9,782 research outputs found

    Relations between the local chromatic number and its directed version

    Get PDF
    The local chromatic number is a coloring parameter defined as the minimum number of colors that should appear in the most colorful closed neighborhood of a vertex under any proper coloring of the graph. Its directed version is the same when we consider only outneighborhoods in a directed graph. For digraphs with all arcs being present in both directions the two values are obviously equal. Here, we consider oriented graphs. We show the existence of a graph where the directed local chromatic number of all oriented versions of the graph is strictly less than the local chromatic number of the underlying undirected graph. We show that for fractional versions the analogous problem has a different answer: there always exists an orientation for which the directed and undirected values coincide. We also determine the supremum of the possible ratios of these fractional parameters, which turns out to be e, the basis of the natural logarithm

    Graph Theory versus Minimum Rank for Index Coding

    Full text link
    We obtain novel index coding schemes and show that they provably outperform all previously known graph theoretic bounds proposed so far. Further, we establish a rather strong negative result: all known graph theoretic bounds are within a logarithmic factor from the chromatic number. This is in striking contrast to minrank since prior work has shown that it can outperform the chromatic number by a polynomial factor in some cases. The conclusion is that all known graph theoretic bounds are not much stronger than the chromatic number.Comment: 8 pages, 2 figures. Submitted to ISIT 201

    Hipergráfok = Hypergraphs

    Get PDF
    A projekt célkitűzéseit sikerült megvalósítani. A négy év során több mint száz kiváló eredmény született, amiből eddig 84 dolgozat jelent meg a téma legkiválóbb folyóirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. Számos régóta fennálló sejtést bebizonyítottunk, egész régi nyitott problémát megoldottunk hipergráfokkal kapcsolatban illetve kapcsolódó területeken. A problémák némelyike sok éve, olykor több évtizede nyitott volt. Nem egy közvetlen kutatási eredmény, de szintén bizonyos értékmérő, hogy a résztvevők egyike a Norvég Királyi Akadémia tagja lett és elnyerte a Steele díjat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    Quasi-Parallel Segments and Characterization of Unique Bichromatic Matchings

    Full text link
    Given n red and n blue points in general position in the plane, it is well-known that there is a perfect matching formed by non-crossing line segments. We characterize the bichromatic point sets which admit exactly one non-crossing matching. We give several geometric descriptions of such sets, and find an O(nlogn) algorithm that checks whether a given bichromatic set has this property.Comment: 31 pages, 24 figure

    Structure and enumeration of (3+1)-free posets

    Full text link
    A poset is (3+1)-free if it does not contain the disjoint union of chains of length 3 and 1 as an induced subposet. These posets play a central role in the (3+1)-free conjecture of Stanley and Stembridge. Lewis and Zhang have enumerated (3+1)-free posets in the graded case by decomposing them into bipartite graphs, but until now the general enumeration problem has remained open. We give a finer decomposition into bipartite graphs which applies to all (3+1)-free posets and obtain generating functions which count (3+1)-free posets with labelled or unlabelled vertices. Using this decomposition, we obtain a decomposition of the automorphism group and asymptotics for the number of (3+1)-free posets.Comment: 28 pages, 5 figures. New version includes substantial changes to clarify the construction of skeleta and the enumeration. An extended abstract of this paper appears as arXiv:1212.535

    Complete Acyclic Colorings

    Full text link
    We study two parameters that arise from the dichromatic number and the vertex-arboricity in the same way that the achromatic number comes from the chromatic number. The adichromatic number of a digraph is the largest number of colors its vertices can be colored with such that every color induces an acyclic subdigraph but merging any two colors yields a monochromatic directed cycle. Similarly, the a-vertex arboricity of an undirected graph is the largest number of colors that can be used such that every color induces a forest but merging any two yields a monochromatic cycle. We study the relation between these parameters and their behavior with respect to other classical parameters such as degeneracy and most importantly feedback vertex sets.Comment: 17 pages, no figure
    • …
    corecore