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Abstract 

Understanding patterns and components in thin film growth is crucial for many engineering 

applications. Further, the growth dynamics (e.g., shadowing and re-emission effects) of 

thin films exist in several other natural and man-made phenomena. Recent work developed 

network science techniques to study the growth dynamics of thin films and nanostructures. 

These efforts used a grid network model (i.e. viewing of each point on the thin film as an 

intersection point of a grid) via Monte Carlo simulation methods to study the shadowing 

and re-emission effects in the growth. These effects are crucial in understanding the 

relationships between growth dynamics and the resulting structural properties of the film 

to be grown. In this dissertation, we use a cluster-based network model with Monte Carlo 

simulation method to study these effects in thin film growth. We use image processing to 

identify clusters of points on the film and establish a network model of these clusters. 

Monte Carlo simulations are used to grow films and dynamically track the trajectories of 

re-emitted particles. We treat the points on the film substrate and cluster formations from 

the deposition of adatoms / particles on the surface of the substrate as the nodes of network, 

and movement of particles between these points or clusters as the traffic of the network. 

Then, graph theory is used to study various network statistics and characteristics that would 

explain various important phenomena in the thin film growth. We compare the cluster-

based results with the grid-based results to determine which method is better suited to study 

the underlying characteristics of the thin film. Based on the clusters and the points on the 

substrate, we also develop a network traffic model to study the characteristics and 

phenomena like fractal behavior in the count and inter-arrival time of the particles. Our 
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results show that the network theory of the growth process explains some of the underlying 

phenomena in film growth better than the existing theoretical and statistical models. 
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Chapter 1 Introduction 

Network science is an emerging and highly interdisciplinary field that aims to develop 

theoretical and practical techniques to study natural and man-made networks. It studies 

various concepts of networks that exist in diverse fields such as biology, physics, 

technology and social relations. It compares, contrasts and integrates techniques, 

algorithms, and models developed in fields like mathematics, computer science, statistics, 

and physics [1]. The network science plays a crucial role in understanding various 

phenomena occurring in natural, biological, social models. Technological advances in the 

last few decades have given unprecedented increase in available data. Many of the complex 

phenomena occurring in these diverse fields have been successfully explained using 

networks [2]. Increasing amounts of data is being captured and is actively being studied in 

networks, like food webs and structure of human social networks [3-6], are becoming 

available. Various scientists use this large data to study universal laws of physics. The 

results of these studies have raised much interest in network science. Many networks that 

occur in nature have shown to share global statistical features of “small world networks” 

[7], which is a common pattern in data communication networks. For example, unexpected 

similarities are observed between social networks and the Internet [8-10]. 

 

Network science deals with wide variety of concepts like graph theory, statistical methods, 

data mining, and predictive analysis. Historically, networks are studied as part of graph 

theory. Sociologists are one of the earlier groups to study networks for explaining various 

sociological relations. These studies usually include distribution of questionnaires, and 

asking respondents to detail their interactions with others and seeking a networking 

behavior among various participant groups [11]. The study of networks came a long way 
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since these early studies. Current challenges for network science are understanding and 

characterizing highly complex and dynamic behaviors exhibited in the networks at hand, 

particularly in nature. Current network science research focus is on statistical analysis of 

large number of nodes and edges. This focus is largely aided by the advent of computers 

and communication network that can collect and analyze data at large scales [12]. In 

traditional network engineering, the systems and prototypes are modeled based on the 

desired or envisioned output. In network science, the models and prototypes are based on 

the input. The network is modeled based on deep analyses of available facts and existing 

features of various components of the system. Current research is not only focused on 

applying existing theories and models to real data or situations, but also on studying 

dynamic processes of these complex networks [13].  

 

In the last decade, the network science has gained enormous popularity among other 

disciplines. One of the main reasons behind this is the discovery that, despite apparent 

differences, fundamental laws and reproducible mechanisms are driving the evolution of 

networks. The increased interest in study of network science can also be attributed to 

emergence of network map tools capable of revealing universality of network 

characteristics [14]. Even though many networks around us differ in size, nature, and 

complexity, they are more similar once we disregard the nature of components and their 

interactions. Comparing natural and man-made systems with networks have shed light into 

previously unknown phenomena in these systems. This paved the way to modeling many 

networks and their growth. Networks are studied for various properties like heavy-tailed 

degree distributions, heavy-tailed Eigenvalues, heavy-tailed Eigenvectors, small 

diameters, and shrinking or stabilizing diameters [97]. Network modeling can be divided 

into mechanistic [16, 17] and statistical models [18]. Copying model [17], community 
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guided attachment [16] and the forest fire model [16] belong to the former category. Erdös-

R´enyi-Gilbert Random Graph Model, Exchangeable Graph Model and P1 Model belong 

to the latter group [130]. Static models deal with characterization of networks at a single 

snapshot of the network. Mechanistic models seek to model multiple snapshots of evolving 

networks [19]. 

 

The basic properties of graphs can be used to model a network and study its characters. 

Essentially a network can be represented as a graph with nodes of networks as vertex of 

graph and links between nodes as edges of the graph. In a social network, which intends to 

study the interaction between people, the nodes are the people and interactions between 

these people are links between the nodes. Similarly, in an actor network, which studies the 

casting relation between various actors, the actors are the nodes and a link is formed 

between two actors if they acted in same movie. One can observe that different elements 

and interactions between these elements can be represented as a similar or even the same 

network. In the following figure, even though the properties of nodes and their interactions 

are defined differently, the final network is same. Figure 1 (a) shows the network of three 

actors and their casting relation with each other.  

 

 

(a) Hollywood Actor Network        (b) Chemical Network         (c) Generalized Graph 

 

Figure 1: Examples of real-world networks 

 

C 
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The actors are the nodes and a link is formed if they acted in the same movie.  Figure 1 (b) 

shows relation between chemical reactants. The reactants are the nodes and the link is 

defined if they can form a chemical compound. The Figure 1 (c) is a generalized graph 

representation of the actor network and chemical network represented in Figure 1 (a) and 

1 (b). This makes it easy to study the characteristics and calculate various measures by 

using network theory and models. The analysis of topology of these networks shed light 

on many underlying information. These networks not only help in studying a static system 

but also helps study informative measurements and connectivity of evolving systems over 

a period. This generality and ease of transforming various systems in to graphs propelled 

the interest from wide variety of fields to look in to network science for answers.   

 

In this dissertation, we study the networking behavior in thin film growth. In our 

experiments, the points on the substrate and clusters formed on substrate are considered as 

nodes and path of the ad-atoms are mapped as links between these nodes. Movement of the 

ad-atoms between various points and clusters on the film are tracked and studied to 

determine the topology of network formed thus. This is discussed in detail in future 

chapters. 

 

1.1 Network of Thin Film Growth 

The demand for advanced materials with desirable properties by various industries has 

driven the development of thin film technology [20]. Since then, thin film development has 

become a major research area. Some of the application areas of thin film include 

microelectronics, optoelectronics, detectors, sensors, micro-electro-mechanical systems 

(MEMS), and more recently nano-electro-mechanical systems (NEMS) [21]. These 
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coatings have thickness ranging between nano- or micro- scales and are grown using 

vacuum deposition techniques [22-24]. Surface morphology of these thin film surfaces 

determines various physical and chemical properties. This makes it important to control 

and study the dynamics of the growth on the substrate so that the surface morphology and 

formations can be predicted prior to the growth. Commonly employed deposition 

techniques are thermal evaporation, sputter deposition, chemical vapor deposition (CVD), 

and oblique angle deposition. Different than others, oblique angle deposition technique 

[25-32] is typically used for the growth of nanostructured arrays of rods and springs 

through a physical self-assembly process. Kinetic Monte-Carlo (KMC) simulation 

provides a framework for modeling the effect of macroscopic process variables on the thin 

film microstructure and has been widely used to simulate CVD processes [20].  

 

Flat thin films are desired for many applications. Thin film growth is a complex 

phenomenon that occurs away from equilibrium. Most of the deposition techniques create 

some form of surface roughness. Atoms are deposited unevenly at different times across 

the surface. This random arrival, which is part of the process creates the roughness on the 

substrate. The surface morphology of the thin film affects many physical and chemical 

properties. Hence it is of great interest to control and understand the surface morphology 

in thin film growth process [21].  

 

In thin film growth simulations, the impact point on the lattice is randomly chosen to reflect 

the real growth process. However, particles that approach the surface at an angle can 

preferentially land on higher surface points before reaching the target point, which is called 

the shadowing effect. The particles can stick to the surface with a probability defined as the 

sticking coefficient. Particles that do not stick are re-emitted and can travel to another 
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surface point before settling down at a point on the lattice. These particles later take form 

into various clusters representing the hills and valleys of the rough surface. After the 

incident particle is deposited onto the surface, it becomes a so called “adatom”. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Commonly used thin film deposition techniques. [21] 

 

Figure 2 shows commonly employed deposition techniques: thermal evaporation, sputter 

deposition, chemical vapor deposition (CVD), and oblique angle deposition. Different than 

others, oblique angle deposition technique [25-32] is typically used for the growth of 

nanostructure arrays of rods and springs through a physical self-assembly process. Here 

we do not include the molecular beam epitaxy (MBE) technique that involves detailed 

interactions between the newly deposited adatoms and the surface steps [34]. These 

detailed interactions can generate a separate class of morphologies. The plot in Figure 2 

also shows the incident flux distribution for various deposition techniques. The ‘θ’ is 
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defined as the angle between the surface normal and the direction of the incidence beam of 

atoms. 

 

The atoms that are deposited on the lattice surface and the path they take during this course 

can be well depicted using graph theory. A graph is a set of vertices connected via edges. 

The vertices are also referred to as nodes in some cases [33]. In the diffusion methodology, 

the vertices or nodes of a graph can represent a single atom or a group of atoms that are 

related by a property like distance.  The interaction between these atoms can be represented 

as edges between the nodes. The edges can be directional or non-directional. This theory 

forms the basis of our experiments. We use various properties of these atoms to form the 

topology of the network. Using this topology, we intend to study various properties of thin 

film growth. 

 

1.2 Motivation and Significance 

Conventional statistical methods cannot be used to describe the complex phenomenon of 

surface morphology formation in thin film growth due to its intractability. There have been 

numerous modeling and experimental approaches [34, 35] proposed based on dynamic 

scaling analysis. Experimental results and predictions of growth models have varied 

considerably [21].  
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Figure 3: A survey of experimentally obtained values of growth exponent  reported in the literature for 

different deposition techniques is compared to the predictions of common thin film growth models in 

dynamic scaling theory. Root-mean-square roughness (RMS) grows as a function of time in a power law 

form, where β is the “growth exponent” ranging between 0 and 1. β = 0 for a smooth growth front and β = 

1 for a very rough growth front. [21] 

 

In Figure 3, a collection of experimental β values reported in the literature [36] is shown 

and these values are compared to the predictions of growth models. It can be clearly seen 

in Figure 3 that experimentally reported values of growth exponent β are far from 

agreement with the predictions of these growth models. Especially, sputtering and CVD 

techniques are observed to produce morphologies ranging from very small to very large β 

values indicating a “non-universal” behavior. 

 

To better explain the surface growth dynamics, one should take into account the effects of 

both “shadowing” and “re-emission” processes [37-41]. During growth, particles 

approaching at oblique angles settle on higher surface points (hills) due to the shadowing 

effect. This results in formation of rougher surfaces with columnar structures that can also 

be engineered to form “nanostructures” under extreme shadowing conditions, as in the case 
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of oblique angle deposition that can produce arrays of nanorods and nanosprings [26-31]. 

Based on sticking coefficient of the material, the particles can stick or bounce of at their 

impact point. Sticking coefficient is the overall likelihood of an atom/molecule sticking to 

the surface after complicated physical and chemical processes, and therefore represents a 

statistical average property of the incident flux interaction with the growing surface. Non-

sticking particles are re-emitted and can arrive at other surface points including shadowed 

valleys. In other words, re-emission has a smoothening effect while shadowing tries to 

roughen the surface. Both the shadowing and re-emission effects have been proven to be 

dominant over the surface diffusion and noise, and act as the main drivers of the dynamical 

surface growth front [29, 30]. The growth of a given surface point depends on the heights 

of near and far-away surface locations due to shadowing and existence of re-emitted 

particles that can travel over long distances. Only recently, it has been proposed that 

shadowing and re-emission effects could be fully incorporated into the Monte Carlo lattice 

simulation approaches [37-42, 44-47]. These simulations successfully predicted the 

experimental results on surface morphology including the β values shown in Figure 3. At 

small sticking coefficients (e.g., s < 0.5) re-emission was stronger than the roughening 

effects of shadowing and Monte Carlo simulations produced smooth surfaces with small β 

values. At higher sticking coefficient values, shadowing effect becomes the dominant 

process and columnar rough morphologies start to form. These Monte Carlo simulations 

also successively reproduced the morphologies and exponents predicted by the well-known 

Kardar-Parisi-Zhang (KPZ) [48] model in dynamic scaling theory, for the case where small 

sticking coefficient particles were re-emitted multiple times and resulted in a conformal 

growth [45]. Like experiments, it was not possible to capture a “universal” growth behavior 

using Monte Carlo simulation. 
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Conventional growth models fail to explain most of the experimental results for dynamic 

growth and dynamic scaling breaks down when shadowing is present. Since most of the 

commonly used deposition techniques has shadowing affect, dynamic scaling cannot be 

used in such cases. On the flip side, universal behavior in growth processes cannot be 

explained using simulation techniques. On top of it the simulations that can explain the 

experimental results are hard to implement by researchers. This emphasizes the need of 

more robust and easy-to-implement modeling techniques for capturing analytical and 

empirical relations in dynamic thin film growth [21]. 

 

Further, using network modeling and science to capture growth patterns is applicable to 

areas other than thin films as well. With similar local mapping of growth dynamics to a 

network, various social and physical phenomena can be modeled as a network; and hence, 

be analyzed using network science techniques. For example, wealth growth in a society 

may be modeled as a network if a business transaction is considered as a “link” while 

individuals or institutions are considered as “nodes” [131]. Similar to what we propose 

about explaining the thin film surface morphology via network properties, properties of 

wealth growth and its distribution could potentially be explained via the characteristics of 

the corresponding network. 

 

In past decade, various physical, chemical, biological phenomena have been explained 

using network concepts [2, 33, 51, 52]. Various aspects and features of these phenomena 

are mapped to network topology and characteristics and are studied from a network 

perspective. These studies help us to better understand underlying behavior and interaction 

between various components. For example, a protein network help scientists to study the 

interaction between various proteins. It is observed that these interactions form a highly-
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connected network. These interactions help scientists find more comprehensive 

understanding of protein function and cellular interactions [53].  

 

This dissertation is built on top of earlier work by Karabacak and Yuksel et al. [21, 54] to 

map the thin film growth to a network model, and apply network modeling concepts to 

study the particle movement and surface growth phenomena. In the early work, each point 

of a substrate is treated as a node of network and the movements of ad-atoms are mapped 

as edges of the network. Then, the degree and distance distributions of this network are 

studied in this work.  

 

In this dissertation, we aim to further this work so that it can better capture the growth 

dynamics and patterns. We, for example, enhance the topology of the network of thin film 

growth by treating clusters forming on the film surface as different nodes and establish a 

different “cluster-based” network model of the growth. Our initial results show that the 

shadowing effect during the film growth is better captured by the cluster-based network 

model [129] in comparison to the cluster-based network model in [54]. Further, on top of 

these cluster-based or cluster-based network models, we intend to establish a traffic model 

of the growth process to study various traffic characteristics of these two networks and 

compare them to other real-world network traffic. We believe by doing this we would better 

understand the behavior of ad-atoms movement on the surface of a thin film substrate. We 

would also be able to better understand the shadowing and smoothing effects of the thin 

film. This understanding could be used to better engineer the thin film growth. 
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1.3 Contributions 

In this dissertation, we proposed a cluster-based model to study important characteristics 

of thin film growth like shadowing affect and smoothing affect. We compared this method 

with earlier proposed grid-based network model. The grid-based model is effective to study 

the local interactions between the particles and how these interactions affect the growth of 

the thin film and formation of hills and valleys. Our proposed cluster-based model studies 

global behaviors of particles that are similar in nature. By doing this the focus of the study 

shifts to actual hills and valleys which influence the thin film growth phenomenally 

compared to individual points on the substrate. We also developed a traffic model using 

the movement of the particles to study the properties of the particle movement that happen 

during the thin film growth. Using this model, we studied the inter-arrival times of the 

particles and identified various patterns in particles using the existing network traffic 

models. These studies give us new network modeling based insights on how various factors 

like sticking coefficient of the material and thickness of the film would impact the growth. 

Some of the key findings our work are as follows: 

• The sticking coefficients and the film thickness have dominant effect on the 

formation of the clusters. At lower sticking coefficients and lower thickness of the 

film, distinct clusters are not formed. At higher sticking coefficients, distinct 

clusters are formed as the thickness of the film grows. 

• Our clustering approach significantly simplifies understanding the stochastic 

shadowing and re-emission effects by not recording the properties and behavior of 

the particles that are similar because of their physical position on the film.   

• With the cluster-based model, the degree distribution of the network model of the 

growth process seems to move more towards power law, indicating that some of 
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the clusters have significantly more links (particle emissions) than the others and 

act as hubs of particle re-emissions. This reveals that the columnar structures (i.e., 

the clusters in our model) are more inter-dependent and the emergence of a 

columnar structure requires existence of these hubs during the film growth process. 

• The power exponent of the network does not change when the factors like sticking 

coefficient, angle of incidence and thickness of film are changed in the cluster-

based model. This demonstrates a universal behavior in the thin film growth 

network.  

• The density of the cluster-based network is very low. This suggests that majority 

of adatom particle movements are local.  Further, the results show that smoothing 

effect is not prominent between clusters.  

• With the cluster-based network, we can also observe that diameter and average path 

length of the network are larger, which suggests that particle movements between 

clusters has decreased – a property of the shadowing effect. 

• The above observations show the cluster-based model is better suited to study 

global behaviors of thin film growth and particularly the shadowing phenomenon. 

• The Hurst parameter of the particle traffic on the cluster-based network is 0.76, 

which shows a long-range dependency similar to the Internet traffic and quantifies 

the fractal behavior of the particle movements. 
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Chapter 2 Literature Review 

2.1 Thin Films  

Most materials used in high technology applications are composites. They have different 

properties at the surface when compared to the core. This is extremely desirable when one 

needs to have a material to exhibit various properties that cannot be found in a single 

material. The combination of materials will give the desired results. An example of 

industrial requirement of such materials is the hot stage blades in a gas turbine. The desired 

properties in this case are high temperature and corrosion-resistant. The solution is to 

provide the strength from core bulk and corrosion resistant on the surface. This can be 

obtained by coating a corrosion resistant material on a material that can sustain higher 

temperatures. The coatings are desirable for many other reasons including economics, 

material conservation, unique properties, and design flexibility.  

 

This surface coating is obtained by depositing a coating onto a substrate by processes such 

as physical deposition, chemical vapor deposition, electro deposition and thermal spraying 

etc. Thus, the coating/substrate is a composite materials system. The properties of the 

composite material depend on the properties of the two components and also on the 

interaction between them. The composite material can be of two varieties. In one the 

coating and the substrate are two different materials. This is usually formed by overlay 

coating. In the other variety, the surface is the combination of both substrate material and 

the coating material. These materials are usually formed by ion implantation or diffusion 

coatings.  
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Before the advent of deposition techniques most solid metallic and ceramic materials were 

produced by melting or solidification technology. Since the advent of deposition 

techniques, the diversity of materials that can be produced has increased phenomenally. A 

much variation in microstructure is possible with vapor source materials. A large number 

of materials are used for coating. Thin films have been in usage for a longtime. As early as 

seventeenth century thin films were used in various areas like glass decoration and 

metallurgy.  Suspension of silver salt is used as paint on the glass vial. It was then heated 

to convert the salt to metallic silver. Another old technique is beating the metals like gold 

make thin plates of the metals used in various walks of life [56]. 

 

The mechanical properties of thin films vary from those of bulk material. Thin films exhibit 

higher strengths when compared to bulk materials. Properties also vary based on how the 

metals are worked on. For example, strength of thin films is higher than the bulk materials 

that were well annealed. These annealed bulk materials have higher strengths when 

compare to severely cold worked bulk materials. There are two reasons for exhibiting such 

difference in strengths. First, in annealed materials the crystals are more disordered 

resulting in smaller grains compared to cold worked bulk materials. The second 

explanation is that, if the films are sufficiently thin, the dislocation of grains could extend 

throughout the surface and locked in place, thus giving no mechanics for yielding [56]. In 

the electronics field, thin films are occupying a prominent place due to their influence on 

the properties of electron. The addition of thin film can largely influence conductivity and 

resistance properties of a material. In thin dielectric films the conductivity abruptly changes 

when the thickness is reduced below a finite amount. In dielectric films that are thicker 

than 100 A, the field required for current flow is independent of film thickness. In thinner 

films the density of current increases considerably. The reason for this increase is the 
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“Tunneling’ effect caused by decrease in thickness. The probability of an electron to 

penetrate a surface represented by dielectric, and it increases with the decrease in thickness 

[13]. 

 

Many fields are experiencing the advantages of thin film coatings. The use of thin films in 

optics began in nineteenth century. Around this time, it was observed that tarnished lenses 

are better than the clear ones. This led to further research and as a result, in 1930’s it was 

detected that the higher transmission in the tarnished lenses is because of interference 

phenomenon. This has resulted in developing coating on lenses. This was used for 

numerous applications like preventing light loss, reduction of unwanted light in optical 

image, and removing images of sky on World War II plane’s instrument, making them 

more readable. Another prominent thin film used in modern era is the magnetic film. The 

need for magnetic film arose to aid the development of high speed computers with large 

memory capacity. Earlier computer memory consisted of magnetic drums. These drums 

have many limitation when it comes to speed and storage capacity.  These limitations were 

overcome by using the magnetic films for storage. Replacing magnetic drums with films 

containing some perm alloys made this possible. These films below certain critical 

thickness show magnetic direction reversal time less than 10-9 seconds. Typically, these 

films consist of 80 percent nickel and 20 percent iron. This is also very inexpensive which 

allows larger memory at a smaller price compared to magnetic disks. In electronics, early 

film resistors were created using a resistive consisting of carbon. One of the first film 

resistors was made by spraying platinum on a glass rod. The resistance of the films depends 

on their geometry and structure. 
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2.2 Thin Film Deposition Techniques 

Thin film Deposition techniques are constantly evolving. There are many deposition 

techniques for material formation [22-25]. Broadly these techniques can be classified in to 

two major areas namely physical techniques and chemical techniques. The chemical 

reaction involves in chemicals directly reacting with substrate and forming the deposition. 

This method may also result in formation of other compounds in the form of vapor or gases. 

The physical reaction does not produce byproducts. There are considerable numbers of 

techniques that are based on both physical and chemical reaction [61]. Following are some 

of the popular deposition techniques [62-64].  

• Electro-deposition 

• Chemical Reduction 

• Electroless Plating 

• Vapor Plating 

• Evaporation 

• Sputtering 

• Anodization 

• Polymerization 

Among these deposition techniques, our project’s focus is Chemical vapor deposition. 

From here on we refer to this technique as CVD. 

 

Chemical Vapor Deposition (CVD) 

In this process, the thin film substrate is placed in a chamber and gases are released into 

the chambers. A chemical reaction takes place between the primary gases in the chambers. 

This reaction results in formation of a solid material that condenses and falls on the thin 
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film substrate as a coating on the surface. The reaction of primary gases is the main 

difference between CVD and other physical deposition techniques [61-64]. The 

development of the CVD process was mainly due to growing practical needs of society. 

One of the most important applications of CVD films is for electronic field. This method 

is very useful in fabrication of thin film transistors, resistors, sensors, capacitors and solar 

cells. Successful growth of any material is affected by the properties of the layers grown. 

Controlling these properties depends on the parameters and conditions of chemical 

reaction. Better understanding of these chemical layers is very important to produce 

improved quality layers. CVD is a complex process involving fluid mechanics, heat 

transport, multicomponent diffusion, gas-phase chemistry, surface chemistry and crystal 

growth. 

 

 
 

Figure 4: Illustration of fundamental transportation and reaction processes underlying CVD [64] 

 

The deposition sequence can be summarized in to following steps [64]. 

1. Gas flow through main gas flow region from reactor inlet to the deposition zone. 
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2. Gas phase reactions leading to formation of precursors and byproducts. 

3. Transportation of precursors to the growth surface. 

4. Collection of film precursors on the growth surface. 

5. Surface diffusion of film precursors to growth sites. 

6. Incorporation of film constituents in to the film. 

7. Desorption of byproducts of surface reactions. 

8. Mass transport of by products from deposition zone towards the reactor exit. 

Each step of the process must be controlled in order for CVD to accomplish uniform 

composition and thickness of thin film. Apart from this the reactor should be designed and 

operated to accurately control crystal structure, surface morphology, and interface 

composition. There have been several studies revealing fundamental dynamic effects (e.g., 

shadowing, re-emission, surface-diffusion, and noise effects) taking place during the 

growth process [65-69]. Studies towards explaining the growth dynamics have been partly 

successful and only the simulation-based studies were able to include all these effects. 

 

In our work, the main focus is on how the re-emission and shadowing will affect the growth 

process and will affect the surface morphology of substrate. We believe that by using 

computer network modeling, these effects can be explained and understood much better. 

This would facilitate scientists to develop models to control these effects to attain required 

growth and structure of thin films. 

 

2.3 Monte Carlo Simulation 

Monte Carlo methods have been used since the second half of the nineteenth century, but 

only in the past few decades have the technique gained the status of a numerical method 
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capable of addressing the most complex applications [70]. The Monte Carlo method is 

designed to solve problems consisting of many independent smaller ones (like the spin of 

a roulette wheel, or toss of dice at a casino), using a random number generator. Its core 

idea is to use random samples of parameters or inputs to explore the behavior of a complex 

system or process. The method’s name was adopted from the Monte Carlo casino which 

was one of the best-known venues for roulette and games of chance in Monaco. The fair 

roulette wheel is one of the earliest random number generators. The use of randomness and 

the repetitive nature of the Monte Carlo process are analogous to the activities conducted 

at a casino. Monte Carlo methods formed the core of the simulations required for the 

Manhattan Project. Applications resulting from this project included the design of shielding 

for reactors [70]. The Monte Carlo method provides solutions to mathematical problems 

by performing statistical sampling experiments on a computer [71,72]. 

The main components of the Monte Carlo method are [73]: 

• The probability distribution functions describing the physical system. 

• The random number generator which is a source of uniformly distributed random 

numbers. 

• The sampling rule which is a recommendation for sampling the probability 

distribution function. 

• The variance reduction techniques, which are methods for reduction of the 

computational time for Monte Carlo simulation; 

• The scoring (or tallying), which represents the outcomes of the interest quantities. 

 Monte Carlo simulation serves as a better modeling technique for film growth using 

CVD technique. The film growth has statistically extensive computations which are proved 

to be handled accurately by Monte Carlo Simulations.  
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2.4 Network Modeling 

In late nineteenth century biologists and physicists have started taking advantage of each 

other fields to find solutions and explain phenomenon in their respective field. As both the 

fields started to grow enormously, basic theories and concepts in their fields were not 

sufficient enough to answer the new challenges emerging in these fields. They started to 

look at other fields for the answers. For example, the need of high quality microscopes for 

biologists has motivated physicists to improve microscope technology [74]. Advent of 

computers has helped physics among other disciplines to move outside their traditional 

approaches and explore more statistically challenging systems. Some of the behavior is not 

easy to explain using laws of fundamental particle interaction. Many systems exhibit 

complex, unpredictable, and chaotic behavior at global level. Even though such systems 

are chaotic at global level, they consist of simple individual interactions. Computers have 

provided them the computational power and large data sets to explore various methods to 

capture behavior of a system. These large datasets are allowing scientists to study real 

networks that consist of millions of nodes [75]. The well-established component of 

mathematics, the graph theory allows researchers to model the systems in to networks and 

study their characteristics both locally and globally.  

 

2.4.1 Graph Theory 

In mathematical terms a network is denoted as a graph. A graph G is a pair of sets (V, E) 

where V is a non-empty set and the elements of E are pairs of elements of V. If the elements 

of E are ordered pairs denoted as (a, b) then G is called a directed graph (digraph). If the 

elements of E are unordered pairs denoted as {a, b} then G is called an undirected graph. 
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The following are the pictorial representation of simple graphs. The vertices (V) are 

represented by the dots.  The edges (E) are represented by the lines connecting the vertices. 

                

Figure 5: (a) Directed Graph                       (b) Undirected Graph 

 

In an undirected graph, the number of edges connected to each vertex is described as the 

degree of that vertex. The degree is denoted as k. In a directed graph, there are two varieties 

of degrees. The number of incoming edges is called in-degree and is denoted as ki. The 

number of outgoing edges is called out-degree and is denoted as ko. Thus k = ki +ko. 

 

Another important aspect of graph theory is path. A path is a non-empty graph P= (V, E) 

of the form V = {x0, x1, x2, x3 … xk} and E = {x0x1, x1x2, x2x3, x3x4 … xk-1xk}, where xi are 

all distinct. xo and xk are linked by P and are called its ends and x1, x2, … xk-1 are called its 

inner vertices. The path is referred as sequence of its vertices, writing P = x0, x1, x2, x3 … 

xk and call P a path from x0 to xk. This can also be called as path between x0 and xk [76]. 

The length of path is number of edges that constitute the path. 

 

  

 

 

 

Figure 6: (a) Non-cyclic Graph                                    (b) Cyclic Graph 

 

X0 

X2 

X3 X4 X1 

X0 

X2 

X3 X4 X1 
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In the Figure 6(a), if the thick edges connecting the nodes X0…X5 is the path then it is 

written as P = X0, X1, X2, X3, X4, X5 or P = X0, X1 … X5. The length of the path is 5. In 

figure 6(b) the edge X4X0 is also part of the path and the path has same starting and ending 

vertex. This is called a cycle. If P =X0…Xk-1 and k ≥ 3, then the graph C: = P + Xk-1X0 is a 

cycle. For cycles, we denote their paths with cyclic sequence of vertices. For figure 6(b) 

the cycle is written as C := X0X1…X4X0. A graph without loops is called a tree. If a tree 

does not have separate parts then it is known as connected tree. In a connected tree the 

number of vertices (N) is greater than the number of edges (E) by one. N =E+1. In figure 

6 we have 8 nodes whereas the number of edges is one less than the number nodes (7). 

Since there are no disconnected parts, this is a connected tree. An undirected graph is called 

bipartite if it has two distinct sets of nodes U and V such that every edge connects a node 

in U and V and is written as G = (U+V, E). 

 

Figure 7: Connected Tree 

 

Reachability of different nodes is an important component of graph theory. Many features 

of graphs can be studied based on reachability of different nodes. Reachability is the 

possibility of a path between two nodes. This path could be an edge between the two nodes 

or could involve multiple nodes of the graph. 
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The vertices are not universal. They differ based on the type of networks being studied. 

For example, in a friend network a node representing a person can be classified based on 

age group, gender, their associations like college attended, college majors etc. These 

classifications allow scientists to study the local properties of the graph as well as global 

properties. When studying a friendship network of university students, classification of 

nodes can bring more useful information like probability of friendship between different 

majors or probability of friendship among different economic classes etc. It is very 

important to recognize the characteristics of nodes that one has to use while studying a 

network. By not classifying the nodes properly, scientists will miss out important behaviors 

of the networks.  Another challenge in studying networks with large data sets is to acquire 

a complete and unbiased set of data. This could be due to amount of time it takes to gather 

such information, limitation of tools, technologies, methods or other available resources.  

 

2.4.2 Network Properties 

The analysis, discrimination and synthesis of complex networks rely on measurements that 

could represent the relevant topological features [13]. Numerous studies have been carried 

out to study the dynamics and measurements of the networks. Among these there is a 

particular focus on networks derived from real data involves community structure, degree 

distributions, and hubs. These are studied along with various existing models of networks 

like small-world [77-79], Scale-free models [80-82], and community structures [83-84]. 

The quantitative analysis allows us to classify the real networks into major categories, thus 

allowing us to focus on particular theories and analysis in their study. An additional 

component called transformation can be introduced in studying these networks. This is 

essential in analyzing evolving or dynamic networks. For example, one can compare the 
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measurements or characteristics of networks over a period of time and determine how the 

network has changed over that period. A network can be compared to its initial stage and 

after removing some prominent nodes or hubs removed from the network. These 

investigations give insights on both original state network and transformed network when 

right measurements are chosen.  

In the followings, some popular network measurements are reviewed. 

 

Shortest Path Length: In a graph G, the distance between two vertices u and v is the 

length of a shortest path joining u and v and is denoted by dij. If two nodes are directly 

connected by an edge, then the shortest path length is 1.  

 

Average Shortest Path Length: In a connected graph G, the average distance of G is the 

average over all distances d(u; v) for u and v in G. If G is not connected, we determine the 

average distance to be the average among all distances d(u; v) for pairs of u and v both 

belonging to the same connected component.  

� = �

�(���)
∑ 	
�

� ≠ �
   (1) 

The average shortest path length is also called Characteristic path length. In some literature, 

it is also referred as size of the network. 

 

Diameter: The diameter of G is the maximum distance d(u,v) where u and v are in the 

same connected component. The diameter is the longest of all shortest path lengths among 

all possible pairs of nodes.  

 

Density: The density of a graph is defined as the ratio of number of edges in the graph to 

the maximum number of edges possible for the nodes in the graph. The graph is said to be 
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dense if these numbers are close. The opposite of dense graph is sparse graph. In a sparse 

graph, there are only few edges compared to maximum possible edges. Graph density is 

defined as: 

� = �|�|

|�|(|�|��)
   (2) 

 

Vulnerability: In a network topology, it is important to know which components are 

important for the network’s functioning. Many networks have hubs which are heavily 

connected to other nodes in the network. In many networks these hubs are very important 

for proper interactions between nodes. But this is not necessarily true in all networks. For 

example, in WWW network removing hub will drastically change the network. But in a 

binary tree where hubs are absent, root and nodes near the root are more important 

compared to leaf nodes. Disconnecting or deleting these prominent nodes will have 

dramatic impact on whole network. A way to find critical components of a network is by 

looking at these nodes. Vulnerability of a node is network efficiency variance before and 

after the node and all its edges are removed [85]. Network vulnerability is calculated as 

maximum vulnerability for all of its vertices. 

 

Degree Distribution: The degree distribution of a network P(k) is the probability of a 

randomly selected node having degree k. Degree distribution is calculated by counting 

number of nodes in the network, N(k) with k edges. This number is then divided by total 

number of nodes in the network, N. For a directed graph, similar method is used to calculate 

the in-degree and out-degree distributions. Instead of total number of edges only In and out 

bound edges are used in the calculation. The degree of a node is a local measurement. By 

using degree distribution, this local measurement is used to describe the global properties 
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of the network. In a random network the probability of existence or non-existence of an 

edge is same. Hence the degree distribution of a random network is poisson distribution. 

Seldom the real-world networks possess this property [86]. 

 

 

Clustering Coefficient: The clustering coefficient is a measure that provides insight to the 

connectivity of a node’s neighborhood in a network [86]. The equation for clustering 

coefficient is  

 (�� = 2��) ⁄ ��(�� − 1)   (3) 

where Ei is the number of edges connecting the immediate neighbors of node i, and ki is 

the degree of node i. Average clustering coefficient is calculated by averaging the 

clustering coefficients of all nodes in the network. Most real-world networks exhibit large 

average clustering coefficients. Large average clustering coefficient indicates high level 

redundancy and cohesiveness. The average clustering coefficient of nodes with degree k 

can be plotted as a function of node degree, C(k). It has been found that for many networks, 

this clustering-degree relation has the functional form. 

�(�)  = ���    (4) 

In the above equation, exponent β is usually between 1 and 2. By starting at an edge of a 

given node and following a path along connected edges [64, 76], only some of the nodes 

in the network will be connected to the starting node. Often in directed graphs, the 

possibility of two edges being consecutive depends on their directions. If every pair of 

nodes in a network has edges connected between them, then the network is said to be 

strongly connected. The average path length d is the average number of edges in the 

shortest path between any two nodes in a network. This global property of a network is 
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used to understand the schematics of a network. For most real-world networks the average 

path length is seen to increase / decrease with the number of nodes in the graph:    

	 ~ � (!)   (5) 

If the path length is small even when the networks become large it is said to be displaying 

the small world property [86]. Studying global efficiency of a network is very important in 

directed graphs. The path length between unconnected nodes is infinite. Such nodes do not 

interest researchers trying to gauge the global efficiency.  For this detection of communities 

among these graphs and studying these communities will provide invaluable information 

about various actors in the graph.  

 

For example, many communities exist in a directed graph. These communities are 

generally strongly connected and are connected to other communities or subgraphs through 

an incoming or an outgoing edge. By community detection and the way they are connected 

with other portions of graphs will provide insights on how the network is organized and 

the complexity of the network. 

 

2.4.3 Network Models 

Random Graphs: Pal Erdős and Alfred Renyi has pioneered a well-developed branch of 

mathematics called random graph theory. To analyze any graph that appears to have 

random topology, researchers rely on random graph theory. While analyzing a complex 

network, one compares the properties and behavior of the network to a random network 

with same number of nodes and edges. ER random graph theory captures the qualitative 

topology changes when number of nodes and edges are increased in a graph. An ER graph 

is formed by randomly forming edges E between N number of nodes. The degree 
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distribution of a graph follows a Poissonian distribution. Most nodes have degree 

distribution closer to average degree of the network, k.  

< � > =  2�/!   (6) 

Most real networks have scale-free degree distribution. But ER random graphs have 

homogeneous degree distribution. The average clustering coefficient of ER graphs is 

inversely proportional to the size of the network. Clustering coefficient of these graphs is 

given by 

< � > = < � >  !    (7) 

 

and the clustering coefficient is degree independent in ER graphs, peaking at the 

connection probability p. In real-world networks the clustering coefficient is high and is 

inversely related to degree. The average path length of ER graphs is given by equation (8).  

	 >>   � (!) �  (�)   (8) 

In this case d remains small, even when the network is large [15].  Many real-world 

networks have average path length similar to those of random graphs with same number of 

nodes and edges. There are some well-known networks like World Wide Web that have 

considerably longer average path lengths.  

 

Scale-Free Networks: Derek de Solla Price gave the first example of a scale-free network. 

He studied the citations network between scientific papers and found that both in and out-

degrees display power-law behavior [19]. Price published another paper some years later 

[65] in which he offered the explanation for power-law degree distributions which was 

built on ideas developed Herbert Simon [124], who showed that power laws arise when 

“the rich get richer,” when the amount you get goes up with the amount you already have. 

In sociology, this is referred to as the Matthew effect [67]. Price called it cumulative 
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advantage. Barabasi and Albert calls this preferential attachment. [23]. Prince took Simon’s 

idea of wealth distribution and applied it citation network behavior. Price in his paper 

explains that the rate of increase in citation are proportional to the citations already exists 

for that paper. The probability that a newly appearing paper cites a previous paper—is 

simply proportional to the in-degree k of the old vertex. Since each vertex starts with in-

degree zero, and hence would forever have zero probability of gaining new edges. To 

address this problem, Price suggests that the probability of attachment to a vertex should 

be proportional to k + k0, where k0 is a constant. Although he discusses the case of general 

k0, all his mathematical developments are for k0 = 1, since one can consider the initial 

publication of a paper to be its first citation. Thus, the probability of a new citation is 

proportional to k + 1. The probability that a new edge attaches to any of the vertices with 

degree k is thus illustrated by following equation [7]. 

(%&')(%

∑(%&')(%
=

(%&')(%

)&'
     (9) 

Barabasi et al. also examined similar preferential attachment behavior in WorldWideWeb 

network. These networks display the long tail distribution phenomenon [24].  

 

Small World Networks: Social scientists studied this phenomenon pioneered by the work 

of Stanley Milgram in 1967. Milgram showed that the chains of acquaintances linking a 

pair of Americans appear to have length six on average, leading to the phrase “six degrees 

of separation" between any two people in the U.S. [18]. Recent work by Dodds et al. 

suggests it’s still true [17]. In his original basic experiment, Milgram managed to relay a 

message from a source person in Nebraska and to a target person in Boston such that the 

chained people (who had received the message) needed to forward the message to someone 

they knew on a first-name basis and who are either closer to, or was more likely to know, 

the target.  
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Figure 8:  Watts-Strogatz (WS) small-world network model. [120] 

 

The small-world network “displays considerable local connectedness while also having a 

low degree of separation with the other nodes in the network” [120]. Many real-world 

networks, including some social networks, have displayed to the small-world network 

construct. 

 In our network model, with valleys and peaks forming over a time period, the particles 

travelling between them might show some degree of small world behavior. Theoretically 

this behavior might be demonstrated when the number of clusters decrease significantly at 

higher sticking coefficients. It would be interesting to see how the local connectedness 

exists at lower sticking coefficients, where the number of clusters is very high. In our work, 

we study if the dynamic growth of the network displays any properties of small world 

graphs. The network G is said to be a small-world network if the graph has similar path 

length as of a E-R random graph (Lg≥Lrand) and has greater clustering coefficient than the 

E-R random graph (Cg >> Crand) [120]. 
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2.5 Applications of Networks  

Networks are present in many aspects of our world. Study of such networks has become 

one of rapidly growing research areas. These networks are compared, analyzed for various 

mathematical and topological properties. Such studies are highly interdisciplinary. Our 

existence depends on many of these complex systems. Understanding systems such as 

power grids, disease epidemics, transportation systems etc. are essential to our survival. It 

is important to study failures and their cascading effects of many components in such 

systems.  

 

NETWORK  

 

NODES 

 

LINKS 

DIRECTED / 

UNDIRECTED 

Internet Routers 
Internet 

Connections 

Undirected 

WWW Web pages Links Directed 

Power Grid 
Power plants, 

transformers 

Cables Undirected 

Mobile-Phone Calls Subscribers Calls Directed 

Actor Network Actors Co-acting Undirected 

Citation Network Papers Citations Directed 

 

Table 1: Various Network maps and their nodes and links [103] 

 

In the event of local failure, the load can be shifted and reorganized to other nodes without 

causing a cascade affect. Many complex networks suffer from cascading failures. Care 

should be taken to reroute the load. The cascading failures take place on the Internet, when 

load is rerouted to avoid non-responsive routers. This rerouting may occasionally create 

denial of service attacks on routers, if they are not equipped to handle the extra traffic.  We 
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must understand how network topology affects the functioning of complex networks. In 

this section, we will look at some frequently studied categories of real-world networks.  

 

2.6 Network Traffic Modeling 

Design and study of traffic models shed light on patterns, characteristics, and behavior of 

the traffic. These insights are used to design and implement more robust and high-

availability networks. There has been a significant interest in traffic models and its 

behavior since Self similarity and Long range dependency has been discovered [134]. In 

recent times the volume of data has increased phenomenally that has intrigued researchers 

to find more efficient models to study, characterize and predict the traffic and the network 

as a whole.  The aim of traffic modeling is to find stochastic processes that would capture 

the traffic behavior of the system under study and is universal and scalable. Main 

components of a traffic model are nodes, edges established between these nodes, Queueing 

method and the packets travelling between the nodes through the edges. During an active 

session, an edge is established between two nodes and the packets are transmitted. The 

transmission of these packets is called flow of traffic. The flow could have different 

characteristics. For example, it could be continuous or discrete. In a traditional queueing 

models the traffic follows a continuous flow. Whereas the Internet traffic is a series of little 

bursts where the traffic can be heavy at certain times compared to others. Each burst 

consists of transmission of set of packets in a small interval of time. It is observed that in 

the Internet traffic, flow of packets for a very long period is scarce.  

 

There are many models available in literature. Some of the popular ones are: 

1. Poisson Distribution Model 
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2. Pareto Distribution Process 

3. Weibull Distribution Process 

4. Regression Models 

5. Fractional Brownian Motion 

6. Markov and Embedded Markov Models 

We cover a few of these traffic models below. 

 

Poisson Distribution Model: Poisson distribution is one the earlier models that was used 

to study the traffic. This was a prominent model to study the traffic for telephonic systems 

[138]. This is a memory less and independent of prior arrival times. The next arrivals are 

exponentially distributed and do not take account of earlier arrivals. The number of arrivals 

have Poisson distribution in any given interval of time [135]. This model is very attractive 

because of its independent memory less behavior. Another property that makes Poisson 

calculations simple and neat is that  

 

Self-Similar Traffic Models: Poisson method is suitable to study traditional traffic. But, 

bursty traffic like the Internet traffic is studied using Self-Similarity models. In recent years 

since Leland et al. observed the burstiness of the Internet traffic, researchers are 

considering Self-Similarity study necessary for traffic modelling. Self-Similarity is long-

range dependent compared to short dependency nature of Poisson model. Heavy tailed 

distributions can describe self-Similar process [95-99]. Researchers have found self-similar 

model to be very narrow and difficult to implement to study the traffic. As an alternate they 

prefer a different version of self-similarity called asymptotically self-similar model [75]. 

Autocorrelation function of asymptotical self-similarity process can be defined as follows 

*(�)~ +��,��, � → /    (10) 
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where H is Hurst parameter and c is a constant greater than 0. Fractional Brownian Motion 

is an actual Self-Similar model whereas Fractional Gaussian Noise is exactly asymptotic 

Self-Similar traffic model and is considered to be a good model to study Ethernet, Telnet 

and FTP traffic [100]. 

 

ON-OFF Model: A simple ON-OFF model has two states where the source is in idle mode 

or active mode. In a telephone traffic model, a person is either talking or listening. 

Similarly, in computer network model, a source will either transmit the packets or receive 

the packets.  

 

 

 

 

 

Figure 9: ON-OFF Traffic Model 

 

Once the source is in on state, the model generates packets at constant rate for a period. It 

then transitions to off state at transition rate of β. It then stays in off state before 

transitioning to on state at a rate of α. This model is used when it is desired to capture the 

scaling behaviors of the network traffic. It was used to study the IP traffic, but later studies 

showed that a simple ON-OFF model is unable to capture the statistical and long-range 

patterns of the Internet traffic. 

 

Autoregressive Models: Autoregressive model is a simple time series model. In 

autoregressive models, the traffic output is predicted by using previous outputs and inputs. 

On state Off state 

α 

1-α 
1-β 

β 
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There are several variations of this model. If the models use only previous outputs they are 

called autoregressive models. If the models use only the input to predict the output, they 

are referred as moving average models [101]. Each point in these processes is a linear 

combination of previous points.  

 

Application Specific Models: There is no one universally accepted model that can be used 

to study the traffic processes. There are many models that are based on specific application 

or the nature of traffic. Usually they are variants of some of the models mentioned above. 

These models are built to capture the true nature of real-world application traffic. For 

example, some of the popular application models studied are Web traffic, peer-to-peer 

traffic, and multimedia streaming. It is estimated 40 percent of traffic is Web based [102]. 

It is possible to apply time series models to study the Web traffic. Since Self-Similarity 

was already found on the Ethernet traffic, it is logical to look of similar process in Web 

traffic. It was determined that Web traffic exhibits Self-Similarity characteristics with a 

Hurst parameter between 0.7 and 0.8. It is also found that web clients exhibit ON-OFF 

characteristics [103]. This shows that many models can be used to study the traffic 

processes. 

 

The intricacies of the underlying drivers for traffic models make it tough to choose one 

model over another. No one model will fit for all kinds of traffic studies. Many factors in 

real network traffic data will determine the choice of the models to be used. Traffic 

behavior like Self-Similarity, long range dependency (LRD), fractals have significant 

impact on the performance of the network. The practical difficulty in modeling real-world 

traffic is collecting and analyzing large sets of data without any interference. The end goal 

will also drive the model choice. For example, some models are better equipped to analyze 
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packet level traffic where as other are more suitable to analyze high level data at nodes, 

sources, and routers. The chosen model should provide universality, scalability and should 

be able in line with actual traffic statistically. Our knowledge about the network traffic 

comes from observing historic data and this influences our ability to predict the future 

traffic accurately. Traffic model should be mathematical approximation of actual traffic 

behavior [94]. Many studies have focused on increasing forecasting accuracy by using 

various methods. Recently some scholars have developed complex networks to explore 

traffic dynamics. Tang et al. [104] proposed that using complexity and periodicity in 

complex networks will improve the predictability accuracy.  
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Chapter 3: Modeling Thin Film Growth as a Network 

3.1 Modeling Dynamics of Thin Film Growth 

Thin film growth is a complex phenomenon that forms hills and valleys. Two important 

phenomenon in thin film growth are shadowing and re-emission effects.  Non-local 

interactions on the surface of a thin film growth originate from shadowing and re-emission 

effects. These interactions can lead to trajectories of atoms/molecules before they are 

finally deposited. For example, during re-emission, when an atom bounces off a point and 

lands on another, the points can be treated as nodes and path between them as an edge 

between these two nodes. when the sticking coefficient is small, the particle can go through 

multiple hops landing on various surface points and forming multiple edges. With 

shadowing effect hills are more prominent and act as first landing spot for the atoms on the 

surface. This is similar to nodes with high traffic in a network. 

 

Several factors need to be considered while mapping surface points and the parts followed 

by atoms to a network modeling framework. Figure 10 shows the depiction of hills and 

valleys on a thin film. In Figure 10(a), the blue color represents hills and yellow color 

represents the valley of the film. The first thing in modeling is to define a “node” in the 

network framework. Each blue or yellow region on the film should be mapped to a network 

node. The resolution of the grid determines the position and number nodes used for 

modeling the network. If the grid resolution is too fine, then each point on the surface of 

thin film is treated as a node. Thus, a blue/yellow region of the film will contain multiple 

nodes as in Figure 10(b). Conversely, when the resolution is coarse, then blue/yellow 

regions on the thin film surface will be mapped as one network node as in Figure 10(c). 

Finer grid is more likely to capture local interactions and other dynamics of the growth 
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pertaining to the re-emission effect. On the other side, the coarser granularity network 

models enable us to observe uniform behaviors pertaining to the shadowing effect in the 

film growth dynamics [55]. This has been discussed in detail in chapter 4.  This intuition 

derives from the fact that re-emissions take place from an atom-size starting point to 

another atom-size ending point on the surface, whereas shadowing happens because of hills 

with significantly larger sizes than atom-size. In our first method, we developed a finer 

granularity network model to capture the re-emission effect’s uniform behaviors and then 

apply clustering techniques transit to coarser granularities for capturing the shadowing 

effect’s uniform behaviors. The importance of granularity on the resulting network model 

is illustrated in Figure 10, where the grid network model is developed to capture local 

interactions. 

 

After determining the nodes on the thin film, we then map growth dynamics to 

corresponding grid network model as shown in Figure 10. During shadowing effect, the 

hills act as initial points of contact for the atoms. As part of re-emission effect, these atoms 

are then distributed to lower points in the valleys which act as gathering centers. The 

emissions can then be modeled as a link between the points the atom has landed. The time 

delay for particle to re-emit from one point to another can be considered as propagation 

delay. The capacity of the link can be defined as highest number of particles that can 

simultaneously travel between nodes. This is dependent on physical space available and 

average size of the particles. 
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In networking terms the nodes can be classified as source, router and sink. The initial point 

at which the particle usually lands (in case of shadowing effect, this is usually a point on   

a hill) is the source. After the redistribution from the hill, where the particles are reemitted 

before destination are classified as routers. As illustrated in Figure 10, a “traffic model” is  

constructed by tracking the atoms and their trajectories from a starting point on the film 

and its ending point. That is, if we consider the film as a grid with two dimensions, the 

traffic from point (i, j) to the point (u, v) can be measured by the number of atoms initially 

falling at (i, j) but ending up at (u, v) after several reemissions. This traffic can be modeled 

at various time-scales depending on the total growth time of the film, so that one can talk 

about “atoms/sec” as the traffic unit, resembling the “bits/sec” unit in data networks. This 

approach can reveal the effect of one surface point on the other points, which can be 

modeled by the “routing” phenomenon of networks.  

 

Also, note that the network modeling framework operates at a particular time-scale. That 

is, just like network model development over space is shown in Figure 10(b)-(c), it is 

possible to construct different network models in time for the same thin film growth 

(c) Network model in 

coarse space granularity 

(b) Network model in fine 

space granularity 

(a) Two particles re-

emitting on a growing thin 

film 

Figure 10: Depiction of Grid network model development. Consider an example of two particles landing 

on a thin film substrate. The red and green particles go through four and three re-emissions respectively. 

[21]. 
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dynamics at varying time-scales. This shows that network-based modeling of thin film 

growth is very flexible and can capture all possible aspects of the dynamics involved. 

 

3.2 Network Model Development from Monte Carlo Simulations of Thin Film Growth 

To develop the network models using the methods discussed in previous sections, we need 

to track and record the movements of the particles on the surface of thin film. We need to 

track the source point, points through which the particle is travelling and final destination 

of the particle. Recording this information is not possible with physical experiment. For 

this reason, we use Monte Carlo simulation to record the required trajectory information. 

Monte Carlo method is already shown to mimic the processes involved in experiment and 

predict precise growth morphology [2].  

 

Figure 11: Depiction of basic steps in the Monte Carlo simulation: (1) A particle is sent towards surface 

with angles θ and φ. The probability of this particle sticking to the surface is s0. (2) If the particle is re-

emitted, it might stick at different point with a probability of s1. (3) An adatom can diffuse on the surface 

before it is deposited. (4) Some surface points are in accessible due to shadowing effect and re-emission is 

not predominant in these locations. [21] 
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In Monte Carlo simulation, each particle is considered to be of same size as on lattice unit 

on the surface of the thin film. As illustrated in Figure 11, depending on which deposition 

technique is used, an angular flux is chosen. A particle is directed towards a random point 

on the surface at the chosen angle.  Based on the sticking coefficient at the pint of incidence, 

the particle might go through re-emission and travel through various points before settling 

at a destination point. At each impact point, the sticking coefficient may vary and is 

represented by Sn, where n is the order of reemission starting at n = 0. The shadowing effect 

is included in all emission and re-emission processes. With shadowing effect in place, the 

atoms travel might be cut short or deviated when they hit a columnar structure that blocks 

some of the neighboring points on the surface. These points are un reachable to the particle, 

once they hit the columnar structure or hills. Another important phenomenon through 

which the atoms move on the surface is through diffusion. When the particle has energy, it 

diffuses through the surface until the energy is spent or it is overcome by an obstacle on 

the surface. At this point, the particle is deposited on the surface of the thin film. Figure 11 

illustrates various growth processes or steps involved in Monte Carlo simulation method.  

 

3.3 Cluster-Based Network Model 

Figure 12 shows the top view images of two surfaces simulated for a CVD type of 

deposition. It shows image of simulated thin film growth with two different sticking 

coefficients, 0.1 and 0.9. Figures 12(a) and 12(b) shows the thin film top view. In 12(c) 

and 12(d), the trajectories of the particles are depicted. In these CVD simulations, the 

sticking coefficients are kept same for all impacts. In case of larger sticking coefficients, 

the probability of particle sticking at a particle increase, thus number of re-emissions are 

reduced.  This can be noticed in figures, Figure 12(a), and Figure 12(c). These re-emissions 
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mainly occur on columnar structures formed due to the dynamic surface morphology of the 

thin film. In higher sticking coefficient simulations, the formation of hills is prominent and 

results in increased shadowing effect when compared to lower sticking coefficients. When 

the hills are formed, they act as collectors of particles coming on to the surface and may 

distribute them to other neighboring hills. The particles rarely reach the valleys on the thin 

film. These hills act as nodes in the network being modeled. On contrary, at lower sticking 

coefficients (Figure 12(b) and Figure 12(d)), particles go through higher number of re-

emissions and can connect many surface points. In lower sticking coefficient simulation 

points in valleys which are usually blocked by hills are also connected because of higher 

number of re-emissions. 

 

Another interesting observation is that the surface morphology changes dynamically as the 

deposition grows over time. Figure 13 shows the top view image of CVD simulation for 

sticking coefficient 0.9. The trajectories are also depicted in the figure. It can be noticed 

different surface structure is formed at different thicknesses. Thickness of substrate is 

proportional to growth time. During initial thicknesses, the hills are small and are closer. 

At this snapshot, the particles move from one hill to another or a valley. At higher 

thicknesses, the columns/hills will merge together to form bigger columns. Some of the 

smaller columns that are shadowed by bigger columns will form into valleys. With bigger 

columns, the particles move from hill to hill and will scarcely travel to valley. This dynamic 

morphology is dependent on sticking coefficient, angle of incidence of particle, re-

emission, and shadowing effect.  Change in any of these factors will result in different 

columnar and valley structures, which will eventually result in different network topology. 



44 

 

 

 

Figure 

Figure 12: Depiction of top view images of thin film surfaces simulated by Monte Carlo 

method for sticking coefficients a) s = 0.9 and b) s = 0.1. Corresponding trajectories of 

the re-emitted particles are also mapped on the top view morphologies for c) s = 0.9 and 

d) s = 0.1. [128]. 

  

Figure 14 depicts the degree distribution P(k) versus degree k of the network modeled after 

the Monte Carlo simulation. This provides insights to the network characteristics in turn 

will shed light into the film growth dynamics. The degree distributions P(k) is the 

percentage of points with “degree (k)”. Degree k is the number of links formed due to re-

emitted particles in Monte Carlo simulated deposition for various sticking coefficients and 

various angle of incidences. 

The Figure 14(a) and (b) correspond to degree distribution plots of thin film growth at 

various thickness. Figure 14(a) corresponds to thinner film, whereas, 14 (b) corresponds to 



45 

 

 

thicker film at a later stage.  In these plots, it can be noticed that for different angle of 

incidences the deposition techniques demonstrates universal behavior which is 

independent of sticking coefficients and thickness of the film. 

 

Figure 13: First row: Top view images from Monte Carlo simulated thin film surfaces for a CVD growth 

with s = 0.9 at different film thicknesses d, which is proportional to growth time Bottom row: 

Corresponding projected trajectories of the re-emitted particles qualitatively show the dynamic change in 

the network topography. [21] 

 

The degree distributions for oblique and normal angle seems to be not affected by the 

sticking coefficients used. This is demonstrated at higher thicknesses in the growth. This 

leads to different distributions for these depositions. In later stages, oblique angle 

deposition displays power-law distribution, P(k) ~ k2.  These observations suggest presence 

of universal behavior in angular depositions that is independent of sticking coefficient. 

Different sticking coefficients produce different morphology of thin film growth. At lower 

sticking coefficient, the surface is smoother compared to the surface at a higher sticking 
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coefficient. By being independent of sticking coefficients, we can also conclude that the 

physical morphology of the surface does not affect this behavior.  

 

 

 

 

 

 

 

Figure 14: Behavior of degree distributions P(k) versus degree k for network models of a Monte Carlo 

simulated normal incidence evaporation (A0), oblique angle deposition (A85), and CVD thin film growth 

for various sticking coefficients s and for two different deposition time t (left: t = 1.25x107 particles, and 

right: t = 23.75x107 particles) are shown. [21] 

 

The normal angle growth shows an exponential distribution. Whereas oblique angle growth 

shows power-law distribution. The normal angle growth has re-emission as dominant 

process and oblique angle has shadowing effect. In line with this observation CVD growth 

demonstrates exponential degree distribution at lower thickness where the surface is 

smooth and re-emission effect is dominant. In later stages, it tends to shift towards power-

law type distribution.   
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Chapter 4 Cluster-Based Network Modeling of Thin Film Growth  

4.1 Cluster-Based Network Model 

We use a cluster-based network model to study the growth dynamics of thin films. As 

discussed in previous sections, the structure of the surface morphology can be described 

by hills and valleys. In any network model, identifying the nodes is very important. In this 

cluster-based method, we treat each column as a “cluster” corresponding to a node of the 

network. During re-emission, the path between two columns when a particle re-emits from 

the first point and heads to the second point can define a “network link” between the two 

columns/clusters. Our network model approach, conceptually, aims to capture these non-

random sequences of re-emission. 

 

During thin film growth, we took snapshot images of the film at different thickness values 

for each sticking coefficient, and we use, i.e., s=0.3 and s=0.9. As for the post-processing, 

we removed the noise from the images to make them sharper and optimized their brightness 

and contrast to obtain the cluster boundaries. We determined that boundary detection 

method along with threshold would be ideal to recognize the clusters in the pictures. 

Boundary detection is performed by finding the boundaries between objects. By doing this 

we can determine various objects in the image [105]. By using these methods, we were 

able to identify the column structures (i.e., clusters) in our images. In Figure 9, the areas 

inside boundaries are the columns or hills on the film. These columns are considered as the 

“nodes” of our network model. The size and shape of these columns or nodes change 

dynamically as the thickness of the film grows.  
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Although the grid-based model was effective in illustrating power-law patterns in the 

network modeling of thin film growth, it is not developed in a manner that leverages the 

specifics of the surface morphology. Since columnar structures emerge as the film grows, 

particles will naturally bounce between these columns. Hence, we consider these columnar 

structures while developing the network model.  

 

In Figure 15(a), an enhanced snapshot of the thin film taken from the top view can be seen. 

The snapshot is taken for deposition with sticking coefficient s = 0.9 at 19 lattice unit 

thickness. Using Matlab, we have plotted the heights generated by Monte Carlo Simulation. 

If needed these images are enhanced by adjusting the brightness and contrast using Adobe 

Photoshop, to make the boundaries thicker and more visible. The clusters are then 

identified by using an image processing tool called ImageTool [106]. The boundaries of 

the clusters and the points in these clusters are recorded. The process first involves 

segmentation of the image into objects and background. ImageTool provides a manual and 

automatic algorithm for segmentation of the image. After segmentation, the image is 

converted into a binary image. ImageTool proceeds to identify, count, and number all 

objects. The areas inside boundaries are the  
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                         (a)                                                      (b) 

           

                                    (c)                                                  (d)      

Figure 15: (a) (b) Enhanced snapshot and identified columns (nodes) of thin film growth 

on substrate for following values: So=0.9, depth 19 Deposition Technique. (b) Enhanced 

snapshot and identified columns (nodes) of thin film growth on substrate for following 

values: So=0.3, depth 19 Deposition Technique with angle 85. 

 

 

columns or hills on the film. Figure 15(b) depicts various columns identified from the 

snapshot (Figure 15(a)). These columns are considered as the “nodes” of our network 

model. The size and shape of these columns or nodes change dynamically as the thickness 

of the film grows. In our previous work, the grid-based model [90], every lattice on the 

thin film is a node. This does not provide a dynamic property to the nodes in grid model. 

In the cluster-based network model, the nodes are dynamic; and this helps us better 

understand the growth dynamics of thin films. We recorded the growth dynamics for 

various sticking coefficients. We took three samples/snapshots for each sticking coefficient 

value at various stages of growth. We enhanced the pictures of thin film at these stages to 

capture better clusters on the lattice. For the initial snapshots, the clusters are very small in 

size. The size of clusters at this stage is near to the size of individual particles. Each particle 



50 

 

 

is assumed to be the size of a unit on the lattice. At this time, the model almost resembles 

the grid model network model where each point on the surface is considered as a node of 

the network. As time progresses, more and more particles induced on to the lattice group 

together forming the clusters. In these later stages, significant hills and valleys are formed 

making the surface rough. After identifying various clusters on the surface, we collect the 

coordinates of points that fall under each cluster.  

 

 

Figure 16: Trajectory of particle between various clusters 

 

Figure 17: Network representation of a particle trajectory between various clusters. 

 

In the grid-based model the points on the surface are added as nodes to the network when 

it hosts a particle for the first time. This translates in to the growth of network size. As the 
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process continues almost all the points are added as nodes to the network.  Ideally, all the 

points are added to the network as nodes. At this stage, the network ceases to be dynamic. 

With cluster-based model, we extend the dynamism of the network. In initial stages the 

cluster-based network resembles grid based network. But as the growth process progresses, 

the cluster-based model ceases to resemble grid model. For a while the network grows as 

the particles are added to the network as nodes. But in later stages of growth process when 

the hills and valleys start to appear, the network growth reverses. The number of clusters 

representing the nodes of the network starts diminishing. As more and more particles 

descend on to the substrate, the particles tend to fill the gaps between the neighboring 

columns or hills. In this process valleys act as collecting points for the particles. The 

particles bounce of the hills during re-emission and settles in the valleys. These areas 

eventually turn into bigger and wider columns or clusters. Since the number of columns or 

clusters diminish, the size of network in terms of number of nodes decreases. As the hills 

grow in the size, they tend to block more particles from reaching their neighboring valleys 

casting a shadow effect on them. Figures 16-17 represent the re-emission process in terms 

of cluster-based network model. The black dots represent a single particle at various times 

during its re-emission. The arrows represent the path or trajectory followed by the particle.  

 

In this model two different approaches are taken to identify the clusters based on which 

trajectories of particles are mapped. In the first approach, we used the clusters from the 

snapshot of images at various thicknesses. In this approach, the nodes of the network 

evolve constantly. In the second approach, we take clusters from snapshot of the image at 

higher thickness. We assume to super impose these clusters on to substrate surface and then 

map the trajectories of the particles. In this approach, the nodes are constant throughout the 

growth process. Each trajectory can be broken down to initial point, routing points, and 
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final point. We can see that the particle starts at position 1 and after first hop it lands at 

point 2. The first contact point of the particle with the surface is at point 1. Then it goes on 

to jump on to points 3, 4, and 5 finally settling at point 6. In this scenario, point 1 is the 

initial point, whereas points 3, 4 and 5 are routing points and the point 6 is the final point. 

In networking terms, point 1 is the starting node and point 6 is the destination node. The 

points 3, 4 and 5 are the routing nodes in between. Based on this, we claim that cluster-

based model aptly captures the re-emission effects. This is shown in Figure 16. Since the 

points 1 and 2 belong to same cluster or node, we represent it only once in the network 

model. 

 

4.2 Results and Discussions 

Figure 18 shows a comparison of degree distributions of the grid-based and cluster-based 

models, while Table 2 shows the power exponents of the distributions. Some interesting 

observations we made using simulations is the formation of clusters, which we identified 

via image segmentation [54]. The sticking coefficients and the film thickness have 

dominant effect on the formation of the clusters. At lower sticking coefficients and lower 

thickness of film, distinct clusters are not formed. At higher sticking coefficients, distinct 

clusters are formed as the thickness of the film grows. 

 

With the cluster-based model, the degree distribution seems to move more towards power 

law. In this model as we aggregate the points occupied by a column as a cluster, the degree 

distribution accrues a thick tail and, more noticeably, a larger sticking coefficient yields a 

flatter degree distribution, which shows that a cluster-based modeling approach might be 

better for capturing the shadowing effect. Our clustering approach significantly simplifies 
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understanding the stochastic shadowing and re-emission effects. The shadowing effect 

resembles a computer network system, therefore morphology, to form clusters where most 

of the incident and re-emitted particles start to land on or leave from. Further, the cluster-

based model avoids recording the properties and behavior of the particles that are similar 

because of their physical position on the film. This model rather focuses on the behavior 

of particles as a group having the same or very similar physical properties. This lays a 

foundation for our future work where we intend to study the traffic properties of the 

particles when they travel between various clusters by modeling them as a directed and 

weighted network and to analyze the growth dynamics of the film. 

 

One of the most important factors in the thin film growth is angle of incidence, which is 

the angle at which the particles are released on to the film. Different angles result in 

different growth structure and dynamics on the thin film. We used three different 

incidences: 0o, 85o and 90o. Another parameter in the simulations was the sticking 

coefficient, which can play a major role in the shadowing and re-emission effects. In our 

study, we have used two different sticking coefficients: 0.3 and 0.9. Another property of 

thin film growth we studied is the film thickness. The thickness is measured in lattice units. 

One lattice unit is considered to be the thickness of a particle. For this study, we have 

collected and analyzed data for three different thicknesses: 11, 51, and 101. At these 

thicknesses, we take a snapshot of the film and these three factors determine a network 

model [20] to characterize the physical properties of the thin film, e.g., the number, height 

and width of the hills and valleys formed, and the distances between them. 
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Figure 18: Cluster and Grid-based model’s degree distribution [9] 

 

Thickness Grid Based Cluster Based 

d11 -4.664 -0.717 

d51 -3.966 -0.728 

d101 -3.424 -0.799 

 

Table 2: Power exponents of Cluster- and Grid-based models [9] 

 

Two different networks are created using this data, according to cluster-based or grid-based 

models. In the cluster-based network, each hill and valley is treated as a node of network 

and the path of particles bouncing between these clusters are treated as links. During the 

film growth, a snapshot of the film is taken at various thicknesses and the movement of the 

particles is recorded. A network graph is created using this information and degree 

distribution is calculated. Following table illustrates power trendline equations for various 

scenarios discussed above. 

 Cluster-based 

Network 

Grid-based Network 

Data Series Equation Equation 

A00_S03_d11 y = 585.92x-2.227  y = 1.7616x-5.719  

A00_S03_d51 y = 644.43x-2.362  y = 1.7072x-5.707  
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A00_S03_d101 y = 862.96x-2.616  y = 2.2367x-6.022  

A00_S09_d11 y = 823.47x-2.411  y = 2.1642x-5.614  

A00_S09_d51 y = 886.27x-2.472  y = 2.3031x-5.452  

A00_S09_d101 y = 788.57x-2.24  y = 2.5075x-5.483  

A85_S03_d11 y = 357.43x-2.059  y = 0.0755x-1.759  

A85_S03_d51 y = 300.41x-1.893  y = 0.0892x-1.761  

A85_S03_d101 y = 357.43x-2.059  y = 0.0755x-1.759  

A85_S09_d11 y = 172.83x-1.729  y = 0.0488x-1.643  

A85_S09_d51 y = 132.74x-1.727  y = 0.0313x-1.601  

A85_S09_d101 y = 101.11x-1.945  y = 0.0306x-1.626  

DEP_S03_d11 y = 1060.6x-2.378  y = 0.013x-1.915  

DEP_S03_d51 y = 1113.8x-2.444  y = 0.0134x-1.822  

DEP_S03_d101 y = 914.53x-2.314  y = 0.0133x-1.818  

DEP_S09_d11 y = 470.63x-2.113  y = 1.7933x-4.46  

DEP_S09_d51 y = 547.22x-2.174  y = 0.7607x-2.683  

DEP_S09_d101 y = 585.92x-2.227  y = 0.7201x-2.704  

NODEP_S03_d11 y = 397.39x-2.215  y = 0.0743x-1.751  

NODEP_S03_d51 y = 344.08x-2.062  y = 0.0898x-1.766  

NODEP_S03_d101 y = 358.76x-2.04  y = 0.0743x-1.751  

NODEP_S09_d11 y = 462.16x-2.111  y = 0.0502x-1.658  

NODEP_S09_d51 y = 592.03x-2.235  y = 0.031x-1.595  

NODEP_S09_d101 y = 603.13x-2.166  y = 0.0309x-1.631  
 

Table 3: Degree Distribution of Cluster-based and Grid-based Networks 

 

Each entry under data series pertains to a scenario. For example, A00_S03_d11 represents 

data set for angle 0o (A00), sticking coefficient 0.3 (S03) and thickness of 11 (d11). From 

the table, it can be noticed that the power exponent stays mostly the same (i.e., around -2) 

in the cluster-based model. Since, the exponent does not change when the factors like 

sticking coefficient, angle of incidence and thickness of film are changed, the cluster-based 

model captures a universal behavior in the thin film growth network. But same behavior is 

not seen between two networks. When the selection criteria for nodes are changed from 

grid-based to cluster-based, there is a significant change in the exponent, i.e. between -1.5 

and -6.0.  
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So09d11 2 0.753 0.191 0.753 1.249 

So09d51 2 0.779 0.185 0.544 1.458 

So09d101 2 0.78 0.178 0.782 1.22 

So06d11 2 0.981 0.234 0.981 1.019 

So06d51 2 0.985 0.234 0.984 1.017 

So06d101 2 0.986 0.232 0.884 1.116 

So03d11 2 0.995 0.244 0.993 1.007 

So03d51 2 0.991 0.243 0.991 1.011 

So03d101 2 0.996 0.242 0.994 1.072 

       

  
  

   
   

C
lu

st
e

r 
B

a
se

d
 M

o
d

e
l 

  
  

   
   

   
  

 

So09d11 4 0.004 0.486 0.7 2.367 

So09d51 5 0.004 0.489 0.741 2.317 

So09d101 4 0.005 0.485 0.783 2.339 

So06d11 4 0.003 0.481 0.827 2.251 

So06d51 5 0.003 0.463 0.85 2.215 

So06d101 4 0.003 0.482 0.834 2.235 

So03d11 5 0.003 0.456 0.794 2.259 

So03d51 5 0.003 0.468 0.853 2.159 

So03d101 4 0.002 0.427 0.849 2.17 
 

Table 4: Network Metrics of Cluster-based and Grid-based Networks 

 

Table 4 illustrates the comparison of some of the network metrics between grid-based and 

cluster-based networks. As observed from the table, without the loops, the density of the 

network is very low. This suggests that majority of adatom particle movements are local. 

Further, the results show that smoothing effect is not prominent between clusters. With the 

cluster-based network, we can also observe that diameter and average path length of the 

network are larger, which suggests that particle movements between clusters is reduced – 

a property of shadowing affect. This shows the cluster-based model is better suited to study 

the global behavior of thin film growth and shadowing phenomenon.  

Another interesting phenomenon we studied is the small world phenomenon. We have used 

number of nodes and edges from networks formed at various thickness of substrate and 
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calculated average length and clustering coefficient. We then used same nodes and edges 

and built a random network using Gephi tool. We then calculated average length of the 

network and clustering coefficient.  

   

Thin Film 

N/W 

Random 

N/W 

Thin Film 

N/W 

Random 

N/W 

 Nodes Edges 

Clustering 

Coefficient 

Clustering 

Coefficient Path length 

Path 

length 

Height d-1 665 2115 0.690 0.051 2.373 2.126 

Height d-11 683 2799 0.699 0.050 2.355 2.129 

Height d-21 666 3000 0.693 0.049 2.370 2.118 

Height d-41 658 3471 0.686 0.050 2.310 2.142 

Height d-51 661 3572 0.684 0.050 2.318 2.137 

Height d-61 661 3667 0.674 0.050 2.330 2.137 

Height d-71 667 3687 0.692 0.050 2.311 2.129 

Height d-91 658 3725 0.688 0.051 2.351 2.142 

Height d-101 663 3877 0.670 0.050 2.311 2.134 

Height d-121 652 3896 0.665 0.050 2.310 2.143 

Height d-131 641 3918 0.654 0.048 2.291 2.148 

Height d-141 644 3815 0.671 0.049 2.323 2.147 

 

Table 5: Path length and clustering coefficients for thin film network and corresponding E-R random 

graph. 

 

Table 5 shows the comparisons of these statistics for various thin film networks and 

corresponding random networks. It can be observed from the table that the path lengths 

and clustering coefficients of thin film networks are greater than the E-R random graphs. 

Thus, we can conclude that thin film networks demonstrate small world characteristics. 
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Chapter 5: Traffic Modeling for Thin-Film Growth 

As described in the earlier chapters, applying network theory to thin film growth helped us 

understand the growth dynamics of thin film growth. Similarly, we will apply the traffic 

models and traffic statistics to the growth phenomenon and study the characteristics of 

interaction between the adatoms when they land on different points of the substrate and 

bounce around some more points before settling down. As the thin film grows and the hills 

are formed, we expect them to act as initial landing spots before the particle bounces off 

and settles on a point. This movement of the adatoms can be treated as flow of packets in 

the network traffic. Studying the particle movement in thin film growth can give us 

statistics like inter-arrival time of the particles, and help us find out if there are certain 

points on the substrate that act as hubs and attract more particles.  

 

In a typical traffic model of a network, one counts the number of arrivals at a link or node. 

This counting process produces a time series of the traffic, which then can be used to 

analyze various statistics of  the network traffic. This time series study could give us some 

insights in how sticking coefficient and thickness of film will influence the shadowing and 

smoothing effects on the thin film growth. In order to develop an understanding of time in 

the film growth process, we use a fixed number of particles flowing into gas chamber as 

equivalent to a time unit and develop the traffic time series based on that time unit. In this 

model, we would simulate over a billion particles flowing through the chamber and map 

the traffic flow for various time units. For example, we would study the inter-arrival time 

of particles using the thickness of the thin-film as the unit of time and develop the traffic 

counting process as a time series based on that model. As the thickness grows by one lattice 

unit we will consider this as a time unit and study the traffic statistics.  
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(a) 

 

 

(b) 

Figure 19: Number of re-emissions of particles at different thickness for sticking coefficients So=0.3 and 

0.9 

 

Figure 19 shows the number of re-emissions every particle goes through after initial contact 

with the substrate. At lower sticking coefficients (0.3), the number of particles bouncing 

multiple times after the initial contact is greater when compared to the process with higher 
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sticking coefficients. By bouncing multiple times, the particles cause the smoothing effect. 

Hence it can be concluded that at lower sticking coefficients smoothing effect is more 

predominant, which is an expected outcome. Figure 20 is a rescaled range (R/s) statistic 

plot to determine the Hurst exponent. For a given sample size n, R/s statistic is defined as 

following [108]: 

0

1
= �

1
{34567∑ (5� − 5̅)) − 39 6(∑ (5� − 5̅)6

�
6
� :}                             (11) 

where 1 ≤ k ≤ n, 5̅ = ∑x / n and s2 = ∑ (x – 5̅)2 / n, with the summations taken 1 to n. From 

the plot, it can be noted that the Hurst exponent is between 0.530 and 0.825. We have also 

plotted an autocorrelation function (ACF) of the traffic time series for sticking coefficient 

0.9 as seen in Figure 21. It can be noted from the plot that the ACF does not display any 

correlation between traffic for this simulation set. We will further investigate ACF for 

different sticking coefficients and different time units.  
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(d) 

 

Figure 20: Hurst exponent for traffic on various cluster formed on substrate with sticking coefficient 0.9 
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(b) 

 
(c) 

 

 
(d) 

 

Figure 21: Autocorrelation Function for traffic on various cluster formed on substrate with sticking coefficient 0.9 

 

 

Figure 22 shows the particle traffic as time series at various clusters over a period. We have 

considered 1000 particles released into gas chamber as one unit of time and plotted number 

of particles arriving at different clusters. As expected, the traffic is not uniformly 

distributed among the clusters and we observe existence of hubs or power centers on the 

substrate.  
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(a) Average traffic rate is 2.55 particles per 1,000 new particles 
    

 
 

(b) Average traffic rate is 11.89 particles per 1,000 new particles 
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(c) Average traffic rate is 2.35 particles per 1,000 new particles 

  

 

 
 

 

(d) Average traffic rate is 4.19 particles per 1,000 new particles 

 

Figure 22: Traffic on different clusters 
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Figure 23: The clusters studied for traffic model on the substrate 

We chose clusters based on their physical location on the substrate. And we have modeled 

the traffic flow on these clusters. As can be noted from the plots, there is a clear variation 

of traffic on different clusters. One more interesting observation we made is the clusters 

that are located near the edges of the substrate attract low traffic compared to the clusters 

that are located at inner parts of the substrate. In the Figure 22, cluster 512 is located near 

the center of the substrate, whereas cluster 824 and cluster 1143 are located near edges. 

Cluster 169 is located away from edges and the center of the substrate. This is an important 

observation as it provides the physical area at which the probability of hub formation on 

the substrate is high. By controlling these areas by adjusting various factors like thickness 

and sticking coefficients, the smoothness of the substrate can be managed. 
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Chapter 6: Conclusions and Future Work 

6.1 Conclusions 
 

Often in thin film growth, we observe that important statistical surface parameters show 

“power law” scaling with time. For example, root-mean-square roughness (i.e. root-mean-

square height fluctuations), lateral correlation length (i.e. average hill size), and surface 

wavelength (i.e. average peak-to-peak separation of hills) all dynamically change with 

growth time having a specific power exponent (~tp). The values of these exponents depend 

on the dominant growth mechanisms (e.g. shadowing, value of sticking coefficient, surface 

diffusion, and noise). These surface parameters and their exponents also affect the 

trajectories and therefore dynamic network topology of the re-emitted particles. For 

example, in the case of columnar growth where shadowing effect is dominant and sticking 

coefficients are large, peak-to-peak separation (wavelength) of hills will be increasing with 

growth time according to a power law relation (~tp). In such a growth system, peak-to-

peak separation can be thought as similar to node-to-node separation in a network system. 

So, in this specific growth case, one might expect that nodes will be coming further apart 

with time obeying a power law relation. This also means that some nodes (hills) can 

become stronger (e.g. higher height) while some others can get weaker (e.g. get shadowed). 

Therefore, amount of traffic per node (e.g. surviving hill) can also be increasing according 

to a power law or another well-described analytical relation. In addition, during columnar 

growth, re-emitted particles will mainly be bouncing off from the peaks of hills and get 

deposited to other neighboring hill tops, as observed in our initial Monte Carlo simulation 

results. Consequently, average network link lengths (i.e. propagation delays on links) will 

also be expected to dynamically change obeying a heavy-tail distribution with a tail (or a 

power law distribution with an exponent) value similar to that of peak-to-peak separation. 
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Interestingly, some "ad hoc" networks exhibit a similar behavior. Functions of nodes can 

change in ad hoc network with a lot of dynamism in them. For example, a mobile ad hoc 

network of several nodes can yield some nodes to become cluster heads due to the 

optimality of selecting those nodes as cluster heads. Later on in time, these cluster heads 

might become regular nodes because their position is not best suited to stay as cluster heads. 

Such behavior cannot be observed in "fixed" (or close to fixed) networks where nodes and 

links do not change a lot. But, networks with lots of mobile nodes in them can exhibit such 

behavior. Potential similarities (especially in topology changes and traffic changes) 

between the growth and other well-known real networked systems (e.g. communication or 

traffic networks) in terms of such dynamic characteristics would be an additional 

benefit/result of our study. 

 

While the grid-based model captures different properties in the way nodes are identified, 

the cluster-based model hides some of the local interactions within the lattice points in a 

cluster. Thus, the cluster-based model will help researchers identify global behavior of thin 

film and avoid any noise that might be originating due to local interactions. This 

comparison of degree distribution between two networks sheds light on various factors that 

would impact the characteristics of thin film growth phenomenon. We also analyze the 

community structure in the network. Communities are groups of nodes and their edges that 

share common properties (e.g., being on the same column) or influence the network in a 

similar way [10]. For example, in World Wide Web some pages exist that deal with a 

common typic that are related to each other by the subject they are dealing with. 

Community detection is important for other reasons, too. Identifying communities is very 

important because it allows classification of nodes, according to their topological positions. 
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Typically, the nodes are very well connected inside a community whereas the nodes in 

different communities are sparsely connected. Community detection also allows us to 

obtain a coarse-grained description of the original network. In this paper, we believe the 

finding of communities in our film growth network reveals a better understanding of the 

columnar structures. Our future aim is to model thin film growth as a network system and 

try to understand its statistics and dynamics by means of such a network-based model. 

 

6.2 Future Work 

6.2.1 Dynamic Network Behavior  

 

The quantitative results of dynamic network behavior will lead to a detailed understanding 

of dynamic network phenomena during the growth process of various kinds of thin film 

deposition systems and aims to reveal universal growth behavior properties. Using the 

Monte Carlo simulation and grid network model approaches explained above, we will 

investigate various dynamic network behaviors, including, but not limited to: 

(i) Routing of atoms (e.g., do all atoms go to their final destination by means 

of the shortest path or are other factors involved?) from their initial point of falling 

on the film to their final point of settlement on the film, 

(ii) Dynamical change in the morphology-dependent network behavior due to 

the dynamic evolution of surface topography, shadowing locations, and re-emission 

paths as briefly discussed in the previous sections, and 

(iii) Effects of sticking coefficient (i.e. re-emission), oblique angle (shadowing), 

surface diffusion, and initial surface topography on the dynamic networking 

behavior during growth. 
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6.2.2 Development of Analytical/Empirical Network Models 

 

We will analyze the community structure in the network. In this project, we believe the 

finding communities in our film growth network will reveal a better understanding of the 

columnar structures by using the latest community structure algorithms. However, we note 

that our main objective in this proposal is not to explain thin film growth with real 

networked systems or vice versa. Our aim is to model thin film growth as a network system 

and try to understand its statistics and dynamics by means of such a network-based model. 
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