
Information Systems 114 (2023) 102155

M

i
c
p
e
c
e
d
l
t

f
d
n
a
s

a
b
(

p

h
0

Contents lists available at ScienceDirect

Information Systems

journal homepage: www.elsevier.com/locate/is

All that glitters is not gold: Fourmaturity stages of process discovery
algorithms
Jan Martijn E.M. van der Werf a,∗, Artem Polyvyanyy b,1, Bart R. van Wensveen a,
atthieu Brinkhuis a, Hajo A. Reijers a

a Utecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
b The University of Melbourne, Parkville, VIC, 3010, Melbourne, Australia

a r t i c l e i n f o

Article history:
Received 3 April 2022
Received in revised form 30November 2022
Accepted 30 November 2022
Available online 15 December 2022
Recommended by Matthias Weidlich

Keywords:
Process mining
Process discovery
Formal guarantees
Properties

a b s t r a c t

A process discovery algorithm aims to construct a process model that represents the real-world process
stored in event data well; it is precise, generalizes the data correctly, and is simple. At the same
time, it is reasonable to expect that better quality input event data should lead to constructed process
models of better quality. However, existing process discovery algorithms omit the discussion of this
relationship between the inputs and outputs and, as it turns out, often do not guarantee it. We
demonstrate the latter claim using several quality measures for event data and discovered process
models. Consequently, this paper requests for more rigor in the design of process discovery algorithms,
including properties that relate the qualities of the inputs and outputs of these algorithms. We present
four incremental maturity stages for process discovery algorithms, along with concrete guidelines
for formulating relevant properties and experimental validation. We then use these stages to review
several state of the art process discovery algorithms to confirm the need to reflect on how we perform
algorithmic process discovery.

© 2022 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Process mining studies algorithms that extract process-related
nformation from event data, often recorded in event logs as
ollections of sequences of activities, each encoding a historical
rocess execution [1]. Process discovery is one of the core subar-
as of process mining. Process discovery studies algorithms that
onstruct models describing the processes that induced the input
vent logs as closely as possible. One of the challenges of process
iscovery is that the true processes that generated the input event
ogs are unknown and, thus, must be inferred from their samples,
hat is, event logs [2,3].

An algorithm is a sequence of computational steps that trans-
orm an input into an output [4]. Different algorithms exhibit
ifferent qualities in terms of properties like correctness, finite-
ess, definiteness, effectiveness, and efficiency. Such properties
llow us to choose an algorithm that fulfills a particular need,
uch as performing a guaranteed correct computation within the

∗ Corresponding author.
E-mail addresses: j.m.e.m.vanderwerf@uu.nl (J.M.E.M. van der Werf),

rtem.polyvyanyy@unimelb.edu.au (A. Polyvyanyy),
art@architecturemining.org (B. R. van Wensveen), m.j.s.brinkhuis@uu.nl
M. Brinkhuis), h.a.reijers@uu.nl (H.A. Reijers).
1 Artem Polyvyanyy was in part supported by the Australian Research Council
roject DP220101516.
ttps://doi.org/10.1016/j.is.2022.102155
306-4379/© 2022 The Author(s). Published by Elsevier Ltd. This is an open access a
desired time bounds. A process discovery algorithm transforms a
given input event log into an output process model. A process dis-
covery algorithm is often finite (terminates after a finite number
of computational steps), definite (each computational step is un-
ambiguous), effective (each computational step can be performed
correctly in a finite amount of time), and efficient (the fewer or
faster computation steps can be executed the better). However,
process discovery algorithms treat quality as a goal rather than a
guarantee. That is, process discovery algorithms are designed to
construct a ‘‘good’’ process model from the input event log [1],
where the ‘‘goodness’’ of the model is not established by the
internals of the algorithm but by external measures, e.g., precision
and recall [1,2,5].

Recently, we observed that a process discovery algorithm can
construct a good process model from an event log and construct
an inferior model from an event log that is of better quality than
the original log [5]. This observation triggered a desire to review
and refine how the quality of a process discovery algorithm is
established. In our conference paper [6], we argue that a process
discovery algorithm should come with guarantees formulated in
terms of the relationships between its inputs and outputs. This
article refines the original contributions with a discussion on
statistical sampling techniques and their effects. It makes the
following contributions:
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

s
i

e
(
t
l
s
g
c
c
o
t

s
g
q
s
e
s
w

2

2

u
r
d

o
f
a
a
e
t
a
u
A
t
r

t
m
L
a
f
s
v
m
n
m
p
m

q
t
l
c
a
w
S
t
t
g
s
1

2

o
c
C
t
r
t
m
L
P
w
s
t
i
a
b
a
q

M
d
q
r
a
e
i
t

Fig. 1. A true process TP generates an event log L with unknown quality PT . A
ample S drawn from L has some error e. Discovering a model from S results
n a process model with quality PS .

• It proposes measures for the quality of event logs, both
in the presence and absence of a true process. In the for-
mer case, we use standard conformance checking measures,
while in the latter case we rely on sampling techniques and
measures as studied in statistics;
• It discusses requirements to measure the quality of samples

with respect to an original event log and shows the effect
different sampling techniques have on the proposed quality
measures;
• It provides empirical evidence that existing process discov-

ery algorithms can construct good models from event logs
and, at the same time, produce poor models from better
logs; and
• It proposes four maturity stages for process discovery algo-

rithms that aim to demonstrate the relation between the
quality of input event logs and the quality of output process
models.

These proposals for assessing the goodness of process discov-
ry algorithms can help to advance the field. Several benchmarks
cf. [7]) have identified process discovery algorithms that ‘‘glit-
er’’, that is, algorithms that produce high-quality models on a
imited collection of event logs. We argue that such benchmarks
hould be complemented with formal analysis to provide quality
uarantees with the algorithms. We invite the process mining
ommunity to contribute to the discussion of the maturity of pro-
ess discovery algorithms. In addition, we encourage the authors
f existing and future process discovery algorithms to establish
he proposed guarantees.

The remainder of the paper is structured as follows. The next
ection argues why process discovery algorithms need to provide
uarantees. Then, a statistical approach to establish event log
uality is introduced in Section 3. Next, Section 4 presents four
tages of maturity for process discovery algorithms, together with
mpirical evidence that there are algorithms that do not provide
uch guarantees. Finally, Sections 5 and 6 are devoted to related
ork, and conclusions, respectively.

. Setting the stage

.1. Process discovery and conformance checking

Process mining projects often start by assuming that some
nderlying process generates an event log that can be observed,
ecorded, and used for process discovery. We refer to this un-
erlying entity as the true process. The true process is, however,
2

ften unknown [2]. Hence, it can only be approximated. There-
ore, based on the observed log, process discovery algorithms
im to construct a process model that describes the true process
s closely as possible. Formally, given a set of activities A, an
vent log L is defined as a multiset over finite sequences, called
races, over A. A discovery algorithm disc can be described as
relation disc ⊆ L(A) × 2M(A), where L(A) and M(A) are the
niverse of all possible logs and the universe of all models over
, respectively. Note that some discovery algorithms, for instance
he ILP-miner [8], are non-deterministic and can yield different
esults for the same input log.

To measure how well the discovered process models describe
he behavior recorded in the event log, different conformance
easures have been proposed [9]. Precision is a function prec :
(A) ×M(A) → [0, 1] that quantifies the fraction of behavior
llowed by the model that was actually observed. Recall is a
unction rec : L(A) × M(A) → [0, 1] that quantifies the ob-
erved behavior allowed by the model. For both measures, the
alue of one denotes perfect conformance between the log and
odel. For example, precision and recall can be grounded in the
otion of topological entropy of the processes described in the
odel and log [5]. As demonstrated in [5,10], the entropy-based
recision and recall measures satisfy all the requirements for such
easures proposed by the process mining community [5,9–11].
Process discovery algorithms are often designed with a specific

uality goal in mind. Several algorithms have rediscoverability as
heir goal: if the unknown, true process that generated the event
og has specific properties, and the event log satisfies certain
riteria, then the algorithm discovers the true process. For ex-
mple, α-miner has the rediscoverability property for structured
orkflow nets, imposing log completeness as the criterion [12].
imilarly, Inductive Miner [13] can rediscover process trees under
he assumption of activity completeness, i.e., every leaf in the
ree should occur at least once in the event log. Another common
oal of process discovery algorithms is to construct a model that
cores high on one or several conformance measures (e.g., [8,14,
5]).

.2. Relating log quality and model quality

Event logs used as inputs to process discovery algorithms are
ften assumed to be faithful representations of the true pro-
esses. Let us reflect on the consequences of this assumption.
onsider Fig. 1. The true process TP is executed continuously,
hus generating a stream of events, from which L is a (non-
andom) sample [3,9,16]. Assume L is a faithful representation of
he true process TP . In other words, L has a high model quality PT ,
easured, for example, in terms of precision and recall between
and TP . Therefore, L can be seen as a sample from this stream.
otentially, samples of L can be faithful representations of TP as
ell. Let S be a random sample of L. As it is a random sample,
tatistical methods can be applied to establish its quality, or lack
hereof e, with respect to L. And, because S is an event log itself,
t can be used to discover some model M , which has quality PS ,
gain measured in terms of conformance measures, but this time
etween S and M . Then, if S is a good representation of log L,
process discovery algorithm should construct a model with a
uality that approaches PT .
Let us draw two samples from L, say S1 and S2. For S1, model

1 is discovered, with quality PS1 , and for S2 a model M2 is
iscovered, with quality PS2 . Suppose S1 has a higher sample
uality than S2 with respect to L. In other words, S1 is a better
epresentation of L than S2. Intuitively, the quality of M1 should
lso be closer to PT than the quality of M2. In other words, if
(S1) ≥ e(S2) then one should expect that PS1 ≥ PS2 . Hence, it
s desirable that the process discovery algorithm also guarantees
hat better quality logs result in better quality models.

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

e
(
c
i
t
r
d
r
o
e
s
a

3

p
q
s
t
t
C
t
S
e

s
t
r
l
(

Table 1
Example event log L with eight traces. The log consists of four unique traces.
Trace ⟨a, d, g⟩ ⟨a, c, g⟩ ⟨a, b, g⟩ ⟨a, e, g⟩

Frequency 4 2 1 1

Table 2
Illustration of the different sampling techniques on the event log from Table 1,
showing the challenges associated with handling infrequent traces. Each row
represents an example sample log, given by the frequency of traces, constructed
with the respective technique.
Sample Technique Sampled event log, sample ratio: 25%

Sequence ⟨a, d, g⟩ ⟨a, c, g⟩ ⟨a, b, g⟩ ⟨a, e, g⟩
Expected 1 0.5 0.25 0.25

S1 Random fixed 1 0 1 0
S2 Random probability 2 1 1 0
S3 Stratified 1 0 0 0
S4 Existential stratified 1 1 1 1
S5 Stratified plus 1 0 0 1
S6 Stratified squared 1 1 0 0

In real-life situations, the true process that generated the
vent log is often unknown. In most process mining methods
cf., [17–19]), the event log is prepared, and then process dis-
overy techniques are applied to unravel a process model. An
mportant concern that these methods do not address relates to
he reliability [20] of process mining projects: if the process is
epeated on a new observation, i.e., a new event log, to what
egree do the results agree between the analyses? Specifically for
epeatability, also called test-retest reliability [21], the guarantees
f a process discovery algorithm come into play. If the differ-
nt samples are of similar quality, then the constructed models
hould be of similar quality. However, current process discovery
lgorithms do not explicitly claim to provide such guarantees.

. Event log sampling

A necessary step in providing guarantees on the results of
rocess discovery algorithms is to establish measures for log
uality. We argue that any event log can be studied as a random
ample of traces generated by the true process. Similar to [9],
he true process can be represented as a set of traces with some
race likelihood function that assigns a probability to each trace.
onsequently, any sample of an event log is again a sample of
he true process, as proposed in [16]. We consider a sample log
of an event log L to be a subset of the traces observed in the
vent log, i.e., S(σ) ≤ L(σ), for all traces σ ∈ L and S(σ) = 0

if σ ̸∈ L. This allows drawing different samples from a given
event log, and then comparing these samples with the event log
to analyze the quality of these samples. Little is known about
the representativeness or quality of random samples in process
mining [16,22]. In the remainder of this section, we propose
random sampling techniques to be used in process mining and
provide measures to analyze the quality of a sample with respect
to the original event log.

3.1. Sampling techniques

In this section, we propose several sampling techniques that
can be used to draw a sample from an event log, where each
trace in the event log has the same probability of being sampled.
Consequently, samples obtained using these techniques can be
used to estimate the characteristics of the event log, and, thus,
of the true process. An illustration of the discussed sampling
techniques for the event log summarized in Table 1 is shown in
Table 2 using a sampling ratio of 25%.
3

3.1.1. Simple random sampling techniques
The first two sampling techniques are based on simple random

sampling, where a sample is created by randomly including traces
with a predetermined sampling ratio. Random fixed sampling
tarts by calculating the size of the event log, and then determines
he size of the sample log. The sample log is then created by
andomly drawing traces from the event log until the sample
og has the desired size. To illustrate the technique, two traces
⟨a, d, g⟩ and ⟨a, b, g⟩) were drawn out of the 8 cases from the
sample log in Table 2.

Another sampling technique is random probability: each trace
is included in the sample based on the inclusion probability. For
example, creating a sample of 25% results in each trace having
a probability of 25% to be included in the sample log. As an
example, the sample drawn using this technique in Table 2 has
four cases: two instances of trace ⟨a, d, g⟩, and traces ⟨a, c, g⟩
and ⟨a, b, g⟩ were both drawn once. As the example shows, a
disadvantage of this technique is that the resulting size of the
sample might differ from the intended sample size.

3.1.2. Stratified sampling techniques
The sampling techniques from the second class are based on

stratified sampling. The first technique is classical stratified sam-
pling [23], where the data is divided into unique groups, called
strata. For process discovery, these groups can be formed based
on unique traces. Then, a simple random sample is taken from
each group. In theory, this sampling technique would give more
representative samples because of the stratification of unique
traces. However, one has to be careful when applying stratified
sampling: as only a natural number of traces can be added to
a sample, a trace can only be added fully or not at all. This
technique is illustrated in Table 2: there are four strata. In the
first, 25% of four sequences are selected, i.e., a single trace. For
each of the other strata, the number of elements to select is lower
than 1, i.e., no traces are selected from the other strata. Hence, a
problem occurs if a stratum contains fewer traces than there are
expected to be sampled. One way to solve this is by rounding,
e.g. using the half to even rule (cf. IEEE 754). No literature exists
on the topic of using stratified sampling in the area of process
discovery [22].

Another solution for unsampled strata is existential stratified
sampling. Similar to stratified, the half to even rule is used. How-
ever, after rounding, a trace from each unsampled stratum is
added to the sample log. Although it ensures that the directly-
follows relations of the sample log and the original event log
are identical, the main disadvantage is that these strata are an
overrepresentation in the sample. As shown in Table 2, the strat-
ified sample is complemented by adding a single trace from the
remaining strata.

Existential stratified sampling shows a trade-off between ex-
istential completeness of directly-follows relations and the repre-
sentativeness of the frequencies of directly-follows relations. The
stratified plus sampling method tries to find a balance between
existential completeness and frequency representativeness by
randomly sampling additional cases whose trace has not been
included in the sample yet. It uses the number of traces that were
expected to be sampled and the number of traces sampled by
stratified sampling in order to determine how many additional
traces should be sampled. In Table 2, the stratified sample, con-
taining one trace, is complemented by adding one trace, randomly
selected from the remaining traces.

The third extension of stratified sampling is the stratified
squared sampling approach. It extends classical stratified sam-
pling by randomly sampling additional traces that have not been
included in the sample yet, based on the number of cases that
were expected to be sampled and the number of cases sampled

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

o
f
t
t
(
S
i
q
a
f
b
t

by stratified sampling: from the strata that are not represented,
traces are randomly selected, until the sample log has the desired
size. First, a stratified sample is drawn. Then the number of
sampled traces is compared to the number of expected traces
based on the sampling ratio. Due to rounding, the number of
expected traces can be greater than the number of actually added
traces. If this happens, the uncovered strata are sorted based on
their frequency, and a trace of each of these strata is added, until
the number of sampled traces matches the expected number of
traces, or all strata are covered.

3.2. Requirements for sample quality measures for process mining

Event logs describe the behavior of a system in terms of traces
f events. Thus, sampling is performed on the level of traces:
or each trace it is decided whether the whole trace is added to
he sample. Different approaches exist to estimate the quality of
he sample, e.g., by comparing the Observed Trace variants Ratio
OTR) [24]. However, as Table 2 shows, even though samples
1 and S6 both contain two out of four traces, the amount of
nformation they contain is different, as S6 contains the more fre-
uent trace ⟨a, c, g⟩. Most discovery algorithms (cf. [8,12,14,25])
bstract from traces by using the directly-follows relation. There-
ore, we propose, similar to [16,26], to measure sample quality
ased on the directly-follows relation. The directly-follows rela-
ion >L is defined on pairs of events a and b, such that a >L b iff
the event log L contains a trace in which the two activities a and
b occur consecutively.

The first principle we propose for comparing a sample to
the original event log is existential completeness, i.e., the extent
to which all possible directly-follows pairs are present in the
sample, leading to the first sample quality measure: coverage.
Coverage is defined as the ratio of unique directly-follows pairs
present in the sample to the number of unique directly-follows
pairs in the event log.

Coverage does not take the occurrence frequency of behavior
into account. Different principles can be defined to measure fre-
quency representativeness. Measuring the frequency
representativeness of a sample is more subjective than measuring
existential completeness. For example, for process conformance
testing, like audit, rare behavior might be of interest, while for
another project, only the most frequent traces are essential.
Therefore, instead of pointing towards a single best measure
for frequency representativeness, we present a list of generic
requirements, and propose several measures, assessing them
against these generic requirements. The proposed requirements
are formulated in terms of a penalty, or an error, that mea-
sures of sample quality should assign to samples under different
conditions.

R1. Respect exact matches: The measure should report no
error when the frequencies of directly-follows pairs of the
sample exactly match the expected frequencies;

R2. Doubling has no effect: Doubling the number of unique
directly-follows pairs present in the original event log
should not affect the reported error when the new unique
directly-follows pairs are equally often expected and sam-
pled as the unique directly-follows pairs before doubling;

R3. Be proportional: Doubling the number of occurrences of
every directly-follows pair present in the original event
log should not affect the reported error when the devia-
tion of each sampled directly-follows pair is proportion-
ally the same (e.g. the deviation of a directly-follows pair
which is expected to occur five times, but is sampled three
times is proportional to the same directly-follows pair be-
ing expected to occur fifty times, but being sampled thirty
times);
4

R4. Punish absolute deviations: When the sample size is var-
ied while the absolute deviation is kept the same (e.g. all
directly-follows pairs are off by one occurrence), then the
error reported by the measure should increase when the
sample size decreases;

R5. Punish large over small errors: When one directly-follows
pair is oversampled by four (i.e., is sampled four more
times than its expected frequency), then the reported er-
ror should generally be larger compared to when four
directly-follows pairs are oversampled by one occurrence;

R6. Trace frequency: A sample where only the least often
occurring directly-follows pair is off by one (i.e., sampled
once more or once less often than its expected frequency)
should generally report a higher error than the same sam-
ple where only the most often occurring directly-follows
pair is off by one;

R7. Maintain perfect sampled pairs: Given two samples of
different size, if the frequency of a directly-follows pair
matches the expected occurrences in both samples, and
all other pairs have the same deviations, then the smaller
sample should have a higher penalty.

3.3. Sample quality measures for process mining

In statistics, error measures are used to quantify the error
between the expected values and the real occurrences. We pro-
pose to adapt these error measures to quantify the error between
the behavior observed in a sample and the expected behavior
from the event log based on the sampling ratio. As a result, we
obtain several measures of sample quality. In the definitions that
follow, by ewe denote the expected behavior, and by s, we denote
the sampled behavior as vectors of length n (i.e. n denotes the
number of unique directly-follows pairs):

The (Normalized) Mean Absolute Error (NMAE) calculates the
normalized absolute deviation (i.e., error) of the number
of occurrences of each unique directly-follows relation of
the sample from their respective expected frequency:

NMAE =
MAE
avg e

=

∑n
i=1 |si − ei|∑n

i=1 ei
. (1)

The (Normalized) Root Mean Square Error (NRMSE) is similar
to the NMAE, but uses the root of the squared devia-
tions, instead of the absolute values, thus penalizing large
deviations more heavily:

NRMSE =
RMSE
avg e

=

√
1
n

∑n
i=1(si − ei)2

1
n

∑n
i=1 ei

. (2)

The Mean Absolute Percentage Error (MAPE) expresses the
deviation as a percentage. Its symmetric version (sMAPE)
has the advantage that the undersampling of behavior is
penalized more heavily:

MAPE =
1
n

n∑
i=1

⏐⏐⏐⏐ei − si
ei

⏐⏐⏐⏐ , sMAPE =
1
n

n∑
i=1

|ei − si|
ei + si

. (3)

The Symmetric Root Mean Square Percentage Error (sRMSPE)
is similar to sMAPE, but uses the root mean square error
instead of the mean absolute error, thus penalizing large
deviations more heavily:

sRMSPE =

√1
n

n∑(
ei − si
ei + si

)2

. (4)

i=1

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

r
m
p
s
o

b

Table 3
The expected frequencies of directly-follows pairs together with the frequencies
of directly-follows pairs of sample S1 and sample S4 of event log L (Table 2).

Frequency

Expected S1 S2 S3 S4 S5 S6
a >L b 0.25 0 1 0 1 0 0
a >L c 0.50 1 1 0 1 0 1
a >L d 1.00 1 2 1 1 1 1
a >L e 0.25 0 0 0 1 1 0
b >L g 0.25 0 1 0 1 0 0
c >L g 0.50 1 1 0 1 0 1
d >L g 1.00 1 2 1 1 1 1
e >L g 0.25 0 0 0 1 1 0

Table 4
Errors reported by the proposed measures on samples S1 and S5 (Table 2).
Error measure S1 S2 S3 S4 S5 S6
Coverage 0.50 0.75 0.25 1.00 0.50 0.50
MAE 0.25 0.63 0.25 0.50 0.38 0.25
NMAE 0.50 1.25 0.50 1.00 0.75 0.50
RMSE 0.31 0.68 0.31 0.59 0.47 0.31
NRMSE 0.61 1.37 0.61 1.17 0.94 0.61
MAPE 0.75 1.50 0.75 1.75 1.25 0.75
sMAPE 0.58 0.57 0.75 0.38 0.65 0.58
sRMSPE 0.73 0.63 0.87 0.46 0.77 0.73

These measures assess the behavioral quality of a sample with
espect to the event log it is drawn from. In other words, these
easures provide ways to establish the quality of the input of
rocess discovery algorithms. Table 4 shows each measure on the
amples S1 and S4 from event log L in Table 2. The frequencies
f behavior in both samples are shown in Table 3. Sample S4

has perfect coverage, as every directly-follow pair of L occurs at
least once in the sample. MAE and NMAE report the same relative
error for both logs, as the expected frequencies are equal for
both samples. Note that NMAE would adjust itself with respect
to sample size, whereas MAE is size agnostic. Sample S4 scores
etter on sMAPE than S1, as S1 does not sample two directly-

follows pairs, whereas S4 only oversamples pairs. This illustrates
that the sMAPE measure gives a higher penalty for unsampled
behavior. RMSE, NRMSE, and sRMSPE give comparable results
for these two samples as these samples do not contain large
deviations between actual and expected frequencies.

3.4. Evaluation of sample quality measures

The results of the analysis is shown in Table 5. A shortcoming
of the MAE measure is that changes in the expected sample size
are not reflected in the reported error (Req 4). For example, in one
sample, a directly-follows relation is expected to occur ten times
and occurs nine times, while in another sample with a larger
sample size, this directly-follows relation is expected to occur one
hundred times and occurs ninety-nine times. The MAE gives these
two samples both an equal error because both are exactly off by
one. It fails to satisfy most requirements, as shown in Table 5.
Normalizing the MEA, i.e., the NMAE, results in a measure that
satisfies most of the requirements, except for R5 and R6.

The RMSE measure behaves in a similar way as MAE. It pe-
nalizes larger deviations more heavily, which can be a desired
property if unbalanced samples are undesired (i.e. samples where
the number of occurrences of one or a few directly-follows re-
lations deviate a lot from their expected frequency). Its normal-
ization, i.e., the NRMSE, results in a measure that satisfies all
requirements, except for R6.

The main difference between the MAPE and NMAE is that the

MAPE does not decrease the error when increasing the number

5

Table 5
Testing each frequency representativeness measure against the requirements.
Measure R1 R2 R3 R4 R5 R6 R7

MAE ✓ ✓ ✗ ✗ ✗ ✗ ✗

NMAE ✓ ✓ ✓ ✓ ✗ ✗ ✓

RMSE ✓ ✓ ✗ ✗ ✓ ✗ ✗

NRMSE ✓ ✓ ✓ ✓ ✓ ✗ ✓

MAPE ✓ ✓ ✓ ✓ ✗ ✓ ✗

sMAPE ✓ ✓ ✓ ✓ ✗ ✓ ✗

sRMSPE ✓ ✓ ✓ ✓ ✓ ✓ ✗

of occurrences of one or more perfectly sampled directly-follows
relations while still keeping them perfectly sampled. Vice versa,
the NMAE does not report a lower error when the most occurring
directly-follows relation is off by one compared to the least
occurring directly-follows relation being off by one. Its symmetric
version, i.e., the sMAPE measure, ticks the same requirements, but
the sMAPE does favor existential completeness compared to the
MAPE, because it gives unsampled behavior the highest possible
penalty. This makes the sMAPE measure more appropriate for a
process mining goal where rare behavior is desired.

Comparing the sRMSPE with the sMAPE, shows that the former
uses the square root error, instead of the mean absolute error.
Consequently, the sRMSPE gives a larger penalty to directly-
follows relations whose number of occurrences is further off its
expected frequency because the measure uses the root mean
square error in the calculation. If this property is desired, then
the sRMSPE should be selected over the sMAPE.

Overall, the analysis on the requirements shows that if exis-
tential completeness is important, sMAPE or sRMSPE should be
chosen, otherwise the NMAE or NRMSE should be used. When
single large deviations are not desired, then the root mean square
error based measures should be used instead of the mean abso-
lute error variants.

3.5. Effect of sampling techniques

With the sample quality measures, the effects of the different
sampling methods can be studied. For this evaluation, we used
two event logs that were generated from a Petri net with a start
transition a, followed by five parallel transitions b, c , d, and e, and
final transition g . The first event log, L1 is a balanced log, i.e., most
traces have a similar frequency, whereas the second event log, L2
has many infrequent traces, i.e., many traces occur only once in
the event log.

Each event log has been sampled using each of the sampling
techniques, which are random sampling with a fixed sample
size (random fixed), probability-based random sampling (random
probability), stratified sampling, existential stratified sampling,
stratified plus sampling, and stratified squared sampling. Sam-
pling with each of the different sampling techniques was re-
peated one hundred times for each of the following five sample
ratios: 0.01, 0.05, 0.1, 0.2, and 0.5. This resulted in one hundred
samples for each combination of sampling technique and sam-
ple ratio. For each sample, the coverage, NMAE, MAPE, sMAPE,
NRMSE, and sRMSPE have been calculated. Next, for each com-
bination of sampling technique and sample ratio, the quality
measures have been averaged over the one hundred samples and
the standard deviation has been calculated.

Fig. 2 shows the effects of sampling on the first event log,
i.e., the balanced log. As there are no infrequent traces in this
event log, the values reported by all four different variations of
stratified sampling techniques are exactly the same. The
probability-based random sampling technique consistently per-
forms worst on all measures. The fixed sample size random

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

s
s
s

e
e
H
f
p
t
n
n
w
s
s
i
e
t
s
d

Fig. 2. The effects of different sample ratios and sampling techniques on the sample quality measures from a balanced event log L3 .
ampling technique only performs marginally better. All four
tratified sampling based techniques seem to create a near perfect
ample, especially when the sample ratio is 0.05 or larger.
The effects of the sampling techniques are more clear in the

vent log with infrequent traces, as shown in Fig. 3. By definition,
xistential stratified sampling always produces a coverage of 1.
owever, as the measures show, it oversamples rare directly-
ollows relations, which is especially true for the smallest sam-
le ratios. Stratified sampling performs worst of the sampling
echniques, as it leaves out all rare sequences from the origi-
al event log. The evaluation also confirms the finding that the
on-symmetric measures (NMAE, MAPE, and NRMSE) perform
orse on an event log with many infrequent traces than the
ymmetric measures (sMAPE, sRMSPE). Probability-based random
ampling performs poorly on both sample measures, while strat-
fied squared sampling seems to consistently have the lowest
rror on NMAE and NRMSE. The difference between the sampling
echniques is largest with a sample ratio of 0.01, while for larger
ample ratios the difference between the sampling techniques

ecreases.

6

4. Designing process discovery algorithms with guarantees

As observed in a study on the quality of conformance mea-
sures [5], some process discovery algorithms have a large vari-
ability in the quality of the constructed process models, though
the used measures satisfy the properties proposed in [9,11]. In
particular, given different samples of a single event log, the same
algorithm sometimes provides good results on small samples,
while on larger samples, the algorithm discovers worse models.
On further inspection, these algorithms are state of the art, and do
not perform any major ‘‘process mining crimes’’ [27]. In addition,
they ‘‘glitter’’ in the benchmark study reported in [7].

We consider this observation a threat to the application of
process mining, particularly for its repeatability and, hence, the
reliability of its results. Suppose for a true process several event
logs are captured and analyzed, and the results do not agree,
i.e., they differ largely in quality. Several explanations for this
phenomenon are possible. A first explanation could be the quality
of the input, i.e., the quality of the event logs differed significantly.
However, as the observation highlights, another plausible – yet
undesirable – explanation lies in the process discovery algorithm
itself. In other words, if the process discovery algorithm does not

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

p
i

p
e
t

i
t
i
n
a
g
t
s
u
3

Fig. 3. The effects of different sample ratios and sampling techniques on the sample quality measures from event log L2 containing many infrequent traces.
4

g
d

t
o
a
n
l
i
a
l
t
s

rovide any guarantees on the quality of the resulting models, it
s impossible to exclude the algorithm as a root cause.

Consequently, we advocate process discovery algorithms to
rovide guarantees on the quality of the produced results. To this
nd, we propose to distinguish four stages during the introduc-
ion of a process discovery algorithm:

1. The algorithm is well designed;
2. The algorithm is validated on real-life examples;
3. The algorithm has an established relationship between the

log and model quality;
4. The algorithm is effective.

Though the first two stages are basic, not all algorithms make
t to the second stage, as illustrated later. Arguably, algorithms
hat are shown not to pass the second stage should not be used
n empirical studies. The third and fourth stages are entirely
ovel for process discovery. Once the algorithm is shown to be
pplicable on real-life examples, the authors should study which
uarantees their algorithm provides in a controlled setting where
he true process is known. To pass the last stage, the algorithm
hould provide evidence that in settings where the true process is
nknown, the algorithm provides the guarantees stated at stage
.

7

.1. Stage 1: The algorithm is well designed

In the first stage, the developers of a process discovery al-
orithm should properly introduce their algorithm. For this, the
evelopers need to provide the following:

• The class of process models the algorithm constructs;
• Evidence for meeting the quality goals of the algorithm;
• Criteria on the logs, e.g., requirements on the true process

that generates the logs;
• An initial evaluation on artificial data sets.

Most process discovery algorithms satisfy the requirements of
his stage. For example, the ILP-miner [8] is designed for the class
f classical Petri nets with interleaving semantics. It is proven to
lways return a Petri net with a perfect recall score. It imposes
o requirements on the input event logs and is tested on artificial
ogs. Also, the α-miner [12] algorithm is at least in this stage. It
s designed for well-structured Workflow nets with rediscover-
bility as a goal. It imposes two requirements on an input event
og: it should contain all directly-follows relations present in the
rue process, and the true process should be block-structured. A
imilar argument holds for the Inductive Miner [13].

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

s
s
o
u
t
r
p
i
a
g
s
S
e

4
q

t
a
b
d
I
i
t
b

r
c
I
t

4

p
M
m
t
t
f

t
a
S
q
t
q
t
w
A
s
r
t
t

Algorithm 1: Establish Relation
1 while True do
2 TP ← GenerateModel(M, A);
3 foreach i ∈ [1..N] do
4 L← GenerateLog(TP , T);
5 PT

← calcModelQuality(L, TP);
6 foreach r ∈ ratios do
7 foreach j ∈ [1..K] do
8 S ← DrawSample(L, r);
9 e← calcSampleQuality(L, S);

10 M ← DiscoverModel(S);
11 PS

← calcModelQuality(S, M);

4.2. Stage 2: The algorithm is validated

Even though an algorithm may be well designed, i.e., it passes
tage 1, it is not guaranteed that it works in practice. The second
tage in introducing the algorithm is, therefore, the validation
f the algorithm on a collection of real-life event logs, such as
sed in the benchmark reported in [7]. Several algorithms fail
o reach this stage. For example, the α-miner is theoretically a
obust algorithm, but the requirements it imposes on the true
rocess are too strong for application in real-life situations. Sim-
larly, the ILP-miner is designed from a theoretical point of view
nd has limitations for practical use, primarily because of its
uaranteed recall and runtime performance. Other algorithms,
uch as the Inductive Miner [13], the Declare Miner [28] and the
plit Miner [29] have been applied successfully on several real-life
vent logs, and thus pass this stage.

.3. Stage 3: An established relationship between log and model
uality

Although passing stage two shows the algorithm’s capabili-
ies, this does not provide any guarantees on the quality of the
lgorithm’s output. As a first step in establishing a relationship
etween the log and model quality, it needs to be shown to what
egree the algorithm satisfies the guarantees as sketched in Fig. 1.
n other words, the designers need to show that if an event log
s a faithful representation of a true process, as per measure PT ,
hen the algorithm should satisfy properties similar to those listed
elow:

P1. For a sample log S that approaches the perfect quality, the
quality PS of the discovered model from S approaches PT ;

P2. For two samples S1 and S2, if sample S1 has a higher quality
than S2, then the model quality PS1 is higher than PS2 .

Algorithm designers can choose different strategies to provide
evidence for these properties. The most potent form of evidence
is a formal proof that the algorithm satisfies these properties for
specific instantiations of log and model quality measures. In that
way, a relationship between an input log quality and the resulting
model quality can be established. We also encourage algorithm
designers to define algorithm-specific log quality measures. If a
formal proof is not feasible, instead, statistical evidence of these
properties can be provided. For this, we propose a controlled
experiment as outlined in Algorithm 1. Such a controlled ex-
periment follows the approach shown in Fig. 1. It requires the
algorithm designers to have a model generator for the class of
true processes the algorithm accepts. The algorithm then gener-
ates repeatedly for a true process one or more event logs, and for
each event log a set of samples.

We propose to use statistical tests to evaluate the two prop-
erties. Property P1 needs an analysis of the relation between the
 S

8

Table 6
Results of the controlled experiment, showing the Spearman rank correlation
between the error measures and precision. All bold values are statistically
significant (p < 0.001).

True process Precision

Model Precision Cov. sMAPE sRMSPE NRMSE NMAE

1 0.538 0.658 −0.988 −0.986 −0.988 −0.989
2 0.797 0.470 −0.986 −0.985 −0.901 −0.954
3 0.935 0.781 −0.990 −0.989 −0.975 −0.984
4 0.953 0.705 −0.991 −0.992 −0.984 −0.987
5 0.988 0.540 −0.983 −0.981 −0.980 −0.986
6 0.871 0.532 −0.934 −0.938 −0.917 −0.926
7 0.943 0.511 −0.991 −0.989 −0.986 −0.989
8 0.616 0.773 −0.992 −0.991 −0.989 −0.990
9 0.710 0.519 −0.981 −0.978 −0.970 −0.973
10 0.883 0.703 −0.982 −0.982 −0.977 −0.976

Table 7
Results of the controlled experiment, showing the Spearman rank correlation
between the error measures and recall. All bold values are statistically significant
(p < 0.001).

True process Recall

Model Recall Cov. sMAPE sRMSPE NRMSE NMAE

1 1.000 0.338 −0.356 −0.354 −0.354 −0.356
2 1.000 0.154 −0.051 −0.052 0.012 −0.004
3 1.000 0.637 −0.406 −0.417 −0.410 −0.412
4 1.000 −0.103 0.105 0.108 0.081 0.090
5 1.000 0.437 −0.201 −0.206 −0.207 −0.201
6 1.000 −0.529 0.973 0.962 0.963 0.968
7 1.000 0.456 −0.242 −0.240 −0.228 −0.231
8 1.000 0.114 −0.148 −0.154 −0.156 −0.157
9 1.000 0.518 −0.327 −0.330 −0.340 −0.341
10 1.000 0.116 −0.022 −0.027 −0.016 −0.023

expected PT and the observed PS . For property P2, the Spearman
ank correlation can be used to test whether there is a strong
orrelation between the sample quality and the model quality.
f this is the case, then statistical evidence has been provided for
he relationship between log and model quality.

.3.1. Example evaluation
To show the feasibility of the approach, the controlled ex-

eriment has been implemented in ProM2 for the Inductive
iner [13]. Precision and recall are calculated using an imple-
entation of exact matching entropy-based measures in En-

ropia [30]. For each true process, a single event log with 5000
races has been generated. The event logs were 10 times sampled
or 12 sampling ratios: 0.01, 0.02, 0.05, and 0.1 up to 0.9.

The results are shown in Tables 6 and 7, and in Fig. 4. From
his figure, we conclude that property P1 holds for precision
nd recall. For each model that describes the true process, the
pearman rank correlation is calculated between each of the log
uality measures and precision, and similarly for recall. As for
he measures sMAPE, sRMSPE, NRMSE, and NMAE, 0 is the best
uality, a negative correlation indicates the required guarantee
hat samples of higher quality result in better discovered models,
hereas for coverage, a positive correlation indicates this result.
s can be seen in the table, the experiment generates mixed re-
ults. Though property P2 holds for precision, it is not satisfied for
ecall. Hence, we can conclude that the Inductive Miner satisfies
he two properties for precision, but fails to do so for recall on
he second property.

2 The source code is available on: https://github.com/ArchitectureMining/
amplingFramework.

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

t
e
e
k
c
h
F
e
w
t
a

e
t
s
k
a
m
p
P
t
r
o

c
a
a
q
a

4

p
e
a
1
a

Fig. 4. Relation between the quality of the true process and the quality of the discovered models, for precision (left) and recall (right). Darker points represent a
higher coverage.
Algorithm 2: Test Effectiveness
1 foreach L ∈ Benchmark do
2 foreach r ∈ ratios do
3 foreach j ∈ [1..K] do
4 S ← DrawSample(L, r);
5 e← calcSampleQuality(L, S);

6 M ← DiscoverModel(S);
7 PS

← calcModelQuality(S, M);

4.4. Stage 4: The algorithm is effective

An established relationship between log and model quality,
he essence of stage 3, does not guarantee the algorithm to be
ffective in real-life situations. The main caveat in the controlled
nvironment of the previous stage is that the true process is
nown. Each event log is generated from the known true pro-
esses. In real-life situations, the true process is unknown, and,
ence, may invalidate assumptions of the discovery algorithm.
or example, the Inductive Miner assumes event logs to be gen-
rated from process trees. However, no criteria are given to test
hether an event log is generated by a process tree, nor does
he algorithm provide any details on the model quality if the
ssumption is invalid.
In this stage, the algorithm designer has to validate how

ffective the algorithm is in real-life situations. One way to ob-
ain insights into the effectiveness of the algorithm is to apply
ampling on a benchmark. This benchmark can be a set of well-
nown real-life event logs as used in [7], or can be generated
utomatically, if the designers ensure that the class of generated
odels is larger than the class of true processes studied in the
revious stage. The algorithm designers need to analyze property
2 in the absence of a true process. In other words, even if
he true process is unknown, event logs of better quality should
eturn better quality models. This may result in an experiment as
utlined in Algorithm 2.
The analysis of property P2 in the absence of a true process

an have two possible outcomes. Either it is shown that the
lgorithm has the desired property, or, if this is not possible, the
lgorithm should be further improved, or provide additional log
uality measures, that guarantee that an event log satisfies the
ssumptions of the process discovery algorithm.

.4.1. Example evaluation
As an example of the analysis in stage 4, we conducted the

roposed experiment on the Inductive Miner [13]. Two real-life
vent logs have been selected, the Road Traffic Fine event log [31]
nd the Sepsis event log [32]. The Road Traffic Fine log has in total
50,370 traces and 561,470 events. There are 231 unique traces
nd 11 unique event types. The Sepsis log consists of 1049 traces,
9

of which 845 are unique, and 15,190 events with 16 unique event
types. Sampling was done at the same sampling ratios as before:
0.01, 0.02, 0.05, and 0.1 up to 0.9. For each ratio, ten samples were
drawn.

The sample quality measures for the Road Traffic Fine log are
shown on the left in Fig. 5. As the plot shows, the larger the
sampling ratio, and thus the log size, the better the quality is
(error measures: ρ < −0.9, p < 0.001, coverage: ρ = 0.96, p <
0.001). Sample size and the conformance measure on precision
(Fig. 6) show a moderate positive correlation (ρ = 0.56, p <
0.001), while there is no correlation between sampling ratio and
recall (ρ = 0.03, p = 0.72). Analyzing the quality measures
with the conformance measures shows a different story. In Fig. 6,
the coverage is plotted against the precision, indicating there is
no correlation between coverage and precision. Further analysis
revealed no correlations between the sample quality measures
and precision (sMAPE: ρ = −0.19, p = 0.03, sRMSPE: ρ =
−0.18, p = 0.051, NRMSE: ρ = −0.21, p = 0.02, NMAE:
ρ = −0.20, p = 0.03, coverage: ρ = 0.17, p = 0.06). The
correlations found for recall show that samples of worse quality
result in better models (sMAPE: ρ = 0.80, p < 0.001, sRMSPE:
ρ = 0.79, p < 0.001, NRMSE: ρ = 0.77, p < 0.001, NMAE:
ρ = 0.78, p < 0.001, coverage: ρ = −0.79, p < 0.001).

For the Sepsis log, similar results are found. As indicated by
the plots at the right hand side of Fig. 5, a correlation is found
between the sampling ratio and the log quality measures (for all
error measures: ρ < −0.9, p < 0.001, coverage: ρ = 0.59,
p < 0.001). The larger the sampling ratio, the higher the precision
is (ρ = 0.57, p < 0.001), but no correlation was found between
sampling ratio and recall (ρ = 0.03, p = 0.72). A moderate
negative correlation was found between the log quality measures
and precision (for the error measures: −0.60 < ρ < −0.50,
p < 0.001, coverage: ρ = 0.59, p < 0.001), while the log
quality measures did not show any correlation with recall (for all
measures: −0.04 < ρ < 0.02, p > 0.70).

As the results suggest, there is no clear relation between log
and model quality. Hence, it is with the current measures not
possible to conclude that the Inductive Miner is guaranteed to
be effective in real-life situations. As a next step, new log quality
measures should be developed that do establish the required
relationship between log and model quality. The process can then
be repeated until sufficient guarantees can be provided on the
effectiveness of the algorithm.

5. Related work

The statistical approach we propose to establish a relation
between log and model quality relates to event data quality
in general, builds upon established properties of conformance
measures, and requires sampling techniques on event logs. This
section reviews literature on these topics, and shows how our
approach relates to them.

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155

M
u
a
m
c
s
d
i
r
n
n
i
i
q
t

Fig. 5. Plot of ratio and the sample quality measures coverage (), sMAPE (+), sRMSPE (⊠), NRMSE (■) and NMAE (▲) for the Road Traffic Fine log (left) and the
Sepsis log (right).
Fig. 6. Plots of ratio and precision, and coverage with precision and recall for the Road Traffic Fine log (left) and the Sepsis Log (right).
easuring log quality. As the process mining manifesto artic-
lates, process mining treats data as first-class citizens [33],
nd defines four data qualities, of which completeness is studied
ostly. For example, [34] identifies four categories of process
haracteristics and 27 classes of event log quality issues. Most
tudies on event log quality focus on the incompleteness of the
ata. Examples include not having enough information recorded
n the event log (e.g., missing cases or events) [1,34], not having
ecorded enough behavior in the event log [35], or the traces
ot being representative of the process [35], and noise. Different
otions of noise are studied, such as infrequent behavior that
s either incorrect or rare [15]. However, event logs are studied
n isolation in these studies. Instead, we argue to assess the
uality of event logs relative to other event logs, using statistical
echniques based on sampling.
10
Properties of conformance measures. The process mining commu-
nity has recently initiated a discussion on which formal prop-
erties should ‘‘good’’ conformance measures satisfy. In [11], the
authors proposed five properties for precision measures. For in-
stance, one property states that for two process models that
describe all the traces in the log, a less permissive model should
not be qualified as less precise. By demonstrating that a measure
fulfills such properties, one establishes its usefulness. In [5], the
authors strengthened the properties from [11]. For example, ac-
cording to these properties, the less permissive model from the
example above should be classified as more precise. In [9], the
precision properties from [11] were refined, and further desired
properties for recall and generalization measures were intro-
duced, resulting in 21 conformance propositions. Finally, in [36],
properties for precision and recall measures that account for the

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155
partial matching of traces, i.e., traces that are not the same but
share some subsequences of activities, were introduced. The pre-
cision and recall measures used in our evaluations satisfy all the
introduced desired properties for the corresponding measures [5,
9–11].

Sampling in process mining. Sampling has been studied before in
process mining, but never as a systematic approach to evaluate
process discovery techniques. A first set of measures for the
representativeness of samples have been proposed in [16]. Their
results show the need for a systematic approach as proposed in
this paper.

In [37], a sampling technique specific for the Heuristics Miner
is described, claiming that only 3% of the original log is sufficient
to discover 95% of the dependency relations. However, a proper
evaluation of this claim has not been provided, nor are the results
generalizable to other process discovery techniques.

A statistical framework based on information saturation is pro-
posed in [26]. Their approach differs from the probability sam-
pling techniques we propose. Instead of generating samples that
estimate the event log, their approach focuses on creating a
sufficiently small sample that contains as much information from
the event log as possible. Consequently, this approach cannot be
used to measure sample quality with respect to the event log.

Several biased sampling techniques are described in [38].
These techniques have been evaluated on six real-life event logs
and three discovery techniques. The evaluation showed that sam-
pling sometimes improves the F-measure for some of the models.
A similar result on the F-measure was obtained in [39]. Their
study applied the Google PageRank algorithm on event logs to
create a representative sample, which reduced the execution time
of the Inductive Miner by half without decreasing the F-measure.
As the F-measure harmonizes precision and recall, and no analysis
was performed on the reasons behind the improvements, it is
unclear how sampling influenced the process discovery results of
both studies. Instead of using sampling to improve the quality of
the output, we propose to use probability sampling to analyze the
input of algorithms, and to establish a relationship between log
and model quality. This relationship then allows one to explore
why some samples give better models than other samples.

6. Conclusion

This paper identifies the need for process discovery algorithms
with guarantees that characterize the dependency between the
quality of input event logs and the quality of the process mod-
els constructed from these event logs. In particular, we argue
that process discovery algorithms should produce better models
from better input logs. Currently, process discovery algorithms
have never provided such guarantees, since, so far, we, as a
community, lacked a theoretical foundation to establish such
a relationship. In this paper, for the first time, measures for
the statistical sample quality for ranking the quality of event
logs are proposed. We recommend using grounded conformance
checking measures for assessing the quality of the discovered
models. Combining log quality measures with conformance mea-
sures provides a framework to formally define properties that
express the desired guarantee that better event logs result in
better models. These properties can be instantiated with various
measures for quality of event logs and process models and be less
or more pronounced, for example, imposing a strictly increasing
or non-decreasing relation, or requiring a statistical association of
a certain degree between the qualities of the corresponding logs
and models. To overcome this problem, we propose four stages
in the design of an algorithm. Each design comes with additional
properties and obligations to establish effective algorithms with

guarantees.

11
We invite the process mining community to further contribute
to the discussion of desired qualities for process discovery algo-
rithms to ensure that state-of-the-art algorithms fulfill them, and
in this way, advance the field of process discovery as well as the
design and evaluation of such algorithms.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Data availability

Data will be made available on request.

References

[1] W.M.P. van der Aalst, Process Mining—Data Science in Action, second
ed., Springer Berlin Heidelberg, 2016, http://dx.doi.org/10.1007/978-3-662-
49851-4.

[2] J.C.A.M. Buijs, B.F. van Dongen, W.M.P. van der Aalst, Quality dimensions
in process discovery: The importance of fitness, precision, generalization
and simplicity, Int. J. Coop. Inf. Syst. 23 (1) (2014).

[3] A. Polyvyanyy, A. Moffat, L. García-Bañuelos, Bootstrapping generalization
of process models discovered from event data, in: Advanced Information
Systems Engineering 2022, Vol. 13295, in: LNCS, Springer, 2022, pp. 36–54.

[4] T.H. Cormen, C.E. Leiserson, R.L. Rivest, C. Stein, Introduction To Algorithms,
MIT Press Ltd, 2009.

[5] A. Polyvyanyy, A. Solti, M. Weidlich, C.D. Ciccio, J. Mendling, Monotone
precision and recall measures for comparing executions and specifications
of dynamic systems, ACM Trans. Softw. Eng. Methodol. 29 (3) (2020)
17:1–17:41.

[6] J.M.E.M. van der Werf, A. Polyvyanyy, B.R. van Wensveen, M.J.S. Brinkhuis,
H.A. Reijers, All that glitters is not gold - Towards process discovery tech-
niques with guarantees, in: Advanced Information Systems Engineering
2021, Vol. 12751, in: LNCS, Springer, 2021, pp. 141–157.

[7] A. Augusto, R. Conforti, M. Dumas, M.L. Rosa, F.M. Maggi, A. Marrella,
M. Mecella, A. Soo, Automated discovery of process models from event
logs: Review and benchmark, IEEE Trans. Knowl. Data Eng. 31 (4) (2019)
686–705.

[8] J.M.E.M. van der Werf, B.F. van Dongen, C.A.J. Hurkens, A. Serebrenik,
Process discovery using integer linear programming, Fund. Inform. 94 (3–4)
(2009) 387–412.

[9] W.M.P. van der Aalst, Relating process models and event logs—21 confor-
mance propositions, in: ATAED, Vol. 2115, in: CEUR Workshop Proceedings,
CEUR-WS.org, 2018, pp. 56–74.

[10] A.F. Syring, N. Tax, W.M.P. van der Aalst, Evaluating conformance measures
in process mining using conformance propositions, in: ToPNOC, Springer,
2019, pp. 192–221.

[11] N. Tax, X. Lu, N. Sidorova, D. Fahland, W. Aalst, The imprecisions of
precision measures in process mining, Inf. Process. Lett. 135 (2018) 1–8.

[12] W. Aalst, A.J.M.M. Weijters, L. Maruster, Workflow mining: Discover-
ing process models from event logs, Knowl. Data Eng. 16 (9) (2004)
1128–1142.

[13] S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst, Scalable process discovery
with guarantees, in: EMMSAD 2015, Vol. 214, in: LNBIP, Springer, 2015,
pp. 85–101, http://dx.doi.org/10.1007/978-3-319-19237-6_6.

[14] A.J.M.M. Weijters, J.T.S. Ribeiro, Flexible heuristics miner (FHM), in: CIDM
2011, IEEE, 2011, pp. 310–317.

[15] A.K.A. de Medeiros, A.J.M.M. Weijters, W.M.P. van der Aalst, Genetic
process mining: an experimental evaluation, Data Min. Knowl. Discov. 14
(2) (2007) 245–304.

[16] B. Knols, J.M.E.M. van der Werf, Measuring the behavioral quality of log
sampling, in: ICPM 2019, IEEE, 2019, pp. 97–104, http://dx.doi.org/10.1109/
ICPM.2019.00024.

[17] M. Bozkaya, J.M.A.M. Gabriels, J.M.E.M. van der Werf, Process diagnostics
: a method based on process mining, in: EKNOW 2009, IEEE, 2009, pp.
22–27.

[18] M.L. van Eck, X. Lu, S.J.J. Leemans, W.M.P. van der Aalst, PM2: A process
mining project methodology, in: CAiSE 2015, Vol. 9097, in: LNCS, Springer,
2015, pp. 297–313.

J.M.E.M. van der Werf, A. Polyvyanyy, B. R. van Wensveen et al. Information Systems 114 (2023) 102155
[19] A. Tour, A. Polyvyanyy, A.A. Kalenkova, Agent system mining: Vision,
benefits, and challenges, IEEE Access 9 (2021) 99480–99494.

[20] W. Shadish, T. Cook, D. Campbell, Experimental and Quasi-Experimental
Designs for Generalized Causal Inference, Wadsworth Cengage Learning,
2002.

[21] P. Swanborn, A common base for quality control criteria in quantitative
and qualitative research, Qual. Quant. 30 (1) (1996) 19—35.

[22] B.R. van Wensveen, Estimation and Analysis of the Quality of Event Log
Samples for Process Discovery (Master’s thesis), Utrecht University, 2020,
https://dspace.library.uu.nl/handle/1874/400143.

[23] W.G. Cochran, Sampling Techniques, John Wiley & Sons, 1977.
[24] J. Pei, L. Wen, H. Yang, J. Wang, X. Ye, Estimating global completeness of

event logs: A comparative study, IEEE Trans. Serv. Comput. (2018).
[25] S.J.J. Leemans, D. Fahland, W.M.P. van der Aalst, Discovering block-

structured process models from event logs - A constructive approach,
in: Petri Nets 2013, Vol. 7927, in: LNCS, Springer, 2013, pp. 311–329,
http://dx.doi.org/10.1007/978-3-642-38697-8_17.

[26] M. Bauer, A. Senderovich, A. Gal, L. Grunske, M. Weidlich, How much event
data is enough? A statistical framework for process discovery, in: CAiSE
2018, Vol. 10816, in: LNCS, Springer, 2018, pp. 239–256.

[27] J. Rehse, P. Fettke, Process mining crimes - A threat to the validity of
process discovery evaluations, in: BPM Forum 2018, Vol. 329, in: LNBIP,
Springer, 2018, pp. 3–19, http://dx.doi.org/10.1007/978-3-319-98651-7_1.

[28] F.M. Maggi, J.C. Bose, W.M.P. van der Aalst, Efficient discovery of under-
standable declarative process models from event logs, in: CAiSE 2012, Vol.
7328, in: LNCS, Springer, 2012, pp. 270–285.

[29] A. Augusto, R. Conforti, M. Dumas, M.L. Rosa, Split miner: Discovering
accurate and simple business process models from event logs, in: ICDM
2017, IEEE, 2017, pp. 1–10.
12
[30] A. Polyvyanyy, H. Alkhammash, C.D. Ciccio, L. García-Bañuelos, A.A.
Kalenkova, S.J.J. Leemans, J. Mendling, A. Moffat, M. Weidlich, Entropia:
A family of entropy-based conformance checking measures for process
mining, in: ICPM Doctoral Consortium and Tool Demonstration, Vol. 2703,
in: CEUR, CEUR-WS.org, 2020, pp. 39–42.

[31] M. de Leoni, F. Mannhardt, Road traffic fine management process, 2015,
http://dx.doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5.

[32] F. Mannhardt, Sepsis cases - event log, 2016, http://dx.doi.org/10.4121/
uuid:915d2bfb-7e84-49ad-a286-dc35f063a460.

[33] W.M.P. van der Aalst, et al., Process mining manifesto, in: BPM Workshops,
Vol. 99, in: LNBIP, Springer, 2011, pp. 169–194, http://dx.doi.org/10.1007/
978-3-642-28108-2_19.

[34] J.C. Bose, R.S. Mans, W.M.P. van der Aalst, Wanna improve process mining
results? in: CIDM 2013, IEEE, 2013, pp. 127–134.

[35] C. Günther, Process Mining in Flexible Environments (Ph.D. thesis),
Eindhoven University of Technology, 2009.

[36] A. Polyvyanyy, A.A. Kalenkova, Monotone conformance checking for par-
tially matching designed and observed processes, in: ICPM 2019, 2019,
pp. 81–88, http://dx.doi.org/10.1109/ICPM.2019.00022.

[37] A. Berti, Statistical sampling in process mining discovery, in: EKNOW 2017,
IARIA, 2017, pp. 41–43.

[38] M.F. Sani, S.J. van Zelst, W.M.P. van der Aalst, Improving the performance
of process discovery algorithms by instance selection, Comput. Sci. Inf.
Syst. 17 (3) (2020) 927–958.

[39] C. Liu, Y. Pei, Q. Zeng, H. Duan, LogRank: An approach to sample business
process event log for efficient discovery, in: Knowledge Science, Engineer-
ing and Management, Vol. 11061, in: LNCS, Springer, 2018, pp. 415–425,
http://dx.doi.org/10.1007/978-3-319-99365-2_36.

