14 research outputs found

    AN EVALUATION OF HYPERALIGNMENT ON REPRODUCIBILITY AND PREDICTION ACCURACY FOR FMRI DATA

    Get PDF
    Functional magnetic resonance imaging (fMRI) is a neuroimaging technique which measures a person's brain activity using changes in the blood flow in response to neural activity. Recently, resting state fMRI (rs-fMRI) has become a ubiquitous tool for measuring connectivity and examining the functional architecture of the human brain. Here, we used a publicly available rs-fMRI dataset to investigate the performance of the hyperalignment algorithm, on several fMRI analyses. The research employs the use of the image intra-class correlation coefficient and functional connectome fingerprinting to evaluate the reproducibility of both the unaligned and hyperaligned data, and developed a predictive model to investigate whether hyperalignment improves the prediction of certain behavioral measures. Overall, our results illustrate the utility of the hyperalignment algorithm for studying inter-individual variation in brain activity

    Graph-Based Decoding Model for Functional Alignment of Unaligned fMRI Data

    Full text link
    Aggregating multi-subject functional magnetic resonance imaging (fMRI) data is indispensable for generating valid and general inferences from patterns distributed across human brains. The disparities in anatomical structures and functional topographies of human brains warrant aligning fMRI data across subjects. However, the existing functional alignment methods cannot handle well various kinds of fMRI datasets today, especially when they are not temporally-aligned, i.e., some of the subjects probably lack the responses to some stimuli, or different subjects might follow different sequences of stimuli. In this paper, a cross-subject graph that depicts the (dis)similarities between samples across subjects is used as a priori for developing a more flexible framework that suits an assortment of fMRI datasets. However, the high dimension of fMRI data and the use of multiple subjects makes the crude framework time-consuming or unpractical. To address this issue, we further regularize the framework, so that a novel feasible kernel-based optimization, which permits nonlinear feature extraction, could be theoretically developed. Specifically, a low-dimension assumption is imposed on each new feature space to avoid overfitting caused by the highspatial-low-temporal resolution of fMRI data. Experimental results on five datasets suggest that the proposed method is not only superior to several state-of-the-art methods on temporally-aligned fMRI data, but also suitable for dealing `with temporally-unaligned fMRI data.Comment: 17 pages, 10 figures, Proceedings of the Association for the Advancement of Artificial Intelligence (AAAI-20

    Single-Trial {MEG} Data Can Be Denoised Through Cross-Subject Predictive Modeling

    Get PDF
    A pervasive challenge in brain imaging is the presence of noise that hinders investigation of underlying neural processes, with Magnetoencephalography (MEG) in particular having very low Signal-to-Noise Ratio (SNR). The established strategy to increase MEG's SNR involves averaging multiple repetitions of data corresponding to the same stimulus. However, repetition of stimulus can be undesirable, because underlying neural activity has been shown to change across trials, and repeating stimuli limits the breadth of the stimulus space experienced by subjects. In particular, the rising popularity of naturalistic studies with a single viewing of a movie or story necessitates the discovery of new approaches to increase SNR. We introduce a simple framework to reduce noise in single-trial MEG data by leveraging correlations in neural responses across subjects as they experience the same stimulus. We demonstrate its use in a naturalistic reading comprehension task with 8 subjects, with MEG data collected while they read the same story a single time. We find that our procedure results in data with reduced noise and allows for better discovery of neural phenomena. As proof-of-concept, we show that the N400m's correlation with word surprisal, an established finding in literature, is far more clearly observed in the denoised data than the original data. The denoised data also shows higher decoding and encoding accuracy than the original data, indicating that the neural signals associated with reading are either preserved or enhanced after the denoising procedure

    Hyperalignment of motor cortical areas based on motor imagery during action observation

    Get PDF
    Multivariate Pattern Analysis (MVPA) has grown in importance due to its capacity to use both coarse and fine scale patterns of brain activity. However, a major limitation of multivariate analysis is the difficulty of aligning features across brains, which makes MVPA a subject specific analysis. Recent work by Haxby et al. (2011) introduced a method called Hyperalignment that explored neural activity in ventral temporal cortex during object recognition and demonstrated the ability to align individual patterns of brain activity into a common high dimensional space to facilitate Between Subject Classification (BSC). Here we examined BSC based on Hyperalignment of motor cortex during a task of motor imagery of three natural actions (lift, knock and throw). To achieve this we collected brain activity during the combined tasks of action observation and motor imagery to a parametric action space containing 25 stick-figure blends of the three natural actions. From these responses we derived Hyperalignment transformation parameters that were used to map subjects’ representational spaces of the motor imagery task in the motor cortex into a common model representational space. Results showed that BSC of the neural response patterns based on Hyperalignment exceeded both BSC based on anatomical alignment as well as a standard Within Subject Classification (WSC) approach. We also found that results were sensitive to the order in which participants entered the Hyperalignment algorithm. These results demonstrate the effectiveness of Hyperalignment to align neural responses across subject in motor cortex to enable BSC of motor imagery

    Deep Recurrent Encoder: A scalable end-to-end network to model brain signals

    Full text link
    Understanding how the brain responds to sensory inputs is challenging: brain recordings are partial, noisy, and high dimensional; they vary across sessions and subjects and they capture highly nonlinear dynamics. These challenges have led the community to develop a variety of preprocessing and analytical (almost exclusively linear) methods, each designed to tackle one of these issues. Instead, we propose to address these challenges through a specific end-to-end deep learning architecture, trained to predict the brain responses of multiple subjects at once. We successfully test this approach on a large cohort of magnetoencephalography (MEG) recordings acquired during a one-hour reading task. Our Deep Recurrent Encoding (DRE) architecture reliably predicts MEG responses to words with a three-fold improvement over classic linear methods. To overcome the notorious issue of interpretability of deep learning, we describe a simple variable importance analysis. When applied to DRE, this method recovers the expected evoked responses to word length and word frequency. The quantitative improvement of the present deep learning approach paves the way to better understand the nonlinear dynamics of brain activity from large datasets

    Modeling Semantic Encoding in a Common Neural Representational Space

    Get PDF
    Encoding models for mapping voxelwise semantic tuning are typically estimated separately for each individual, limiting their generalizability. In the current report, we develop a method for estimating semantic encoding models that generalize across individuals. Functional MRI was used to measure brain responses while participants freely viewed a naturalistic audiovisual movie. Word embeddings capturing agent-, action-, object-, and scene-related semantic content were assigned to each imaging volume based on an annotation of the film. We constructed both conventional within-subject semantic encoding models and between-subject models where the model was trained on a subset of participants and validated on a left-out participant. Between-subject models were trained using cortical surface-based anatomical normalization or surface-based whole-cortex hyperalignment. We used hyperalignment to project group data into an individual’s unique anatomical space via a common representational space, thus leveraging a larger volume of data for out-of-sample prediction while preserving the individual’s fine-grained functional–anatomical idiosyncrasies. Our findings demonstrate that anatomical normalization degrades the spatial specificity of between-subject encoding models relative to within-subject models. Hyperalignment, on the other hand, recovers the spatial specificity of semantic tuning lost during anatomical normalization, and yields model performance exceeding that of within-subject models

    Enhanced hyperalignment via spatial prior information

    Get PDF
    Functional alignment between subjects is an important assumption of functional magnetic resonance imaging (fMRI) group-level analysis. However, it is often violated in practice, even after alignment to a standard anatomical template. Hyperalignment, based on sequential Procrustes orthogonal transformations, has been proposed as a method of aligning shared functional information into a common high-dimensional space and thereby improving inter-subject analysis. Though successful, current hyperalignment algorithms have a number of shortcomings, including difficulties interpreting the transformations, a lack of uniqueness of the procedure, and difficulties performing whole-brain analysis. To resolve these issues, we propose the ProMises (Procrustes von Mises-Fisher) model. We reformulate functional alignment as a statistical model and impose a prior distribution on the orthogonal parameters (the von Mises-Fisher distribution). This allows for the embedding of anatomical information into the estimation procedure by penalizing the contribution of spatially distant voxels when creating the shared functional high-dimensional space. Importantly, the transformations, aligned images, and related results are all unique. In addition, the proposed method allows for efficient whole-brain functional alignment. In simulations and application to data from four fMRI studies we find that ProMises improves inter-subject classification in terms of between-subject accuracy and interpretability compared to standard hyperalignment algorithms.Comment: 28 pages, 9 figure
    corecore