793 research outputs found

    All That Glitters Is Not Gold: Towards Process Discovery Techniques with Guarantees

    Get PDF
    The aim of a process discovery algorithm is to construct from event data a process model that describes the underlying, real-world process well. Intuitively, the better the quality of the event data, the better the quality of the model that is discovered. However, existing process discovery algorithms do not guarantee this relationship. We demonstrate this by using a range of quality measures for both event data and discovered process models. This paper is a call to the community of IS engineers to complement their process discovery algorithms with properties that relate qualities of their inputs to those of their outputs. To this end, we distinguish four incremental stages for the development of such algorithms, along with concrete guidelines for the formulation of relevant properties and experimental validation. We will also use these stages to reflect on the state of the art, which shows the need to move forward in our thinking about algorithmic process discovery.Comment: 13 pages, 4 figures. Submitted to the International Conference on Advanced Information Systems Engineering, 202

    Process mining using BPMN : relating event logs and process models

    Get PDF
    Process-aware information systems (PAIS) are systems relying on processes, which involve human and software resources to achieve concrete goals. There is a need to develop approaches for modeling, analysis, improvement and monitoring processes within PAIS. These approaches include process mining techniques used to discover process models from event logs, find log and model deviations, and analyze performance characteristics of processes. The representational bias (a way to model processes) plays an important role in process mining. The BPMN 2.0 (Business Process Model and Notation) standard is widely used and allows to build conventional and understandable process models. In addition to the flat control flow perspective, subprocesses, data flows, resources can be integrated within one BPMN diagram. This makes BPMN very attractive for both process miners and business users. In this paper, we describe and justify robust control flow conversion algorithms, which provide the basis for more advanced BPMN-based discovery and conformance checking algorithms. We believe that the results presented in this paper can be used for a wide variety of BPMN mining and conformance checking algorithms. We also provide metrics for the processes discovered before and after the conversion to BPMN structures. Cases for which conversion algorithms produce more compact or more involved BPMN models in comparison with the initial models are identified. Keywords: Process mining; Process discovery; Conformance checking; BPMN (Business Process Model and Notation); Petri nets; Bisimulatio

    All that glitters is not gold: Four maturity stages of process discovery algorithms

    Get PDF
    A process discovery algorithm aims to construct a process model that represents the real-world process stored in event data well; it is precise, generalizes the data correctly, and is simple. At the same time, it is reasonable to expect that better quality input event data should lead to constructed process models of better quality. However, existing process discovery algorithms omit the discussion of this relationship between the inputs and outputs and, as it turns out, often do not guarantee it. We demonstrate the latter claim using several quality measures for event data and discovered process models. Consequently, this paper requests for more rigor in the design of process discovery algorithms, including properties that relate the qualities of the inputs and outputs of these algorithms. We present four incremental maturity stages for process discovery algorithms, along with concrete guidelines for formulating relevant properties and experimental validation. We then use these stages to review several state of the art process discovery algorithms to confirm the need to reflect on how we perform algorithmic process discovery

    COST Action IC 1402 ArVI: Runtime Verification Beyond Monitoring -- Activity Report of Working Group 1

    Full text link
    This report presents the activities of the first working group of the COST Action ArVI, Runtime Verification beyond Monitoring. The report aims to provide an overview of some of the major core aspects involved in Runtime Verification. Runtime Verification is the field of research dedicated to the analysis of system executions. It is often seen as a discipline that studies how a system run satisfies or violates correctness properties. The report exposes a taxonomy of Runtime Verification (RV) presenting the terminology involved with the main concepts of the field. The report also develops the concept of instrumentation, the various ways to instrument systems, and the fundamental role of instrumentation in designing an RV framework. We also discuss how RV interplays with other verification techniques such as model-checking, deductive verification, model learning, testing, and runtime assertion checking. Finally, we propose challenges in monitoring quantitative and statistical data beyond detecting property violation

    Täpne ja tõhus protsessimudelite automaatne koostamine sündmuslogidest

    Get PDF
    Töötajate igapäevatöö koosneb tegevustest, mille eesmärgiks on teenuste pakkumine või toodete valmistamine. Selliste tegevuste terviklikku jada nimetatakse protsessiks. Protsessi kvaliteet ja efektiivsus mõjutab otseselt kliendi kogemust – tema arvamust ja hinnangut teenusele või tootele. Kliendi kogemus on eduka ettevõtte arendamise oluline tegur, mis paneb ettevõtteid järjest rohkem pöörama tähelepanu oma protsesside kirjeldamisele, analüüsimisele ja parendamisele. Protsesside kirjeldamisel kasutatakse tavaliselt visuaalseid vahendeid, sellisel kujul koostatud kirjeldust nimetatakse protsessimudeliks. Kuna mudeli koostaja ei suuda panna kirja kõike erandeid, mis võivad reaalses protsessis esineda, siis ei ole need mudelid paljudel juhtudel terviklikud. Samuti on probleemiks suur töömaht - inimese ajakulu protsessimudeli koostamisel on suur. Protsessimudelite automaatne koostamine (protsessituvastus) võimaldab genereerida protsessimudeli toetudes tegevustega seotud andmetele. Protsessituvastus aitab meil vähendada protsessimudeli loomisele kuluvat aega ja samuti on tulemusena tekkiv mudel (võrreldes käsitsi tehtud mudeliga) kvaliteetsem. Protsessituvastuse tulemusel loodud mudeli kvaliteet sõltub nii algandmete kvaliteedist kui ka protsessituvastuse algoritmist. Antud doktoritöös anname ülevaate erinevatest protsessituvastuse algoritmidest. Toome välja puudused ja pakume välja uue algoritmi Split Miner. Võrreldes olemasolevate algoritmidega on Splint Miner kiirem ja annab tulemuseks kvaliteetsema protsessimudeli. Samuti pakume välja uue lähenemise automaatselt koostatud protsessimudeli korrektsuse hindamiseks, mis on võrreldes olemasolevate meetoditega usaldusväärsem. Doktoritöö näitab, kuidas kasutada optimiseerimise algoritme protsessimudeli korrektsuse suurendamiseks.Everyday, companies’ employees perform activities with the goal of providing services (or products) to their customers. A sequence of such activities is known as business process. The quality and the efficiency of a business process directly influence the customer experience. In a competitive business environment, achieving a great customer experience is fundamental to be a successful company. For this reason, companies are interested in identifying their business processes to analyse and improve them. To analyse and improve a business process, it is generally useful to first write it down in the form of a graphical representation, namely a business process model. Drawing such process models manually is time-consuming because of the time it takes to collect detailed information about the execution of the process. Also, manually drawn process models are often incomplete because it is difficult to uncover every possible execution path in the process via manual data collection. Automated process discovery allows business analysts to exploit process' execution data to automatically discover process models. Discovering high-quality process models is extremely important to reduce the time spent enhancing them and to avoid mistakes during process analysis. The quality of an automatically discovered process model depends on both the input data and the automated process discovery application that is used. In this thesis, we provide an overview of the available algorithms to perform automated process discovery. We identify deficiencies in existing algorithms, and we propose a new algorithm, called Split Miner, which is faster and consistently discovers more accurate process models than existing algorithms. We also propose a new approach to measure the accuracy of automatically discovered process models in a fine-grained manner, and we use this new measurement approach to optimize the accuracy of automatically discovered process models.https://www.ester.ee/record=b530061

    Discovery of Transport Operations from Geolocation Data

    Get PDF
    Os dados de geolocalização identificam a localização geográfica de pessoas ou objetos e são fundamentais para empresas que dependem de veículos, como empresas logísticas e de transportes. Com o avanço da tecnologia, a recolha de dados de geolocalização tornou-se cada vez mais acessível e económica, gerando novas oportunidades de inteligência empresarial. Este tipo de dados tem sido utilizado principalmente para caracterizar o veículo em termos de posicionamento e navegação, mas também pode ter um papel preponderante na avaliação de desempenho em relação às atividades e operações executadas. A abordagem proposta consiste numa metodologia com várias etapas que recebe dados de geolocalização como entrada e permite a análise do processo de negócio no final. Em primeiro lugar, a preparação dos dados é aplicada para lidar com uma série de questões relacionadas com ruído e erros nos dados. Depois, a identificação dos eventos estacionários é realizada com base nos estados estacionários dos veículos. Em seguida, é realizada a inferência de operações com base numa análise espacial, que permite descobrir os locais onde os eventos estacionários ocorrem com frequência. Finalmente, as operações identificadas são classificadas com base nas suas características, e a sequência de eventos pode ser estruturada. A aplicação de técnicas de process mining é então possível e a consequente extração de conhecimento do processo. As etapas da metodologia também podem ser utilizadas separadamente para enfrentar desafios específicos, dando mais flexibilidade à sua aplicação. Três estudos de caso distintos são apresentados para demonstrar a eficácia e transversalidade da solução. Fluxos de dados de geolocalização em tempo real de autocarros de duas redes distintas de transporte público são usados para demonstrar a detecção de operações relacionadas com os veículos e comparar as distintas abordagens propostas por este trabalho. As operações dos autocarros produzem uma sequência estruturada de eventos que descreve o comportamento dos mesmos. Esse comportamento é mapeado por meio da aplicação de técnicas de process mining, para descobrir oportunidades de análise e gargalos no processo. Complementarmente, os dados de geolocalização de uma empresa de logística internacional são explorados para a monitorização de processos logísticos, nomeadamente para detecção de operações de logística em tempo real, demonstrando a eficácia da solução proposta para resolver problemas específicos da indústria. Os resultados deste trabalho revelam novas possibilidades no uso de dados de geolocalização e o seu potencial para gerar conhecimento acerca do processo. A exploração de dados de geolocalização nos contextos logísticos e de transportes públicos apresenta-se como uma oportunidade para melhorar a monitorização e gestão das operações baseadas em veículos. Isso pode originar melhorias na eficiência do processo e, consequentemente, maior lucro e melhor qualidade do serviço.Geolocation data identifies the geographic location of people or objects, and is fundamental for businesses relying on vehicles such as logistics and transportation. With the advance of technology, collecting geolocation data has become increasingly accessible and affordable, raising new opportunities for business intelligence. This type of data has been used mainly for characterizing the vehicle in terms of positioning and navigation, but it can also showcase its performance regarding the executed activities and operations. The proposed approach consists on a multi-step methodology that receives geolocation data as an input and allows the analysis of the business process in the end. Firstly, the preparation of the data is applied to handle a number of issues related to outliers, data noise, and missing or erroneous information. Then, the identification of stationary events is performed based on the motionless states of the vehicles. Next, the inference of operations based on a spatial analysis is performed, which allows the discovery of the locations where stationary events occur frequently. Finally, the identified operations are classified based on their characteristics, and the sequence of events can be structured into an event log. The application of process mining techniques is then possible and the consequently extraction of process knowledge. The steps of the methodology can also be used separately to tackle specific challenges, giving more flexibility to its application. Three distinct case studies are presented to demonstrate the effectiveness and transversality of the solution. Real-time geolocation data streams of buses from two distinct public transport networks are used to demonstrate the detection of vehicle-based operations and compare the distinct approaches proposed by this work. The buses operations produce a structured sequence of events that describes the behaviour of the buses. This behaviour is mapped through the application of process mining techniques uncovering analysis opportunities and discovering bottlenecks in the process. Geolocation data from an international logistics company is exploited for monitoring logistics processes, namely for detecting vehicle-based operations in real time, showing the effectiveness of the proposed solution to solve specific industry problems. The results of this work reveal new possibilities for geolocation data and its potential to generate process knowledge. The exploitation of geolocation data in the public transport and logistics contexts poses as an opportunity for improving the monitoring and management of vehicle-based operations. This can lead to into improvements in the process efficiency and consequently higher profit and better service quality
    corecore