We obtain novel index coding schemes and show that they provably outperform
all previously known graph theoretic bounds proposed so far. Further, we
establish a rather strong negative result: all known graph theoretic bounds are
within a logarithmic factor from the chromatic number. This is in striking
contrast to minrank since prior work has shown that it can outperform the
chromatic number by a polynomial factor in some cases. The conclusion is that
all known graph theoretic bounds are not much stronger than the chromatic
number.Comment: 8 pages, 2 figures. Submitted to ISIT 201