unified segmentation-normalization, 2) the probabilistic grey matter map was 

divided into the JHU anatomical regions using the parcellation scheme described in 2.3.2., 

3) the white matter and gray matter parcellation maps were registered into the diffusion 

imaging (DTI) space, 4) pairwise probabilistic DTI fiber tracking was computed for grey 

matter regions, 5) the weight of each pairwise connectivity link  was determined based on 

the number of streamlines connecting the grey matter region pair, corrected by distance 

travelled by each streamline and by the total volume of the connected regions, and 6) a 

weighted adjacency matrix M of size 189 x 189 was constructed for each participant. Mi,j 

representing the weighted link between ROI i and ROI j.  

The T2-weighted image (co-registered into the T1-weighted image) was normalized 

into the B0 non-diffusion image (from the diffusion MRI sequence); this spatial transform 

was applied to register the probabilistic white and gray matter maps (the latter divided into 

JHU regions of interest) as well as the stroke lesion into the diffusion MRI space, where 

all subsequent calculations were performed. 

Tractography was estimated through FDT’s probabilistic method 60 with FDT’s 

BEDPOST being used to assess default distributions of diffusion parameters at each voxel, 

and probabilistic tractography was performed using FDT’s probtrackX (parameters: 5000 

individual pathways drawn through the probability distributions on principle fiber 

direction, curvature threshold set at 0.2, 200 maximum steps, step length 0.5mm, and 
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distance correction). The waypoint mask was set as the white-matter probabilistic map 

excluding the stroke lesion, ensuring that the subsequent weighted connectivity matrix is 

composed of only the surviving connections. The weighted connectivity between the 

regions i and j was defined as the number of probabilistic streamlines arriving at j region 

when i was seeded, averaged with the number of probabilistic streamlines arriving at i 

region when j was seeded. The connection weight was corrected based on the distance 

travelled by the streamlines connecting i and j (probtrackX’s “distance correction”). The 

number of streamlines connecting each pair of regions was further divided by the sum of 

the volumes of these regions, giving the number of connections per unit surface. The 

distance correction is essential to eliminate linear bias towards longer fibers, and the 

volume correction avoids oversampling of larger ROIs compared to ROIs with smaller 

areas 118. We did not perform a network density correction because as previously 

demonstrated by our group119, in a weighted or non-binarized network, network density 

does not affect network properties as all possible connections are taken into account and 

scaled based on their weight.  

Each individual connectome was represented by a 189 x 189 matrix, where the nodes 

corresponded to the JHU anatomical regions, and the edges the anatomical connectivity 

between the nodes. For this study, our analyses were restricted to 57 x 57 matrices that 

included only grey matter regions (i.e., ventricles and white matter regions were excluded). 

Succinctly, the following procedures were performed: the lesion was manually drawn 

on a T2 weighted image by a rater who was blinded to the WAB-AQ, the T2 and the T1 

weighted image were co-registered and the T1 weighted image was spatially registered 

(non-linearly normalized) into standard space using an enantiomorphic segmentation-
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normalization procedure. Then the transformation matrix (T1 to standard space) was used 

to transform the JHU atlas into native T1 space, and a non-linear normalization procedure 

was used to register the T1 to the B0 image, and this transformation matrix was used to 

transform the JHU atlas from T1 to diffusion space. The same procedure was used to 

transform the lesion (in T1 space) to diffusion space, and finally fiber tracking was 

performed using the JHU ROIs while excluding the lesion mask. 

 

Community Detection  

Each connectome created above was partitioned into communities or modules by 

optimizing Newman’s modularity algorithm25, implemented in the Brain Connectivity 

Toolbox61 (e.g. [Ci,Q] = modularity_und(W), where W is the weighted undirected 

connectivity matrix; gamma was maintained at the default gamma = 1). Modularity (Q) is 

a value that quantifies the strength of the network’s modular organization by identifying 

groups of nodes that have a stronger intra-community coherence than inter-community 

coherence, and is defined as 

𝑄 = ∑ (𝑒&& − 𝑎&))+
&,-    (1) 

 

where m is the total number of modules, eii is the fraction of edges in the network that 

connect nodes that occur within the same module i, and ai is the fraction of edges 

connecting a node in module i to any other random node, such that if the modules were 

assigned randomly, then eij = aiaj. Modularity values are positive if the number of edges 

within modules exceeds the number of edges expected by a chance distribution of edges 

between nodes regardless of modules 25.  
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Statistical analysis 

For each subject, in the left and right hemisphere, we extracted the modularity score, 

and the optimal community structure, which indicates to which communities each ROI 

belongs. Since two different sequences were used to acquire the DTI data, we first ran an 

unpaired two-tailed t-test and determined there was no significant difference in the 

modularity scores acquired from the two groups left hemisphere (p = 0.3340), right 

hemisphere (p = 0.1455). Due to stochasticity of network partitioning which may lead to 

assignment of ROIs to different communities with every run, we performed 100 

optimizations of the modularity quality function for each connectivity matrix and created 

a community affiliation matrix A, from the optimal community structure vector. Aij 

represented the probability that region Ai and Aj are consistently grouped in the same 

community over 100 iterations. We then calculated the mean of all entries in the upper 

triangular community affiliation matrix, to obtain the left and right hemisphere community 

affiliation index (C). 

For each subject, we quantified how intact the community structure of the left 

hemisphere was, compared to the right hemisphere via a ratio of the right to left community 

affiliation index, which we called the fragmentation index (FI) defined as 

𝐹𝐼 = 012	4	512
012	6	512	

   (2), 

 

where RHC is the right hemisphere community affiliation index, and LHC is the left 

hemisphere community affiliation index.  

We then performed a one-tailed Pearson correlation analysis, since we had an a priori 
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expectation of effect in one direction - higher modularity to correspond to lower behavioral 

scores, to evaluate relationship between modularity, community affiliation index, and 

fragmentation index with WAB-AQ scores. We also calculated partial correlations 

controlling for whole brain grey and white matter damage, and for damage in a subnetwork 

of language specific regions as defined by Fedorenko and colleagues120.  We further 

calculated the sum of weighted links to each node; the node strength. The mean node 

strength of left hemisphere nodes was then correlated with WAB-AQ. 

To determine which pairs of nodes should be in the same module for better WAB-AQ 

score, we calculated for every entry in the left hemisphere community affiliation matrix 

Aij, an unpaired one-tailed t-test that compared the WAB-AQ scores for participants that 

had a community affiliation index of 1 against those that had an index <1. The t-test was 

run only if both groups had at least 5 participants. To control for damage, the analysis was 

further restricted to pairs of regions that were at least 50% preserved for each individual. 

The p-values were Bonferroni corrected at p ≤ 0.05.  

 

In order to assess the relationship between modularity and regional gray matter hubs, 

the number of preserved hubs in the left hemisphere was assessed. Network hubs were 

defined in accordance with rich club networks 121 as previously applied to lesion brains and 

aphasia by our group122 , by identifying nodes with high degree that were also more densely 

connected to other high degree nodes than would be expected by chance .  

We performed multiple linear regression analyses to evaluate the relationship between 

WAB-AQ and cortical damage, modularity, and the number of hubs. In the first model, 

WAB-AQ was defined as the dependent variable, with damage as the independent variable. 
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The second model had WAB-AQ as the dependent variable, and damage and number of 

hubs as independent variables. The third model had WAB-AQ as the dependent variable, 

and damage and modularity as independent variables. Adjusted R2 indicated the 

explanatory power of the model with statistical significance set at p < 0.05.  

 

Contributions of the domain general and language specific networks 

To determine which community structures were associated with aphasia severity, we 

performed a subsequent analyses evaluating a sub-network composed of 9 language 

specific and 8 domain general regions of the networks as defined by Fedorenko and 

colleagues 120. Language specific regions included the posterior segment of the middle 

frontal gyrus (MFG), the inferior frontal gyrus opercularis, inferior frontal gyrus 

triangularis, angular gyrus (AG), superior temporal gyrus (STG), pole of the superior 

temporal gyrus, middle temporal gyrus (MTG), posterior superior temporal gyrus (PSTG), 

and the posterior middle temporal gyrus (PMTG) which corresponds to PSMG in the JHU 

atlas.  We also included the posterior inferior temporal gyrus (PITG) which corresponds to 

PSIG in the JHU atlas. Domain general regions included the posterior segment of the 

superior frontal gyrus (SFG), the dorsal prefrontal cortex of the middle frontal gyrus 

(MFG-DPFC), inferior frontal gyrus orbitalis, precentral gyrus (PrCG), superior parietal 

gyrus (SPG), supramarginal gyrus (SMG), posterior cingulate gyrus (PCC) and the insular. 

For every node in the language specific and domain general networks we calculated the 

frequency with which the node occurred in the same module with other regions in the brain 

for each subject, in other words, when they were not fragmented. We then correlated this 

value with WAB-AQ scores to determine the correlation between the composition of the 
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modules and aphasia severity. 

In order to assess the strength of the connections within the communities, we further 

selected the traditional language regions: Broca’s area (inferior frontal gyrus opercularis 

and inferior frontal gyrus triangularis), and Wernicke’s area (superior temporal gyrus), and 

for each subject, extracted modules that contained these regions. We then calculated the 

average intra-modular degree for the modules containing these regions, and the 

participation coefficient for the three ROIs, which were then correlated with WAB-AQ, 

controlling for gray matter damage to the ROIs contained in each module.  

Statistical analyses were performed in MATLAB Release 2015b 

Results 

Relationship between Aphasia Severity and Modularity (Q) 

The mean aphasia quotient (WAB-AQ) was 62.6 ± 28.9. As indicated in the left panel 

of Figure 1, left hemisphere modularity (Q) was significantly correlated with WAB-AQ 

scores such that greater modularity was associated with worse aphasia severity (r = -0.42, 

p < 0.00001) - partial correlation controlling for ROI-specific proportion of damage in the 

left hemisphere (r = -0.21, p = 0.0246), partial correlation controlling for language specific 

network damage in the left hemisphere (r = -0.21, p = 0.0225), partial correlation 

controlling for white matter damage in the left hemisphere (r = -0.28, p = 0.0044). Right 

hemisphere modularity (Q) was not significantly correlated with WAB-AQ (see right panel 

of Figure 1). Figure 2 shows the correlation between left hemisphere modularity and WAB 

subscores: auditory comprehension, fluency, object naming, and repetition. There was no 

significant correlation between the whole brain modularity score and WAB-AQ (r = 

0.1445, p = 0.1742), or any of the WAB subscores.  
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Relationship between Aphasia Severity and mean node strength 

The left hemisphere mean node strength was significantly correlated to WAB-AQ (r 

= 0.3625, p < 0.0001), but did not survive partial correlation controlling for the grey and 

white matter damage. Supplementary figure 3 and 4 shows the relationship between WAB-

AQ (and WAB subscores) and node strength 

 

Relationship between Aphasia severity and Community Affiliation Index (C) 

The left hemisphere community affiliation index was significantly correlated with 

WAB-AQ (r = 0.44, p < 0.00001), Figure 3 left panel). The direction of the effect indicates 

that subjects whose connectomes exhibited more consistent left-hemispheric node-

community assignments across optimizations of the clustering algorithm had higher WAB-

AQ. Aphasia severity and community affiliation index was not significantly correlated 

when controlling grey or white matter damage. There right hemisphere community 

affiliation index was not significantly correlated with WAB-AQ (Figure 3 right panel) 

 

Relationship between Aphasia severity and Fragmentation Index (FI) 

There was a significant negative correlation between the fragmentation index and WAB-

AQ (r = -0.43, p < 0.0001, Figure 4), indicating that subjects with more fragmented left 

hemispheres had more severe aphasia.  

Aphasia severity and fragmentation index was not significantly correlated when controlling 

grey matter damage but was significantly correlated when controlling for white matter 

damage (r = -0.22, p = 0.0175).  To illustrate the network fragmentation, figures 5 and 6 
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show two example participants with very different lesion volumes (subject 1: 359.4 cm3 

percent white matter damage: 0.168; subject 2: 76.1 cm3 , percent white matter damage ). 

The impact of the lesion into the white matter fragmentation is remarkable. Subject 1’s left 

hemisphere was partitioned into 14 modules. The fronto-parietal and middle-temporal 

networks are highly fragmented, with relative disconnection between the frontal and 

subcortical regions, which are grouped into different modules (Figure 5a). The right panel 

of figure 5a. shows the left hemisphere community affiliation matrix of subject 1, which is 

visibly sparser compared to the right hemisphere, indicating an unstable clustering with 

very few nodes consistently grouped in the same modules over 100 runs. Figure 5b is the 

same subject’s right hemisphere, which was partitioned into 4 groups, and displays 

significantly less fragmentation, and a more stable clustering. Figure 6a and b represents 

subject 2 left and right hemisphere respectively, whose modularity pattern did not reveal 

dramatic fragmentation. Subject 1 had a WAB-AQ score of 48.1 while subject 2 scored 

88.1. Figures 7 and 8 show two example participants, subject 3 has mean percent matter 

damage, lesion volumes and locations comparable to subject 2 (subject 3: 99.24 cm3 , 

percent white matter damage: 0.096). Subject 3’s left hemisphere is however fragmented 

into 9 modules compared to subject 2’s 4 modules. This fragmentation occurs mainly in 

the inferior frontal temporal regions, with the same subject’s right hemisphere remaining 

relatively intact (4 modules – figure 7b). Subject 3 had a WAB-AQ score of 58.2 Subject 

4 had behavioral and fragmentation patterns similar to subject 1 even with a significantly 

smaller lesion volume (subject 4: 206.36 cm3, percent white matter damage: 0.035). 

Subject 4 revealed a similar pattern of fragmentation in the left hemisphere, with a 



P a g e  89 | 139 
 

relatively intact right hemisphere (figure 8a and b respectively) and had a WAB score of 

41.8. 

Figure 9 shows the lesion locations of all 4 example subjects.  

Supplementary Table 1 shows pairs of regions that when in the same module, are associated 

with a higher WAB-AQ score. Overall, they indicate that nodes in the temporal, inferior 

frontal, middle temporal and insular regions need to be more tightly associated in the 

context of the overall community structure for preservation of language. 

 

Relationship between Aphasia severity and cortical damage, modularity, and hubs.  

There was a significant relationship between WAB-AQ and total brain damage (F = 

49.1, p < 0.00001, adjusted R2 = 0.351). When number of hubs was added as a predictor, 

the model composed of damage and number of hubs had equivalent explanatory power, 

and number of hubs was not a significant predictor of deficit (F = 25.7, p < 0.00001, 

adjusted R2 = 0.357; damage (p = < 0.00001), hubs (p < 0.18)). With modularity added as 

a predictor, the model composed of damage and modularity had a higher explanatory 

power, with modularity being a significant predictor of deficit in addition to cortical 

damage (F = 27.4, p < 0.00001, adjusted R2 = 37.2; damage (p < 0.00001), modularity (p 

= 0.049)).  

 

Relationship between Aphasia severity and inter- and intra-module connectivity.  

There was a significant relationship between aphasia severity and the reduced size of 

the modules containing regions of the language specific regions in the temporal lobe. The 

superior temporal gyrus (p = 0.0053), the pole of the superior temporal gyrus (0.0054), the 
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middle temporal gyrus (p = 0.0042), the posterior middle temporal gyrus (p = 0.0448), and 

the posterior inferior temporal gyrus (p = 0.0123) we all significantly correlated with 

WAB-AQ as shown on figure 10. (Not corrected for multiple comparison). 

Nodes from the domain general network did not significantly correlate with aphasia 

severity. 

 

Pars triangularis: 

There was a significant relationship between intra-modular degree and WAB-AQ (r = 

0.265, p = 0.0058), and between the node’s participation coefficient and WAB-AQ (r = 

0.4848, p < 10-5). Participation coefficient survived partial correlation with module specific 

damage (r = 0.271, p = 0.0051). Intra modular degree did not survive partial correlation.  

There was no significant correlation between module size and WAB-AQ. 

 

Pars opercularis: 

There was a significant relationship between intra-modular degree and WAB-AQ (r = 

0. 3520, p < 0.0001), and between the node’s participation coefficient and WAB-AQ (r = 

0.4308, p < 0.00001). Participation coefficient survived partial correlation with module 

specific damage (r = 0.2865, p = 0.0032). Intra modular degree did not survive partial 

correlation. Module size was significantly correlated with WAB-AQ (r = 0.2073, p = 

0.0250). 

 

Superior temporal gyrus 
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There was a significant relationship between intra-modular degree and WAB-AQ (r = 

0.5112, p < 10-7), and between the node’s participation coefficient and WAB-AQ (r = 0. 

3915, p < 0.00001). Both participation coefficient (r = 0.2112, p = 0.0235) and intra 

modular degree (r = 0.2898, p = 0.0029) survived partial correlation with module specific 

damage. 

Module size was significantly correlated with WAB-AQ (r = 0. 2538, p = 0.0079), and 

also survived partial correlation (r = 0.1782, p = 0.0474). 

Discussion 

The primary purpose of the current study was to determine the degree to which post 

stroke fragmentation of brain anatomical connectivity affects language ability after stroke. 

To investigate this hypothesis, we analyzed the anatomical connectome from a large cohort 

of chronic stroke survivors with left hemisphere focal damage and employed graph theory 

methods to assess the community structure of global and peri-Sylvian networks. We 

hypothesized that the fragmentation of the brain community structure and the disintegration 

of peri-Sylvian networks, even when these regions are relatively spared, would be 

associated with worse chronic aphasia. Our findings strongly supported our hypothesis: 

fragmentation to the brain neuronal network community structure, even when the cortical 

structures were relatively spared, were directly associated with more severe aphasia in the 

chronic period. 

These results have direct implications for a better understanding of the mechanisms 

associated with post-stroke language recovery, as well as the relationship between neuronal 

network integrity and complex cognitive functions. Network modularity is one of the 

hallmarks of complex biological systems. It confers computational advantages, efficient 
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processing, and robust responses to perturbations 22. Modularity represents a fine balance 

between integration and segregation where both extremes can lead to poorly efficient 

networks. Very high modularity can lead to disintegrated or fragmented networks, while 

very low modularity can lead to lack of specialization. In our cohort, we observed the stroke 

lesions are associated with higher mean modularity in the lesioned hemisphere (µ = 0.4226) 

compared to the intact hemisphere (µ = 0.3450), suggesting that anatomical damage caused 

by the stroke is not only related to regional destruction, but may affect the entire 

organization of the remaining neuronal network architecture, resulting in a more segregated 

organization that hinders communication between modules. The clinical impact of this 

measured change in modularity was confirmed by the fact that subjects with very high 

modularity scores had more severe chronic aphasia, even when controlling for degree of 

cortical lesion.  

Post-stroke high modularity scores are likely related to a combination of increased 

local clustering or modular fragmentation, weaker inter-modular integration, and, as our 

group previously demonstrated in post-stroke damage, loss of connectivity hubs 122. These 

variables lead to less efficient information transfer.  

It is important to acknowledge that we used each participant’s own right hemisphere 

as a control, which assumes anatomical integrity of the right hemisphere. This is a 

limitation for two reasons. First, is assumes that the right hemisphere is relatively preserved 

after the stroke, when in fact there could be remodeling due to deafferentation or demand 

for compensation due to loss of function. Second, it does not consider the physiological 

asymmetries in anatomical connectivity. It would therefore be essential to determine the 

reliability of the right hemisphere as a self-hemispheric control.  Despite this potential 
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limitation, there is an inherent advantage of using the subject’s own non-lesioned 

hemisphere anatomy as the control, since it considers the relative disruption of network 

topology when controlling for other issues such as age, pre-stroke microangiopathic white 

matter loss and global network organization, which affect both hemispheres equally. 

Furthermore the right hemisphere re-organization has been implicated in aphasia recovery 

123 and therefore assessing the degree of re-organization in relation to the lesioned 

hemisphere maybe more informative than comparison to healthy controls. For this reason, 

this approach was successful to demonstrate a strong and significant correlation between 

the left hemisphere community affiliation index and WAB-AQ, indicating that language 

was preserved if more regions were consistently grouped in the same module and not 

segregated across modularity optimization runs.  

While modularity is a measure of global network organization, the mutual 

participation of key regions into the same module is of potential interest. Thus, we 

identified pairs of regions that when in the same module, were associated with a higher 

WAB-AQ score (supplementary table 1). We did not explore the typical composition of 

modules beyond two pairs but were still able to observe consistent pairing of the classical 

language regions, as well as other cortical and insular regions in patients who did not have 

severe aphasia. The impact of changes of the typical composition of modules (with two or 

more regions) may be a topic for further focused study. Furthermore, we acknowledge that 

we did not perform direct out of sample prediction, perhaps a more informative measure 

of recovery, to determine the predictive power of modularity, we still propose this to be an 

important first step in the understanding of topological changes post-stroke.  
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Importantly, our results suggest that connectome community structure may be a very 

useful, personalized, and unique score to inform about language prognosis after stroke. 

Currently, our ability to predict aphasia recovery is still suboptimal and tied to lesion size 

and location even though evidence points to the reorganization of the remaining brain 

networks beyond the lesion as being crucial for recovery. Our results show a significant 

correlation between disintegration of the community structure and long-term aphasia 

severity, providing an indication into one of the many determinants of the biological 

substrates of stroke recovery. There are no other methods that can provide an accurate 

description of post-stroke prognosis regarding language. This may be the optimal usage of 

the connectome community structure, which can inform clinicians and patients about the 

magnitude of brain framework damage. Furthermore, this is an optimal approach for 

clinical translation of computational neuroscience because the connectome community 

structure provides a unique and yet abridge window to the basic framework from which 

complex cognitive functions arise, i.e., the systems organization of neuronal networks. 

In conclusion, we confirm that preservation of anatomical white matter network 

architecture is directly related to long-term aphasia severity. Loss of white matter integrity, 

even when the cortical regions are preserved, is associated with more severe aphasia. 

Modularity provides a single index that indicates the integrity of system-level organization 

of neuronal networks.  
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Figures 

 

 
Figure 1. Correlation between modularity and aphasia severity in the left hemisphere (r = 
-0.4215, p < 0.00001), right hemisphere (r = 0.0698, p = 0.5135). 
 

 
Figure 2. Correlation between left hemisphere modularity and subsets of WAB-AQ: 
Auditory comprehension (r = -0.4345, p < 0.00001), Fluency (r = -0.4561, p < 0.00001), 
Naming (r = -0.3948, p < 0.00001), and Repetition (r = -0.3644, p < 0.00001). 
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Figure 3. Correlation between community affiliation index (C) and aphasia severity. Left 
Hemisphere (r = 0.4438, p < 0.00001), Right Hemisphere (r = 0.12, p = 0.3144). 
 

 
Figure 4. Correlation between Fragmentation index and aphasia severity (r = -0.4302, p < 
0.0001).  
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Figure 5a. Exemplar data Subject 1, left hemisphere lateral view, each color represents a 
single community. Note the fragmentation of the fronto-parietal and middle-temporal 
networks with relative disconnection between the frontal and subcortical regions, which 
are grouped into different modules. Subject 1 had a lesion volume of 359.4 cm3, percent 
white matter damage of 0.168, and a WAB-AQ score of 48.1. (Supplementary table S2 
shows the labels associated with the nodes on the community affiliation matrix). Note the 
fragmentation, unstable clustering shown and missing nodes in the community affiliation 
matrix compared to the right hemisphere matrix.  
 
Figure 5b. Exemplar data Subject 1, right hemisphere lateral view, each color represents a 
single community. There was no apparent fragmentation, and the network was divided into 
4 communities. The community affiliation matrix also showed stable clusters over 100 runs 
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Figure 6a. Exemplar data Subject 2, each color represents a single community left 
hemisphere lateral view. Both hemispheres did not reveal dramatic fragmentation patterns. 
Subject 2 had a lesion volume of 76.1 cm3, percent white matter damage of 0.099, and a 
WAB-AQ score of 88.1. The community affiliation matrix showed relatively stable 
clustering over 100 runs. 
 
Figure 6b. Exemplar data Subject 2, right hemisphere lateral view, each color represents a 
single community, and again there was no apparent fragmentation, and the network was 
divided into 4 communities. The community affiliation matrix showed stable clustering 
over 100 runs. 
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Figure 7a. Exemplar data Subject 3, each color represents a single community left 
hemisphere lateral view. There was marked fragmentation of the inferior frontal and 
middle-temporal networks with relative disconnection between the frontal and subcortical 
regions, with the left hemisphere grouping into 9 modules. Subject 3 had a lesion volume 
of 99.24 cm3, percent white matter damage of 0.096, and a WAB-AQ score of 58.2. There 
was unstable clustering and missing nodes in the community affiliation matrix compared 
to the right hemisphere matrix.  
 
Figure 7b. Exemplar data Subject 3, right hemisphere lateral view, each color represents a 
single community. There was no apparent fragmentation, and the network was divided into 
4 communities. The community affiliation matrix showed relatively stable clustering over 
100 runs. 
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Figure 8a. Exemplar data Subject 4, each color represents a single community left 
hemisphere lateral view. Note the fragmentation of the fronto-parietal, inferior frontal and 
middle-temporal networks with the hemisphere grouping into 9 modules. Subject 4 had a 
lesion volume of 206.36 cm3, percent white matter damage of 0.035, and a WAB-AQ score 
of 41.8. Note the missing nodes and unstable clustering in the community affiliation matrix.  
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Figure 8b. Exemplar data Subject 4, right hemisphere lateral view, each color represents a 
single community. There was no apparent fragmentation, and the network was divided into 
3 communities. The community affiliation matrix also showed stable clustering over 100 
runs. 
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Figure 9. Overlap plot of damage locations in our 4 exemplar subjects. Subject 1: total 
lesion volume 359.4 cm3, Subject 2:  total lesion volume 76.1 cm3, Subject 3:  total lesion 
volume 99.24 cm3, Subject 4:  total lesion volume 206.36 cm3. 
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Figure 10. Regions from the language specific and domain general networks whose module 
sizes were significantly correlated with aphasia severity. STG-superior temporal gyrus (p 
= 0.0053), STG-pole -the pole of the superior temporal gyrus (0.0054), MTG- middle 
temporal gyrus (p = 0.0042), PMTG- posterior middle temporal gyrus (p = 0.0448), and 
PITG- posterior inferior temporal gyrus (p = 0.0123).  
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The pathophysiology of small vessel 
disease 

 
 

mall vessel brain disease is common in individuals with CVRF and commonly 

associated with stroke and dementia. While the underlying pathophysiology of SVD 

is still under investigation, its impact on brain health is not in doubt.  

This chapter, based on the following manuscript, determines the link between SVD 

and long-range fibers, and their impact on language recovery after stroke: 

Wilmskoetter J & Marebwa BK, et al. Long-range fiber damage in small vessel brain 

disease affects aphasia severity. 

 

Abstract 

We sought to determine the underlying pathophysiology relating white matter 

hyperintensities (WMH) to post-stroke outcomes. We hypothesized that: 1) WMH are 

associated with damage to fibers of any length but to a higher percentage of long-range 

compared to mid- and short-range intracerebral white matter fibers, and 2) the number of 

long-range fibers mediates the relationship between WMH and chronic post-stroke 

aphasia severity. We measured severity of periventricular (PVH) and deep white matter 

hyperintensities (DWMH), calculated number and percentages of short-, mid- and long-

range white matter fibers, and determined aphasia severity of 48 individuals with chronic 

post-stroke aphasia. Correlation and mediation analyses were performed to assess the 

relationship between WMH, connectome fiber-length measures and aphasia severity. We 

S 

6 
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found that more severe PVH and DWMH correlated with a lower proportion of long-

range fibers (r=-0.423, p=0.003; and r=-0.315, p=0.029; respectively), counterbalanced 

by a higher proportion of short-range fibers (r=0.427, p=0.002; and r=0.285, p=0.050; 

respectively). More severe PVH also correlated with a lower proportion of mid-range 

fibers (r=-0.334, p=0.020), while DWMH did not correlate with mid-range fibers (r=-

0.169, p=0.250). Mediation analyses revealed: 1) a significant total effect of PVH on 

WAB-AQ (standardized beta=-0.348, p=0.008), 2) a non-significant direct effect of PVH 

on WAB-AQ (p>0.05), 3) significant indirect effects of more severe PVH on worse 

aphasia severity mediated in parallel by the lower number of long-range fibers (effect=-

6.23, Bootstrapping: SE=2.64, lower limit 95-CI=-11.82, upper limit 95%-CI=-1.56) and 

higher number of short-range fibers (effect=4.50, Bootstrapping: SE=2.59, lower limit 

95-CI=0.16, upper limit 95%-CI=10.29). We conclude that small vessel brain disease 

seems to affect chronic aphasia severity through a change of the proportions of long- and 

short-range fibers. This observation provides insight into the pathophysiology of small 

vessel brain disease, and its relationship with brain health and aphasia severity. 

 

Introduction 

White matter hyperintensities or leukoaraiosis (WMH) are an important marker for small 

vessel brain disease 35. WMH are usually identified as periventricular and/or deep white 

matter signal abnormalities on T2-weighted, or fluid-attenuated inversion recovery 

(FLAIR) MRI imaging. WMH are commonly observed in older individuals 124, affecting 

up to 95% of individuals age 60 or older 125, 126. Cardiovascular diseases, such as new or 
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recurrent strokes and dementia, 127-131, and cerebro- and cardiovascular risk factors, such 

as hypoperfusion, hypertension, diabetes mellitus, reduced renal function, are strongly 

associated with WMH 124, 132-134. WMH are linked to cognitive decline 135 and worse 

outcomes after strokes 136, such as persistent language impairments (naming and fluency) 

137, swallowing impairments 138, physical and cognitive impairments 139, as well general 

functional deficits 136, 140.  

While several studies have indicated the relationship between WMH and compromised 

stroke outcome, little is known about the underlying pathophysiology that mediates their 

relationship. Revealing the mechanisms of WMH is crucial to identify patients at risk for 

compromised outcomes, predict recovery, plan rehabilitation, and develop future 

prevention and treatment strategies. More specifically, a better understanding of how 

WMH relate to white matter integrity at a neural network level could provide important 

information regarding the relationship between small vessel brain disease and 

neurological function.  

Within white matter, it is now increasingly recognized that long-range axonal fibers 

connecting gray matter regions provide integration between distant areas, which are 

locally segregated by shorter range fibers 23, 141. Even though long-range fibers are crucial 

for the maintenance of network organization and efficiency, they are less numerous and 

require more energy 142. Their higher metabolic demand to support their larger structural 

integrity makes them preferentially susceptible to small vessel cerebrovascular ischemia 

35.  

Language is a complex cognitive function which requires knowledge association, 

information binding, and semantical, syntactical, morphological as well as phonological 
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mapping. Since long-range fibers are necessary for multi-modal integration, and are 

likely more susceptible to ischemia, we speculated that the damage to long-range fibers 

may be a mechanistic mediator between WMH and chronic aphasia severity.  

The objective of this study was to assess the relationships between WMH, axonal fiber 

damage, and chronic aphasia severity. We hypothesized that: 1) WMH are associated 

with damage to a higher percentage of intracerebral long-range white matter fibers 

compared to medium- and short-range fibers, and 2) the decrease in the proportion of 

long-range fibers mediates the relationship between WMH and worse chronic post-stroke 

aphasia severity. 

Methods 

Participants  

Participants were recruited as part of an ongoing, multi-site study identifying factors 

predictive of treated aphasia recovery in individuals with chronic aphasia. Participants 

were recruited if they had experienced an ischemic or hemorrhagic stroke to the left 

hemisphere, were at least 12 months post-stroke, had a diagnosis of aphasia according to 

the Western Aphasia Battery-Revised (WAB-R) 143, and were between 21-80 years of 

age. Participants were excluded if they had severely limited verbal severely limited 

verbal output (i.e., a score <1 on the spontaneous speech scale), limited auditory 

comprehension (i.e., a WAB-R comprehension score <1), bilateral stroke, stroke 

affecting the right hemisphere, or other neurological illness/injury affecting the brain. In 

total, 48 participants (32 males, 16 females) were included in this study. Participants were 

54.44 months post-stroke (SD=53.64, range=12-245), and mean age at testing was 60.44 
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(SD=11.96, range=29-76). Forty-four participants (92%) were premorbid right handed 

and thirty-seven (77%) had an ischemic stroke. Table 1 presents participant 

characteristics Fig. 1 the lesion overlay of all participants. Data were collected from the 

University of South Carolina and Medical University of South Carolina. Institutional 

Review Boards at each University approved all study procedures, and participants 

provided informed consent to participate. 

 

White matter hyperintensities scoring 

We used a rating scale developed by Fazekas and colleagues (the Fazekas scale) 144 to 

rate the presence and extent of WMH in the right, contralesional hemisphere 131, 137. 

WMH were rated in the right hemisphere only to avoid bias from the left hemisphere 

stroke lesion, since the goal of this study was to assess the effects of small vessel disease, 

and not the white matter damage that would have occurred as a consequence of the large 

vessel occlusion that caused the aphasia. Of note, it is generally assumed that the extent 

of WMH is symmetrical across hemispheres. WMH were rated separately for the 

periventricular space (periventricular hyperintensities; PVH) and in the deep white matter 

(deep white matter hyperintensities; DWMH), each rating being measured on a four-point 

scale, ranging from 0 (absence of WMH) to 3 (confluent WMH). Ratings were made on 

T2-weighted MRI scans. Per Fazekas and colleagues (1987), WMH in the periventricular 

area (PVH) were defined as “caps or pencil-thin lining” (PVH score of 1), “smooth halo” 

(PVH score of 2), and periventricular hyperintensities that extended into surrounding 

deep white matter (PVH score of 3). DWMH were defined as punctate foci (DWMH 

score of 1), the beginning of confluent foci (DWMH score of 2), and confluent areas 
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(DWMH score of 3) 144. Figure 2 presents examples of PVH and DWMH ratings from 

selected participants in this study sample.  

WMH ratings were based on a consensus between the primary rater (AB) and secondary 

raters (BS and LJ), who each rated a subset (50% each) of MRIs. Raters were blind to all 

participant demographics and test scores. The group averages of Fazekas scale scores are 

presented in Table 1. 

 

Image Acquisition 

Imaging was acquired on a Siemens Prisma 3 T scanner equipped with a 20-element 

head/neck (16/4) coil at the University of South Carolina or Medical University of South 

Carolina. Images were generally acquired within two days of behavioral testing. This 

study used whole-brain T1-weighted, T2-weighted, and Diffusion EPI images collected 

from each participant. Parameters are as follows:  

1. T1-weighted image utilizing an MP-RAGE sequence with 1 mm isotropic 

voxels, a 256 x 256 matrix size, a 9-degree flip angle, and a 192-slice sequence 

with TR = 2250 ms, TI = 925 ms, TE = 4.11 ms with parallel imaging (GRAPPA 

= 2, 80 reference lines).  

2. T2-weighted image utilizing a sampling perfection with application optimized 

contrasts using a different flip angle evolution (3D-SPACE) sequence. This 3D 

TSE scan uses a TR = 3200 ms, a TE of 567 ms, variable flip angle, 256 × 256 

matrix scan with 176 slices (1 mm thick), using parallel imaging (GRAPPA = 

80 reference lines).  
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3. Diffusion mono-polar EPI scan that uses 43 volumes sampling 36 directions 

with b = 1000 s/mm2 (with 7 volumes b = 0), TR = 5250 ms, TE = 80 ms, 140 

× 140 matrix, 90-degree flip angle, 210 × 210 mm field of view, with parallel 

imaging GRAPPA = 2, 80 contiguous 1.5 mm slices. This sequence was 

acquired twice, with phase encoding polarity reversed for the second series. 

 

Image processing  

Lesion Mapping 

The chronic post-stroke lesions were drawn by a stroke neurologist (LB) or by a 

researcher with extensive experience with brain imaging in stroke populations; both were 

blinded to behavioral scores at time of lesion drawing. Lesions were manually drawn 

using the software MRIcron.  

Using SPM12 and MATLAB scripts developed in-house, the stroke lesion maps were 

spatially normalized to standard space through the following steps: 1) The T2 scan was 

co-registered with the individual’s T1 scan with the transforms used to resliced the lesion 

into native T1 space; 2) The resliced lesion maps were smoothed with a 3mm full-width 

half maximum Gaussian kernel to remove jagged edges associated with manual drawing; 

3) an enantiomorphic normalization 96 approach using SPM12's unified segmentation-

normalization 97 was applied to normalize the T1-weighted images onto the standard 

space, using a chimeric T1-weighted image where the area corresponding to the stroke 

lesion was replaced by the mirrored equivalent region in the intact (right) hemisphere; 4) 

The lesion mask was then binarized, and only voxels with a probability greater than 50% 

were maintained in the final normalized lesion mask. 
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Once the lesion masks were placed in standard space, each image was divided into 

anatomical grey matter regions based on the Atlas of Intrinsic Connectivity of Homotopic 

Areas (AICHA) 59 brain atlas to determine the overall lesion size. 

 

Structural connectome 

Each participant’s individual connectome was built from the neuroimaging data using 

steps defined in our previous publication 145. Briefly, 1) T1 weighted images were 

segmented into probabilistic grey and white matter maps using SPM12’s unified 

segmentation-normalization; 2) each individual’s grey matter map was divided into 384 

regions using the AICHA brain atlas 59; 3) the grey matter parcellation maps were non-

linearly registered into the diffusion tensor imaging (DTI) space; 4) pairwise probabilistic 

DTI fiber tracking was computed for all possible pairs of grey matter regions; 5) the 

weight of each pairwise connectivity link was determined based on the number of 

probabilistic streamlines connecting the grey matter region pair, corrected by distance 

travelled by each streamline and by the total volume of the connected regions; and 6) a 

weighted adjacency matrix M of size 384 x 384 was constructed for each participant with 

Mi,j representing the weighted link between region of interest (ROI) i and ROI j.  

Diffusion images were undistorted using TOPUP 99 and Eddy 86. Tractography was 

estimated using FSL’s FMRIB's Diffusion Toolbox (FDT) probabilistic method 60 with 

FDT’s accelerated BEDPOST 100being used to assess default distributions of diffusion 

parameters at each voxel, and probabilistic tractography was performed using FDT’s 

probtrackX (parameters: 5000 individual pathways drawn through the probability 

distributions on principal fiber direction, curvature threshold set at 0.2, 200 maximum 
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steps, step length 0.5mm, and distance correction). The waypoint mask was set as the 

white-matter probabilistic map excluding the stroke lesion. The weighted connectivity 

between the regions i and j was defined as the number of probabilistic streamlines 

arriving at j ROI when i was seeded, averaged with the number of probabilistic 

streamlines arriving at i ROI when j was seeded. The connection weight was corrected 

based on the distance travelled by the streamlines connecting i and j (probtrackX’s 

“distance correction”). The number of streamlines connecting each pair of ROIs was 

further divided by the sum of the volumes of these ROIs to compensate for the unequal 

size of grey matter ROIs. In summary, each individual connectome was represented by a 

384 x 384 matrix, where the nodes corresponded to the AICHA anatomical ROIs and the 

edges to the structural connectivity between the nodes.  

 

White matter fiber length 

In order to determine the number of short-, mid- and long-range white matter connections 

we calculated the Euclidean distance between each pair of ROI centroids in standard MRI 

space. The connections were then grouped into whether they connected ROIs whose 

distance was within the 1st quartile (lowest 25%) as “short distance” fibers, and all fibers 

within the 4th quartile (75% and above) as “long distance” fibers. Mid-range fibers had 

lengths within the 2nd and 3rd quartiles (25-75%). We calculated the total number of 

connections and determined the percentage of all existing connections in each 

connectome that were either short-, mid-, or long-range fibers.  

 

Lesion volume  
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To account for the influence of the lesion in the left hemisphere on the WAB-AQ scores, 

we controlled for lesion volume in statistical analyses. The stroke lesion maps were 

normalized into standard space and co-registered to the MNI 152 1 mm atlas. Stroke 

lesion volume (in ml) was equal to the number of lesioned voxels in cubic mm divided by 

1000, because each voxel had a size of 1 mm x 1mm x 1mm. 

 

Assessment of aphasia: WAB-AQ 

The Western Aphasia Battery-Revised (WAB-R 146) is a commonly used clinical 

evaluation of aphasia that evaluates the presence, type, and severity of aphasia on a 0-100 

scale (scores <93.8 are indicative of aphasia). The WAB-R broadly assesses the domains 

of expression and comprehension, yielding summary scores for the following four 

domains: spontaneous speech, auditory verbal comprehension, repetition and naming and 

word finding. The Aphasia Quotient (AQ), the weighted composite of these four scores, 

was used as the dependent (behavioral) variable of interest in this study and is indicative 

of the overall severity of the individual’s aphasia. 

 

Statistical analyses  

IBM SPSS Statistics for Windows (version 24, released 2016, IBM Corp., Armonk, N.Y., 

USA) was utilized for all analyses. P-values ≤0.05 were considered statistically 

significant. 

In order to determine the relationship between WMH and fiber length, we performed 

correlation analyses on PVH, DWMH and the number and percentage of short-, mid-, and 

long-range fibers. We used one-tailed statistical tests for the number of fibers, because 
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we hypothesized WMH are associated with a general decrease and not gain in the number 

of fibers independently of fiber length, but we used two-tailed statistical tests for 

percentage of fibers, because we hypothesized a proportional change for each fiber length 

group. Based on visual inspection of the data and the Shapiro-Wilk test for normality, we 

found that all variables were not normally distributed, thus, we used non-parametric, 

bivariate Spearman correlations. The strength of correlations was interpreted as weak for 

|r|<0.3, as moderate for 0.3≤ |r| < 0.5, and as strong for |r| ≥ 0.5 147.  

To assess whether WMH and fiber length types (short-, middle-, long-range fibers) had 

an independent or combined effect on the distribution of percentages of fiber length 

types, we performed a two-way analysis of variance (ANOVA) for unbalanced designs, 

because there were no equal sized groups across the factors. 

 

Mediation analysis 

In order to determine if the relationship between WMH and aphasia severity is related to 

fiber length, we performed a statistical mediation analysis by employing the PROCESS 

macro 148, a validated, freely available computational tool. We conducted multivariable 

regression modelling for the mediation analysis and used stroke lesion volume as a 

control variable to account for the impact of the stroke lesion in the left hemisphere on 

communicative abilities.  

As shown in Figures 3A and 3B, steps for a parallel mediation analysis with two 

mediators include the determination of 1) the total effect of the independent variable (X) 

on the dependent variable, (Y); 2) the direct effect of X on Y when accounting for 

mediating variables (in our study two mediators: M1 and M2); and 3) the two indirect 
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effects of X on Y through M1 and of X on Y through M2. Using parallel mediation we 

can test each mediator’s contribution while holding another mediator constant 149. 

In this study we assessed the total, direct and indirect effects of WMH (X) on WAB-AQ 

(Y). Based on our hypothesis that damage to a higher proportion of long-range fibers 

counterbalanced by damage to a lower percentage of short-range fibers mediate the 

relationship between WMH and worse chronic post-stroke aphasia severity, we assessed 

the indirect effect of WMH on WAB-AQ through the number of long-range (M1) and 

number of short-range fibers (M2). Using model 4 in the PROCESS macro, we modeled 

two indirect effects of WMH on WAB-AQ mediated by the number of short- and long-

range fibers, and we modeled the direct effect of WMH on WAB-AQ. To determine the 

indirect effects we performed two regression models for each mediator. First, we assessed 

the impact of WMH on the number of long-/short-range fibers while controlling for the 

other mediator (Models 1 and 2 in Table 3), and second, we assessed the impact of the 

number of long-/short-range fibers while controlling for the other mediator and WMH 

(Model 3). The last regression model (Model 3), was also used to determine the direct 

effect of WMH on WAB-AQ while controlling for both mediators.  

We used bias corrected bootstrapping with 5000 samples and 95% confidence intervals 

(CI) to evaluate our hypothesis of indirect effects of WMH on WAB-AQ. We rejected 

our null hypothesis (no indirect effect present) if the CI did not include zero.  

We chose the number instead of percentage of fiber types to avoid multicollinearity in the 

regression models, because the variables percentage of short-, mid-, and long-range fibers 

were interdependent. We tested all regression models for multicollinearity by calculating 

the variance of inflation factor (VIF) and considered VIF>6 as evidence for 
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multicollinearity 150. All variables in all performed regression models had VIF<6 and 

thus, we assumed that multicollinearity was absent or within acceptable means. 

Results  

Relationship between WMH and axonal fiber damage. 

As expected, the two subscales PVH and DWMH significantly correlated with each other 

(r=0.454, p=0.001). The correlation size was moderate, confirming that PVH and 

DWMH measure inter-related, but distinct, phenomena.  

 

Relationship with fiber length  

We assessed the association between WMH (PVH and DWMH) and the absolute (count) 

and relative (percentage) number of short-, mid- and long-range fibers in the right 

hemisphere. Regarding the absolute fiber count, Spearman correlations were statistically 

significant for PVH and DWMH scores and all three fiber length types (Table 2, see 

supplementary Figures 1 for scatterplots). The higher (more severe) the PVH / DWMH 

scores, the lower the number of all three fiber length groups. From the lowest, least 

severe PVH score of “0” to the highest, most severe score of “3”, there was a 15% 

decrease (median) in the absolute number of short-, 35% decrease in mid-, and 47% 

decrease in long-range fibers. For DWMH there was a 19% decrease in the absolute 

number of short-, 36% decrease in mid-, and 51% decrease in long-range fibers. 

 

PVH and DWMH scores were significantly correlated with the percentage of short- and 

long-range fibers (Table 2). Higher (more severe) PVH and DWMH scores were 
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associated with a significantly lower percentage of long-range, but significantly higher 

percentage of short-range fibers (reflecting a disproportionate damage to long-range 

fibers, compared with short-range fibers) (Fig 4). Correlations between PVH scores and 

axonal fiber damage were weak to moderate in size.  

Using a two-way ANOVA, there were no significant interaction effects for PVH and 

fiber length types, F(6, 135)=1.95, p=0.07, and for DWMH and fiber length type, F(6, 

135)=1.41, p=0.2168. Assessing the distribution of WMH scores across the fiber length 

types, the score of “1” showed the largest variability (widest range) of percentages for 

each fiber type. When we excluded the score “1” from the WMH scores to only include 

scores of “0”, “2” and “3”, we found significant interaction effects for both PVH and 

fiber length types, F(4, 99)=6.67, p=0.0001, and for DMWHs and fiber length types F(4, 

42)=3.23, p=0.0213, indicating that the effect of fiber length types was dependent on 

these WMH scores.   

In post-hoc analyses, we assessed whether the relationship between WMH and fiber types 

in the right hemisphere was confounded by the stroke lesion in the left hemisphere, as the 

lesion may have indirect effects on right hemisphere white matter. We performed 

multivariable linear regression modeling with the number or percentage of fiber types as 

the dependent variable, PVH or DWMH as the main independent variable, and lesion 

volume as the control variable. We confirmed the significant relationships (p≤0.05) 

between higher (more severe) PVH / DWMH scores and a lower number of mid- and 

long-range fibers, and higher (more severe) DWMH scores and a lower percentage of 

long-range fibers. Higher (more severe) PVH scores showed a strong trend towards 

significance for a decrease in the percentage of long-range fibers (p=0.054). These post-
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hoc analyses indicate an effect of WMH on fiber length groups independently of the 

stroke lesion, with damage to a higher percentage of long-range compared to short- and 

mid-range fibers.  

 

Relationship between WMH, axonal fiber damage, and chronic aphasia severity. 

We found a significant total effect of PVH on WAB-AQ with higher (more severe) PVH 

scores linked to lower (more severe) WAB-AQ scores (unstandardized beta=-6.607, 

standard error=2.386, standardized beta=-0.348, p=0.008) when controlling for stroke 

lesion volume. There was no effect of DWMH on WAB-AQ (p>0.05), thus, we further 

explored direct and indirect effects for PVH only.  

We performed mediation modeling with PVH as the independent variable, WAB-AQ as 

the dependent variable, percentage of long-range fibers in the whole brain as the first 

mediator variable, percentage of short-range fibers in the whole brain as the second 

mediator variable, and lesion volume as the control variable. Contrary to the first 

objective where we assessed only the right hemisphere, we chose to specify the 

percentage of long- and short-range fibers in the whole brain instead of the right 

hemisphere only, because 1) of the importance of the left hemisphere for aphasia 

severity, and 2) WMH are usually symmetric, thus the extent of WMH should be similar 

between both hemispheres.  

Results from the mediation analysis are presented in Table 3 and Figure 5. The results 

indicated that there was a (marginally failed) non-significant direct effect of PVH on 

WAB-AQ (effect=-4.8803, SE=2.4617, lower limit 95-CI=-9.8483, upper limit 95%-

CI=0.0877, p=0.0540), but there were significant indirect effects of PVH on WAB-AQ 
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mediated by the number of long-range fibers (effect=-6.2273, Bootstrapping: SE=2.6426, 

lower limit 95-CI=-11.8243, upper limit 95%-CI=-1.5599) and the number of short-range 

fibers (effect=4.5006, Bootstrapping: SE=2.5881, lower limit 95-CI=0.1631, upper limit 

95%-CI=10.2897). More severe PVH scores were associated with a lower number of 

long-range fibers, and in turn a lower number of long-range fibers were associated with 

more severe WAB-AQ scores. Further, more severe PVH scores were associated with a 

lower number of short-range fibers, and in turn a lower number of short-range fibers were 

associated with less severe WAB-AQ scores. Thus, the total effect of PVH on WAB-AQ 

that we had found initially, was mainly based on indirect effects and not direct effects of 

PVH on WAB-AQ.  
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Discussion  

Most individuals 60 years or older show evidence of cerebral WMH on neuroimaging 125, 

126. Increasing severity of WMH has been linked to decline and worse recovery of 

physical, functional and cognitive abilities in stroke survivors 136-140. The underlying 

neurophysiological correlates are poorly understood, hampering the strategic 

development of treatment approaches for stroke survivors that could take the 

neurophysiological changes resulting from WMH into account. In the study presented 

here, we sought to investigate the relationship between WMH, structural brain network 

integrity, and post-stroke aphasia severity.  

 

Relationship between WMH and axonal fiber damage. 

In the first part of the study, we assessed the relationship between WMH (PVH and 

DWMH) and structural brain connectivity measured by axonal damage of white matter 

fibers with different lengths. Our findings indicate that WMH are associated with damage 

to a higher percentage of long-range fibers compared to mid- and short-range fibers.  

Axonal damage as a microstructural correlate of WMH has been described before 104, 151. 

Recent explorative research further suggests that long-range fibers are more susceptible 

to WMH-related damage than short-range fibers 35. Our study supports and expands on 

these findings by using sophisticated fiber tracking methods. We found that while the 

absolute number (count) of all fibers – independent of length – decreased with more 

severe WMH, the relative number (proportion/percentage) of long-range fibers decreased 

more than twice as much as short-range fibers. 
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Possible reasons for the WMH-related proportionally greater damage to long-range fibers 

are that 1) white matter in general is susceptible to damage when lesioned, because of its 

lower blood flow compared to grey matter 63, and 2) long-range fibers in specific are 

susceptible to damage when lesioned likely because of their higher metabolic demands 35, 

142.  

In general, it is possible that our findings on the relationship between WMH and axonal 

fiber damage can assist in the development of therapeutic interventions for stroke 

survivors that target the neurophysiological correlates of WMH. Although not tested 

here, this information could be used to track if interventions such as close control of 

blood glucose, blood pressure, cholesterol, diet, exercise, lead to preservation of long-

range fibers and improve neurorehabilitation outcomes. Likewise, preservation of long-

range fibers could be used as a marker of interventional efficacy. 

 

Relationship between WMH, axonal fiber damage, and chronic aphasia severity. 

In the second part of the study, we assessed the impact of WMH and axonal fiber damage 

on language performance in stroke survivors. We found that PVH were associated with 

worse WAB-AQ scores, mediated by the proportion of long-range and short-range white 

matter fibers. Thus, PVH did not directly impact language abilities, but did so indirectly. 

With more severe PVH, the percentage of long-range fibers was lower, the percentage of 

short-range fibers higher, and aphasia more severe. Thus, patients, whose residual neural 

network consisted of a higher proportion of long-range fibers (counterbalanced by a 

lower proportion of short-range fibers), were more likely to show milder aphasia 

compared to patients with a lower proportion of long-range fibers (counterbalanced by a 
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higher proportion of short-range fibers). These findings are in line with our previous 

research, showing that the severity and treatment response of post-stroke aphasia depend 

on the preservation of residual neural networks 152, 153. The study presented here provides 

novel information by addressing the specific role of long-range and short-range white 

matter fibers regarding chronic aphasia severity in individuals with small vessel brain 

disease.  

 

Limitations 

We chose to measure WMH with a published ordinal visual rating scale, because of its 

wide-spread and easy use. However, the scale does not take exact brain locations into 

account, what could be important information to understand neurophysiological and 

functional correlates. Further, we conducted a cross-sectional study, however, a 

longitudinal study is warrented to assess possible changes in white matter 

hyperintensities and their long-term effects on aphasia severity. 

 

Conclusions 

Our findings indicate that 1) WMH are related to damage to long-range white matter 

fibers and 2) WMH lead to worse chronic aphasia in chronic stroke due to a higher 

percentage of long-range fibers counterbalanced by a lower percentage of short-range 

fibers. Thus, small vessel brain disease predisposes stroke survivors to worse language 

outcomes because of a compromised balance of long-range and short-range white matter 

fibers. As such, therapeutic interventions for stroke recovery could target the damage to 
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long-range fibers in order to preserve brain health and foster better recovery in 

individuals with small vessel brain disease. 

Figures 

 
Figure 1: Lesion overlay of all participants (N=48). Colors represent the number of 

patients with a lesion in that area, with warmer colors indicating greater regions of 

overlap.  

 

 
Figure 2: T2-weighted MRI images from two patients of the study sample, exemplifying 

PVH and DWMH ratings (left side of figure, WMH are highlighted in light blue), as well 

as the corresponding fiber tracking and structural connectome matrix (right side of figure; 

x- and y-axes correspond to the AICHA ROI numbers, warmer colors represent higher 

connectivity between ROIs). Patient 1 (first row) did not present with WMH; patient 2 

(second row) presented with the most severe scores (3 for PVH and 3 for DWMH). The 

connectome matrices show that the more severe WMH scores for patient 2 coincided 

with less connections, particularly in brain areas with long range projections such as the 
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frontal lobe, compared to patient 1. (AICHA=atlas of intrinsic connectivity of homotopic 

areas, DWMH=deep white matter hyperintensities, PVH=periventricular white matter 

hyperintensities, ROI=region of interest, WMH=white matter hyperintensities). 

 

3A 

 
3B 

 
 
Figure 3: Simplified schematic representation of the serial meditation analysis with two 

mediators. The total effect (green box) of the independent variable (X) on the dependent 

variable (Y) (Fig 3A) is the predictive power of X on Y without taking mediators into 

account. The direct effect (red box) is the predictive power of X on Y while controlling 

for M1 and M2 (Fig 3B). The indirect effects (blue box) of X on Y are the processes of 

the impact of X on M (M1, M2) and M on Y (Fig 3B). In the serial mediation model with 
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two mediators, there are three different indirect effects: 1) X on M1 and M1 on Y; 2) X 

on M2 and M2 on Y, 3) X on M1, M1 on M2 and M2 on Y. Thus, the total effect is the 

sum of the indirect (blue box) and direct effects (red box) of X on Y while accounting for 

mediating variables (M1 and M2) 154. 

 
 

 
Figure 4: Median percentage of short-, mid- and long-range fibers in the right 

hemisphere for patients (N=48) with different PVH (periventricular white matter 

hyperintensities; Fig 4A) and DWMH (deep white matter hyperintensities; Fig 4B) 

scores. 
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Figure 5: Direct and indirect (mediated) effects of PVH (periventricular white matter 

hyperintensities) on WAB-AQ (Western Aphasia Battery – Aphasia Quotient) estimated 

through regression modeling. The direct effect was non-significant. The Indirect effect 

through the two mediating variables – percentage of long-range and percentage of short-

range fibers – was significant (bootstrapping 95% CI (confidence interval) did not 

include zero). SE=standard error. 

 
Tables 
 
Table 1: Demographic and medical information of study participants (N=48). 
Race, N (%) 11 (23) Black/African American, 37 (77) 

White 
Ethnicity, N (%) 48 (100) Not Hispanic or Latino 
Sex, N (%) 16 (33) females, 32 (67) males 
Education (in years); mean (SD), range 15.49 (2.45), 12-20 
Age at test (in years); mean (SD), range 60.44 (11.96), 29-76 
Age at stroke (in years); mean (SD), range 55.92 (12.39), 27-75 
Time post-stroke (in months); mean (SD), range 54.44 (53.64), 12-245 
Stroke type, N (%) 37 (77) ischemic, 9 (19) hemorrhagic, 2 (4) 

unknown 
Number of strokes (before enrollment), N (%) 43 (90) one, 3 (6) two, 1 (2) three, 1 (2) 

four 
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Lesion volume (in ml); mean (SD), range 133.93 (98.80), 4.93-467.46 
WAB-R aphasia quotient; mean (SD), range 59.06 (22.13), 20.10-93.10 
PVH score; median, range, mean (SD) 1, 0-3, 1,46 (1.15) 
DWMH score; median, range, mean (SD) 1, 0-3, 1.19 (0.76) 

DWMH=deep white matter hyperintensities, PVH=periventricular hyperintensities, 
WAB-R=Western Aphasia Battery-Revised 
 
 
Table 2: Correlations (Spearman’s rho) between WMH scores and connectome measures 
of the right hemisphere (N=48).  
 Short-range fibers Mid-range fibers Long-range fibers 

r/p-value r/p-value r/p-value 

 Absolute number of fibers (count) 
PVH -0.334*/0.010 -0.335*/0.010 -0.318*/0.014 
DWMH -0.262*/0.036 -0.270*/0.032 -0.293*/0.022 
 Relative number of fibers (percentage) 
PVH  0.298*/0.040 -0.264/0.070 -0.296*/0.041 
DWMH 0.299*/0.039 -0.140/0.340 -0.319*/0.027 

DWMH=deep white matter hyperintensities, PVH=periventricular white matter 
hyperintensities 
*=correlation is significant at the 0.05 level (1-tailed for absolute number of fibers; 2-
tailed for relative number of fibers) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Table 3: Mediation analysis for the effect of PVH on WAB-AQ mediated in parallel by 
the number of long-range fibers and number of short-range fibers, while controlling for 
lesion volume. The first indirect effect of PVH on WAB-AQ mediated by the number of 
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long-range fibers (1st indirect effect in Figures 3 and 5) is assessed with Models 1 and 3. 
Model 1 determines the impact of PVH on the number of long-range fibers, and Model 3 
determines the impact of the number long-range fibers on WAB-AQ. The second indirect 
effect of PVH on WAB-AQ mediated by the number of short-range fibers (2nd indirect 
effect in Figures 3 and 5) is assessed with Models 2 and 3 same as for the 1st indirect 
effect. The direct effect of PVH on WAB-AQ (direct effect in Figures 3 and 5) is 
assessed with Model 3. 

 
Model 1 

Dependent variable: number of long-range fibers in whole brain 

 unstandardized 
coefficients B (SE) 

standardized 
coefficients 

b 
t p 

Model (r2=0.24, p=0.0022)     
 Constant* 17055.41 (1900.69)  8.97 <0.0001 
 PVH* -2725.69 (854.38) -0.43 -3.19 0.0026 
 Lesion volume -13.39 (10.01) -0.18 -1.34 0.1879 

 
Model 2 

Dependent variable: number of short-range fibers in whole brain 
  unstandardized 

coefficients B (SE) 

standardized 
coefficients 

b 
t p 

Model (r2=0.23, p=0.0031)     
 Constant* 31422.45 (1505.18)  20.88 <0.0001 
 PVH* -1593.58 (676.59) -0.32 -2.36 0.0230 
 Lesion volume* -17.97 (7.93) -0.31 -2.27 0.0283 

 
Model 3 

Dependent variable: WAB-AQ 
  unstandardized 

coefficients B (SE) 

standardized 
coefficients 

b 
t p 

Model (r2=0.45, p<0.0001)     
 Constant 130.81 (20.79)  6.29 <0.0001 
 PVH -4.88 (2.46) -0.26 -1.98 0.0540 
 N of long-range fibers* 0.002 (0.001) 0.77 2.99 0.0046 
 N of short-range fibers* -0.003 (0.001) -0.75 -2.93 0.0054 
 Lesion volume* -0.11 (0.03) -0.49 -3.91 0.0003 

N=number, PVH=periventricular white matter hyperintensities, SE=standard error 
*=variable is a significant predictor at the 0.05 level 
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                     Conclusion 

 
 
 
 

ptimal brain health is currently considered to be the absence of overt clinical 

symptoms despite overwhelming evidence indicating the presence of subclinical 

damage long before clinical symptoms emerge. 

 Complex network analyses of the connectome offer powerful, non-invasive approaches 

for probing the macroscopic architecture of brain networks, and provide a unique 

methodological advantage to detecting covert brain injury not readily available to either 

clinical paper and pencil tests (that only detect clinically relevant cognitive deficits) or 

neurological imaging (that detect large or small vessel disease, stroke, AD deposition), but 

may not detect microinfarcts. Detecting deviations from the optimal topological structure 

early in life, that may result from modifiable risk factors or genetic abnormality, will lead 

to timely interventions that may stave off cognitive decline or prevent it completely.  

This work supplements a burgeoning field of research that will undoubtedly lead to 

development of clinically significant diagnostic and prognostic tools by identifying 

relevant, quantifiable measures of sub-optimal brain function detectable in healthy 

individuals with CVRF, that continue to affect functional recovery in both acute and 

chronic stroke populations. While a lot of work remains to be done, for instance, defining 

the optimal topology in healthy young controls to reveal a clear dichotomy between patient 

and healthy populations, the disorganization of the structure of brain networks, driven by 

O 

7 
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the loss of long-range fibers maybe a viable inclusion to the symptomatology of sub-

optimal brain health. 
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