
FACULDADE DE ENGENHARIA DA UNIVERSIDADE DO PORTO

Discovery of Transport Operations
from Geolocation Data

Jorge Alberto da Mota Vieira Tavares

Mestrado Integrado em Engenharia Eletrotécnica e de Computadores

Supervisor: Joel Tiago Soares Ribeiro

Second Supervisor: Tânia Daniela Lopes da Rocha Fontes

October 21, 2021



Abstract

Geolocation data identifies the geographic location of people or objects, and is fundamental for
businesses relying on vehicles such as logistics and transportation. With the advance of technol-
ogy, collecting geolocation data has become increasingly accessible and affordable, raising new
opportunities for business intelligence. This type of data has been used mainly for characteriz-
ing the vehicle in terms of positioning and navigation, but it can also showcase its performance
regarding the executed activities and operations.

The proposed approach consists on a multi-step methodology that receives geolocation data
as an input and allows the analysis of the business process in the end. Firstly, the preparation
of the data is applied to handle a number of issues related to outliers, data noise, and missing
or erroneous information. Then, the identification of stationary events is performed based on the
motionless states of the vehicles. Next, the inference of operations based on a spatial analysis is
performed, which allows the discovery of the locations where stationary events occur frequently.
Finally, the identified operations are classified based on their characteristics, and the sequence of
events can be structured into an event log. The application of process mining techniques is then
possible and the consequently extraction of process knowledge. The steps of the methodology can
also be used separately to tackle specific challenges, giving more flexibility to its application.

Three distinct case studies are presented to demonstrate the effectiveness and transversality
of the solution. Real-time geolocation data streams of buses from two distinct public transport
networks are used to demonstrate the detection of vehicle-based operations and compare the dis-
tinct approaches proposed by this work. The buses operations produce a structured sequence of
events that describes the behaviour of the buses. This behaviour is mapped through the applica-
tion of process mining techniques uncovering analysis opportunities and discovering bottlenecks
in the process. Geolocation data from an international logistics company is exploited for moni-
toring logistics processes, namely for detecting vehicle-based operations in real time, showing the
effectiveness of the proposed solution to solve specific industry problems.

The results of this work reveal new possibilities for geolocation data and its potential to gen-
erate process knowledge. The exploitation of geolocation data in the public transport and logistics
contexts poses as an opportunity for improving the monitoring and management of vehicle-based
operations. This can lead to into improvements in the process efficiency and consequently higher
profit and better service quality.
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Resumo

Os dados de geolocalização identificam a localização geográfica de pessoas ou objetos e são funda-
mentais para empresas que dependem de veículos, como empresas logísticas e de transportes. Com
o avanço da tecnologia, a recolha de dados de geolocalização tornou-se cada vez mais acessível
e económica, gerando novas oportunidades de inteligência empresarial. Este tipo de dados tem
sido utilizado principalmente para caracterizar o veículo em termos de posicionamento e naveg-
ação, mas também pode ter um papel preponderante na avaliação de desempenho em relação às
atividades e operações executadas.

A abordagem proposta consiste numa metodologia com várias etapas que recebe dados de
geolocalização como entrada e permite a análise do processo de negócio no final. Em primeiro
lugar, a preparação dos dados é aplicada para lidar com uma série de questões relacionadas com
ruído e erros nos dados. Depois, a identificação dos eventos estacionários é realizada com base nos
estados estacionários dos veículos. Em seguida, é realizada a inferência de operações com base
numa análise espacial, que permite descobrir os locais onde os eventos estacionários ocorrem com
frequência. Finalmente, as operações identificadas são classificadas com base nas suas caracterís-
ticas, e a sequência de eventos pode ser estruturada. A aplicação de técnicas de process mining
é então possível e a consequente extração de conhecimento do processo. As etapas da metodolo-
gia também podem ser utilizadas separadamente para enfrentar desafios específicos, dando mais
flexibilidade à sua aplicação.

Três estudos de caso distintos são apresentados para demonstrar a eficácia e transversalidade
da solução. Fluxos de dados de geolocalização em tempo real de autocarros de duas redes distin-
tas de transporte público são usados para demonstrar a detecção de operações relacionadas com
os veículos e comparar as distintas abordagens propostas por este trabalho. As operações dos
autocarros produzem uma sequência estruturada de eventos que descreve o comportamento dos
mesmos. Esse comportamento é mapeado por meio da aplicação de técnicas de process mining,
para descobrir oportunidades de análise e gargalos no processo. Complementarmente, os dados
de geolocalização de uma empresa de logística internacional são explorados para a monitorização
de processos logísticos, nomeadamente para detecção de operações de logística em tempo real,
demonstrando a eficácia da solução proposta para resolver problemas específicos da indústria.

Os resultados deste trabalho revelam novas possibilidades no uso de dados de geolocalização
e o seu potencial para gerar conhecimento acerca do processo. A exploração de dados de geolo-
calização nos contextos logísticos e de transportes públicos apresenta-se como uma oportunidade
para melhorar a monitorização e gestão das operações baseadas em veículos. Isso pode origi-
nar melhorias na eficiência do processo e, consequentemente, maior lucro e melhor qualidade do
serviço.

Palavras-chave: Dados de geolocalização, Identificação de eventos, Operações de veículos, Pro-
cess Mining
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Chapter 1

Introduction

1.1 Context

Everyday 2.5 quintillion bytes of data are being generated, and 80% of it is associated with spa-

tial information, as estimated by the Environmental Systems Research Institute (ESRI) in ESRI

(ESRI), the world leader in geographic information system (GIS) software. According to DOMO’s

report (DOMO, 2017), as of 2017 there was an exponential growth in data produced, as nearly 90%

as all data had been created in the previous two years. The constant generation of data creates op-

portunities for discovering new knowledge.

The increase in data generation has motivated its analysis through the creation of new knowl-

edge opportunities, increasing the number of businesses working with it (David Reinsel, 2018).

Furthermore, according to Statista (Shanhoung Liu, 2019), 53% of companies used big data tech-

nologies as of 2019, and it is expected that by 2025, the big data industry will reach revenues of

over $68 billion dollars (Shanhoung Liu, 2021).

Mobility is one of the areas where new knowledge can be discovered due to the high amount

of spatial data available. A lot of time and money is spent in traffic congestion, as an average

American spent 99 hours a year in traffic costing $88 billion in annual time costs nationally,

$1,377 per driver, as calculated by INRIX in the year of 2019 (INRIX, 2019). The same study

proved that before the pandemic the congestion indexes were getting worse in some of the world’s

largest cities, having a large impact on people’s lives. It also concluded that public transport and

biking proved to be the most competitive in the world’s most congested cities and can help to

reduce the time lost in traffic.

Data and digital transformation is also revolutionising specific areas of the transportation sec-

tor such as fleet management. The use of telematics in fleets increased significantly in the last

years, from 48% in 2017 to 86% in 2019, as reported by Teletrac Navman (Teletrac Navman,

2019). Most of them reported reduced fuel costs and fewer safety incidents since start using fleet

tracking systems. As just 23% of fleets used big data analytics to guide strategic decision-making,

new opportunities arise for the businesses to improve their fleets’ operations.

1



Introduction 2

This work focuses on the use of geolocation data from vehicles, but it may also be applied on

another types of subjects, such as people.

1.2 Motivation

The large availability of geolocation data opens new possibilities for the development of new

systems to infer transportation information, such as travel or vehicle related, using different tech-

nologies. This type of data and its applications have been studied and implemented mostly to

discover trajectories, travelling habits and activity classification.

A focus has been given in using geolocation data from an operational point of view, identifying

the state of the vehicle only in terms of positioning and navigation. This work intends to explore

geolocation from a management point of view, considering the business process as a whole. The

vehicle operation may include various activities apart from the planned ones (e.g., traffic, fueling,

maintenance, or driver’s break) which are not relevant in most existing works. However, geoloca-

tion data can be used to infer the vehicle’s state in terms its process.

Process mining, as a technique, uses machine learning together with business process models

to extract valuable process-related information. The application of process mining requires struc-

tured information, in the form of a sequence of events. Event logs organize the events with some

degree of abstraction and are the most common input for process mining. The low-level abstrac-

tion of geolocation data turns difficult the direct application of this data with process mining.

This thesis is motivated by the reduced number of applications that implement process min-

ing techniques with geolocation data, especially involving transportation companies. The process

related information could benefit the companies and support their management, through the eval-

uation of the service quality that could unveil existing bottlenecks and point to possible improve-

ments. A better resource utilization and route planning pose as possible points of improvement.

1.3 Objectives

This work aims to get insight into business processes through the analysis of geolocation data, by

inferring process events.

One of the main challenges and objectives is the transformation of geolocation data into event

logs, which is an innovative way to get process-related information. To achieve that, different in-

ference methods are explored together with aggregation data methods, to allow the transformation

into process activities. After extracting the event logs, process mining techniques can be applied

in order to generate valuable information about the collected data and meaningful activities that

are executed. The application of process discovery and conformance checking techniques will be

addressed in this thesis.



1.4 Outline 3

This thesis intends to propose an universal approach that can be applied in distinct situations,

and infer a whole range of operations. The quality of geolocation data poses as an important com-

ponent in the effectiveness of this approach. Its impact is measured in this work, and a transversal

approach is proposed in order to allow the geolocation data analysis independently of its source.

Ultimately, this work aims to develop a method to use geolocation data and generate insights

into the transportation processes.

The research questions of this work can be stated as follows.

Given a sequence of geolocations describing the movement of some person or object,

how can we infer the events that characterize the person’s or object’s behaviour?

How can that behaviour be represented and analysed?

1.4 Outline

This dissertation is organized as follows:

Chapter 2 contextualizes the state of the art of spatial data, starting with a formal overview

around this type of data, followed by the description of several applications with special focus into

trajectory analysis. The inference of events and respective locations using other data types is also

explored. The chapter is concluded with an overview on process mining, and several applications

using less structured data.

Chapter 3 describes the methodology to detect vehicle-based operations from geolocation data.

The methodology is structured in three main components: data preparation, events identification

and inference of operations.

Chapter 4 presents three distinct case studies to prove the applicability of the methodology.

Each case study presents unique perspectives and focus on specific components of the methodol-

ogy.

Finally, in Chapter 5 the main outcomes of this project are highlighted and possible future

work directions are suggested.



Chapter 2

State of the Art

In this chapter, some concepts and research related to this work are presented along with the

respective applications. Section 2.1 describes spatial data and the different methodologies used to

analyse it, as well as their applications. Section 2.2 shows various perspectives on the inference of

events, especially the ones based on location, leveraging distinct types of data used. Section 2.3

discusses process mining, its several techniques, and respective applications. Particular attention

is given to process mining applications using spatial data.

2.1 Spatial Data

Spatial data refers to features in a three-dimensional space and, thus, having physical and mea-

surable dimensions that can be classified into two types: raster and vector. (Kumar et al., 2019).

Raster data divides the area in groups such as grids, triangulated irregular network (TIN), and

network. Vector data are composed of points, lines, and polygons

Geolocation data can be defined as a class of spatial data that identifies the geographic location

of people or objects on the surface of Earth (Bhatta, 2008). This data can be collected through

Bluetooth beacons, GPS (Global Positioning System) trackers or WiFi receivers, and can identify

the coordinates (e.g. latitude and longitude) or more specific data, such as the current city or

country. With these new technologies, a large amount of geolocation data is available, allowing

the development of new systems that can be used to infer travel information.

The analysis of spatial data requires mapping of spatial attributes with non-spatial attributes

to achieve an effective decision making. This mapping can be done by integrating data from GIS.

GIS databases store data about the location of services, infrastructures and points of interest, like

roads, gas stations or shopping malls, as well as the data received from certain devices connected

with each other, such as smartwatches, smartphones, and other devices, specially IoT (Internet of

Things). Cantelmo et al. (2020) proposed the integration of GIS data to create an automatic classi-

fication technique of activities performed in infrequently visited locations without any user report

or additional information. To do so, a clustering technique was used to identify the most likely

4
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performed activity in a certain location, along with heuristic ruling to account for the user be-

haviour and estimate “Home” and “Work” locations. A GIS-based system was applied to properly

estimate the leisure activities performed, that, due to its low frequency, were harder to define.

The extraction of useful information and knowledge from these massive and complex spatial

data sets can be achieve through distinct methodologies, such as spatial data mining and dynamic

time warping algorithms (Cantelmo et al., 2020).

Spatial Data Mining emerged as an active research field in the analysis of spatial of data (Wang

and Yuan, 2014; Perumal et al., 2015; Mennis and Guo, 2009; Huang and Wang). It focuses on

extracting interesting and previously unknown patterns or implicit knowledge from large spatial

datasets. Mining of this type of data uses common data mining techniques such as association

(Buhalis and Law, 2008), classification (Brown and Affum, 2002; Tang and Waters, 2005) and

clustering (Wang, 2005; Gu et al.) generating interesting facts associated in various domains.

Geolocation data has been used to investigate the dynamic mobility patterns of urban areas. A

Dynamic Time Warping (DTW) algorithm was applied in Yuan and Raubal to measure the sim-

ilarity between different time series, providing inputs for classifying different urban areas based

on their mobility patterns. This approach allowed for a good outlier detection, used to identify

abnormal mobility patterns. It proved to be effective for exploring similarities/dissimilarities of

urban mobility patterns, and to provide a reference for transportation and urban planning.

The development of data-driven intelligent transport systems using geolocation data in mul-

tisource systems was discussed by Zhang et al. (2011). The integration of the different systems

allows to improve the performance of transport systems, empowering the users with a better data

resource utilization and with more reliable sources. Traffic congestion and travel times could be

more accurate, while preserving the security of the users, through the systems’ integration.

2.1.1 Trajectory Analysis

Trajectory analysis is one of the most relevant areas of application involving spatial data. The

identification of stops and points of interest is studied in several works presented next. Although

these applications focus on relevant and planned stops, they share some objectives with the current

research.

Gong et al. (2015) developed a two-step methodology to identify activity stops in continuous

trajectories using a variation of the density-based clustering method, DBSCAN (Ester et al., 1996),

together with the Support Vector Machine (SVM) method. DBSCAN was adjusted to the trajec-

tory’s context, by adding two constraints, that required all the points in a cluster to be temporally

sequential, and to have an even distribution in direction changes. The points had to be scattered

around the location, instead of being distributed in a straight line that generated a constant direc-

tion change. Different features were extracted for utilization in the SVMs method: stop duration,

mean distance to the centroid of a cluster of points at the stop location, and minimal distance from

the current location to home and to the workplace, which distinguishes activity stops from non-

activity stops. The methodology was tested using GPS collected from mobile phones, achieving

good results.
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A generic approach representing trajectories in terms of both spatial and semantic character-

istics, supporting different levels of data abstraction, is presented by Yan et al. (2010). It consists

on an hybrid model with different layers. A first layer, focus on data preprocessing, detecting

outliers, with threshold driven techniques on velocity, and dealing with random noise, using a

Gaussian kernel based on local regression model to smooth out the GPS feed. The cleansed data

is divided into meaningful subsequences, i.e. trajectories, in the second layer, exploiting the time

and spatial gaps in consecutive points. Structured trajectories consisting of meaningful episodes,

are generated in the third layer. GPS points are grouped into episodes, i.e. stop/move episodes,

using the speed and stop time. The speed is analysed according to a dynamic velocity threshold

which is computed according to the context of the moving object, using the object and position

average speed. The last layer, integrates episodes with relevant semantic data available from third

party sources to gather additional context about each object. Various live mobility feeds were

used, leading to different insights on the computed trajectories.

Yang et al. (2014) proposed an algorithm to identify urban freight delivery stops using second-

by-second GPS data of groceries delivery tours to multiple stores in the New York City metropoli-

tan area. Firstly, to preprocess the data and capture all potential stops, a speed threshold was

defined to detect the stops, along with the aggregation of consecutive stops as a single stop. Using

the potential identified stops, a feature extraction was executed based on the stop duration, dis-

tance to the city centre, and the distance to the closest major traffic bottleneck. Those features

were introduced into a SVM model and used with a nested K-fold cross-validation procedure to

distinguish the urban freight delivery stops from the remaining stops.

Pinelli et al. (2013) focused on the application in public transportation, proposing a method-

ology to detect the correct location of bus stops, and, consequently, extract accurate time schedule

information using GPS data. The methodology consists of well defined sequential steps. Firstly,

focusing on the cleaning and de-noising of data, through spatial and speed threshold that allow

to detect infeasible points, which are too far apart or translate into unrealistic speeds in the corre-

sponding environment. Then, it extracts the potential bus stops considering the speed of the bus,

and the variation of the acceleration, in order to detect the most number of stops that are then

clustered using DBSCAN. Another extraction method is also proposed based on spatio-temporal

thresholds, but that does not generate as many potential stops as the speed-based method. Different

features are extracted in order to build a classifier which can categorize the stops into scheduled

and unscheduled stops. In order to choose the best features to the classifier, an algorithm that

exploits the information entropy is used for indicating the attributes that most effectively split the

samples into subsets.

Data cleaning is a common challenge to most applications and is given special focus in Sun

et al. (2018). Common types of errors for vehicle monitoring are enumerated, along with cor-

responding data cleaning rules, such as false date for time information, outlying high/low speed

values, zero-speed signal drift, false zero-speed records, outlying acceleration/deceleration values,

noise jamming data. Most of these errors are detected based on defined thresholds and repaired

with proper interpolation methods. It’s worth highlighting the time information error data, which
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is mainly due to repeated recording of information, and is corrected according to the compari-

son with the former and later data collected, and corresponding time differences. The quality of

cleared data was tested, reflecting the actual operating state of the vehicles.

2.2 Events Inference

Several types of data are gathered, apart from the spatial data, and its analysis can discover match-

ing patterns in certain contexts, allowing the definition of events and corresponding types. By

defining event types, filtering and aggregation of events makes the extrapolation of relevant in-

formation easier. Various areas are developing event detection . Multimedia event detection uses

image and video data to event detection (Xu et al., 2006; Ma et al., 2012), event extraction from

text extracts structured information from the natural language texts (Xu et al., 2018; Chen et al.,

2015), human activity recognition of various human activities such as walking, running, sleeping,

etc., through sensors and accelerometers (Aggarwal and Ryoo, 2011; Kabir et al.).

The inference of events and respective locations have been performed using other data types

besides spatial data, for example with text, video, radio signals and sensors.

2.2.1 Text

One of the main research areas in event discovery aims to extract structured information from the

natural language texts, identifying the trigger words and the respective arguments. It’s commonly

called event extraction. In this area, one of the main data sources relates to social media. Tweets

databases are used in several events to do the inference of events (Xu et al., 2018; Gutierrez et al.,

2015; Xu et al., 2019). These databases contain a data flow of unstructured data streams that need

to rely on big data techniques to be interpreted.

Afyouni et al. (2020) developed a big data mining platform for the discovery of geo-social and

spatio-temporal events from social media data, most exactly from Twitter. The detected events

are tagged with spatial and temporal components. Data mining techniques such as unsupervised

machine learning, clustering and Natural Language Processing (NLP) techniques were employed

in this research for the continuous event detection. Events are extracted and classified within

different categories, such as, social events, road accidents, incidents and others, according to the

tweet text, using NLP techniques. A spatio-temporal indexing scheme is also implemented for

clustering the data and allow the fast retrieval of evolving events.

One of the problems of the above mentioned social media data is the number of relevant

geotagged tweets available that difficult the mapping of the occurred events. Paule et al. (2019)

proposed a location inference method to improve the quality of this data. A fine-grained geolo-

calisation of tweets is done by adopting a weighted system, based on the credibility of the user.

The tweet geolocalisation approach was integrated into a real-time incident detection task. It was

demonstrated that the geolocation method proposed could map precisely the real locations of the

incidents, using real-time information.
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2.2.2 Video and Image

Low-level vision analytics and the inference of low-level events is also an area that has been

raising interest in the computer vision community, especially with the deployment of Closed-

circuit television (CCTV) in public transport, with the installation of video cameras in the vehicles.

The event recognition can be inference-based as developed by Hong et al. (2016), involving event

modelling and reasoning mechanisms, standing knowledge as the main drive in the proposed event

inference approach. This approach was evaluated on a real bus environment allowing to detect

events, like the boarding, and the sitting of passengers, and corresponding locations inside the bus.

Visual localization is also been applied in many robotic fields such as path planning and explo-

ration posing as basic capability for a mobile robot that often does not have access to GPS signals.

Since dynamic environment difficult the localization, Cheng et al. (2020) proposed to improve

localization accuracy in dynamic environments focusing on static environment characteristics.

Localization and navigation in vehicles from visual data had an increasingly interest due to

self-driving vehicles and the performing of route planning when the GPS systems are not available.

Leordeanu and Paraicu (2021) proposed the prediction in real-time of the vehicle’s current location

and future trajectory, on a known map, given only the raw video stream and the final destination.

2.2.3 Data from Sensors

Indoor location systems (ILS) (also known as real-time location systems, RTLS) are systems that

allow the to calculate the approximate location of an asset or person. RTLS works with ra-

diofrequency tags, chips and beacons, that receive the radiofrequency signal from the tags with

several technologies: Radio-frequency identification (RFID), Ultra-high frequency (UHF), Ultra-

Wideband (UWB), Bluetooth, Zigbee, Wi-Fi or proprietary microwave solutions. The different

locations using different positioning algorithms based on triangulation: Time of Arrival (TOA),

Time Difference Of Arrival (TDOA), Received Signal Strength (RSS) or Roundtrip Time Of Flight

(RTOF). It has been widely applied in hospital context to identify patient pathways and workflows

(Fernandez-Llatas et al., 2015; Araghi et al., 2018), and in shopping areas to track costumers

behaviours (Hwang and Jang, 2017; Dogan, 2020).

In outdoor location systems (OLS), GPS has become the most typical outdoor navigation

method thanks to its widest coverage. However, due to the effect of shielding, multipath ef-

fects and other factors, the positioning errors can be substantial. Rykała et al. (2020) proposed

an outdoor localization system based on UWB technology. UWB enables more accurate location

services, with low power consumption and immunity to interference and multipath, as opposed

to GPS, however its range is limited and strongly depends on the environment. The authors used

UWB to construct a guide localization system for an unmanned ground vehicle. Pedestrian Dead

Reckoning (PDR) is one application of outdoor location systems (Beauregard and Haas, 2006), es-

timating the movement of pedestrians using the sensors integrated in smartphones (accelerometer,

gyroscope and magnetometer) (Wang et al., 2018).
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The integration of indoor and outdoor location system is being proposed to mitigate the exist-

ing downsides of both systems. Li et al. (2017) integrated indoor and outdoor locations to create

a pedestrian seamless indoor/outdoor location. In order to improve the positioning accuracy and

robustness of PDR, the combination of magnetometer and gyroscope sensors data with an heading

direction estimation algorithm is also proposed. Barbosa et al. (2018) applied the integration of

indoor and outdoor locations to assist wheelchair users. Based on the location of a certain user,

it recommended accessibility resources that are close to the user and warns about places without

accessible paths to wheelchairs. A mobile application was created to support the interface with the

user and send the location information to the server, that does the recommendations based on the

user profile and location. The outdoor location is obtained from GPS, and the indoor is obtained

through RFID cards placed on the buildings floor.

2.3 Process Mining

Process mining is a research discipline that sits between machine learning and data mining on the

one hand and process modeling and analysis on the other hand (van der Aalst, 2011).

Business Process Management (BPM) combines knowledge from information technology and

knowledge from management sciences, applying this to operational business processes (Van Der

Aalst, 2004; Weske, 2012). It models the processes in terms activities and the corresponding

relations, analyses them and then aims to improve them, sometimes without the use of new tech-

nologies.

Data Mining explores and analyses data produced in various types of systems and processes,

and discovers relevant patterns. Depending on the type of data desired to mine and the results

expected, different data mining techniques can be applied to discover existing patterns that can

characterize general aspects of data or support prediction.

Business process and data mining combined establishes the process mining field. Process

mining aims to discover, monitor and improve real processes, providing several techniques to

extract knowledge and insights of a process from historical execution data available in today’s

systems. (van der Aalst, 2016) The process that actually occurs in a certain business unit can be

visualized, providing insight into the way procedures are followed, in comparison to the designed

process.

To apply process mining techniques, the existence of some underlying process is assumed, for

which multiple instances are executed and recorded in a log. An event log is the most common

input for process mining, consisting of a collection of events (i.e. action recorded in the log, e.g.,

the start, completion, or cancellation of an activity for a particular process instance). Each event

refers to an activity (i.e. a well-defined step in some process) and is related to a particular case (i.e.

a process instance, e.g., customer orders, insurance claims, etc.). Event logs may store additional

information about events, e.g. who executed a task, the cost of an event. (van der Aalst et al.,

2012)
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Process mining may cover different perspectives. The control-flow perspective is concerned

with the workflow, i.e. the ordering of activities. The purpose of mining, through this perspective,

is to obtain a good characterization of all the possible paths. Several process notations can be used

to describe the workflow (e.g., Petri Nets, BPMN, or UML activity diagrams). The organizational

perspective gives focus on information about the resources or attribute generators, i.e. which ac-

tors performed the events. The goal is to either to structure the organization by classifying people

in terms of roles and organizational units, or to show the social network, and the relations between

individual actors. The case perspective focuses on the properties of the cases. It characterizes the

cases by the values of the corresponding data elements. For example, characterizing a replenish-

ment order according to its supplier or the number of products ordered. The time perspective is

concerned with the timing and frequency of events. The discovery of bottlenecks, measurement

of service levels, or monitoring the utilization of resources, can be done when the events bear a

timestamp. (van der Aalst, 2011)

Process mining can be divided in three main categories: process discovery, conformance

checking and enhancement. Figure 2.1 shows an overview about process mining.

Figure 2.1: Positioning of the main applications of process mining: discovery, conformance, and
enhancement (van der Aalst, 2011)

Process discovery extracts process models from the observed behaviour. It takes an event log

and produces a model without using a-priori information. The discovered model is typically a

process model (e.g., a Petri net, BPMN, or Casual Nets), however, the model may also describe

other perspectives (e.g., a social network). The process models reflect the behaviour described of

the log, capturing the control-flow between the activities that are observed in or are implied by the

event log. Various automated process discovery methods have been proposed:

• Alpha algorithm: one of the first techniques used in process discovery, it represents the

causality from a set of event logs (e.g., succession and parallelism of events). However,

alpha algorithm has some limitations while dealing with short loops, noisy data and un-

structured processes because it assumes the log must be complete and there should not be
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any noise in the log. Most of the other techniques were inspired by this technique. (Van Der

Aalst, 2004)

• Fuzzy Miner: it provides a dynamic view of the process, abstracting from certain details

over time. It relates the frequency and correlation of the data, allowing it to deal well with

noisy data and the incompleteness of data. (Günther and Van Der Aalst, 2007; Günther,

2009)

• Heuristic Miner: is simple and quick and generates a dependency graph from the events

occurring in a workflow log. It deals well with noise and incompleteness of logs while

providing the dependency between events. It depends on a few parameters enabling to deal

with large data sets maintaining its quickness, however some of those parameters are not

intuitive to define. (Weijters et al., 2006; Weijters and Ribeiro, 2011)

• Genetic Miner: combines genetic algorithms with Heuristics Miner to decide whether a

process model in a population fits the log, or that the population needs to be updated. It is

capable of detecting non-local patterns in the event log and is described to be fairly robust

to noise, though the models returned are static. (Alves De Medeiros, 2006; van der Aalst

et al., 2005)

• Inductive miner: removes infrequent activities and paths , however it cannot deal with

duplicate activities in the event log (Buijs, 2014) or with incomplete logs (Leemans et al.).

• PALIA: can consider infrequent behaviour (Fernández-Llatas et al.) and has some clus-

tering techniques that allow a good behaviour with noisy data and incomplete logs. Conca

et al. (2018)

Process conformance techniques are used to verify to what degree the execution of the pro-

cesses conforms with the reference model that is defined (Carmona et al., 2018). It compares

the reference model with the event log generated after the inference. To quantify the relationship

between the process models and the event logs, certain notions and techniques are used. Recall,

also called fitness, quantifies how much of the behavior that was observed in the event log fits

the process model (Mannhardt et al., 2016; Carmona et al., 2018). Precision quantifies how much

behavior that was never observed in the event log is allowed in the discovered model (Adriansyah

et al., 2013; Tax et al., 2018). Generalization quantifies how well a process model generalizes the

behavior that is possible in the business process but was never observed in the event log (van der

Aalst et al., 2012).

Van Der Aalst (2018) formulates different propositions that describe expected or desired prop-

erties of conformance measures. Syring et al. (2019) uses those propositions to evaluate the current

conformance measures.

Process enhancement extends or improves an existing process model with further information

about the actual process. This information is recorded in some event log and regards different



State of the Art 12

process perspectives (e.g., process performance). Some examples can be found in the literature.

(Günther, 2009)

Process mining has been increasingly used in a wide range of applications areas such as

healthcare (Araghi et al., 2018), logistics (Rudnitckaia et al., 2019), telecommunications (Mahen-

drawathi et al., 2015), insurance (Suriadi et al., 2012), fraud detection (Jans et al., 2011). Typical

process mining applications are used with structured data that clearly defines them.

Applications with less structured data have been increasing (as discussed in the section 2.2.3),

with activity locations being used to map the events detected. Fernandez-Llatas et al. (2015)

applied process mining techniques in combination with ILS to discover deployed processes in a

surgical area of a hospital. The actions happening at each location were inferred according to

the stages of the process, allowing to discover the steps of the process followed by each patient,

according to the locations he went through. An overview of the process was accomplished by

gathering all the patients’ paths.

Similar approaches for visualizing patient’s pathways are proposed by Araghi et al. (2018) and

Miclo et al. (2015). A detailed literature review of process mining in healthcare was developed by

Rojas et al. (2016).

The integration of ILS to model processes, has also been applied in shopping areas to dis-

cover customer paths. Dogan (2020) modeled and analysed the differences between the paths of

customers purchased and non-purchased in a supermarket. A similar analysis was done compar-

ing the preferred stores in a shopping mall according to the customer’s gender by Dogan et al.

(2019). Hwang and Jang (2017) verified that the customers’ pathway in the store could be altered

by changing the display, proving it with two reference models constructed from collected event

logs, with the different displays.

Suriadi et al. (2012) used GPS data to extract relevant process information in a delivery com-

pany. It compared information data from defined goods’ delivery routes between distribution

centres and stores, and the GPS-related events data captured during those routes (e.g., coordinates

when door opens). The GPS entries were associated with the respective journey by correlating it

with the route data, and associated knowledge of the process (e.g., the vehicle ID of the GPS cor-

responds to the vehicle ID associated with a certain delivery journey). The sequence of locations

that each vehicle passed through in a journey was discovered, obtaining the various routes taken

between two endpoints and identifying the fastest and optimal delivery routes.

To use process mining techniques, there are some concerns that need attention. Data quality

and respectively, event log quality, are one of the main concerns when using process mining tech-

niques. Martin (2019) presented the opportunities in the integration of ILS data to surpass some

of the quality issues considered important in the area of healthcare, such as incorrect/imprecise

timestamps and imprecise resource information. When using low-level data, like geolocation data

or sensor data, to discover the process models another problem arises. As seen before, each event

needs to correspond to a certain activity, which it does not occur with low-level data, creating an

abstraction gap between the data. Senderovich et al. (2016) proposed to map the sensor data to
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event logs in a knowledge-driven approach. It uses different process knowledge that can be de-

rived from existing sources, such as process-related documents or interviews with process experts,

regarding the actors and activities to resolve the ambiguities.

2.4 Synthesis

The literature review allows to conclude that spatial data is already being used in several applica-

tions, allowing to extract useful information and knowledge. Data mining techniques are specially

relevant with such complex data sets.

Inference of location-related events, can also be done using different types of data apart from

spatial data. Sensor data represents one of the main sources of accurate events’ location, especially

in ILS.

Process mining stands as a prominent techniques to extract knowledge from real processes and

corresponding events. It is especially used with well-structured events and data, as seen by appli-

cations in many different areas, and uses event logs as the most common input. Some examples of

process mining applications with location-based events, although not so common, were presented.

However, most of these applications use ILS. Apart from these applications, there are different

proposed frameworks to infer events with low-level data, like geolocation data.

The lack of process mining applications using GPS and OLS, supports the motivation of this

work.



Chapter 3

Detection of Vehicle-based Operations

In this chapter, the methodology for the inference of vehicle-based operations from geolocation

data is described. Tracking the geographic location of vehicles, geolocation data can be generated

and used to discover where vehicles stopped, which is the first step for identifying stationary

events. These events will be grouped into clusters taking into account their location. The higher

the density of the cluster, the more likely it is that a relevant vehicle-based operation occurs in

the location of the cluster’s centroid. Figure 3.1 shows an overview of the whole process from

the raw data to the events identification. The characterization of geolocation data is described in

Section 3.1, while its treatment process is described in Section 3.2. Three different approaches

for the detection of stationary events are presented in Section 3.3 and two distinct strategies for

the identification of the most probable location of the vehicle-based operations are presented in

Section 3.4.

3.1 Data

A geolocation entry is a tuple that describes the position on Earth of a person or object at some

time instant. Eventually, some annotation may be added to geolocation entries in order to provide

further information.

Definition 1 (Geolocation entry). Let the geolocation of a person or object (d) at a specific time

instant (t) be defined as the tuple l = (d, t, lat, lon), where lat and lon identifies the latitude and

longitude specifying a position on the surface of Earth. Given two tuples l1 and l2:

• the function time(l1, l2) computes the interval of time between instants of l1 and l2;

• the function dist(l1, l2) computes the orthodromic distance between the position of l1 and l2;

• the function speed(l1, l2) computes the average speed of the movement from the position of

l1 to l2;

14
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Figure 3.1: Overview of the whole process from the raw data to the operations inference
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3.2 Data Preparation

Collecting geolocation data consists of producing valid sequences of geolocation entries. Data

noise and errors that may be present on geolocation data are challenging issues that need to be

dealt beforehand. These errors will be divided into two different categories: random and gross.

Random errors are mostly related with positioning errors, such as the GPS signal accuracy.

For example, in satellite-based radio navigation systems (e.g. GPS trackers), different readings at

the same location may vary up to 7.8 m (95% probability).1 These errors are addressed during the

event’s detection, which is described in the following Section 3.3.

Gross errors may be related with different factors caused by irregularities on the communica-

tion equipment, human fault or other conditions. These errors may have significance. An example

of this type of errors is the occurrence of two consecutive signals sent in a short time, or even at

the same time, by the same vehicle that are very far away from each other. The vehicle speed is

usually limited according to the environment, for example in urban environments the speed is on

average restricted to 100 km.h−1, however data could show the movement of vehicles with higher

vehicle speeds. This can happen for different reasons such as: (a) two vehicles are using the same

ID; (b) the signal had transmission problems generating an unusual error (several hundred meters);

or (c) the information was misinterpreted by the server.

In order to address these issues, the application of a filter is proposed to guarantee that every

pair of consecutive geolocation entries makes sense in some context.

Definition 2 (Geolocation sequence). Let L = [l1, l2, ..., ln] be a time series of geolocation entries

(tuples) of the same person or object, δ a maximum distance threshold, τ and Γ a minimum and a

maximum time thresholds, and υ a maximum speed threshold. L is a valid geolocation sequence

if:

∀lx,ly in L[y = x+1 ∧ dist(lx, ly)< δ ∧ τ < time(lx, ly)< Γ ∧ speed(lx, ly)< υ ]

An invalid geolocation sequence may be transformed into two potential valid subsequences by

splitting the first x elements from the remaining ones. The value x is defined by index for which the

aforementioned condition is not satisfied.

The maximum distance threshold, δ , deals with consecutive entries that are distant from each

other, thus not presenting a valid relation regarding the objective of finding stationary events. This

can happen due to some gross errors presented before.

The minimum time threshold, τ , along with the maximum velocity threshold, υ , allows to

tackle one of the problems identified, the wrong vehicle identification. It may originate entries

with the same, or very close, timestamp in very distant places, generating very high speeds between

consecutive entries, which do not fulfill the conditions to be considered a valid sequence. With

the simple application of the filter, both the correct and wrong identified vehicle locations would

be excluded. In order not to lose relevant and correct information, when some entry doesn’t fulfill

1www.gps.gov/systems/gps/performance/accuracy/

www.gps.gov/systems/gps/performance/accuracy/
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the defined thresholds, relatively to its predecessor, this entry is filtered and the measures (time,

distance and speed) associated with the adjacent entries are recalculated. This processing allows

to surpass the wrong vehicle identification, while keeping the data from the correctly identified

vehicle. Figure 3.2 demonstrates how this problem is tackled.

Figure 3.2: Representation of the application of the filter to surpass the wrong vehicle identifica-
tion

The maximum time threshold, Γ , is defined to address the missing data issue. Based on the

typical operation of the fleet tracking devices and confirmed by the observation of the data, the

geolocation is often not sent when the vehicles are not operating, mostly due to energy saving

measures. As a consequence, consecutive entries may have a time difference of several hours,

in which it can’t be confirmed the vehicle activity, so those entries have been ignored. These

situations happened for example when the vehicle finished its service for the day, normally in the

end of the day or night, and only started a new route in the morning, or days after.

An example of the application of the filtering with some defined thresholds is presented in

Figure 3.3. Each color represents a different geolocation sequence. In the purple sequence an

outlier can be detected in the left upper corner, with dashed lines connecting it to the adjacent
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entries. This entry does not satisfy all the thresholds, so it will not be part of the sequence.

The next point will then be compared based on the thresholds and the correct sequence will be

considered, ignoring thus the outlier.

Figure 3.3: Representation of the filter’s with a set of defined thresholds

3.3 Identification of Stationary Events

According to Ribeiro et al. (2020a), a stationary event is a motionless activity, i.e. the location

remains the same during the execution of the activity. In order to take into account the gross

errors derived from the potential positioning inaccuracy, a less strict definition of stationary event

is necessary.

Definition 3 (Stationary Event). Let L be a valid geolocation sequence. A stationary event E is

a subsequence of L with at least two elements. The first and last elements of the subsequence

define the start and end of the event. All elements of the subsequence must be within a given range

of distance, time, and/or average speed values. The following functions are defined for a given

stationary event E:

• the function location(E) identifies the centroid c = (latc, lonc) defined by the elements of

the subsequence, which represents the geolocation of E.

• the function duration(E) computes the duration of E, which consists of the time difference

between the first and last entries of the subsequence.

• the functions start(E) and end(E) identifies the time instants of the first and last entries of

E.
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The grouping of geolocation entries in a single stationary event can be computed using dif-

ferent strategies: with or without aggregation of pairs of geolocation entries. In this work, both

strategies are considered in three distinct approaches to detect stationary events. E1 poses as the

naive strategy defining an event using just two consecutive locations. E2 is a sequential analy-

sis working well with streams of data. E3 exploits the fragmentation resulting from the filter,

searching for the start and end of events by looking firstly at the extremes of the sub-sequences.

• E1: a stationary event is defined by SE1, a pair of consecutive entries such that the entries

must be less than 15 m away from each other. The centroid of these two entries defines the

location of the event. No aggregation is considered in this approach, which means that, if

there are 10 consecutive entries in the same location, then 9 different stationary events will

be identified in that location.

• E2: a stationary event is defined by SE2, a sequence of geolocation entries in which every

element must be less than 15 m from the elements’ centroid. The distance condition is

computed regarding the last existing centroid, rather than the last entry. It is guaranteed

that consecutive entries in the same location are not separated in two different events. The

centroid of all entries in the sequence defines the location of the event. Aggregation is

considered in this approach, which means that, if there are 10 consecutive entries in the

same location, then only one stationary event will be identified in that location. In this

approach, the last entry of an event may be the first entry of another event.

• E3: a stationary event is defined by SE3, a sequence of geolocation entries in which the first

and last elements must be less than 15 m away. The centroid of all entries in the sequence

defines the location of the event. Such as in E2, aggregation is considered in this approach.

Unlike E2, the last entry of an event may not be the first entry of another event.

The application of the 3 different approaches is represented in Figure 3.4. In all three ap-

proaches the movement of consecutive elements must be performed at a maximum average speed

of 1 km.h−1. The flags correspond to the number of entries that are aggregated in each event. E1

generates consecutive events in the same location if the geolocation remains the same.
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Figure 3.4: Representation of the different approaches for event identification

3.4 Inference of Vehicle-based Operations

To infer the vehicle-based operations from geolocation data, stationary states of vehicles, which

may identify some motionless event, can be used. Examples of these events are vehicle refuelling,

bus stops, breakdowns and traffic stops. Spatial analysis can be conducted to pinpoint where

stationary events occur frequently. Hence, stationary events may be grouped into clusters taking

into account their characteristics (e.g. proximity, duration). The higher the density of the cluster,

the more likely is that a relevant process event occurs in the location of the cluster. In this work,

two different spatial analysis strategies are considered for grouping stationary events: overlapping

analysis and clustering. Clustering algorithms seems the logical approach since these algorithms

aim to group objects that are similar to each other. Overlapping analysis is inspired by heat maps,

which are used to represent highly frequented places.

3.4.1 Overlapping Analysis

A stationary event is defined by two or more consecutive geolocation entries, which can be used

to compute a centroid that represents the location of the event. To identify the area where events

are more likely to occur, the events are transformed into circles and intersected. This approach is

based on Ribeiro et al. (2020b), where the generated areas represent the walking accessibility of

individuals to public transports.

Let X be a stationary event, and Y = [l1, l2, ..., ln] the geolocations entries that define X . The

centroid of X is computed using the coordinates of all geolocation entries in Y . The orthodromic

distance between the centroid (c) and a geolocation entry (l) in Y is provided by the function

dist(c, l). The circle that represents X is defined by its center and a radius with value of 3 ×7.8 m

(the GPS accuracy) −max
l in Y

dist(c, l). Stationary events characterized by all geolocation entries

in the very same location are represented by bigger circles. This approach penalizes events with

dispersed entries in space, mitigating the random location errors related to the GPS accuracy.
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The areas with a high overlap of circles are probable locations for the occurrence of some

process event. The intersection of overlapped circles is used to identify the centroid of the process

event, while the union can be used to represent the area of the cluster. Neighbour circles are

excluded from the cluster if the area of the cluster does not cover at least 25% of area of the union.

In this work, the areas with less than three overlapping circles are discarded. Figure 3.5 illustrates

the computation of the overlapping analysis. It’s important to note that the creation of the clusters

starts always with the biggest intersection in terms of magnitude and area. As an example, the

intersection of the three bottom circles loses its support after the computation of the red cluster,

since the circles belonging to the cluster are discarded (i.e. they cannot belong to more than one

cluster).

Figure 3.5: Illustration of the overlapping analysis

In Figure 3.6, a visual representation of the overlapping analysis is presented using the distinct

approaches for detecting stationary events presented before. The coloured circles correspond to

the clusters computed, with every color distinguishing each cluster.
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Figure 3.6: Representation of the overlapping analysis for inference of vehicle-based operations
using the different stationary events detected

3.4.2 Clustering

DBSCAN is a clustering algorithm proposed by Ester et al. (1996) that stands for: Density Based

Spatial Clustering for Applications with Noise. This algorithm clusters points that are close to-

gether in the feature space, i.e. where the density is high enough, while leaving sparsely located

points unclustered as noise. This algorithm is widely used in theory and practice due to its ability

to detect clusters of arbitrary shape, without having to specify the number of clusters a-priori, as

opposed to partitioning algorithms such as k-means clustering (MacQueen, 1967). DBSCAN also

has a clear definition of noise, is robust to outliers and has low complexity.

DBSCAN takes two parameters: MinPts, the minimum number of points to form a cluster and

Eps, a distance threshold. The algorithm examines the Eps-neighborhood of each data point. The

Eps-neighborhood of a data point p corresponds to all the points within a distance lower or equal

than the value of Eps. If the Eps-neighborhood of p contains at least MinPts (including itself),

the data point is considered to be a core point and a cluster is started. The definition of density-

reachable points is presented, with a point p being density-reachable from a point q if q lies within

the neighbourhood of p and q is a core point.

Definition 4 (DBSCAN: Directly density-reachable). A point p is directly density-reachable from

a point q with respect to Eps and MinPts if

• p ∈ NE ps(q) and

• |NE psq)| ≥MinPts (core point condition)

Definition 5 (DBSCAN: Density-reachable). A point p is density-reachable from a point q with

respect to Eps and MinPts if there is a chain of points p1, ..., pn, p1 = q, pn = p such that for all

i = 1, ...,n−1 : pi+1 is directly density-reachable from pi.
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The data points in the Eps-neighborhood of the core point, p, i.e, the points density reachable

from p, are then visited. If there are less than MinPts within its neighbourhood, the point is

considered to be a border point, otherwise if its neighborhood has more than MinPts, is regarded

as a core point and its neighborhood is considered as part of the cluster. When all the points in the

cluster have been found, a new random and unvisited point is set as the new starting point and the

process is repeated until all the points are visited.

Figure 3.7 illustrates the concepts of DBCSCAN, with MinPts = 4 and Eps as the circles

radius. Point A and the other red points are core points, because within their Eps-neighborhood

are contained at least 4 points (including the point itself). Points B and C are not core points,

but they are reachable from A, since they belong to the Eps-neighborhood of other reachable core

points, making them border points. The cluster is formed by the core points reachable from one

another, and the border points reachable from them. Point N is a noise point that is neither a core

point nor directly-reachable.

Eps

Figure 3.7: Illustration of the DBSCAN cluster model

GDBSCAN (Generalized Density Based Spatial Clustering of Applications with Noise) is

a generalization of the algorithm DBSCAN that extends the clustering by considering nonspatial

attributes of the data (Sander et al., 1998). The stationary events discovered in Section 3.3, account

for different characteristics that can entrust the events with different grades of relevance when

clustering them. Using GDBSCAN a sort of weighted clustering is computed when calculating

the cardinality of the objects’ neighborhoods.

The events’ duration and the average distance between the centroid and the entries is used to

compute a weighted cardinality function wCard for the sets of objects (S). The wCard function

originates a new condition in the definition of density-based clusters, wCard(S)≥MinCard, gen-

eralizing the condition |NE ps(o)| ≥MinPts presented in DBSCAN, where cardinality is basically

a special case of a wCard function.

The definition of density-reachable points also suffers some modifications. With the predicate

MinWeight for a set S of objects, be defined as true if wCard(S) ≥MinCard. And extending the

distance-based neighborhood NE ps, to non-purely spatial neighborhoods, NPred, as defined by

Sander et al. (1998).
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Definition 6 (GDSBCAN: Directly density-reachable). A point p is directly density-reachable

from a point q with respect to NPred and MinWeight if

• p ∈ NNPred(q) and

• MinWeight(NNPred(q)) = true (core point condition)

Definition 7 (GDBSCAN: Density-reachable). A point p is density-reachable from a point q with

respect to NPred and MinWeight if there is a chain of points p1, ..., pn, p1 = q, pn = p such that for

all i = 1, ...,n−1 : pi+1 is directly density-reachable from pi.

The clustering algorithm is similar to the one presented for the DBSCAN, except for the defi-

nitions of density-reachability.

Regarding the features chosen for computing the cardinality, the event’s duration seemed an

appropriate choice on the grounds that higher duration events tend to occur in predictable places

(i.e. planned stops, terminal), so they are more trustable when computing the clusters.

A set of categories to classify duration have to be created based on the data and process knowl-

edge. An even distribution of the events in the distinct categories can be defined as the metric for

the creation of the categories. Alternatively, process knowledge can be used to create categories

that may correspond to different defined activities. This distribution of the events based on its du-

ration can be considered as a normalization. If the weight was proportional to the duration, clusters

could be generated in places where random long events occurred (i.e. vehicle breakdown), because

its weight would be higher than the minimum cardinality of the cluster. This normalization avoids

the occurrence of these errors.

The average distance between the event’s centroid and entries points to the existence of small

movements within the event. A penalty for the events with higher distance is defined, since these

events can be considered less stationary so less trustworthy. The total weight of the penalty is

dependent on the cadence of the data, because events generated with low cadency data have con-

siderable durations, and – consequently – relevance so they should not have high penalties. In a

dataset with a minimum cadence of 30 seconds, the maximum penalty of points’ cardinality when

clustered is fixed in 25%.

In order to determine the best parameters to use when using the GDBSCAN, the heuristics

proposed for DBSCAN can be followed, as suggested by Sander et al. (1998). Thus, the appro-

priate values for MinPts and Eps have to be determined. The MinPts is set firstly, with Ester et al.

(1996) proving that this parameter can be set to MinPts=4, for most databases (2-dimensional

data). Sander et al. (1998) generalize for different data dimensions and suggest setting it to twice

the dataset dimensionality, i.e. MinPts = 2×dim. In this work MinPts=3 was also tested in order

to detect less dense clusters that may correspond to uncommon stops. The determination of Eps

can be done according to domain knowledge and application domain, or using proposed heuristics.

Ester et al. (1996) define a function k-distance, mapping each object to the distance from its k-th

nearest neighbor and then sorting them, originating a sorted k-distance plot. They propose the
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analysis of the fourth nearest neighbor, while Sander et al. (1998) suggests using the (2×dim−1)

nearest neighbor, which is the approach followed in this work. To determine the Eps parameter

for DBSCAN, a threshold point can be found while analysing the sorted k-distance plot, that sepa-

rates the noise points from the clustered points. All objects with a higher k-distance value than the

threshold will then be noise, all other objects will be assigned to some cluster. Figure 3.8 shows a

sorted k-distance plot from a sample database presented in Sander et al. (1998).

Figure 3.8: Sorted 3-distance plot presented in Sander et al. (1998)

The threshold point is an object in the elbow of the sorted k-distance plot. To detect the elbow

point and corresponding Eps value, the approach and corresponding libraries proposed by Satopaa

et al. (2011) were followed. The elbow point matches the point with maximum curvature, and a

sensitivity parameter can be tuned, in order to be more or less conservative when declaring the

elbow. This sensitivity parameter defines how many “flat” points are expected to be seen in the

unmodified data curve before declaring an elbow. Different values for the sensitivity parameter

can be tested, generating different values for the Eps parameter.

The ideal objective is to find an optimal sensitivity parameter that could be used across the

different datasets. However, this is only possible if there is data to validate the generated results.

If so, a calibration of the model can be done using that validation data, otherwise, a recommended

standard value for the sensitivity parameter can be used. Both situations are present in Chapter 4,

with and without validation data. A sensitivity parameter of 10 is recommended according to the

results obtained in Section 4.1.

The areas where operations are more likely to occur are computed using the grouped events

(clusters). These events are transformed into circles following the same strategy as in Section 3.4.1.

In Figure 3.9, a visual representation of the clustering is presented, using the distinct approaches

for detecting stationary events presented before. The coloured circles correspond to the clusters

computed, with every color distinguishing each cluster. In the flags from the picture, the different

duration classifiers can be distinguished.
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Figure 3.9: Representation of the clustering for inference of vehicle-based operations using the
different stationary events detected



Chapter 4

Case Studies

In this chapter, three case studies are presented to validate the proposed methodology.

The first two case studies involve two distinct bus networks, namely a public transport network

in Rio de Janeiro, and other operating in Madeira, managed by Horários do Funchal. The main

difference poses in the structure of the available information. On the one hand, in the public

transport network of Rio de Janeiro the geolocation data does not have any associated operation,

so the application of the methodology identifies all the stationary events and discovers the vehicle-

based operations based, solely, on the spatial analysis of those events. The main objective of this

case study is the demonstration of the effective detection of the vehicle-based operations. The

several approaches for detecting events and operations are benchmarked in this case.

On the other hand, in Horários do Funchal the bus stops are already identified by the fleet

tracking system. Other operations are inferred using the proposed methodology. The sequence of

operations is more structured and trustable. The analysis of the sequence of operations and discov-

ery of the process is executed using process mining techniques, and possible areas of exploration

are pointed out.

The last case study involves a logistics company. The detection of logistics vehicle-based

operations in real-time, namely the load/unload of goods, is achieved through the application of

the methodology.

All case studies present a similar base structure. Firstly, each case study is characterized,

followed by the analysis of the available data. The events’ identification is then described and the

vehicle-based operations are inferred. After inferring the operations, the results for are presented

and discussed. A schematic with the work plan for each case study is presented in Figure 4.1.

27
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Figure 4.1: Schematic with the work plan for the distinct case studies

4.1 Public Transport Network of Rio de Janeiro

4.1.1 Context

Rio de Janeiro is the capital of the state of Rio de Janeiro, Brazil’s third-most populous state,

with 6.775 million inhabitants within an the area of 1.200 km2, according to Instituto Brasileiro

de Geografia e Estatística (Instituto Brasileiro de Geografia e Estatística, 2021). The city has

several demographic elements such as beaches, ridges, hills and mountains. The Centre of Rio

lies on the plains of the western shore of Guanabara Bay. The greater portion of the city extends

to the northwest on plains and on hills and several rocky mountains. In the metropolitan area

of Rio de Janeiro, 103 companies operate around 15.500 buses that do around 4 million travels

each month. About 150 million passengers are transported each month, representing a 37% modal

share. These numbers were calculated by Fetranspor, Rio’s public transport federation, in 2019

(Fetranspor, 2019).
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The geolocation data generated by the buses is normally used for location monitoring only. The

high availability of geolocation data in this context creates opportunities for the development of

new systems. This case study intends to demonstrate the application of the proposed methodology,

described in Section 3, to detect stationary events and the vehicle-based operations. The impact of

the size of the data and corresponding cadence is also measured. The exploitation of geolocation

data from buses to detect different types of events, such as traffic incidents, driving events or

service operations, can unravel bottlenecks in the routes and support its planning.

4.1.2 Data Available

A publicly available web service 1 was used to collect geolocation data of buses that run in the city

in a 54 days period, from January 21st to March 21st of 2019.

Each entry identifies, at some time instant, the geolocation and speed of a specific vehicle,

performing a specific service (i.e. a bus line). An example of the data is presented in Table 4.1.

Table 4.1: Structure of data used in the case study of Rio de Janeiro

Date Time Vehicle Line Latitude Longitude Speed

01-25-2019 08:50:39 C51623 371.0 -22.88327 -43.34256 37.0
01-25-2019 08:55:43 C51556 371.0 -22.887461 -43.28273 8.0
01-25-2019 08:56:37 C51641 371.0 -22.884029 -43.34251 19.0

The cadence of the geolocation data, i.e. the time difference between consecutive entries, is

not constant, ranging from 30 seconds (11% of the data) to more than 300 seconds (1% of the

data). Most of the data was collected with 60 seconds intervals (62%). The distribution of the

data’s cadence is presented in Figure 4.2.

Figure 4.2: Distribution of the data cadence of geolocation data in different cadence bins

1http://api.iplanrio.rio.rj.gov.br/SERVICOS/Transporte_ObterTodasPosicoes

http://api.iplanrio.rio.rj.gov.br/SERVICOS/Transporte_ObterTodasPosicoes
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Different bus routes are analysed to demonstrate the proposed methodology. The first one,

route 371, connects Praça Seca to Praça da Republica from 4 AM to 12 PM every day. It has

72 stops in each direction, through an approximate distance of 26 km. Its total trip duration is

approximately 67 minutes. The second, route 629, connects uninterruptedly Irajá to Saens Peña.

It has 99 stops, through an approximate distance of 31 km. The total trip duration for this route

is approximately 79 minutes. Different vehicles executing these routes are analysed. The vehicles

are specified in Table 4.2 together with the corresponding number of geolocation entries.

Table 4.2: Number of entries for each vehicle, line 371 (left) and line 629 (right)

Vehicle Number of entries

C51559 48927
C51575 49548
C51564 47841
C51567 47625
C51608 47185

Vehicle Number of entries

B27003 47885
B27005 47680
B27131 47653
B27105 47531
B27051 47425

The methodology is tested with different datasets, which include a distinct number of vehicles

in order to avoid specific misbehaviours that could induce wrong results, and to test its perfor-

mance according to distinct quantities of input data. The geolocation data of groups of 1,3 and 5

different vehicles is used, which are described in Table 4.3 and Table 4.4.

Table 4.3: Number of entries for each group of buses from line 371

Groups of buses Number of entries

{C51559} 48927
{C51559, C51575, C51564} 146316
{C51559, C51575, C51564, C51567, C51608} 241126

Table 4.4: Number of entries for each group of buses from line 629

Groups of buses Number of entries

{B27003} 47653
{B27003, B27005, B27131} 143218
{B27003, B27005, B27131, B27105, B27051} 238174
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4.1.3 Data Preparation

As stated in Section 3.2, the data is filtered in order to avoid errors that could lead to wrong results.

The thresholds presented in Definition 2 are chosen according to the characteristics of the public

transport network of Rio de Janeiro, as following:

• maximum distance threshold, δ : consecutive entries that are distant from each other do

not present a valid relation to identify stationary events. Thus, a δ = 1000 m is chosen,

which seems a proper value for this case.

• maximum speed threshold, υ : given that the buses are operating in an urban environ-

ment, speeds higher than 100 km.h−1 are considered to be infeasible. Hence, υ is fixed in

100 km.h−1.

• minimum time threshold, τ: a small value of τ is needed, in order to avoid entries with the

same timestamp that can be originated by errors on the bus identification, as stated before.

Hence, a τ = 1 s is defined.

• maximum time threshold, Γ : based on the data analysis, it was noticed that the geolocation

is often not sent when the bus is not operating. As a consequence, consecutive entries may

have a time difference of several hours. So, a Γ = 3 h is defined for addressing these cases.

These cases happened when the bus finished its service for the day, normally at the end of

the day or night, and only started a new route in the morning.

4.1.4 Model Calibration

As mentioned in Section 3.4, there are some parameters that need to be defined in order to group

the stationary events into clusters and to identify where these events tend to occur.

Firstly, it is important to define the duration categories for computing the clustering. A high

range of events’ durations is present in the datasets, especially with aggregation of pairs of geolo-

cation entries, as presented in Section 3.3 with strategies E2 and E3. The categories are created

based on process knowledge and the data distribution, and correspond to different activities.:

• 30 seconds or less: cases which are commonly related to traffic constraints (e.g. traffic

jams, traffic lights);

• between 30 seconds and 2 minutes: cases which normally identify bus stops events;

• between 2 and 5 minutes: cases which usually include the start and end of the bus services;

• more than 5 minutes: cases which tendentiously identify the depots or vehicle-related

operations.

Following the approach described in Section 3.4.2 describing a GDBSCAN implementation,

the MinPts and Eps values have to be determined. Although the bibliography suggests a general-

ization of the parameter MinPts to MinPts=4, which corresponds to 2×dim, the value of MinPts
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was set to 3. Due to the sparsity of the data, this value allows a greater detection of uncommon

and shorter stops.

The 3-th nearest neighbor is computed, following the (2×dim−1) nearest neighbor approach,

since 2-dimensional data is being used, and the sorted k-distance plot is plotted accordingly, as

represented in Figure 3.8. The detection of the elbow point for different sensitivity parameters is

done following Satopaa et al. (2011), generating the vertical lines plotted in the same figure. The

distance value, in the y-axis, of the intersection between the vertical lines and the sorted k-distance

plot corresponds to the Eps value to be used. Some sensitivity parameters and corresponding

vertical lines were plotted as example. A special line, referred as knee_online, corresponds to the

global maximum, which is calculated by Satopaa et al. (2011), stepping through each element.

Figure 4.3: Sorted k-distance plot, and different sensitivity parameters plotted as vertical lines

For the purpose of finding the optimal sensitivity parameter, the real bus stops locations from

one of the lines, line 371, were used for validation. They were matched with the detected bus stops

obtained from the clusters of different datasets. To this end, the number of stops identified and

the percentage of clusters corresponding to real stops were computed and compared. These values

represent Recall and Precision measures, which can compare the performance of the approaches

and parameters. Recall is defined as the fraction of correctly identified bus stops, while Precision

is the percentage of detected bus stops that were labeled as true bus stops (Pinelli et al., 2013).
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The matching between a real bus stop and the detected bus tops was considered to be valid if

they were within 50 meters reach. This value was chosen arbitrarily considering that consecutive

bus stops are normally more than 50 meters apart. At the same time, the bus stops located in

different sides of the road, which correspond to different ways of the trajectory, are considered as

the same stop.

Two different analysis were done using the events identified with E2 (described in Section 3.3)

for the datasets regarding the distinct number of buses. A first sensibility analysis, with a unity

variation of the sensitivity parameter between 2 and 30, was executed for different datasets of

bus 371, as shown in Figure 4.4. These values were chosen in order to have a wide interval of

values. The output tends to stabilize with higher sensitivity levels, which is due to non-varying

parameters used for the clustering. The number of stops, represented in red, present a low variation

overall. A substantial variation is detected for lower sensitivities with 5 buses, derived from the

higher number of events detected that can generate a greater number of clusters. Comparing the

different number of buses, it can be noticed that a higher number of buses leads to a greater number

of identified stops, due to the higher number of events. The percentage of matching clusters,

represented in blue, remains almost constant, being its values similar for all the cases.

Figure 4.4: Comparison of the number of identified stops and the percentage of matching clusters
with varying sensitivity parameter following Satopaa et al. (2011)

A second sensibility analysis was performed in order to confirm the conclusions derived be-

fore. Since there are a low number of different Eps parameters covered by the distinct sensitivities,

a linear variation of Eps was executed and the analysis’ parameters compared in Figure 4.5. The

values of Eps differed a little for the different datasets. They were chosen according to their char-

acteristics, based on maximum (knee_2) and minimum level (knee_online), according to Satopaa

et al. (2011). Both the number of stops and the percentage of matching clusters present some vari-

ations between consecutive levels, without many abrupt variations. A similar behaviour can be

noted with 3 and 5 buses, with a decrease in the number of stops for higher values of Eps, however

this variation is more relevant with 5 buses. Contrarily, a small increase in the number of stops can

be denoted with higher values of Eps with 1 bus. Regarding the percentage of matching clusters,

there is not any relevant tendency.
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Figure 4.5: Comparison of the number of identified stops and the percentage of matching clusters
with varying Eps values used in the clustering

A comparison of some relevant sensibility levels and corresponding Eps values are also high-

lighted in Figure 4.6, for the 5-buses dataset.

Figure 4.6: Comparison of the variation of the sensitivity level and the Eps value for the 5-buses
datasets, along with the plot of relevant knee sensitivity levels (2,5,10)

By the analysis of the graphs, it can be concluded that there is not an ideal solution for all

the cases. Despite that, most of the differences are not very substantial, representing a small
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difference in the number of identified stops, so an overall good solution can be selected according

to the different datasets. A sensibility level of 10 is chosen, since it represents a good fit for the

different situations.

The chosen sensitivity parameter can be tested using the data from the bus 629, using the same

analysis. The chosen sensitivity parameter also behaves well with these datasets, as it can be seen

in Figure 4.7.

Figure 4.7: Comparison of the variation of the sensitivity level and Eps value for the 5-buses
datasets of line 629, along with the plot of the chosen sensitivity level of 10

The analysis for the remaining inferred events (E1 and E3) are presented in the Appendix A,

and present similar results to the ones presented before.

4.1.5 Events Identification

After filtering the data, the different approaches for detecting stationary events (E1, E2 and E3)

are applied. In order to compare the application of these approaches, a set of indicators focused on

distance, average speed and duration of the events are considered, particularly: a) the number of

events; b) the average distance between the events’ centroid and entries; c) the average number of

entries per event; d) the average speed within events; e) the average duration of events; and f) the
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average duration between events. Table 4.5 displays the results of these indicators for the different

approaches applied on the different datasets of geolocation sequences from line 371 and 629.

Table 4.5: Methodologies’ comparison for the events identification for lines 371 and 629

Number Line 371 Line 629

Indicators of buses Abbreviation Units E1 E2 E3 E1 E2 E3

Number of events 1 Ne - 6470 1976 1896 10692 2662 2063
3 Ne - 20482 5898 5606 41492 7312 5811
5 Ne - 34537 9782 9330 58983 11929 9096

Average distance between 1 Ed m 0.52 2.67 1.21 0.97 4.06 2.10
the event’s centroid and entries 3 Ed m 0.48 2.71 1.17 0.86 4.54 2.36

5 Ed m 0.48 2.75 1.18 1.42 5.43 2.86

Average number of entries 1 El - 2.00 4.27 4.02 2.00 5.00 5.24
per event 3 El - 2.00 4.47 4.27 2.00 6.67 7.00

5 El - 2.00 4.53 4.30 2.00 5.94 6.19

Average speed within events 1 Es km.h−1 0.01 0.02 0.06 0.01 0.02 0.11
3 Es km.h−1 0.01 0.02 0.06 0.01 0.03 0.13
5 Es km.h−1 0.01 0.02 0.06 0.02 0.03 0.17

Average duration of events 1 Et s 60.66 200.98 183.31 141.43 570.46 657.60
3 Et s 60.96 214.65 199.07 109.78 628.23 717.43
5 Et s 60.75 217.51 200.22 117.39 588.80 671.75

Average duration between 1 Et c s 667.01 2182.39 2300.68 301.76 1209.96 1640.01
consecutive events 3 Et c s 632.60 2194.14 2315.54 232.86 1316.19 1700.51

5 Et c s 629.55 2205.75 2525.35 284.20 1396.99 1730.56

First, it can be noticed that the relations are independent of the number of considered buses, but

may vary according to the data characteristics, such as the line and respective stops. The following

relations and comparisons refer to 1 bus, since they can be transposed to the remaining datasets.

By comparing the three methodologies for the detection of stationary events in Table 4.5, one

can quantify the impact of the aggregation of pairs of geolocation entries. As expected, E1 orig-

inates a greater number of shorter-timed events (NE1,L371(N=1) = 6470, Et ,E1,L371(N=1) = 60.66;

NE1,L629(N=1) = 10692, Et ,E1,L629(N=1) = 141.43) than E2 (NE2,L371(N=1) = 1976, Et ,E2,L371(N=1) =

200.98; NE2,L629(N=1) = 2662, Et ,E2,L629(N=1) = 570.46) and E3 (NE3,L371(N=1) = 1896, Et ,E3,L371(N=1)

= 183.31; NE3,L629(N=1) = 2063, Et ,E3,L629(N=1) = 657.60), with a respective lower average dis-

tance between the event’s centroid and entries. In E1, this last parameter corresponds to the dis-

tance between consecutive entries that respect the stationary conditions. A higher number of

consecutive points in the same place generate different events using E1. It decreases the aver-

age distance between the event’s centroid and corresponding entries since it counts as distinct

events (Ed ,E1,L371(N=1) = 0.52, Ed ,E1,L629(N=1) = 0.97), as opposed to E2 (Ed ,E2,L371(N=1) = 2.67,

Ed ,E2,L629(N=1) = 4.06) and E3 (Ed ,E3,L371(N=1) = 1.21, Ed ,E3,L629(N=1) = 2.10).

While the number of identified events is rather similar for E2 and E3, comparing to E1, a dif-

ference can be noticed between line 371 and line 629. E2 has 5% more events than E3 for line 371

(NE2,L371(N=1) = 1976, NE3,L371(N=1) = 1896), and 30% more for line 629 (NE2,L629(N=1) = 2662,

NE3,L629(N=1) = 2063). This difference may be explained by the difference in the average duration
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of events, which is around the triple for line 629 when comparing to line 371. The average number

of entries per event and the average duration denote inverse relations for E2 and E3, when dealing

with the two lines, that as mentioned, present different duration of events. For shorter events,

regarding line 371, E2 possesses a greater number of entries per event and a greater duration than

E3 (El ,E2,L371(N=1) = 4.27 , Et ,E2,L371(N=1) = 200.98 vs El ,E3,L371(N=1) = 4.02, Et ,E3,L371(N=1) =

183.31). For longer events, regarding line 629, these relations are opposed (El ,E2,L629(N=1) = 5.00

, Et ,E2,L629(N=1) = 570.46 vs El ,E3,L629(N=1) = 5.24, Et ,E3,L629(N=1) = 717.43). These differences

are not substantial in neither case, relatively to the stops’ duration.

Other relations are maintained, apart from the line and duration of events. In E3 the average

distance between the event’s centroid and entries (Ed ,E3,L371(N=1) = 1.21, Ed ,E3,L629(N=1) = 2.10)

is lower than in E2 (Ed ,E2,L371(N=1) = 2.67, Ed ,E2,L629(N=1) = 4.06). This means that E2 is more

sensible to positioning errors than E3. The total number of entries considered is also greater in E2

than E3 (NE2,L371(N=1) = 1976 * El ,E2,L371(N=1) = 4.27 vs NE3,L371(N=1) = 1896 * El ,E3,L371(N=1) =

4.02). In E2, the last entry of an event may be the first entry of another event, but in E3 may not,

which may explain some of these differences.

In Figure 4.8, the events inferred for the line 371 using E2 can be observed and the trajectory

from the bus can be noted along with a few outliers.

Figure 4.8: Events inferred using E2 for the 5 buses of line 371

A comparison of the 3 inference methods can be seen in Figure 4.9, in a zone that corresponds

to one of the terminals of the line 371, near Praça Seca. The difference between the methods tends

to be more evident in terminal and depot locations since E1 creates several events for long stops,

while E2 and E3 create just one. The difference can be spotted through the opacity of the depicted

points, for which more opaque and clear colors correspond to more events in the same place. In

E1, the density and opacity is greater than in E2 and E3, as expected since it generates more

events. The difference in duration between the events of the 3 approaches can be distinguished

in Figure 4.10, where the events are categorized according to their duration and represented with

different colors and shapes. E2 and E3 have longer duration events as it would be expected.
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Figure 4.9: Representation of the inferred events for 1 bus from line 371 according to the different
inference methods

Figure 4.10: Representation of the inferred events for 1 bus from line 371, for the different infer-
ence methods according to their duration

4.1.6 Operations Inference

Regarding the inference of vehicle-based operations, overlapping and clustering were applied on

the stationary events obtained from E1, E2 and E3. For comparing the application of these ap-

proaches, several indicators were assessed. Table 4.6 provides that list of indicators for each in-

ferring vehicle-based operations (overlapping and clustering) and stationary events detection (E1,

E2 and E3) approaches.

There is an absence of results corresponding to the inference of operations using E1 and over-

lapping to infer operations. This is due to the huge computational effort needed to compute the

overlapping with an elevated number of events, as obtained with E1, that would require several

days to compute. Because of that, it was chosen to leave those results out since they represent

infeasible conditions.
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Table 4.6: Methodologies for the inference of operations for lines 371 and 629

Number Abbre- Overlapping Clustering

Indicators of buses viation Units E1 E2 E3 E1 E2 E3

Line 371

Number of clusters 1 Nc - 113 91 92 123 86 84
3 Nc - - 171 171 322 177 187
5 Nc - - 198 196 406 221 220

Covered events 1 Ce % 84.08 68.12 72.00 94.42 88.66 87.96
3 Ce % - 72.09 69.69 96.78 94.44 92.31
5 Ce % - 70.68 70.61 97.80 95.35 95.06

Average number of 1 Cne - 48.14 14.79 14.56 49.66 20.37 19.48
events per cluster 3 Cne - - 24.86 22.46 61.55 34.468 27.21

5 Cne - - 34.91 33.10 83.19 42.20 39.70

Average area of clusters 1 Ca m2 3894.293 4232.13 4068.96 2867.35 4504.99 4414.86
3 Ca m2 - 4480.79 4450.11 2553.29 6167.65 3653.29
5 Ca m2 - 4835.74 4831.88 4157.80 4090.37 4069.70

Max. distance between 1 CdM m 22.68 24.69 23.56 13.66 33.93 32.85
cluster’s centroid 3 CdM m - 27.56 26.53 10.28 28.224 22.58
and events 5 CdM m - 28.03 27.91 11.61 26.53 26.17

Min. distance between 1 Cdm m 5.86 5.94 5.82 3.37 6.52 7.00
cluster’s centroid 3 Cdm m - 5.35 5.57 2.80 4.79 4.60
and events 5 Cdm m - 6.17 5.91 2.45 4.24 4.26

Average duration of 1 Ct s 52.77 96.76 93.42 54.23 173.86 181.257
events in each cluster 3 Ct s - 196.57 185.82 54.87 225.66 242.69

5 Ct s - 169.56 141 53.85 311.51 305.11

Line 629

Number of clusters 1 Nc - 108 93 87 98 75 72
3 Nc - - 149 149 272 146 119
5 Nc - - 202 192 333 184 170

Covered events 1 Ce % 66.96 65.48 63.00 98.05 94.93 93.68
3 Ce % - 52.45 55.70 98.25 93.61 94.17
5 Ce % - 36.99 44.58 98.38 95.23 94.48

Average number of 1 Cne - 66.25 18.74 14.56 106.92 33.69 26.16
events per cluster 3 Cne - - 25.73 21.08 149.83 46.86 44.62

5 Cne - - 21.83 20.44 174.25 61.72 48.92

Average area of clusters 1 Ca m2 3955.97 3813.77 3846.28 4085.43 5584.57 5669.52
3 Ca m2 - 4578.14 4665.23 2704.77 4076.18 5635.91
5 Ca m2 - 4263.68 4540.97 2770.42 4143.17 4630.75

Max. distance between 1 CdM m 21.91 23.62 22.18 28.50 47.80 51.37
cluster’s centroid 3 CdM m - 25.37 25.10 11.32 27.34 45.47
and events 5 CdM m - 24.29 24.74 12.48 28.84 34.44

Min. distance between 1 Cdm m 5.47 5.55 5.14 4.18 8.04 9.79
cluster’s centroid 3 Cdm m - 6.95 6.89 2.00 5.35 8.16
and events 5 Cdm m - 6.83 7.16 2.10 5.55 6.19

Average duration of 1 Ct s 56.83 191.01 209.51 58.77 175.00 200.59
events in each cluster 3 Ct s - 977.55 871.20 66.94 1135.27 1326.06

5 Ct s - 772.38 680.50 65.53 872.12 872.79
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Some existing relations may not be maintained when varying the number of considered buses,

since the computed clusters suffer changes according to the considered data. On the one hand, the

number of clusters (Nc) and the average number of events per cluster (Cne) remains proportional

to the number of buses. On the other hand, the average duration (Cb) and the other representation

indicators (maximum and minimum distance between the cluster’s centroid and events, CdM and

Cdm, and area of clusters, Ca) do not present a regular relation, and may vary according to the data

characteristics, such as the line and respective stops. The following relations and comparisons will

be referred to different buses. Even though there are some combinations that pose as outliers to

the following relations, they will be considered as valid.

When comparing the methodologies for the events identification, a greater number of clusters

were identified with E1 (Nc,E1,L629(N=1) = 98 - 108) comparing to E2 (Nc,E2,L629(N=1) = 75 - 93) and

E3 (Nc,E3,L629(N=1) = 72 - 87), which both comprise aggregation of entries. This is in line with the

number of events identified by each approach, as presented in Table 4.5 with E1, having a substan-

tial greater number of events, which also explains the difference in the average number of events

per cluster. Apart from the different number of clusters, E2 (Ca,E2,L629(N=3) = 4076.18 - 4578.14,

Ct ,E2,L629(N=3) = 977.55 - 1135.27) and E3 (Ca,E3,L629(N=3) = 4665.23 - 5635.91, Ct ,E3,L629(N=3) =

871.20 - 1326.06) present a higher average area of the clusters and a higher duration of the events

in the clusters than E1 (Ca,E1,L629(N=3) = 2704.77, Ct ,E1,L629(N=3) = 66.94), which makes the clus-

ters stronger and more trustworthy. So, it can be concluded that the aggregation of entries, as done

in E2 and E3, allows a better identification of operations.

Comparing the two methodologies for the inference of operations, overlapping analysis gener-

ates in most cases a high number of clusters (Nc), accompanied with a lower percentage of covered

events (Ce), entries per cluster (Cne), area (Ca), average of the maximum and minimum distance

between the cluster’s centroid and events (CdM and Cdm), and duration of events in each cluster

(Cb) than the clustering analysis.

It can be considered that the clustering can achieve better results than the overlapping due

to the higher coverage of events (Ce,Ov,L629 = 36.99 - 66.96 % vs Ce,Cl,L629 = 93.61 - 98.38 %),

resulting in a greater average of events per cluster (Cne,Ov,L629 = 14.56 - 25.73 vs Cne,Cl,L629 =

26.16 - 61.72), although with a smaller number of clusters (Nc,Ov,L629 = 87 - 202 vs Nc,Cl,L629 = 72

- 184). The higher average duration of the events in clustering (Nc,Ov,L629 = 175.00 - 1326.06 vs

Nc,Cl,L629 = 191.01 - 977.55) makes the clusters more trustable. On top of that, the computation

of the overlapping requires a lot more processing time, which makes the clustering a preferable

option.

4.1.7 Visual Representation of Clusters and Exploratory Analysis

According to the representation described Section 3.4, distinct types of clusters can be identi-

fied corresponding to different situations. These types of clusters can be associated with different

graphic representation, ranging from more elongated clusters to smaller ones. The following rep-

resentations were generated using inference method E2 and clustering.
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Elongated clusters may correspond to heavy traffic areas, which provoke consecutive stops and

consequently events with scattered entries. Graphically, they are represented by close circles with

small radius, due to the penalty associated with scattered entries in the events, extending through

the existing road. Two example of this type of cluster can be seen in Figure 4.11.

(a) Line 371

(b) Line 629

Figure 4.11: Visual representation of elongated clusters

Smaller and narrower clusters, on the other hand, should correspond to bus stops in low traffic

areas because the stops occur within a closer range, without having traffic stops close to the bus

stop. The size of the circles may be influenced by the quickness of the stop, since it can detect a

location right before and after stopping. In these situations, the stop is detected but is represented

with a smaller radius due to the penalty that results from the distance between the locations. In

Figure 4.12 some examples of these situations can be observed.

(a) Line 371 (b) Line 629

Figure 4.12: Visual representation of small and narrow clusters

The most dense clusters are presumed to correspond to bus line terminals, since it is where

the buses stop more frequently. Different types of terminals can be detected. In some terminals

where bus tend to stop for longer periods of time, there may be several buses stopped at the same

time, so they are parked inside a greater involving area corresponding to larger clusters, as seen

in Figure 4.13b. Other bus terminals, represented in Figure 4.13a, have faster stops and tend to

stop in a more restricted area, most probably starting a new service a short time after finishing the

previous one.
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(a) Line 371

(b) Line 629

Figure 4.13: Visual representation of dense clusters, which correspond to bus terminals

Apart from bus terminals, there are other dense clusters that should correspond to bus depots.

These clusters are likely to be far away from the rest of the route and stops, and comprise long

stops as it would be expected from a bus depot. The depots however don’t present always the same

characteristics, with some of them occupying larger areas and generating more than 1 cluster, as

seen in Figure 4.14a, and others being more concentrated, like Figure 4.14b.

(a) Line 371
(b) Line 629

Figure 4.14: Visual representation of clusters which correspond to bus depots

Other condensed clusters may also point to potential bottlenecks in the bus trajectory, due to

traffic lights, very congested road crosses or roundabouts, however is more difficult to distinguish

them based on the visual representation only. Some examples can be seen in Figure 4.15.
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Figure 4.15: Representation of condensed clusters that may correspond to bottlenecks

These different points of interest can be used by public transportation companies to help them

with route planning, avoiding the more congested places for example. The municipalities can also

leverage this information when deciding about the cities’ traffic management, for example with

reserved lanes for public transportation.

4.1.8 Temporal Analysis

Additionally to the visual representation of clusters, other targeted analysis can be done in order

to infer complementary information. For example, specific times of the day can be targeted and

compared, like some cases presented next.

4.1.8.1 Day/Night

Day and night periods can be analysed. Considering the day time between 8h00 and 20h00,

and night time between 20h00 and 8h00, a few differences can be noted. In Figure 4.16, which

represents the bus depot for line 371, the events happen totally during the night, from which it can

be concluded that the buses only stop in this depot during the night and should start their service

early in the morning. A different case is represented in Figure 4.17, in which a greater number of

stops is detected during the day, due to the greater number of vehicles in the road. However, it can

be seen that traffic still happens in the roundabout during the night.
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Figure 4.16: Representation of day and night events in bus depot of line 371

Figure 4.17: Representation of day and night events in the area crossed by line 629
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4.1.8.2 Morning/Afternoon

Another possible analysis can compare the morning, considered from 7h00 to 13h00, with the

afternoon, from 13h00 to 20h00. Some patterns in traffic can be identified in this case. For

example, in Figure 4.18, almost all the stops identified in the lowest side of the street correspond

to morning stops, that may correspond to heavy traffic during that time, since there is not any stop

located nearby. On the other hand, in the upper side of the street a greater number of stops occur

during the afternoon.

Another case is present in Figure 4.19, which correspond to a bus terminal of line 629, where

a great concentration of stops can be identified in the right side of the figure, both in the morning

and afternoon. However a set of stops can be identified in the left side of the figure, especially

during the afternoon, that may correspond to a secondary terminal used to stop the buses when the

main one is full.

Figure 4.18: Representation of morning and afternoon events in the area crossed by line 371
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Figure 4.19: Representation of morning and afternoon events near line 629 bus terminal

4.1.9 Influence of Data

As seen in Section 4.1.4, the number of considered buses had impact in the number of identified

stops. In this section, the influence of the quantity of data will be analysed by varying the number

of buses considered as input.

Using the approach E2 for the event identification and the clustering for inferring the opera-

tions, along with the matching between the inferred and the real stops described in Section 4.1.4,

the number of bus stops were computed and compared for a range of different number of buses. A

range from 1 to 20 buses performing line 371 were considered, and the efficacy and efficiency of

the matching was calculated as it can be seen in Figure 4.20.
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Figure 4.20: Comparison of the number of identified stops and the percentage of identified clusters
corresponding to stops for different number of buses from line 371

From the analysis of Figure 4.20, it can be concluded that a higher number of buses considered

allow for a identification of a greater number of stops. Using 1 bus, 46 out of 143 stops were

identified (32%), while using 20 buses this number increased to 105 (73%).

The efficiency, which corresponded to the percentage of clusters matching with existing stops,

presented an inverse relationship. A lower number of buses produced a higher efficiency, maybe

due to a smaller overall number of clusters generated, comparing to larger datasets. With 1 bus,

58% of the clusters correspond to existing stops, while for 20 buses this number decreased to 38%.

A tuning of the clustering parameters should be executed for the different datasets, especially

involving the MinPts. An increase of this parameter for a greater number of buses could lead to

a greater clustering efficiency. However, it is also important to point out that a higher number of

buses produces a higher computational effort.

4.1.10 Discussion

This case shows the importance of the data quality in the application of the methodology. The

filtering poses as an important part of the methodology allowing to keep the correct data, and

not being misled by outliers, for example when two buses have the same identifier. The data

cadence plays a vital role in the effectiveness of this methodology. Stationary events that have a

duration lower than the cadence cannot be detected, not allowing the identification of those stops.

Nevertheless, this case confirms the potential of extracting relevant process related information

from sparse geospatial tracking data.

The three different approaches for the identification of stationary events from geolocation data

are assessed and compared based on real data (E1, E2 and E3) along with the two spatial analyses

proposed to infer vehicle-based operations (overlapping analysis and clustering analysis). The

results suggest that aggregation of events benefits the operation detection. However, no significant

differences were found between the aggregation approaches, E2 and E3.
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Regarding the two spatial analyses proposed to infer vehicle-based operations, the two ap-

proaches present similar results. Clustering achieves a higher coverage of events and higher

average duration of events than overlapping analysis. The processing time is very high for the

overlapping analysis, especially for a greater number of events, making it infeasible when dealing

with large amounts of data. Both of the analysis implied tuning parameters which influence the

final results. Some of these parameters were tuned but an extended evaluation (quantitative and

qualitative) should be conducted to understand their impact.

The visual representation of the clusters allows a manual identification of the operations based

on their shape. This identification achieves satisfying results, when comparing to existing business

knowledge (e.g. location of the real stops and points of interest), however some clusters could

not be classified. Since this classification is only based on the representation, it can have some

bias and may not allow the distinction between clusters with similar shapes but different average

events time, for example. An automatic classification of the clusters should be considered in order

to achieve more certain results.

The identification of the different types of clusters and points of interest can be leveraged

by public transportation companies providing a data-driven support to their planning decisions.

The additional analysis through the comparison of different times of the day can complement that

planning.
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4.2 Public Transport Network of Madeira

4.2.1 Context

Horários do Funchal is a bus operator based in Funchal, Madeira. The company offers urban

and inter-urban services on the south, central, and north of the island. Madeira Island has 741

km2 of area, and a population of around 250 thousand people, according to Direção Regional de

Estatística da Madeira (2020). The island has a rugged orography, with the highest point, Cabo

Ruivo, reaching 1862 m. Sea cliffs, such as Cabo Girão, valleys and ravines are part of the island.

The population is concentrated in the many villages at the mouths of the ravines. Horários do

Funchal has around 250 buses operating 62 urban and 12 interurban different routes, transporting

around 20 million passengers a year, representing a 22% modal share. 770 thousand travels are

performed each year in urban routes and 60 thousand in interurban ones, with occupancy rates of

15% and 25% for urban and interurban routes respectively, as declared in Horários do Funchal

(2021).

The fleet tracking system of Horários do Funchal buses generates very complete information.

The system identifies when the bus executes the route stops along with complementary route infor-

mation. In addition, a stream of geolocation data is provided allowing a continuous monitoring of

the bus. The generated data opens new opportunities comparing to the previous case study, since a

more structured process is available, with the stops promptly identified. The application of process

mining techniques is much more accurate in this case, and allows the extraction of process-related

knowledge.

The focus of this case study is the exploitation of the vehicle-based operations obtained from

the application of the methodology. This exploitation aims at the extraction of valuable process

knowledge with process mining, i.e. the discovery of the processes.

4.2.2 Data Available

The geolocation data stream of the buses was made available by Horários do Funchal incorporating

a period of 184 days, from July 1st to December 31st of 2020. Each entry contained very complete

information at each time instant, ranging from the vehicle and travel identification to the total

kilometers travelled by the respective vehicle until that moment.

A selection of the essential parameters was executed, picking ultimately the time instant with

respective coordinates, the identifier of the bus stop, line and corresponding way being executed

by a specific vehicle. An example of the data considered is presented in Table 4.7.

Two different types of entries can be distinguished based on the stop identifier. On the one

hand, there are entries where the bus stop is identified. These entries do not repeat themselves,

so it can be assumed that one entry corresponds to one stop. On the other hand, there are entries

where the bus stop is not identified. These differences will originate some changes in the approach,

comparing to the one in Section 4.1. The data cadence is not analysed in this case, since the

existence of the two types of entries does not allow the extraction of accurate conclusions.
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Table 4.7: Structure of data used in the case study of Funchal

Vehicle Line Way Stop Datetime Latitude Longitude

173 36 DESC 19 2020-01-01 11:25:13 32.647434 -16.903784
173 36 ASC - 2020-01-01 11:29:03 32.647834 -16.9053
173 20 ASC 9 2020-01-01 11:29:42 32.64785 -16.905334

The non-identified entries are used to infer stationary events, following Section 3.3. The en-

tries that identify stops are considered as stationary events on their own. However, since there is

only one timestamp available, it is considered as start and end time, accounting for null duration

event. These events will be called bus stop events, for a matter of simplicity and coherence.

Vehicle 173 was analysed to demonstrate the proposed methodology. This vehicle had 123647

geolocation entries associated, from which 88401 entries (71.5%) identified stops, and the other

35246 entries (28.5%) did not have a stop identifier.

Vehicle 173 executed 39 different lines. The number of geolocation entries corresponding to

the most frequent bus lines are specified in Table 4.8.

Table 4.8: Number of entries corresponding to the different bus lines executed by vehicle 173

Bus Line Number of entries

11 12471
13 11713
9 9520
8A 7964

4.2.3 Data Preparation and Model Calibration

The data is filtered according to the thresholds presented in Definition 2. The threshold values

defined in Section 4.1.3 are considered for this case study. Since both cases correspond to a

public transport network, it can be assumed that they share similar characteristics. Therefore, the

thresholds are:

• maximum distance threshold, δ : 1000 m

• maximum speed threshold, υ : 100 km.h−1

• minimum time threshold, τ: 1 s

• maximum time threshold, Γ : 3 h

The identification and inference of operations is done according to the best combination of

methodologies described in Section 3.3 and compared in the previous case study, Section 4.1. As
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already stated, these methodologies were only applied to the entries without the bus stop identi-

fier. The approach E2 is used for event identification, while the clustering is for the inference of

operations.

Some parameters need to be defined to apply the clustering, as mentioned in Section 3.4.2. The

parameters and model calibration are computed following the same reasoning of Section 4.1.4.

The MinPts is set to 3, due to the lower frequency of the non-identified stops. The sensitivity level

for the computation of Eps value is chosen to be 10, similarly to Rio de Janeiro.

4.2.4 Events Identification

After filtering the data, 6408 different events are detected using E2. These events had an average of

2.73 entries per event, along with an average duration of 503 seconds, approximately 8.4 minutes.

The detected events and the bus stop events are plotted in Figure 4.21.

Figure 4.21: Plotting of the stationary events identified and the bus stop events

A concentration of stationary events can be spotted in specific areas of the map. These ar-

eas correspond mostly to line terminals and bus depots, as seen in Figure 4.22. Although some

terminals match with existing stops, the location system generates non-identified entries between

the moment it reaches that stop until it departs again to start another service. This leads to the

identification of stationary events.
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(a) Bus depot (b) Bus terminal

Figure 4.22: Representation of specific areas where the stationary events are concentrated

4.2.5 Operations Inference

After having identified the stationary events, the clustering was applied to infer the vehicle-based

operations. As opposed to the previous case study, it is expected that the inferred operations

correspond to situations different from bus stops. According to the previously mentioned data

characteristics, the expected operations should be associated to line terminals, line terminals, bus

depots or other bottlenecks that may be identified.

There were identified 129 different clusters, covering 6106 of the stationary events, 95% of

all the identified events. The high percentage of covered events symbolize the importance of the

identified operations. The clusters had an average number of 47.3 events with an average duration

of 206 seconds. The clusters are depicted in Figure 4.23, according to the representation described

in Section 3.4.1, with different clusters presented by different colors.

Figure 4.23: Representation of the generated clusters and the bus stop events
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In Figure 4.24 it is possible to see the relation between the clusters and the bus stops. Some

clusters coincide with existing bus stops, many of which may correspond to line terminals where

the bus changes the line or way. Other clusters are not related with bus stops and may represent

frequent traffic stops.

(a) Representation of the bus stop events and stationary events

(b) Representation of the computed clusters

Figure 4.24: Comparison between the events and the generated clusters

Compared to the visual representation and analysis of the clusters’ shapes of Section 4.1.7,

in this case study there is a lower variety of shapes, with a special predominance of smaller and

narrower clusters, like the ones represented in Figure 4.24. There are other less regular-shaped

clusters especially near the bus terminal, like in Figure 4.25.
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Figure 4.25: Representation of the irregular clusters near the bus terminal

4.2.6 Event Log Creation

A sequential record of the process events can be obtained by merging bus stop events and stationary

events. The stationary events are identified by the cluster they belong to, or are ignored if they do

not belong to any cluster. Each process event refers to an activity (i.e. a well-defined step in the

process), in this case represented by the bus stop or cluster. The prefix in the identifier indicates

if the process event is a stationary event, belonging to a certain cluster (’C-’), or a bus stop event

(’S-’). The ordering of the process events is defined by their timestamp. A sample of the sequence

of process events is presented in Table 4.9.

Table 4.9: Example of a sequence of process events

Event id Stop Vehicle Line Way Start time End time

1 C11 173 9 - 2020-07-02 07:15:11 2020-07-02 07:15:23
2 S1147 173 9 DESC 2020-07-02 07:16:28 2020-07-02 07:16:28
3 S1098 173 9 DESC 2020-07-02 07:16:49 2020-07-02 07:16:49
4 S1100 173 9 DESC 2020-07-02 07:17:33 2020-07-02 07:17:33
5 S654 173 9 DESC 2020-07-02 07:18:05 2020-07-02 07:18:05
6 C12 173 9 DESC 2020-07-02 07:18:22 2020-07-02 07:18:28

In order to produce an event log, which would allow the application of process mining tech-

niques, it is necessary to relate each process event to a particular case (i.e. a process instance)

(van der Aalst, 2011). In this case, a process instance describes the execution of a specific bus

service. So, a new instance was considered whenever the vehicle changed the line it was executing

or the way of the line, i.e. when changes from ascending to descending the line or vice-versa. This
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is an information made available by the fleet tracking system. On top of that, a new service is

considered if the time elapsed between consecutive events is more than 5 hours. To restrain some

variability on the process, and allow an easier analysis, only one line is covered. Considering line

9 for analysis, a sample of the resulting event log is represented in Table 4.10.

Table 4.10: Event log of line 9

Case Activity Start time End time

1 S8 2020-07-02 07:31:58 2020-07-02 07:31:58
1 S17 2020-07-02 07:32:48 2020-07-02 07:32:48
1 S2 2020-07-02 07:34:36 2020-07-02 07:34:36
1 C0 2020-07-02 07:36:58 2020-07-02 07:40:28
2 S11 2020-07-02 07:40:51 2020-07-02 07:40:51
2 S29 2020-07-02 07:42:48 2020-07-02 07:42:48
2 S33 2020-07-02 07:43:31 2020-07-02 07:43:31
2 S35 2020-07-02 07:44:35 2020-07-02 07:44:35
2 S37 2020-07-02 07:45:22 2020-07-02 07:45:22
... ... ... ...
2 S666 2020-07-02 07:57:00 2020-07-02 07:57:00
2 S86 2020-07-02 07:57:24 2020-07-02 07:57:24
2 S1141 2020-07-02 07:57:59 2020-07-02 07:57:59
2 S1143 2020-07-02 07:58:23 2020-07-02 07:58:23
3 S1098 2020-07-02 08:06:45 2020-07-02 08:06:45
3 S1100 2020-07-02 08:07:50 2020-07-02 08:07:50
3 S654 2020-07-02 08:08:37 2020-07-02 08:08:37
3 C12 2020-07-02 08:09:15 2020-07-02 08:09:36
... ... ... ...
3 S17 2020-07-02 08:23:26 2020-07-02 08:23:26
3 S2 2020-07-02 08:25:13 2020-07-02 08:25:13
3 C0 2020-07-02 08:27:04 2020-07-02 08:40:09
3 S11 2020-07-02 08:40:57 2020-07-02 08:40:57
4 C0 2020-07-02 12:24:37 2020-07-02 12:34:38
4 C0 2020-07-02 12:35:05 2020-07-02 12:36:04
4 S11 2020-07-02 12:36:30 2020-07-02 12:36:30
4 S15 2020-07-02 12:37:15 2020-07-02 12:37:15
4 C0 2020-07-02 12:37:58 2020-07-02 12:38:05
4 S29 2020-07-02 12:39:06 2020-07-02 12:39:06
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4.2.7 Process Discovery

The structuring of the data, as done in the last section, raises new opportunities for getting insight

into the business processes. One possibility is the process discovery, which is presented in this

section. These techniques allow the discovery of the process model that reproduces the flow of the

buses as they were performed. The characterization of the buses behavior can be used to identify

bottlenecks in the process and to improve its operations.

The fuzzy miner algorithm and Disco (Günther and Rozinat, 2012) were chosen to generate

the process models due to its simplicity of use. Figure 4.26 shows the resulting process model.

The number of activities and transitions represented can be tuned based on its frequency, how-

ever, to prove the potential of the analysis, only the most relevant and common ones are selected.

This filtering originates an inequality on the frequency of consecutive activities and connecting

transitions. A subset of relevant activities and transitions is chosen, to show the existing relations

and flows. Since each case usually contains around 35 bus stops, the representation of the whole

process is very extensive, and would not bring additional information to the demonstration in this

case.

Figure 4.26: Process model generated by Disco representing a subset of the most frequent activities
and transitions
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Two main components can be seen in the process model. On the one hand, the nodes, repre-

sented by boxes, correspond to the activities, and the number inside corresponds to its absolute

frequency. The darker the color, the higher the frequency of a certain activity. On the other hand,

the arrows represent the transition between two nodes. The thickness of the arrows is proportional

to the number of transitions between the two nodes. In this case, the absolute frequency of the

transitions is presented along with the corresponding mean duration. These indicators seemed fit

for this case, however other indicators can also be calculated, such as the maximum or minimum

duration of the transitions.

The process model was transposed to a real map, in Figure 4.27, according to the coordinates of

the activities, in order to provide a more concrete and understandable analysis. The representation

of the process elements is similar to Figure 4.26, however the frequency of activities is denoted

below the indicator of the stop. The numbers inside the circles correspond to the most common

sequence order of the represented stops.

Figure 4.27: Representation of the process in the map

According to the bus company, the real order of the represented bus stops is indicated in

Figure 4.28. The defined order matches with the representation.

Figure 4.28: Order of the defined stops according to bus company

The analysis of Figure 4.27 allows the identification of specific process behaviours that can be

of interest to the bus company. A possible process behaviour is whether the bus stops were visited.

For example, it can be seen that the vehicle skips S15 in some situations, going straight from

S11 to S29, accounting for 11.5% of the times that the vehicle stops in S29. This can mean that

the vehicle does not stop in S15, or that it is not detected, however the first option is considered
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in this case. Another perspective can be analysed, in which only 84% of the stops in S29 were

immediately preceded by the stop S15. This analysis can help the bus company checking the

importance of the bus stops, which may support an eventual restructuring of the stops.

The analysis of the elapsed time between two stops can also be of particular interest to check

the performance of the routes, allowing the eventual discovery of bottlenecks. Taking the previous

movement from S11 to S29 as an example, when the vehicle goes straight from S11 to S29, it

takes only 104.8 seconds, and when it stops in S15, it takes a total of 153.3 seconds. This values

can be of great interest to route planning, as well as to the comparison of the traffic in different

times of the day.

In Figure 4.27 is represented one of the inferred vehicle-based operation, namely C0. It is the

only activity present in the selected subset with a duration associated because, as pointed out, it is

generated from the stationary events that, on the contrary to bus stop events, have a start and end

time (and corresponding duration). To understand the process it is important to give some meaning

to this operation, and to check if it is not a bottleneck in the process, that can correspond to delays

for example. A more detailed map representation of the process is represented in Figure 4.29.

Figure 4.29: Detailed representation of the process in the map

C0 is the only activity that repeats itself through consecutive events. This occurs when the

vehicle is stopped in C0, generating a stationary event, and then moves, ending that event. This

movement can be, for example for changing parking spot and when the vehicle stops again, a

new stationary event is produced. Since the clusters can cover a wide area, the events in C0 can

be distant from each other, and from the centroid’s location, which corresponds to the plotted

location. This can explain the reduced time between C0 and S15.

Analysing the duration and frequency of C0, they are greater than the rest of the activities,

especially when comparing its duration to the transitions’ between the other stops. The duration of

the repetition of C0 can corroborate the premise that C0 corresponds to long stops. The proximity

of C0 with S11, which is the line’s terminal and marks the start and end of the services, together
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with the long duration of the stops in C0, leads to the conclusion that C0 is a stoppage in the

terminal when changing the service of the line.

4.2.8 Discussion

This case supports the potential of extracting vehicle-based operations using geolocation data,

through the application of the proposed methodology. A special focus is given to detect operations

that don’t correspond to bus stops events, since these are already identified by the fleet tracking

system.

The accuracy of the inference of vehicle-based operations is very relevant for the extraction

of process knowledge. Due to the variety of the clusters’ densities in certain areas, for example

terminals and smaller clusters, very large clusters are generated, like the terminal represented in

Figure 4.25. This can end up aggregating different operations in the same cluster, and biasing the

extracted knowledge. An adaptation of the clustering for detecting different density clusters could

pose as a solution.

Since the bus follows a set of defined stops, the process is rather structured. The application

of process discovery techniques allows to map the process and give a more clear representation

of the flow of the buses, especially on a real map. The potential of the analysis of the process

is demonstrated, which allows the performance and conformance analysis. In this case, a brief

exploratory analysis was done. To achieve better and more conclusive results, a more extensive

analysis has to be conducted.

The representation of processes in maps is innovative and not explored yet by other works to

the best of our knowledge. It allows an easier understanding of the process when the activities’

location are relevant for the process, especially for companies’ management. New solutions are

needed for the correct mapping of the process and unlock more profound process information.
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4.3 Logistics Company

4.3.1 Context

Company X is an international logistics company that operates mainly in the European market.

The company relies on over 2000 vehicles, transporting – each year – 7 million tons of goods

across 200 million kms. Each month, over 25000 distribution routes are performed to pick and

transport about 4.5 million packages.

Generated by fleet tracking technologies, geolocation data is currently only used to support

the monitoring of the state of vehicles in terms of positioning and navigation. Information about

the execution of operations such as the start and conclusion of load/unload operations is generated

by human resources, which has proven to be ineffective due to delayed, imprecise or missing

inputs. As a consequence, not only the management of the logistics processes becomes more

difficult but also the scheduling of operations. Therefore, the exploitation of geolocation data

for the detection of logistics vehicle-based geospatial operations in real time is an opportunity

for improving the monitoring and management of logistics operations, namely the load/unload of

goods. Also, this solution can be used to enhance the customer service, by providing means to

negotiate more adjusted contracts to reality, and by enabling on-the-fly notifications to customers

about their packages.

4.3.2 Data

The company provided the geolocation data stream of 3 vehicles during the month of June of 2021.

A set of parameters was chosen, namely the time instant and respective coordinates, together with

the vehicle identifier. The geolocation stream had an average cadence of 98.63 seconds with a

standard deviation of 36.56 seconds. The coordinates are anonymized due to privacy reasons. An

example of the data used in this case study is presented in Table 4.11.

Table 4.11: Structure of geolocation data used in the case study of the logistics company

Vehicle Timestamp Latitude Longitude

1 2021-06-01 04:26:58 20.52477 -6.20925

1 2021-06-01 04:29:00 20.52480 -6.20922

1 2021-06-01 04:30:58 20.52055 -6.21483

1 2021-06-01 04:32:58 20.52841 -6.22080

Apart from the stream of geolocations, the planned logistics operations were also provided.

The planned operations are previously defined by the company in the scope of some work plan.
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Definition 8 (Planned operation and work plan). Let v be a vehicle with a GPS tracking device.

A planned operation p describes a future load/unload operation of a logistics process using

vehicle v, which is expected to occur at a specific location. The function location(p) identifies the

geolocation where p is supposed to occur. No time information (start time) is directly associated

with planned operations.

A work plan W = [p1, p2, ..., pm] is an ordered list of planned operations for vehicle v, which

consists of a trip in which each event represents the trip’s checkpoints. The function start(W)

identifies the time instant when W is supposed to start. Only one work plan can be executed at a

time, even though there are cases for which it is not possible to determine when a work plan ends

and another starts. These cases happen when the first event of a work plan is at the same location

of the last event of the previous work plan.

Every planned operation has a given location with corresponding coordinates. The work plan

associated to the operations is presented along with its planned start time and the vehicle respon-

sible for it. A total of 216 planned operations distributed through 95 work plans were provided.

In the context of the process in analysis, the work plans involve at least one load and one unload

operation. Hence, each work plan contains two or more operations. An example with two plans

provided is described in Table 4.12.

Table 4.12: Structure of work plans and planned operations

Work Plan Vehicle Planned Start Time Location Latitude Longitude

1 V1 2021-06-01 05:00:00 Location A 20.52444 -6.20950

1 V1 2021-06-01 05:00:00 Location B 20.89050 -7.62341

2 V2 2021-06-01 14:00:00 Location C 20.05398 -7.87451

2 V2 2021-06-01 14:00:00 Location B 20.52444 -6.20950

4.3.3 Events Identification

Based on approach E2, detailed in Section 3.3, Algorithm 1 is defined to – in real time and incre-

mentally – identify stationary events from a stream of geolocation entries. This algorithm assumes

that, for each vehicle, there is a data structure that holds the history of stationary events as well as

the current stationary event candidate.

A minimum event duration was introduced in order to filter some noise in the data. Since no

logistics operation shorter than 1 min is expected to occur, θ = 1 min is used as the minimum

event duration.
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Algorithm 1: Identification of stationary events
Input : A geolocation entry (v, t, lat, lon) as defined in Definition 1. As thresholds, δ is

the maximum distance (default 15 m), υ the maximum speed (default 1 km.h−1),

Γ the maximum time (default 2 h), and θ the minimum event duration (default

1 s).

Output: A stationary event, if identified.

1 Method
33 S← null; // the stationary event to be returned

55 E← retrieve the current stationary event candidate of vehicle v;

77 if E 6= null and end(E)= t then // repeated timestamps, discard entry

8 return S;

1010 if E 6= null and distance(location(E),(lat, lon))≤ δ and
speed(location(E),end(E),(lat, lon), t)≤ υ and (t−end(E))≤ Γ then
// update E with geolocation (lat, lon) at time instant t

1212 append (v, t, lat, lon) to E;

13 else
// the stationary event candidate is over

1515 if E 6= null and duration(E) ≥ θ then
1717 add E as an executed event of vehicle v;

1919 S← E;

// create a new stationary event candidate

2121 E← new stationary event located in (lat, lon) with t as start time;

2323 set E as the current stationary event candidate of vehicle v;

2525 return S;

The results from the application of Algorithm 1 are presented in Table 4.13. The percentage of

geolocation entries in stationary events is proportional to the total time that the vehicle is stopped,

i.e. the total duration of the stationary events. Regarding this total stop time, a substantial dif-

ference can be noticed between V1 and V3 (19 days vs 25 days), and can denote a higher usage

and greater driving time of V1 when comparing to V3. The number of stationary events for V2 is

substantial higher than for V1 and V3, being associated with a lower average duration. This can be

due to shorter load/unload operations, or small movements during these operations that generated

distinct stationary events. The characteristics of the vehicles and routes executed can justify the

existing differences.
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Table 4.13: Summary of the events identified with Algorithm 1

Vehicle

Indicator V1 V2 V3

Geolocation entries 29328 26329 26335

in stationary event 15722 (53.6%) 17162 (65.2%) 21067 (80.0%)

(average cadence) 92 s 102 s 102 s

Stationary events 589 1676 658

Average duration 00:47:46 00:19:15 00:55:50

Total duration 19 days 12:59:45 22 days 10:26:32 25 days 12:19:26

4.3.4 Operations Inference

The operations inference in this case study consists of linking the identified stationary events to

the planned logistics operations, as designated in Definition 8.

Since a planned operation is geolocated, the operations inference is achieved by checking

whether a stationary event occurred nearby to that planned operation. In this case it is considered

that if the orthodromic distance between a stationary event E and a planned operation O is no

farther than 1000 m then E should represent the execution of O. If no planned operation satisfies

the aforementioned condition for E, then it can be assumed that E represents a negligible operation

(e.g., vehicle refueling or driver’s resting). In the scope of this case, these unmatched stationary

events are discarded.

Given a stationary event E and the list of work plans for some vehicle, Algorithm 2 describes

how to identify the current active work plan (or plans, if one is ending in the same location as

another starts). This algorithm assumes that there is a function that describes whether a planned

operation was already executed or not. The Radius threshold defines the maximum orthodromic

distance between E and the planned operations, which is set to 1000 m as previously explained.

The minT and maxT thresholds define the allowed time offset range for starting a new work plan,

which are set to −5 h and +12 h of the planned starting time.

The vehicle-based operations inference in real time can be performed using Algorithm 3,

when given a stream of geolocation entries and a list of work plans, like the ones described in

Section 4.3.2. The geolocation entries are considered to compute stationary events by applying

Algorithm 1, as done in the previous section. The stationary events are considered to identify the

active work plans by applying Algorithm 2. The non-executed planned operations of the active

work plans are matched with the non-reported stationary events to check the execution of opera-

tions. It is important to mention that the execution of a planned operations may be supported by

more than one stationary event. A good example of this case is when a vehicle performs some

check-in operation in one location prior to the load/unload of goods in another location a few hun-

dred meters away. In the scope of this case, all stationary events that represent the execution of
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a specific planned operation are aggregated. This means that the logistics company is interested

in simply knowing the time a vehicle remains at the location of some planned operation. Hence,

the results consist of messages notifying and quantifying – in real time – the execution of planned

operations.

Algorithm 2: Identification of active work plans
Input : For a specific vehicle v, a list of work plans (W = [w1,w2, ...,wn]) and a

stationary event (E). [minT;maxT] is the allowed time offset range for starting a
work plan (default [−5 h;12 h]). Radius defines the area where operations must
be performed (default 1000 m).

Output: The current active work plans.

1 Method
// Current and past work plans

33 B←{w in W | w contains at least one planned operation that was executed already};
// Future work plans that can be activated

55 C←{w in W | w not in B∧minT ≤ start(E)−start(w)≤ maxT};
// Current work plan

77 A←{w in B | ∀x 6= w in B[x not contains a planned operation which was executed after
any executed event in w]};
// Check whether the current work plan is still active

99 if ∃w in A[@p in w[ p is not executed ∧
distance(location (E),location (p))< Radius]] ∧
∃w′ in C[∃p′x in w′ [ p′x is not executed ∧ x≤ 3 ∧
distance(location (E),location (p′)) < Radius]] then A← /0;

1111 if A = /0 then
// Find the next work plan

1313 A←{w ∈C | minT ≤ ∆T ≤ maxT ∧ @w′∈C[w 6= w′ ∧
distance(α ,location(p′1 in w′))<distance(α ,location(p1 in w))]},
where ∆T = start(E)−start(w) and α = location(E);

14 else
// Find a next work plan for which the first event is at the same

location of the last event of the current plan

1616 X ←{w ∈C | ∃px in w, p′y in w′∈A[x = 1 ∧ @p′z in w′∈A[z > y] ∧
location(p′y)=location(px)∧ minT≤ start(E)−start(w)≤maxT]};

1818 A← A∪{w ∈ X | @w′∈X [w′ should start before w]};
2020 return A;
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Algorithm 3: Real-time detection of logistics operations
Input : A stream of geolocation entries (Input) and the list of work plans (WPs). Radius

defines the area where planned operations must be performed (default 1000 m).

Output: A stream of detected logistics operations.

1 Method
33 Open Output as the stream of detected logistics operations;
55 while stream Input is open do
77 (v, t, lat, lon)← wait/get geolocation entry from Input;
99 apply Algorithm 1 with (v, t, lat, lon) for detecting stationary events for v;

1111 W ← retrieve work plans of vehicle v from WPs;
1313 E← retrieve the last stationary event of vehicle v;
1515 if E 6= null then Z← apply Algorithm 2 with W and E for identifying the current

work plan for v else Z← /0;
// Non-executed planned operations of the current work plan

1717 P0←{p in w | w ∈ Z ∧ ∃p′ in w[p′ has an executed state] ∧ p has a non-executed
state};
// First planned operation of the next work plan, if exists

1919 P1←{px in w | x = 1 ∧ w ∈ Z ∧ @p′ in w[p′ has an executed state]};
2121 foreach p ∈ P0 (in ascending order by distance from p to E) do

// Check whether the vehicle left the operation area, so no

more events can occur in there

2323 if distance(location(p), (lat, lon)) > Radius×2 then
2525 A← retrieve stationary events of vehicle v with a non-reported state;
2727 B←{x in A | distance(location(p), location(x)) ≤ Radius};
2929 if B 6= /0 then

// Report the execution of the matched planned operations

3131 change the state of p to executed;
3333 change the state of every event x ∈ B to reported;
3535 start← earliest start time of the events in B;
3737 end← latest end time of the events in B;
3939 if ∃p′∈P1,w′∈Z[p′ in w′ ∧ location(p′) = location(p)] then
4141 middle← time instant that is equidistant to start and end;
4343 change the state of p′ to executed;
4545 add (v,w, p,start,middle) and (v,w′, p′,middle,end) to Output;
46 else
4848 add (v,w, p,start,end) to Output;

// Discard previous unreported events, no matching planned

operation was found for them

5050 change the state of every event x ∈ A\B to reported;

An overview of the real-time monitoring of work plans (and the corresponding operations) is

presented in Figure 4.30. Comparing to the traditional definition of a business process (van der

Aalst, 2011), the work plans are process instances, while the operations are process events.
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Work plan State Vehicle Start time Operation 1 Operation 2 Operation 3 Operation 4

Location A Location B
08:19 - 09:10 non-executed

Location C Location D Location E Location F
07:15 - 7:50 09:22 - 09:57 non-executed 10:22 - 11:30

Location A Location B
non-executed non-executed

Location E Location F Location B
07:23 - 7:38 08:19 - 08:40 09:51 - 12:13

- -

-

- -Work plan 1 Active V04 08:15

Work plan 4 Finished V07 07:30

Work plan 3 Planned V04 14:00

Work plan 2 Finished V10 07:30

Figure 4.30: Overview of the real-time monitoring of work plans.

The results from the application of Algorithm 3 and the operations inferred are present in

Table 4.14.

Table 4.14: Summary of the operation inference results

Vehicle

Indicator V1 V2 V3

Stationary events 589 1676 658

with known location 155 (26.3%) 225 (13.4%) 368 (55.9%)

in work plan 210 (35.7%) 804 (48.0%) 431 (65.5%)

A low percentage of stationary events matching to planned operations can be perceived, es-

pecially in V1 (26.3%) and V2 (13.4%). The unmatched stationary events are discarded in the

scope of this case, as denoted before, but their analysis and characterization could generate im-

provements in the planning of the vehicle movements, to optimize fuel costs, driver efficiency and

ensure timely deliveries. According to Aziz et al. (2016), there are 4 fundamental types of oper-

ations: meal stops, refuelling stops, rest stops and toll stops/checkpoints. Since truck drivers are

responsible for planning their stoppage, it can lead to inefficiencies, time and cost-effective. So,

this analysis can unveil new improvement opportunities for the company.

The stationary events not in the work plan correspond to cases detected between the end of

one work plan (i.e, after finishing the last planned operation of that work plan) and the start of

the subsequent work plan. These events mainly correspond to overnight stays of the trucks, or are

resultant of the shift of travels. Vehicle 1 stands out with only 35.7% of the stationary events in

a work plan. The analysis of these events could provide valuable information on the usage of the

vehicles and improve trip planning.

4.3.5 Conformance Checking

Conformance checking was performed to evaluate whether the work plans were executed accord-

ing to the expected. On the one hand, start times were analysed to identify and quantify delays.

On the other hand, the detected operations were parsed in order to identify deviations to the work
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plan. These deviations can be either missing or swapped operations, such as the alignment steps

for replaying event logs on process models (Van der Aalst et al., 2012). The results of the confor-

mance checking analysis are presented in Table 4.15. The correct detection of around 95% of the

planned operations proves the efficacy of the methodology.

Table 4.15: Overview of conformance checking results

Vehicle

Indicator V1 V2 V3

Work plans 18 21 56

fully fulfilled 17 (94.4%) 18 (85.7%) 52 (92.9%)

partially fulfilled 1 (5.6%) 2 (9.5%) 4 (7.1%)

Planned operations 36 67 113

with detected execution 35 (97.2%) 63 (94.0%) 108 (95.6%)

4.3.6 Performance Analysis

The performance of the execution of the logistics processes provides insight into the efficiency of

the company. The performance analysis can be conducted taking into account different perspec-

tives such as work plans, planned operations and vehicles. Table 4.16 provides an overview of

some performance indicators obtained in this evaluation.

Table 4.16: Overview of the performance analysis

Vehicle

Indicator V1 V2 V3

Work plans

Average throughput time 12:14:33 05:14:19 03:20:02

Average load/unload time 07:32:50 02:40:22 02:05:16

Average start time (executed vs planned) -03:14:16 00:12:55 -00:52:28

Average delay 00:07:38 02:47:23 00:39:48

Started on time 16 (88.9%) 15 (78.9%) 41 (74.5%)

Planned operations

Average execution time 04:48:18 01:01:44 01:18:23

These indicators can explain the differences in the work plans, and the results found in Sec-

tion 4.3.3. The average throughput time of the work plans and the execution time of the operations

(load/unload time) confirms the distinct characteristics of the vehicles and routes pointed out be-

fore. The difference between the throughput time and the operations time corresponds to the av-

erage driving time of the vehicle, with significant differences between the vehicles (V1: 04:41:43
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vs V2: 02:33:57 vs V3: 01:14:46). These values can point to dissimilar grades of vehicles’ wear

and consequent maintenance, provoking an uneven depreciation on their value. A more balanced

usage of the vehicles can reduce the resulting depreciation value for the company, although it is

also dependable on the route characteristics.

The average delay and percentage of work plans started on time can be other important indica-

tors for the logistics company, since delays can generate unexpected costs. By flagging the critical

situations, like V2, with an average delay of almost 3 hours, the company can analyse the causes,

either driver or client related, and mitigate them, saving time and money.

A common work plan is given as an example for exploiting the spatial aspect of the results.

The work plan, which is executed in a regular basis, consists on just two operations: (1) the loading

(of goods) in location A and (2) the unloading in location B. The road distance between A and B

is around 200 km, which can be driven in 3 h. Figure 4.31 depicts – on a map – the history of

stationary events associated with these operations. Details about the operations’ performance are

provided in Table 4.17.

(a) Loading site (b) Unloading site

Figure 4.31: History of stationary events of two logistics operations. The blue markers represent
the operations’ expected geolocation, while the black circles represent the detected stationary
events.
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Table 4.17: Performance analysis of a specific work plan.

Loading of goods Unloading of goods

Indicator avg ± std avg ± std

Stationary events

Location offset (distance) 396 m±63 m 35 m±28 m

Location offset (azimuth) 117.6◦±9.6◦ 61.0◦±31.4◦

Duration 00:19:41 ± 00:30:47 01:26:27 ± 01:29:27

Logistics operations

Aggregated events 6.9±1.5 4.6±4.5

Execution time 02:00:25 ± 01:11:34 08:11:30 ± 09:17:23

Note: avg and std stand for average and standard deviation.

4.3.7 Discussion

The logistics processes examined in this work can be considered rather structured. This means

that there is neither a high variability in the workflow nor too much unexpected behavior in the

execution of the processes. So, given the fact that the focus of this work is simply the load/unload

of goods, the application of process discovery techniques would not provide much new knowledge

about the logistics processes. The application of conformance checking, however, is useful to

verify the correct and complete execution of the work plans. Non-conforming cases may be due to

either data issues (e.g., noise or missing data) or work performed in an unexpected manner (e.g.,

unfulfilled operations).

The real-time computation poses a challenge to the detection of logistics operations. In this

work, the execution of an operation is assumed to be completed if the vehicle exits the area where

the operation is supposed to be performed. If, for some reason, the vehicle has not exited the

area permanently, then the detection would be erroneous. The methodology applied in this work

addresses this issue, being able to correctly detect the execution of around 95% of the logistics

operations (load/unload of goods).

The accuracy of the geolocation of the logistics operations is also a critical factor for the

application of the methodology. The geolocation reference is often computed either using the

postal address or the street entrance, which may be several hundred meters away of the location

of the logistics operations. This issue is even worse when two or more distinct sites are located

close by. In this work, a constant distance value (1000 m) is used to check whether a stationary

event represents a logistics operation. However, a dynamic approach would be more adequate,

especially because the layout and dimension of the sites where logistics operations occur vary

enormously. The location offset, as presented in Table 4.17, can be used to adjust the location of

the logistics operations.
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Conclusions and Future Work

The main objective of this research work is the inference of vehicle-based operations from geolo-

cation to allow the extraction of process-related information. The proposed approach consists on

a multi-step methodology that receives geolocation data as an input and allows the analysis of the

business process in the end. Firstly, the preparation of the data is applied to handle a number of

issues related to outliers, data noise, and missing or erroneous information. Then, the identifica-

tion of stationary events is performed based on the motionless states of the vehicles. Next, the

inference of operations based on a spatial analysis is performed, which allows the discovery of

the locations where stationary events occur frequently. Finally, the identified operations are classi-

fied based on their characteristics, and the sequence of events can be structured into an event log.

The application of process mining techniques is then possible and the consequently extraction of

process knowledge. The steps of the methodology can also be used separately to tackle specific

challenges, giving more flexibility to its application.

The versatility and application of this work is demonstrated through the different case stud-

ies. The real-time detection of logistics vehicle-based operations shows the effectiveness of the

proposed solution to solve specific industry problems. The exploitation of geolocation data in

this context poses as an opportunity for improving the monitoring and management of logistics

operations. The scope of this case, as established with the company, is primarily to enhance cus-

tomer service, with more adjusted contracts and on-the-fly notifications, so a exploitation of the

full potential of the solution was not achieved. The application of complementary process mining

techniques could provide new insights into the execution of the existing logistics processes. As

future work, an extension on the methodology for this case study is envisioned in order to detect

all kinds of vehicle-based operations, instead of simply the load/unload of goods. This extension

will require the automatic classification of events that occur in unknown locations.

The inference of the vehicle-based operations using the spatial analysis can identify distinct

characteristics of the clusters that may represent different situations (e.g. traffic events, bus stops,

load/unload of goods). Both analysis imply tuning parameters which influence the results, so an

extended evaluation should be conducted to understand their impact. Other clustering techniques

such as the HDBSCAN (Campello et al., 2013) and the OPTICS (Ankerst et al., 1999), may be
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adapted to the proposed methodology. However, until a meaning is given to the events, the clusters

can only be represented as abstract events. To provide meaning to the events, an automatic event

classification is necessary to provide insight into the vehicles behaviour, being this classification

targeted as a future direction of this work. This classification may be driven by the points of

interest (POIs) in the surroundings of the event’s location, which would be more effective for a

real-time classification but would require more information. A characterization of the clusters and

corresponding events according to parameters, such as the cluster’s density or duration, could be

computed to identify the different operations performed in each cluster, as developed by Aziz et al.

(2016).

The classification of the operations allows ultimately to have a structured sequence of events

that describes the behaviour of the vehicles, in terms of the all the operations. The creation of event

logs from these sequences allows the application of process mining techniques, and the extraction

of valuable information about the business process. Even with a brief exploratory analysis, the

possible value of the analysis of the process is presented, pointing to various areas of exploration.

A more extensive analysis using other process mining techniques is yet necessary to achieve more

conclusive and applicable results.

This thesis presents a novel process modelling approach, which exploits the spatial aspect of

the events by representing the event locations in a map. This new approach can be considered

as a new perspective for the process analysis. This perspective could have a great impact espe-

cially regarding the process’ visualization. It would lead to a clearer understanding of the process,

especially by the companies’ management who is not familiar with BPM. Spatial-aware process

mining techniques are necessary to fully exploit the geolocation of events, which may me achieved

by adding the spatial dimension to the multidimensional process mining solutions (Ribeiro, 2013;

Bolt and van der Aalst, 2015). This extension of the traditional process mining techniques is

identified as a future work.

In conclusion, the industry and scientific potential of this work is demonstrated throughout the

thesis. On the one hand, the proposed methodology can be applied to support the management

of vehicle-based processes. On the other hand, the scientific contribution of this thesis includes a

methodology for inferring vehicle-based operations from geolocation data, and a demonstration of

how these inferred events can be analysed. Two conference papers were produced to disseminate

specific aspects and results of this work. A journal paper is being prepared to provide a consoli-

dated view of this research, not only focusing on solutions but also on new research opportunities.
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Scientific articles associated to this thesis

• Accepted for publication and presented: Tavares, J., Ribeiro, J., Fontes, T.: Detection of

vehicle-based operations from geolocation data. Transportation Research Procedia in press

(2021)

• Submitted: Ribeiro, J., Tavares, J., Fontes, T.: Real-time detection of logistics vehicle-based

geospatial operations. Submitted to EAI INTSYS 2021

• In preparation: Ribeiro, J., Tavares, J., Fontes, T.: Discovery and analysis of spatial pro-

cesses. To be submitted to the journal Transportation Research Part C: Emerging Technolo-

gies.



Appendix A

Appendix: Sensibility Analysis for Rio
de Janeiro

Sensibility Analysis for Rio de Janeiro using events identified using E1 and E3

Figure A.1: Comparison of varying sensitivity level and Eps value for the events identified with
E1 for line 371, along with the plot of the chosen sensitivity level of 10
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Figure A.2: Comparison of varying sensitivity level and Eps value for the events identified with
E3 for line 371, along with the plot of the chosen sensitivity level of 10
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Figure A.3: Comparison of varying sensitivity level and Eps value for the events identified with
E3 for line 629, along with the plot of the chosen sensitivity level of 10
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