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Abstract

Functional magnetic resonance imaging (fMRI) is a neuroimaging technique

which measures a person’s brain activity using changes in the blood flow in

response to neural activity. Recently, resting state fMRI (rs-fMRI)has become

a ubiquitous tool for measuring connectivity and examining the functional

architecture of the human brain. Here, we used a publicly available rs-fMRI

dataset to investigate the performance of the hyperalignment algorithm, on

several fMRI analyses. The research employs the use of the image intra-class

correlation coefficient and functional connectome fingerprinting to evaluate

the reproducibility of both the unaligned and hyperaligned data, and devel-

oped a predictive model to investigate whether hyperalignment improves the

prediction of certain behavioral measures. Overall, our results illustrate the

utility of the hyperalignment algorithm for studying inter-individual variation

in brain activity.
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Chapter 1

Introduction

1.1 Background

1.1.1 A brief history of neuroimaging

The first example of brain imaging dates back to the 19th century in the form

of the human circulation balance invented by the Italian physiologist Angelo

Mosso. This precursor to modern neuroimaging devices was able to measure

the redistribution of blood in the brain during emotional or intellectual activity.

In this application, Mosso discovered important variables such as the signal to

noise ratio, which are essential properties of modern methods of brain imaging.

According to Savoy, 2001, the beginning of modern neuroimaging dates

back to the period between 1895-1973. During this time, Wilhelm Roentgen

demonstrated the first-ever radiograph, which provided a gateway to modern

forms of diagnosis. However, given the fact that most of the brain is made

up of soft tissue, it was virtually impossible to view most of its parts using

a standard radiograph. Therefore, in the early 20th century Walter Dandy,

an American neurosurgeon, introduced ventriculography. This technique
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involved taking images of the ventricular system within the brain after the

injection of filtered air into the lateral ventricles. Access to the ventricles was

obtained by drilling a hole in the skull of the patients. Despite its success in

being able to improve upon the performance of the radiograph, the technique

presented a series of risks that jeopardized the health of the patients. These

included potential infractions, threatening changes in the brain pressure, and

possible hemorrhaging. Nevertheless, ventriculography proved successful in

reducing the margin of error when performing neurosurgery.

With the continued discovery of brain-related problems, the need for brain

imaging has never been greater. Therefore, the modern medical field has

sought to build on these historical approaches by developing imaging tech-

niques that reduce the risk of losing life, but at the same time increase accuracy

and the amount of information gleaned. One such technique in modern neu-

rosurgery and neuroimaging is cerebral angiography. This technique was

introduced by Egas Moniz, a neurologist based in Lisbon in 1927, and allows

for the visualization of blood vessels in the brain. The technique ensured

an enhanced sense of accuracy that its predecessors lacked. However, like

ventriculography, in spite of the great strides that the technique took, the level

of threat to the patients was equally dire. In this case, the technique could at

times lead to cases of delirium in its patients.

For this reason, there was a clear need to develop techniques that both

improved performance and risk management rate. One of the greatest im-

provements came in the form of computerized techniques in the late 20th
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century and early 21st centuries. The techniques developed in this era are typ-

ically referred to as computerized tomography. The first computerized brain

imaging technique is the computerized axial tomography which is commonly

known as CAT scanning. This technique revolutionized brain imaging and

neurosurgery as features in the brain that could not previously be viewed

using older techniques become visible and available for both diagnosis and

further research. Unlike previous techniques, the computer-based technique

allowed the physicians to administer the imaging process in a painless, effec-

tive, and nearly non-invasive way. This meant that the technique posed less

risk compared to the earlier techniques. During the same period, radioactive

neuroimaging also gained in popularity. Here technicians employed the used

of photon emission tomography to conduct brain imaging. However, repeated

use of this technique exposed the patients to potential radiation poisoning. As

a result, a shift was made towards magnetic resonance imaging (MRI). This

technique used the variation in the signals produced by protons in the body

when the human head is placed next to a strong magnetic field to produce

brain images. According to Hudd et al., 2019, MRI poses a risk to patients

with metallic implants on their bodies such as hip implants and pacemakers.

Furthermore, the technique has a claustrophobic characteristic that may be

overwhelming to claustrophobic patients. However, the technique dramati-

cally reduced the risks posed by the predecessors. In addition, it was found

that the technique was also able to measure blood flow changes. As such, func-

tional magnetic resonance imaging (fMRI) became the prevalent technique

used to conduct functional brain imaging studies.
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1.1.2 Multivariate pattern analysis of fMRI data

To date, the majority of fMRI studies have used the so-called brain mapping

approach. Here, the goal is to identify which brain areas encode a particular

psychological condition or other outcome. The statistical procedures used to

develop brain maps seek to test whether there is a non-zero effect of a particu-

lar psychological manipulation or observed behavior on one or more brain

voxels or regions. More recently, the field of neuroimaging has begun to move

away from the traditional brain mapping approach towards the development

of integrated, multivariate brain models of mental events. Multivariate Pat-

tern Analysis (MVPA), brain decoding, and machine learning are terms used

to describe overlapping subsets of these models and the algorithms used to

develop them. These models make quantitative predictions about stimulus

conditions, behaviors, or other outcomes.

The goals associated with the creation of a brain map and a brain model

are different. While brain maps describe the local encoding of information,

brain models attempt to specify the parts of a neural system and how their

joint activity predict mind and behavior. Brain models can vary significantly

in terms of their complexity. Some simply associate activity in a single brain

region with a specific outcome. However, increasingly brain models are multi-

variate and explain outcomes as patterns of brain activity and/or structure

across large numbers of brain features, often distributed across anatomical

regions and systems. They also vary widely in how well they explain the basis

for their predictions.
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1.1.3 Hyperalignment

While the use of predictive models on fMRI data has increased in recent years,

a problem remains the large inter-individual differences in both brain anatomy

and functional localization after anatomical alignment. Recent approaches

towards predictive modeling have sought to circumvent this problem by

mapping individual brains into a functional population-level reference space

rather than an anatomically based brain space. One such approach is the

‘hyperalignment’ procedure (Haxby et al., 2011). Here brain activity patterns

corresponding to stimuli and other cognitive events are represented as vectors

in a neural representational space spanned by the voxels in a local neighbor-

hood. Hyperalignment rotates each participant’s local voxel-wise activity

patterns through multivariate voxel space using a Procrustes transformation

to align the representational geometry across subjects. This dramatically re-

duces inter-subject variability in functional anatomy, thereby increasing the

accuracy and specificity of population-level models.

According to Yousefnezhad et al., 2020, hyperalignment has been widely

favored in MVPA for determining the cognitive activity of the brain based on

the multisubject fMRI datasets. When using hyperalignment, it is important to

note that, the information shared in the brain is “encoded in idiosyncratic fine-

scale functional topographies” (Haxby et al., 2020). Therefore, hyperalignment

captures shared information between the brain neurons by projecting patterns

instead of aligning the topographies in a conical space for neural responses.

The use of the hyperalignment algorithm is ideal for this project since the

methods under hyperalignment tend to utilize unsupervised approaches. As
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such, the technique can be used to maximize the correlation between the

voxel and the same position in a time series when dealing with fMRI datasets.

Therefore, to get a better understand of the use of hyperalignment in fMRI

data, our research focuses on comparing the information provided by the

fMRI data before and after the hyperalignment algorithm has been added to

the analysis.

1.2 Problem Statement

While many researchers have explored the use of fMRI for studying human

brain function, a gap still exists when it comes to the assessing the benefits

of using the hyperalignment algorithm on the data obtained from fMRI. This

begs the question of whether using hyperalignment on the data increases

the level of accuracy, maintains the same level of accuracy, or reduces it. In

particular, it is of interest to determine how the application of hyperalignment

influences the test/re-test reliability of fMRI data, as well as the accuracy of

predicting certain behavioral variables. The answer to the first question is not

clear as it is possible that by decreasing functional variation across subjects one

might actually decrease test re-test reliability as large inter-subject variability

compared to intra-subject variability lead to increased reliability. The answer

to the second question appears more straightforward as one of the primary

goals of hyperalignemnt is to align features across subjects, thus improving

the performance of predictive models. However, we seek to replicate and

confirm previous research findings.
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1.3 Purpose of the Study

1.3.1 Aim

This project aims to investigate the benefits of using the hyperalignment al-

gorithm on fMRI data. To achieve this goal, an empirical analysis of fMRI

data is conducted both before and after performing the hyperalignment algo-

rithm. This provides an empirical perspective on whether or not the use of the

hyperalignment algorithm on the fMRI data increases the level of reliability

and accuracy. We believe this will help fill in gaps in the research literature

regarding the performance of the hyperalignmnet algorithm on fMRI data.

Furthermore, it will provide a base for the comparative analysis between the

findings of this research and that of other researchers. This will be achieved

by performing an extensive analysis of previous research findings on the topic.

With this perspective, our research will attempt to provide sufficient informa-

tion for understanding how employment of the hyperalignment technique

impacts fMRI data analysis.

1.3.2 Objective

To investigate the impact of hyperalignment on neuroimaging.

1.3.3 Procedure

In our work, the hyperalignment algorithm is applied to the original data

to get aligned data. This is typically done in one of two ways, searchlight

hyperalignment or alternatively ROI-based hyperalignment. In this study, we
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only use searchlight hyperalignment. Once the data has been aligned, we will

calculate the image intraclass correlation (I2C2) and fingerprinting accuracy,

both measures of reliability, as well as perform predictions on various variables

(age, handiness, height, weight, BMI, depression score, gender, and fluid

intelligence). This is done both for the original unaligned and the hyperaligned

data. For the I2C2 and fingerprint, we will evaluate the performance of these

two data sets by comparing their respective values. For the prediction part,

we compare the MSE (Mean Squared Error), RMSE (Root Mean Squared

Error), and MAE (Mean Absolute Error) for the four continuous variables. As

predicting gender is a binary classification problem, here we instead compare

the receiver operating characteristic (ROC) curves and the corresponding area

under the curve (AUC).

1.3.4 Significance of the study

The proposed research will help shed light on the benefits of using hyperalign-

ment in the analysis of fMRI data. The results will help establish whether

previous research findings are replicable in a new data set, as well as explore

properties of the hyperalignment algorithm that have not previously been

investigated. As such, neuroscientists can use the results to help improve the

accuracy of their neuroimaging data analysis results.
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1.3.5 Structure of the paper

The paper is divided into five sections, with each section working in cohesion

with the other to arrive at an informed conclusion. The first section intro-

duces the research with background information on the topic. The section also

points out the essential part such as the aims and the objectives of the project.

The second section is the literature review and offers detailed background

information on the relationship between fMRI data and the hyperalignment

algorithm. The focus of the section is to provide a historical overview from

various sources related to hyperalignment algorithms, fMRI, and neuroimag-

ing. This section will help develop a perspective on the relationship between

fMRI and hyperalignment algorithms. The third section details the process

of data collection and introduces the methods used in the data analysis. The

fourth section presents the results of these analyses. The fifth and final section

provides a summary of the project and introduce a few recommendations

essential for future studies on the topic or related topics.
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Chapter 2

Literature Review

2.1 Neuroimaging

Functional neuroimaging had its origin at the same time that modern brain

imaging techniques were introduced in neuroscience. The advancement of

fMRI has been integral in allowing for the demonstration of the relative timing

information used to determine the relationship between human perception

and cognition (Menon and Kim, 1999). The advancement of fMRI have al-

lowed neurosurgeons to perform cognitive and basic neuroscience tasks on

patients prior to brain surgery, allowing them to plan the procedure in a man-

ner that does a minimum amount of damage . According to Raichle, 2010,

the marriage of disciplines and techniques has bound the field of cognitive

neuroscience, which has expanded to include fields like cell biology, and

genetics of imaging signals. Raichle, 2010 adds that some of the neuroimaging

technologies that have been at the forefront of this galvanization and growth

in the field include positron emission tomography (PET) and fMRI.
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Functional neuroimaging has grown exponentially in recent years. Ac-

cording to Cabeza and St Jacques, 2007, the continued innovations in the

techniques and technologies to obtain personal memories have availed the

biomedical industry a chance to delve into the functional neuroanatomy of

people’s past. The reason for this is that the use of these neuroimaging tech-

nologies has shown that a recent autobiographic memory can trigger the

activation of the hippocampus.

Neuroimaging has become a big part of the modern medical industry.

Klein, 2010 details that functional neuroimaging techniques like fMRI have

revolutionized neuroscience by providing the essential tools needed to bring

tighter cognitive psychology and the old neurosurgery model. According to

Talavage, Gonzalez-Castillo, and Scott, 2014, functional neuroimaging has

been an essential part of the enhancement of auditory perception and language

in the last 30 years. These functional neuroimaging techniques that made this

breakthrough possible are associated with the localization of central response.

In the research, the authors employed the use of PET and fMRI to ascertain the

role that auditory neuroimaging has played especially when it comes to the

perception of and communication of the acoustic world, especially in the brain

regions. As such, neuroimaging has adopted an extensive clinical application

with its effectiveness increasing exponentially. Siegle, Carter, and Thase, 2006

also show the important role that neuroimaging has played. In their research,

Siegle, Carter, and Thase, 2006 present a scenario where neuroimaging can be

used to prevent or predict recovery from unipolar depression.

On the same note, Phan et al., 2004 detail that neuroimaging studies have
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allowed for the study of human emotions. This has been done through the

use of technological advancement in the field such as fMRI and PET. From the

research, it was clear that the use of PET and fMRI allowed the researcher to

establish that some discrete parts of the brain were associated with emotions

and emotional tasks while the others were involved in the general emotional

perception and controlling of the emotions of people.

2.2 Hyperalignment for fMRI Data

Multivariate pattern classifications can map different cognitive states to the

brain task (Yousefnezhad and Zhang, 2017). However, a problem remains

the large inter-individual differences in both brain anatomy and functional

localization after anatomical alignment.

This leads to a mis-alignement of features in a machine learning algorithm

which can have detrimental effects on model performance. Recent approaches

towards predictive modeling have sought to circumvent this problem by

mapping individual brains into a functional population-level reference space

rather than an anatomically based brain space. An important step in the

development was the introduction of the ‘hyperalignment’ procedure (Haxby

et al., 2011). Here brain activity patterns corresponding to stimuli and other

cognitive events are represented as vectors in a neural representational space

spanned by the voxels in a local neighborhood. The procedure rotates each

participant’s local voxel-wise activity patterns through multivariate voxel

space using a Procrustes transformation to align the representational geometry

across subjects. This dramatically reduce inter-subject variability in functional

13



anatomy, thereby increasing the accuracy and specificity of population-level

models.

The relationship between hyperalignment and fMRI has been largely doc-

umented in recent years. According to Yousefnezhad et al., 2020, hyper-

alignment has been used widely in multivariate pattern analysis to establish

the cognitive state of the human mind especially using fMRI data. In their

research, the authors employ the use of supervised hyperalignment which

ensures a better function alignment for MVPA. This technique ensures that the

correlation among the stimuli belonging to the same category and minimizes

the correlation between distinct categories of the stimuli. To achieve a superior

fMRI outcome compared to other state-of-the-art hyperalignment algorithms,

Yousefnezhad and Zhang, 2017 introduce a new method in the form of deep

hyperalignment. According to the author, deep hyperalignment is a scalable,

deep extension and regularized hyperalignment method that is suited for the

usage of fMRI datasets. Furthermore, the method uses a stochastic gradient

descent for optimization and uses a parametric approach. The research shows

that this technique offers a better performance metric when dealing with fMRI

datasets compared to other methods used in hyperalignment. In another

research, Yousefnezhad and Zhang, 2017 hint that hyperalignment is the most

effective function alignment method especially since they can be mathemati-

cally formulated by the Canonical Correlation Analysis (CCA) methods. In

this research, the authors introduce a new hyperalignment method in the

form of Local Discriminant Hyperalignment (LDHA). This is a supervised

hyperalignment method that is associated with better functional alignment

14



for MVP analysis.

When dealing with multi-subject fMRI research, many researchers have

ascertained that inter-subject alignment is an important pat of performing

analysis. According to Chen et al., 2014, one of the methods that have proven

to be at the forefront of achieving such an alignment is hyperalignment. The

research introduces a new hyperalignment method in the form of the joint

SVD-hyperalignment. In this case, Chen et al., 2014 present the joint SVD-

hyperalignment as the most ideal method since it is more scalable and offers

analytical and empirical results by using the fMRI datasets. From the results

of the research, it is apparent that the method offers computational complexity

and accuracy when determining the multi-subject alignment. On the same

note, Xu et al., 2012stress the importance of inter-subject alignment when it

comes to multi-subject fMRI research.

The researchers also employed the use of SVD-hyperalignment. The result

of the research shows that the aligned functional fMRI datasets improved

performance. In another research conducted by Al-Wasity et al., 2020, the

researchers examine the Between Subject Classification (BSC) based on the

hyperalignment of the motor cortex. From this examination, their outcomes

were obtained. First, it was clear that the hyperalignment was effective in

aligning neural responses in the motor cortex to enable BSC of motor imagery.

Second, the effectiveness of the result was dependent on the order in which

the participants of the research entered the hyperalignment algorithm. The

final result indicated that the BSC of neural response patterns based on the

hyperalignment exceed the standard within the subject classification approach

15



and BSC based on anatomical alignment.

On the same note, a new method of alignment can be employed to im-

prove the MVPA alignment. Lorbert and Ramadge, 2012 offer a regularized

hyperalignment in the form of Kernel hyperalignment. A method like SDV-

hyperalignment includes nonlinear measures of similarity. To add on, unlike

other algorithms, this type of hyperalignment allows for the multiple subject

alignment of large RIOs when FRMI data analysis is involved. At the same

time, Lorbert and Ramadge, 2012 pointed out that the method enables the

alignment of multiple datasets with a large number of base features. Although

Rustamov and Guibas, 2013 agree that hyperalignment is essential in effective

classification performance, the authors point out that the technique fails to

include some potentially essential information synonymous with anatomy. To

better improve the method, Rustamov and Guibas, 2013 take a different ap-

proach to hyperalignment that allows for the incorporation of the anatomical

information in a way that does not offset the original intent of the research.

once the approach was alternated and other anatomic information factored

in, the effectiveness of hyperalignment was observed in the classification

performance.

Finally, searchlight hyperalignment (Guntupalli et al., 2016) has been devel-

oped to allow for whole-brain coverage. This is an extension of the previous

region of interest (ROI) hyperalignment algorithm proposed by Haxby et al.,

2011. While, standard hyperalignment aligns neural representational spaces

of ROIs for each subject into a common model space, searchlight hyperalign-

ment repeats the process in all cortical searchlights. Here, local searchlight
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transformation matrices are combined into a single subject-specific matrix that

maps data from that subject into the common model space.In the remainder

of this thesis we explore the performance of searchlight hyperalignment.
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Chapter 3

Methodology

3.1 Human Connectome Project Data

We used the preprocessed and artifact-removed rs-fMRI data as provided by

the 900 subject data release. Van Essen et al., 2013 provides a detailed explana-

tion of the entire acquisition protocol. Data was acquired on a customized 3T

Siemens connectome-Skyra 3T scanner. Participants completed two scanning

sessions on separate days. A T1-weighted structural scan was acquired during

each session (acquisition time = 7.6 min, TR/TE/TI = 2400/2.14/1000 ms,

resolution = 0.7x0.7x0.7 mm3, SENSE factor = 2, flip angle = 8). A simultane-

ous multi-slice pulse sequence with an acceleration factor of eight (Uğurbil

et al., 2013) was used to acquire two rs-fMRI runs during each session. Each

consisted of 1200 volumes sampled every 0.72 seconds, at 2-mm isotropic

spatial resolution (TE = 33.1 ms, flip angle = 52, 72 axial slices). Participants

were instructed to keep their eyes open and fixated on a cross hair, while

remaining as still as possible. Within sessions, phase encoding directions for

the two runs were alternated between right-to-left (RL) and left-to-right (LR)
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directions.

The preprocessing and the artifact-removing procedures performed are

explained in detail elsewhere (Glasser et al., 2013; Smith et al., 2013; Griffanti

et al., 2014; Salimi-Khorshidi et al., 2014), and briefly described below. Each

run was minimally preprocessed (Glasser et al., 2013; Smith et al., 2013), and

artifacts were removed using the Oxford Center for Functional MRI of the

Brain’s (FMRIB) ICA-based X-noiseifier (ICA + FIX) procedure (Griffanti et al.,

2014; Salimi-Khorshidi et al., 2014). At this point in the processing pipeline,

rs-fMRI data from each run were represented as a time series of grayordinates,

a combination of cortical surface vertices and subcortical standard-space

voxels (Glasser et al., 2013). Each run was temporally demeaned and variance

normalized (Beckmann and Smith, 2004).

In total we had 4 runs each consisting of 15 minutes of resting-state data.

We denote the two scans from Day 1 as Rest1_LR and Rest1_RL based on the

phase encoding direction used to acquire the data. Similarly, we will denote

the two scans from Day 2 as Rest2_LR and Rest2_RL.

3.2 Hyperalignment

The research aims to determine the impact of hyperalignment algorithms on

FMRI data analysis. From the literature review, it is apparent that more than

one hyperalignment method exists that can be used to make the MVPA more

effective when using fMRI datasets. Here we adapted searchlight hyperalign-

ment algorithm.

Searchlight hyperalignment (Guntupalli et al., 2016) is an extension of
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the previous region of interest (ROI) hyperalignment algorithm proposed by

Haxby et al., 2011. Standard hyperalignment aligns neural representational

spaces of ROIs for each subject into a common model space using a high-

dimensional spatial rotation. In contrast, searchlight hyperalignment repeats

the process in all cortical searchlights, thus providing whole-brain coverage.

Here, local searchlight transformation matrices are combined into a single

subject-specific matrix that maps data from that subject into the common

model space. The surface searchlights was defined in all subjects where each

surface node was the center of a searchlight cortical disc of radius 5 mm in

this thesis. Thus all these searchlights from all subjects at each cortical location

were hyperaligned and aggregated into an N × N transformation matrix for

each subject where N is the number of voxels in the gray matter mask. We

used the transpose of each subject’s transformation matrix to get a reverse

mapping from the common space to each subject’s cortical voxel space. Whole

cortex hyperalignment transformation matrices were then applied to new

data. In the remainder of this thesis we explore the performance of searchlight

hyperalignment. Searchlight hyperalignment was applied to a training session

of the rs-fMRI data (Rest1_LR), and subsequently the derived transformation

was applied to the three other sessions.

After hyperalignment was performed both the unaligned and aligned data

were parcellated using the HCP MMP 1.0 atlas, which is popularly referred

to as the Glasser atlas. It consists of 180 regions per hemisphere. Once we

have parcellated the data we compute connectivity matrices using pair-wise

correlation between regions. We will use the image intra-class correlation
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coefficient and functional connectome fingerprinting approaches to evaluate

the difference in reproducibility of the computed connectivity matrices before

and after the alignment. In addition, we will develop a predictive model to in-

vestigate whether the hyperalignment algorithm contributes to improvement

in the prediction of certain behavioral variables.

3.3 Measures of Reliability: ICC, I2C2 and finger-
printing

3.3.1 I2C2

The image intra-class correlation (I2C2) coefficient is used as a global measure

of reliability for functional connectivity where higher reproducibility yields a

higher value of I2C2.

Let Xi(υ) be the true image and Wij(υ) be the proxy measurements of Xi(υ)

at voxel υ. Further assume that all images can be represented as V × 1 vectors.

Then the image measurement error can be expressed as follows:

Wij(v) = Xi(v) + Uij(v), (3.1)

Here the index i stands for subject and j stands for session. The observed

proxy images can be expressed as W ij =
{︁

Wij(v) : v = 1, . . . , V
}︁

, while the

latent true images can be expressed as X i = {Xi(v) : v = 1, . . . , V}. The mea-

surement error, U ij =
{︁

Uij(v) : v = 1, . . . , V
}︁

, is assumed to be independent

across subjects.
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Let KW , KX, and KU be the covariance of W ij, X i, U ij, respectively. Thus,

KW = cov
(︁
W ij, W ij

)︁
KX = cov (X i, X i)

KU = cov
(︁
U ij, U ij

)︁
The covariance operator of the observed data can be written KW = KX + KU,

where KX represents the within-subject covariance, and KU is the covariance

of the measurement error. The image intra-class correlation (I2C2) coefficient

is defined as

ρ =
trace (KX)

trace (KW)
=

trace (KW)− trace (KU)

trace (KW)
= 1 − trace (KU)

trace (KW)
. (3.2)

A method of moments estimator is used to compute:

ˆ︁trace (KW) =
1

∑I
i=1 Ji − 1

I

∑
i=1

Ji

∑
j=1

V

∑
v=1

{︁
Wij(v)− W..(v)

}︁2 ,

and

ˆ︁trace (KU) =
1

∑I
i=1 (Ji − 1)

I

∑
i=1

Ji

∑
j=1

V

∑
v=1

{︁
Wij(v)− Wi.(v)

}︁2 .

where W..(v) = Σi,j,vWij(v)/I J and Wi.(v) = ∑Ji
j=1 Wij(v)/Ji.

We used an R package to calculate the I2C2 http://www.biostat.jhsph.

edu/~ccrainic/software.html. The input matrix of the I2C2 function is a

N × p data matrix, where each row contains the observed correlation data

from a particular session for a single subject computed as the upper triangle

of the correlation matrix.
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3.3.2 Fingerprinting

Since functional brain networks vary across individuals, sessions, and task

states, researchers have developed a number of algorithms using functional

MRI connectome to identify subjects from a large group. Finn et al., 2015

demonstrated that this individual variability is robust and reliable, and show

that functional connectivity profiles can act as an identifying fingerprint.

In this model, Pearson correlation coefficients were calculated based on

the connectivity matrices and normalized to z-scores using the Fisher trans-

formation, resulting in a 360 * 360 symmetric connectivity matrix for each

session for each subject. Then a database was created that consisted of a

connectivity matrix of all individual subjects in a single condition, which is

named as D = [Xi, i = 1, 2, ..., 50], where Xi is the 360 * 360 correlation matrix

and the i denotes subject. Similarly, the target database, defined as Yi, consists

of a connectivity matrix of all subjects from a different session. The similarity,

defined as the Pearson correlation between two vectors of edge values taken

from the target matrix and each of the database matrices, was computed and

the predicted identity was that with maximal similarity score. If the target

matrix is most similar to itself, thus the predicted identity matched the true

identity, we assigned a score of 1, or 0, if it was not. We tested identification

across all the target-database pairs, and the accuracy was measured as the

percentage of subjects whose identity was correctly predicted out of the total

number of subjects.
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3.4 Predictive Modeling Approaches

Since establishing the relationship between individual differences in brain

structure/function and individual differences in behavior is a major goal of

modern neuroscience, here we build a connectome-based predictive model to

investigate whether the hyperalignment algorithm contributes to predicting

individual behavioral differences. In particular, we focus on five different

measures, namely age, body mass index (BMI), depression score, gender, and

fluid intelligence

For each subject, the 4 images are stitched into a single image with 4

channels. This would normalize the output value of the neural network,

that is, the value becomes a 0-1 value. Once variables like gender and age

have been normalized, we build the VGG-16 convolutional network and

finally connect the fully connected network to output the five predicted values

(age, BMI, depression score, gender, and fluid intelligence). To evaluate

the prediction results, we calculated the MSE (Mean Squared Error), RMSE

(Root Mean SquaredError), and MAE (Mean Absolute Error) for the four

continuous predicted values (all except gender). As predicting gender is a

binary classification problem, we calculate the ROC curve and the AUC value

instead.
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Chapter 4

Results

4.1 Research Design

In this section, the rs-fMRI data obtained from the Human Connectome Project

was evaluated, both before and after application of the hyperalignment algo-

rithm. Therefore, the data is processed using two different pipelines, denoted

aligned and the unaligned data. The dataset used includes 900 subjects out of

which 50 were randomly chosen to be included in our analysis.

For the unaligned pipeline we extracted data using two different parcella-

tion schemes:

(A) HCP MMP 1.0 (Glasser atlas; 360 regions);

(B) Cole-Anticevic Brain Network Parcellation (Ji et al., 2019; 700 regions).

For the aligned pipeline we performed searchlight hyperalignment on

surface data using group-averaged surface file (midthickness version) for

training each hemisphere separately. We processed the data using Python

3.8.1 including libraries such as numpy, scipy, nibabel, nilearn, hcp_utils, and
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mvpa2 and analyzed the model with "Surface Query Engine" in searchlights

with a 5 mm radius. After alignment we parcellated the brain using the

HCP MMP 1.0 atlas. The hyperalignment was performed on data from the

first scanning session (Rest1_LR), and the derived transformations were later

applied to the remaining three sessions (Rest1_RL, Rest2_LR, and Rest2_RL).

For both processing pipelines, we calculated the image intra-class correla-

tion coefficient and the functional connectome fingerprinting accuracy. We

also build a convolutional neural network model to predict age, BMI, fluid

intelligence and depression score. The values show the data before and after

performing the hyperalignment algorithm. The final result of the analysis will

be presented in the form of tables which can be used to visually show the

degree of reliability between the two.

4.2 Reliability

Measure Unaligned Data
I2C2 Rest1_LR vs. Rest2_LR 0.4468753

Rest1_RL vs. Rest2_RL 0.4274989
Rest1_LR vs. Rest1_RL 0.4436231
Rest2_LR vs. Rest2_RL 0.4362019

Fingerprinting Accuracy 0.98

Table 4.1: Reliability Results for Unaligned Data of the Whole Brain

We first evaluated reliability for the unaligned data at the whole brain level,

using the image intra-class correlation coefficient (I2C2) and functional con-

nectome fingerprinting accuracy as shown in Table 4.1. We use this as a
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benchmark data set. However, we only performed searchlight hyperalign-

ment on the surface data which includes 360 regions and we restrict our

comparisons between aligned and unaligned data to these regions.

Table 4.1 shows the pairwise I2C2 scores between the different sessions.

Here we show results comparing similar acquisition techniques across dif-

ferent days and different acquisition techniques across different days. The

results are similar across comparisons with a score around 0.44, indicating a

moderate degree of reliability. The fingerprinting results show an impressive

98% accuracy rate.

Measure Unaligned Data Aligned Data
I2C2 I2C2

Rest1_LR vs. Rest2_LR 0.2509014 0.2617642
Rest1_RL vs. Rest2_RL 0.3043583 0.3107248
Rest1_LR vs. Rest1_RL 0.2593981 0.2685964
Rest2_LR vs. Rest2_RL 0.1974292 0.2069266

Table 4.2: I2C2 Results

Table 4.2 shows the I2C2 scores for the fMRI data before and after hyper-

alignment of the surface 360 regions. By restricting the data to surface regions

instead of including subcortical regions, we can notice a significant decrease

in the reliability of the unaligned data. However, importantly the reliability

of the aligned and unaligned data is similar. Thus, any concern of reduced

reliability due to the removal of between-subject variation by transforming the

data into a standard space did not occur. In fact, reliability improved slightly

after hyperalignment. It is apparent that hyperalignment slightly increases the

efficiency of the analysis. These findings are in line with the assessment of Xu
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et al., 2012 who point out that the most successful form of functional alignment

is hyperalignment. This sentiment is shared by Yousefnezhad and Zhang,

2017 who hint that hyperalignment is the most effective function alignment

method. Future work will attempt to confirm that the results carry-over when

performing hyperalignment on the whole brain. Interestingly, the combination

of sessions that had the highest I2C2 score after alignment was Rest1_RL and

Rest2_RL even though they were both test datasets in the analysis (i.e. the

data was trained on Rest1_LR and the transformation was applied to the other

sessions). This may indicate that the transformations effectively carries over

from the training to the test datasets.

Unaligned data Aligned data
Accuracy 0.56 0.54

Table 4.3: A table showing the fingerprinting accuracy of the aligned and unaligned
data

Table 4.3 shows the results for functional connectivity fingerprinting.

Again, there are significnat costs involved with not including the subcor-

tical regions, as there is a decrease in accuracy for the unaligned data. The

accuracy of the unaligned one is slightly higher than that of the aligned data.

However, both are above the 50% mark making which illustrates that there

is important information in the connectivity between surface regions that is

unique to individual subjects. This outcome slightly contradicts the argument

of authors like Yousefnezhad and Zhang, 2017 who insist that alignment offers

grounds for improvement in the accuracy and effectiveness of neuroimaging.
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However, we note that this may be an error due to the small size of the data

set.

4.3 Predictive Modeling

Despite the findings of the fingerprinting, the predictive methods show that

using aligned data works better than unaligned data when analyzing fMRI

data. Figure 4.1, 4.2, 4.3 and 4.4 show the prediction results of the using aligned

and unaligned data. To evaluate the performance of the prediction results, we

calculate the Mean Absolute Error (MAE) of the regression problem, where

a smaller MAE value indicates that the prediction result is closer to the true

result (Table 4.4). Table 4.5 employs the use of the AUC value of a ROC curve

to determine the relationship between the using aligned and unaligned data

of the gender of patients showing that aligned data had a higher performance

threshold than the unaligned data.

For both the MAE values and the AUC values, they both indicate aligned

data had a higher performance threshold than the unaligned data. Therefore,

this means that when a hyperalignment algorithm is introduced in the align-

ment of multi-subject fMRI research, the analysis improved. Although Lorbert

and Ramadge, 2012 focus on Kernel hyperalignment, they share the same

sentiments as the finding of the research that methods of alignment can be

employed to improve the MVPA alignment. Hyperalignment is an essential

aspect of neuroimaging since it helps reduce the limitations faced when using

fMRI. This is because the alignment of the features of the fMRI data across

brains is essential in ensuring that the high variability in individual responses
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is accounted for.

Figure 4.1: Scatter plots of predicted values vs actual values for age. The results for
the unaligned data are show to the left and the results for the aligned data to the right.
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Figure 4.2: Scatter plots of predicted values vs actual values for BMI. The results for
the unaligned data are show to the left and the results for the aligned data to the right.
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Figure 4.3: Scatter plots of predicted values vs actual values for fluid intelligence.
The results for the unaligned data are show to the left and the results for the aligned
data to the right.
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Measure Unaligned Data Aligned Data
MAE MAE

Age 3.64 2.98
BMI 3.99 3.85
Fluid Intelligence 6.84 4.46
Depression Score 2.7 2.0

Table 4.4: Evaluation Results

Figure 4.4: Scatter plots of predicted values vs actual values for depression score. The
results for the unaligned data are show to the left and the results for the aligned data
to the right.
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AUC Value
Unaligned Data 0.79

Aligned Data 0.81

Table 4.5: AUC value for predicting gender
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Chapter 5

Discussion and Conclusion

5.1 Discussion

Using a publicly available dataset, the present work assessed the use of the

hyperalignment algorithm in fRMI data analysis to reliably characterize inter-

individual variation in functional brain networks. To achieve this goal, first,

a literature analysis was conducted. This employed the use of retrospective

data on the topic and related fields. The inclusion of a literature review

was necessary, especially when it comes to the comparative analysis of the

outcomes of the research. Second, the research conducted data analysis on

the impact of hyperalignment on fMRI data analysis. From the perspective

of reliability, across the 4 scan sessions, we were able to demonstrate that

the use of the hyperalignment algorithm does not reduce the reproducibility

of the data, but instead somewhat enhances it. This was not a given as

we hypothesized that by decreasing functional variation across subjects one

might actually decrease test re-test reliability, as large inter-subject variability

compared to intra-subject variability lead to increased reliability.

40



Finally, the outcome of our predictive model shows that the introduction

of hyperalignment alignment to the multi-subject fMRI research improves the

predictive performance. This is consistent with findings from other research

studies. As such, our findings increase our confidence in applying the hyper-

alignment algorithm to fMRI studies as to map inter-individual differences in

brain function.

5.2 Limitations and future directions

Although our results are promising, there are several limitations to the findings

of the present work which merit further consideration. First, due to the time-

consuming nature of hyperalignment processing, as of the completion of

this work, we have only completed the processing of 50 subjects. It may

be that such a small data set does not accurately and completely reflect the

characteristics of the hyperalignment algorithm on the entire HCP data set.

Therefore, future work will focus on increasing the size of the data set. This

will necessitate developing more optimized computational algorithms for

computing hyperalignment.

Second, the parcellation used in our research consisted of 360 nodes de-

fined on the surface of the brain. However, it is clear that when adding the

subcortical areas and analyzing a more fine-grained scheme with 718 nodes,

performance on both I2C2 and fingerprinting accuracy improved substantially.

This highlights the importance of the subcortical regions in analysis of this

type. It clearly indicates that whole-brain hyperalignment should be done in

a future work.
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5.3 Conclusion

In sum, the presented work demonstrates that the inclusion of the hyper-

alignment algorithm to fMRI preprocessing provides desirable effects and

improves the overall prediction performance of a series of behavioral vari-

ables. Moreover, the apparent improvement in results using an atlas with

better spatial coverage suggests future directions of work.
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