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Abstract. This paper introduces a generalization of self-dual marked flattenings
defined in the lattice of mappings. This definition provides a way to associate
a self-dual operator to every mapping that decomposes an element into sub-
elements (i.e. gives a cover). Contrary to classical flattenings whose definition
relies on the complemented structure of the powerset lattices, our approach uses
the pseudo relative complement and supplement of the bi-Heyting algebra and
a new notion of inf-structuring functions that provides a very general way to
structure the space. We show that using an inf-structuring function based on con-
nections allows to recover the original definition of marked flattenings and we
provide, as an example, a simple inf-structuring function whose derived self-dual
operator better preserves contrasts and does not introduce new pixel values.

Keywords: inf-structuring function, self-dual operator, flattening, Heyting alge-
bra, connection, hyper-connection, image processing, mathematical morphology

1 Introduction

Duality is a principle which states that the content of a numerical function remains
the same after an inversion. Following this principle, an operator should process an
image and its opposite symmetrically, i.e. be self-dual. Although this property is always
achieved with linear filters, the problem is harder in mathematical morphology where
the operations of infimum and supremum treat differently bright and dark objects.

Several authors have explored various manners to define self-dual morphological
operators [3,4,9,5,20]. The first approaches are based on the notion of activity of a
boolean operator which leads to the activity lattice [15] where given two dual binary
operators, both their infimum (morphological centre) and supremum (flattening [7] and
levelling [8,19]) produce self-dual operators. The second approaches rely on the notion
of tree of shapes [9,5] which is the tree given by the relation of inclusion between the
shapes (level lines) in the image. The definition of shapes and the inclusion relation
being invariant to contrast inversion, this naturally leads to self-dual operators. A third
approach consists in working with the module of the gradient of the function.

This paper generalizes the first approach and more precisely the marked flatten-
ing [18]. Marked flattenings are defined as increasing set operators which are thus



easily extended to functions by thresholding and stacking. One calls the flattening
θM(A) of the set A by the set M, the union of γM(A), the set of connected compo-
nents of A that intersect M, with the set of all pores (connected components of the
background) that do not intersect Mc, i.e. those which are included in the marker:
θM(A) = γM(A)∪ (Ac∩ γc

Mc(A)).
Currently, the definition of the marked flattening is only feasible in sets due to the

use of the complementation. We show that the use of the bi-Heyting algebra structure
removes this limitation and lets us generalize the flattenings in order to use connections
on functions [17]. In order to encompass all possible approaches for connections, in
section 3, we define the new notion of inf-structuring function (isf), which is a mapping
that associates to any function a set of smaller functions, and we propose two particular
isfs. In section 4, we propose two swamping functions based on isfs and we show that
it generalizes the classical notion of connected openings and closings. Then, section 5
presents the construction of the self-dual operator combining isf-swampings and Heyt-
ing algebra operators. We show that using adapted isfs, either based on connections or
on hyper-connections, enables us to recover the original definition of flattenings and to
define new self-dual operators that better preserve contrasts and that do not create new
pixel values. Finally, we conclude the work in section 7 and we give a few perspectives.

2 Mathematical preliminaries

Let (L ,∨L ,∧L ,0,1,≤L ) be a complete lattice, where L is the set of elements of the
lattice, ∧L (resp. ∨L ) is the infimum (resp. supremum), 0 (resp. 1) is the smallest (resp.
largest) element and ≤L is the associated partial order. The lattice L is infinite ∨-
distributive (resp. ∧-distributive) if ∀a∈L , ∀B⊆L , we have a∧(

∨
b∈B b) =

∨
b∈B(a∧

b) (resp. a∨ (
∧

b∈B b) =
∧

b∈B(a∨ b)). It is infinite distributive if it is both infinite ∨-
and ∧-distributive. Given an element a ∈ L we note Ma (resp. Ma) the set of upper
bounds of a (resp. lower bounds): Ma = {b ∈L |b≤ a} and Ma = {b ∈L |b≥ a}

We also define the particular complete infinite distributive lattice of mappings from
a non empty set D to a complete chain T : (F ,∨F ,∧F ,⊥,>,≤F ), where F is the set
of elements of the lattice, ∧F (resp. ∨F ) is the pointwise infimum (resp. supremum)
operator, ⊥ (resp. >) is the smallest (resp. largest) element and ≤F is the associated
partial order. For simplicity of notations, when possible, we omit the indices from the
infimum, supremum and ordering symbol. In image processing, we usually define T as
a closed subset of the completed real line R= R∪{−∞,+∞} or Z= Z∪{−∞,+∞}.

2.1 Self-dual operator

We give here a short presentation of self-duality, a deeper exploration is given in [4].

Definition 1. An operator ϕ of L is an inversion if it is a decreasing involution (i.e. ϕ

is a decreasing, bijective mapping from L to L , such that ∀a ∈L , ϕ2(a) = a).

For simplicity of notation, we write a∗ for an element a ∈L where we assume that an
inversion ϕ exists and that a∗ = ϕ(a). If the lattice L is distributive and if an inversion



ϕ exists for L then the image of L by ϕ is the dual lattice of L obtained by inverting
the ordering relation and exchanging the infimum and supremum operators.

If L =R (resp. L =Z), an inversion is given by: ∀a∈L , ϕ(a) = n−a with n∈R
(resp. n ∈ Z). If L is a closed subset [n,m] of R or Z, then an inversion is given by:
∀a ∈L , ϕ(a) = n+m−a. This extends to the lattice F using pointwise operations.

Definition 2. Being given an operator α of L , we define the dual operator α∗ for ϕ

by: ∀a ∈L , α∗(a) = (α(a∗))∗.

The dual transformation of a is the inverse of the transformation of the inverse of a.
Duality is a common method to define pairs of operators like openings and closings.

Definition 3. An operator α is self-dual if it is equal to its dual operator: α = α∗.

A self-dual operator treats an element and its inverse equally. In image processing this
can be interpreted as a being covariant to contrast inversion. The convolution and the
median filter are two well known examples of self-dual operators.

2.2 Bi-Heyting algebra

Heyting algebras are well known in the field of propositional logic, but, to our knowl-
edge, has only been used by Stell et al. in the field of mathematical morphology [22,21].

Definition 4. A complete Heyting algebra is a complete ∨-infinite distributive lattice
L with a binary operator pc called relative pseudo-complement such that ∀a,b ∈L ,
pc(a,b) is the largest element such that a∧pc(a,b)≤ b [23].

The lattice F is a Heyting algebra with ∀ f ,g∈F , pc( f ,g) =
∨
{h | f ∧h≤ g} (Fig. 1).

If L is a complemented ∨-infinite distributive lattice, then the mapping pc(a,0) for
a ∈L is indeed the classical complementation.

Definition 5. A complete co-Heyting algebra is a complete ∧-infinite distributive lat-
tice L with a binary operator ps, called relative pseudo-supplement such that ∀a,b ∈
L , ps(a,b) is the smallest element such that a∨ps(a,b)≥ b [6].

The lattice F is a co-Heyting algebra with ∀ f ,g ∈F , ps( f ,g) =
∧
{h | f ∨h≥ g}.

An algebra that is both a Heyting and a co-Heyting algebra is then referred as a
bi-Heyting algebra [12].

ps and pc are dual operators: ∀a,b ∈ L , ps(a,b) = (pc(a∗,b∗))∗ and conversely
pc(a,b) = (ps(a∗,b∗))∗. Fig. 1 shows two examples of applications of pc and ps in
F . We see that pc( f ,g) is equal to > where f is smaller than g and to g otherwise,
conversely ps( f ,g) is equal to ⊥ where f is larger than g and to g otherwise.

3 Inf-structuring functions

In this section, we present the new concept of isf which is a very general type of map-
ping that associates to each element of a lattice a set of sub-elements (Fig. 2)
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Fig. 1. Illustration of the relative pseudo-complement and the relative pseudo-supplement in F .
The first line shows the application of the relative pseudo-complement pc and the relative pseudo-
supplement ps on two functions f and g. The second line shows the duality between pc and ps.

Definition 6. We say that s : F 7→P (F ) is an inf-structuring function (isf) of F if:

1. ∀ f ∈F , s( f )⊆M f (i.e. ∀g ∈ s( f ) ,g≤ f ): all sub-elements are smaller than f .
2. ∀ f ∈F ,

∨
s( f ) = f : the supremum of the sub-elements of f is equal to f

One can note that an important difference with (hyper-)connections is that an isf can
decompose an element into comparable elements.

f s( f )

Fig. 2. Example of decomposition of a function f into a set of five lower functions s( f ). The
assumptions made on the content of s( f ) are very weak.

A simple way of constructing isfs is to use the tool-box from the connection theory.
We present here two isfs, the first one based on the set connections [16] and the second
one the hyper-connections [17].

3.1 Set connections for isf

Set connections are a convenient way to describe how elements of a set are grouped in so
called connected components [16]. Being given a connection C on the powerset lattice



P (E), a subset A of E and a point x in E, the connected component of A containing
x (for C ), noted γx (A), is the largest element of C containing x and included in A. We
can now define the isf based on the connection C and denoted by sC as:

∀ f ∈F , sC ( f ) =

{∨
v≤t

cyl
(

γx

(
f¬v
)
,v
) ∣∣∣∣ t ∈T , x ∈D

}
(1)

where cyl(X ,v) represents the cylinder of base X and level v: for all x∈D , cyl(X ,v)(x)
equals v if x∈ X and 0 otherwise. And, f¬t is the threshold of the function f ∈F at level
t ∈T , i.e. the set of points where the value of f is larger than t: f¬t = {x ∈D | f (x)≥ t}.

This construction, depicted in Fig. 3, is indeed closely linked (see Prop. 1) to the
definition of anti-extensive connected operators in gray-level images [14].

f

Fig. 3. Set connection based isf: the function on the left is decomposed into the 6 functions in the
right box. We assume here that the value domain is discrete (dashed horizontal lines).

3.2 Ultimate flat zone isf

We define here the ultimate flat zone isf noted su f z. Each element of the isf of f cor-
responds to the infimum between a maximal flat function of f (i.e. a flat function with
connected support such that there do not exist another flat function strictly larger than
it and lower than f ) and a flat zone of f (Fig. 4). This construction can be formalized
with hyper-connections [17] as an iterative decomposition into z-zones [1,11] using the
h-connection of flat functions [10].

4 Isf swampings

The definition of the generalized flattening is done in two steps. We first give a general-
ized definition of a swamping (marked reconstruction) based on the notion of isf. Then,
in the next section, we define the generalized flattening using the swamping function
and the bi-Heyting algebra.

An isf provides a first way to structure the space by considering a notion of local
minima conditionally to the decomposition. We define an elementary swamping func-
tion, i.e. a marked reconstruction, β : F ×F 7→F by:

β ( f ,m) =
∨

min(Mm∩ s( f )) (2)



f

Fig. 4. Ultimate flat zone isf: the function on the left is decomposed into 6 functions showed in
the right box. Each element of the isf is given by the infimum between a maximal flat function
(red dashed line) and a flat zone (green dot-dash line).

where f is the processed element, m is the marker and min(X) is the set of minimal
elements of the set X (min(X) = {x ∈ X |∀y ∈ X , y≤ x⇒ y = x}). The use of the min
in this formula insures that for each element g of s( f ) there exists a marker m such that
g = β ( f ,m).

Then, we define the isf-swamping α : F ×F 7→F as an extension of β :

∀ f ,m ∈L , α( f ,m) =
∨

n≤m

β ( f ,n) (3)

The operators α and β and their differences are illustrated in Fig. 5. Observe that the
purple sub-element (dot-dash line) is included in α( f ,m) but not in β ( f ,m) as it only
intersects m. Also, in both cases, the blue sub-element (largely spaced dotted line) that
also intersects m is not included because there does not exist a n ∈ Mm such that n is
smaller than this sub-element but larger than the orange one (spaced dashed line).

f

m

β(f,m) α(f,m)

Fig. 5. Example of application of the β and α operators on the function f decomposed in s( f )
and marked by m. Whereas β selects the lowest sub-elements that are greater than the marker, α

selects the lowest sub-elements whose support intersects the support of the marker.

The behaviour of α and its dual operator are illustrated in Fig. 6. α is similar to a
rasing of f marked by m as it removes all sub-elements of a that are completely outside
the marker. On the other side, the dual operator α∗ acts as a flooding of f marked by m,
adding all sub-elements of the inverse that are completely included in the marker.

α is not increasing with respect to f (Fig. 7) but it is trivially increasing with respect
to m as more and more sub-elements are included in the result when m increases. The
fact that α is not increasing with respect to its first argument is not a real drawback as
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Fig. 6. Illustration of the α operator and its dual operator with the ultimate flat zone isf (Fig. 4).
Fig. (a) shows a function f (dotted line) a marker m (dot-dash line) and the result α( f ,m) (in
grey). The first image of Fig. (b) shows the result of α( f ∗,m∗). Finally, the last image shows the
result of the dual operator α∗( f ,m).

this property is indeed really important only for binary operators in order to naturally
extend them to the grayscale case by stacking. It is clearly anti-extensive with respect
to f but not to m. It is generally not idempotent with respect to f .

α(f,m)

f

m

(a)

α(g,m)

m

g

(b)

Fig. 7. Example showing that α is generally not increasing with the ultimate flat zone isf (Fig. 4).
Fig. (a) shows the result of α( f ,m), whereas we have the result of α(g,m) on Fig. (b). We have
f ≤ g but α( f ,m) and α(g,m) are not comparable.

Proposition 1. When the isf is based on connection (sC : Eq. 1), then α reduces to a
classical marked connected opening (and closing for α∗).

5 Generalized flattenings

Based on α , we can construct a new self-dual operator Θ : L ×L 7→ L following
the method used for the definition of binary flattenings [7,18]. Nevertheless, binary
flattenings rely on the complemented structure of the binary lattice and we will show
that this construction can be extended using the notion of relative pseudo-complement
and -supplement. Formally, Θ is defined by:

∀ f ,m ∈L , Θ( f ,m) = α( f ,m)∨ps( f ,α∗( f ,m)). (4)

This equation is illustrated in Fig. 8. Its first part: α( f ,m) takes the supremum of
the smallest sub-elements of f that intersect m. Conversely, α∗( f ,m) takes the in-
verse of the supremum of the smallest sub-elements of f ∗ that intersect m∗ which



f

m

α(f,m)

∨
ps(f,α*(f,m))

∧

α*(f,m)

pc(f,α(f,m))

(f,m)

Fig. 8. Example of application of the operator Θ( f ,m) = α( f ,m)∨ ps( f ,α∗( f ,m)) (Eq. 4) and
its equivalent definition Θ( f ,m) = α∗( f ,m)∧pc( f ,α( f ,m)) (Prop. 2) using an ultimate flat zone
isf (Fig. 4).



can be interpreted as adding to f the ”parts” of f ∗ that are completely included in m.
Then ps( f ,α∗( f ,m)) filters α∗( f ,m) in order to only keep those added parts. Finally,
Θ( f ,m) is the supremum between the filtered version α( f ,m) and the added parts from
α∗( f ,m). Intuitively the final result is composed of the parts of f that intersect m and
the parts of f ∗ that are below m.

Proposition 2. For all f ,m ∈L , we have Θ( f ,m) = α∗( f ,m)∧pc( f ,α( f ,m))

This equation is illustrated in Fig. 8. Here, α∗( f ,m) adds to f the ”parts” of f ∗ that are
completely included in m. On the other side, pc( f ,α( f ,m)) determines which parts of
f are not selected by α( f ,m), i.e. those that do not intersect m. Finally we remove from
α∗( f ,m) the parts extracted by pc( f ,α( f ,m)).

Proposition 3. Θ is a self-dual operator: Θ( f ,m) = Θ( f ∗,m∗)∗

This is an immediate consequence of Prop. 2 and the duality between pc and ps.

Proposition 4. When the isf is based on connection (sC : Eq. 1), then Θ reduces to the
classical connected marked flattening operator as defined in [18].

This is a direct consequence of Prop. 1.

5.1 Discussion

It is also possible to interpret Θ as the supremum of activity between α and α∗ which
corresponds to the fact that binary marked flattenings can themselves be defined as the
supremum of activity of two operators. Nevertheless, this previous definition was only
feasible in complemented lattices while it is here directly expressed in the lattice of
mappings thanks to the bi-Heyting algebra structure. One can note that Serra touched
upon this construction with the Lemma 8.2 of [15] where he noticed that the use of an
infinite-distributive lattice was usefull in this frame.

One can note that Θ is not a generalization of marked levellings of [19] because the
later rely on two particular relations. In [19] a component of the foreground is selected
if it touches the marker and at the opposite a component of the background is selected
if it is strictly included in the marker. While in our definition, a part of the function
is selected if it intersects the marker and at the opposite a part of the inverse of the
function is selected it is under the marker. While the relations used in [19] ensure that
the resulting operator is adjacency stable we do not have this property and Θ is thus not
a levelling [2]. Nevertheless, if we use two different markers in the definition of Θ, then,
we can recover the classical marked leveling by taking the dilation of m as the marker
of α and the erosion of m as the marker of α∗.

One can also note that the self-duality of the complete application of the opera-
tor (computation of m and application of Θ) is indeed only verified if the marker is
computed with a self-dual operator. The question of the real properties of morpholog-
ical operators based on context information (marker for flattenings and levelings, set
of structural elements for spatially variant morphology) has been discussed by several
authors [13,19] and more extensively in [2].



6 Applications

We propose applications to exhibit some differences between the self-dual operator Θ

obtained with the ultimate flat zone isf and the classical flattenings or levelings.
The first line of Fig. 9 illustrates the fact that Θ cannot introduce new pixel values

with the ultimate flat zone isf. The original image is a simple chess board while the
marker is the result of a convolution of the chess board with a Gaussian kernel. With
the classical leveling new pixel values coming from the marker are introduced in the
result while in our new definition, the result is equal to the original image. The second
line of Fig. 9 relies this time on a noisy version of the chess board image. Similarly to
the classical leveling, our operator reduces drastically the noise level, does not move
frontiers and moreover, it also better preserves the contrast. A profile view of the same
example is given Fig. 10.

Original a Marker m (Convolution) Leveling Θ(a,m)

Fig. 9. Comparison of the generalized flattening Θ with the classical levelling. First line: the
original image does not contain any noise, we see here that the use of the ultimate flat zone isf
prevents the introduction of new grey levels in the result. Second line: here the original image is
noisy and we show that Θ better preserves the contrast as it tends to reconstruct the maxima.

Finally, Fig. 11 shows a real life application on a picture of Uppsala. One can ob-
serve that our operator performs a simplification of the image that is similar to the one
provided by the connected leveling while offering a better preservation of the contrast.

7 Conclusion

In this article we have proposed a generalization of the self-dual marked flattenings
that provides a way to associate a self-dual operator to every mapping that decomposes
an element into sub-elements. It is defined directly in the lattice of mappings thanks
to its bi-Heyting algebra structure and it relies on the new notion of inf-structuring
functions. We derive two new swampings from the notion of isf and we show that they



Fig. 10. Illustration of a profile through the images of the second line of Fig. 9. The black solid
curve is the original image, the green dashed line is the marker, the red dotted line is the classical
leveling and the blue dotted-dashed line is the result of Θ (built upon the ultimate flat zone isf).
We see that Θ tends to reconstruct the maxima and thus better preserves the contrast.

generalize the connected openings. Then, we define a new self-dual operator based on
those swampings that generalizes the marked flattenings. Finally, we show that using a
naive isf allows to better preserve the contrast, which suggests that even better self-dual
operators can be obtained through the definition of more sophisticated isfs.

In future work, we plan to explore two directions: first the possibility to develop
the notion of activity based on the bi-Heyting algebra structure and, second, the deep
exploration of the notion of inf-structuring functions and more precisely its various
links with connections, hyper-connections and the associated (h-)connected operators.
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