8,929 research outputs found

    Ordered Information Systems and Graph Granulation

    Get PDF
    The concept of an Information System, as used in Rough Set theory, is extended to the case of a partially ordered universe equipped with a set of order preserving attributes. These information systems give rise to partitions of the universe where the set of equivalence classes is partially ordered. Such ordered partitions correspond to relations on the universe which are reflexive and transitive. This correspondence allows the definition of approximation operators for an ordered information system by using the concepts of opening and closing from mathematical morphology. A special case of partial orders are graphs and hypergraphs and these provide motivation for the need to consider approximations on partial orders

    Dimensional operators for mathematical morphology on simplicial complexes

    Get PDF
    International audienceIn this work we study the framework of mathematical morphology on simplicial complex spaces. Simplicial complexes are widely used to represent multidimensional data, such as meshes, that are two dimensional complexes, or graphs, that can be interpreted as one dimensional complexes. Mathematical morphology is one of the most powerful frameworks for image processing, including the processing of digital structures, and is heavily used for many applications. However, mathematical morphology operators on simplicial complex spaces is not a concept fully developed in the literature. Specifically, we explore properties of the dimensional operators, small, versatile operators that can be used to define new operators on simplicial complexes, while maintaining properties from mathematical morphology. These operators can also be used to recover many morphological operators from the literature. Matlab code and additional material, including the proofs of the original properties, are freely available at~\url{https://code.google.com/p/math-morpho-simplicial-complexes.

    Statistical Physics of Fracture Surfaces Morphology

    Full text link
    Experiments on fracture surface morphologies offer increasing amounts of data that can be analyzed using methods of statistical physics. One finds scaling exponents associated with correlation and structure functions, indicating a rich phenomenology of anomalous scaling. We argue that traditional models of fracture fail to reproduce this rich phenomenology and new ideas and concepts are called for. We present some recent models that introduce the effects of deviations from homogeneous linear elasticity theory on the morphology of fracture surfaces, succeeding to reproduce the multiscaling phenomenology at least in 1+1 dimensions. For surfaces in 2+1 dimensions we introduce novel methods of analysis based on projecting the data on the irreducible representations of the SO(2) symmetry group. It appears that this approach organizes effectively the rich scaling properties. We end up with the proposition of new experiments in which the rotational symmetry is not broken, such that the scaling properties should be particularly simple.Comment: A review paper submitted to J. Stat. Phy

    SciTech News Volume 71, No. 1 (2017)

    Get PDF
    Columns and Reports From the Editor 3 Division News Science-Technology Division 5 Chemistry Division 8 Engineering Division Aerospace Section of the Engineering Division 9 Architecture, Building Engineering, Construction and Design Section of the Engineering Division 11 Reviews Sci-Tech Book News Reviews 12 Advertisements IEEE

    Universality issues in surface kinetic roughening of thin solid films

    Get PDF
    Since publication of the main contributions on the theory of kinetic roughening more than fifteen years ago, many works have been reported on surface growth or erosion that employ the framework of dynamic scaling. This interest was mainly due to the predicted existence of just a few universality classes to describe the statistical properties of the morphology of growing surfaces and interfaces that appear in a wide range of physical systems. Nowadays, this prediction seems to be inaccurate. This situation has caused a clear detriment of these studies in spite of the undeniable existence of kinetic roughening in many different real systems, and without a clear understanding of the reasons behind the mismatch between theoretical expectations and experimental observations. In this chapter we aim to explore existing problems and shortcomings of both the theoretical and experimental approaches, focusing mainly on growth of thin solid films. Our analysis suggests that the theoretical framework as yet is not complete, while more systematic and consistent experiments need to be performed. Once these issues are taken into account, a more consistent and useful theory of kinetic roughening might develop.Comment: Review article to appear in ``Advances in Condensed Matter and Statistical Mechanics", ed. E. Korutcheva and R. Cuerno. To be published by Nova Science Publishers. 22 pages. 4 eps figure

    Network Behavior in Thin Film Growth Dynamics

    Get PDF
    Understanding patterns and components in thin film growth is crucial for many engineering applications. Further, the growth dynamics (e.g., shadowing and re-emission effects) of thin films exist in several other natural and man-made phenomena. Recent work developed network science techniques to study the growth dynamics of thin films and nanostructures. These efforts used a grid network model (i.e. viewing of each point on the thin film as an intersection point of a grid) via Monte Carlo simulation methods to study the shadowing and re-emission effects in the growth. These effects are crucial in understanding the relationships between growth dynamics and the resulting structural properties of the film to be grown. In this dissertation, we use a cluster-based network model with Monte Carlo simulation method to study these effects in thin film growth. We use image processing to identify clusters of points on the film and establish a network model of these clusters. Monte Carlo simulations are used to grow films and dynamically track the trajectories of re-emitted particles. We treat the points on the film substrate and cluster formations from the deposition of adatoms / particles on the surface of the substrate as the nodes of network, and movement of particles between these points or clusters as the traffic of the network. Then, graph theory is used to study various network statistics and characteristics that would explain various important phenomena in the thin film growth. We compare the cluster-based results with the grid-based results to determine which method is better suited to study the underlying characteristics of the thin film. Based on the clusters and the points on the substrate, we also develop a network traffic model to study the characteristics and phenomena like fractal behavior in the count and inter-arrival time of the particles. Our results show that the network theory of the growth process explains some of the underlying phenomena in film growth better than the existing theoretical and statistical models

    The Encyclopedia of Neutrosophic Researchers - vol. 1

    Get PDF
    This is the first volume of the Encyclopedia of Neutrosophic Researchers, edited from materials offered by the authors who responded to the editor’s invitation. The authors are listed alphabetically. The introduction contains a short history of neutrosophics, together with links to the main papers and books. Neutrosophic set, neutrosophic logic, neutrosophic probability, neutrosophic statistics, neutrosophic measure, neutrosophic precalculus, neutrosophic calculus and so on are gaining significant attention in solving many real life problems that involve uncertainty, impreciseness, vagueness, incompleteness, inconsistent, and indeterminacy. In the past years the fields of neutrosophics have been extended and applied in various fields, such as: artificial intelligence, data mining, soft computing, decision making in incomplete / indeterminate / inconsistent information systems, image processing, computational modelling, robotics, medical diagnosis, biomedical engineering, investment problems, economic forecasting, social science, humanistic and practical achievements

    Rough sets based on Galois connections

    Get PDF
    Rough set theory is an important tool to extract knowledge from relational databases. The original definitions of approximation operators are based on an indiscernibility relation, which is an equivalence one. Lately. different papers have motivated the possibility of considering arbitrary relations. Nevertheless, when those are taken into account, the original definitions given by Pawlak may lose fundamental properties. This paper proposes a possible solution to the arising problems by presenting an alternative definition of approximation operators based on the closure and interior operators obtained from an isotone Galois connection. We prove that the proposed definition satisfies interesting properties and that it also improves object classification tasks

    An overview of decision table literature 1982-1995.

    Get PDF
    This report gives an overview of the literature on decision tables over the past 15 years. As much as possible, for each reference, an author supplied abstract, a number of keywords and a classification are provided. In some cases own comments are added. The purpose of these comments is to show where, how and why decision tables are used. The literature is classified according to application area, theoretical versus practical character, year of publication, country or origin (not necessarily country of publication) and the language of the document. After a description of the scope of the interview, classification results and the classification by topic are presented. The main body of the paper is the ordered list of publications with abstract, classification and comments.

    Inf-structuring functions and self-dual marked flattenings in bi-Heyting algebra

    Get PDF
    International audienceThis paper introduces a generalization of self-dual marked flattenings defined in the lattice of mappings. This definition provides a way to associate a self-dual operator to every mapping that decomposes an element into sub-elements (i.e. gives a cover). Contrary to classical flattenings whose definition relies on the complemented structure of the powerset lattices, our approach uses the pseudo relative complement and supplement of the bi-Heyting algebra and a new notion of \textit{inf-structuring functions} that provides a very general way to structure the space. We show that using an inf-structuring function based on connections allows to recover the original definition of marked flattenings and we provide, as an example, a simple inf-structuring function whose derived self-dual operator better preserves contrasts and does not introduce new pixel values
    corecore