research

Graph Theory versus Minimum Rank for Index Coding

Abstract

We obtain novel index coding schemes and show that they provably outperform all previously known graph theoretic bounds proposed so far. Further, we establish a rather strong negative result: all known graph theoretic bounds are within a logarithmic factor from the chromatic number. This is in striking contrast to minrank since prior work has shown that it can outperform the chromatic number by a polynomial factor in some cases. The conclusion is that all known graph theoretic bounds are not much stronger than the chromatic number.Comment: 8 pages, 2 figures. Submitted to ISIT 201

    Similar works

    Full text

    thumbnail-image

    Available Versions