671 research outputs found

    Regularized Wasserstein Means for Aligning Distributional Data

    Full text link
    We propose to align distributional data from the perspective of Wasserstein means. We raise the problem of regularizing Wasserstein means and propose several terms tailored to tackle different problems. Our formulation is based on the variational transportation to distribute a sparse discrete measure into the target domain. The resulting sparse representation well captures the desired property of the domain while reducing the mapping cost. We demonstrate the scalability and robustness of our method with examples in domain adaptation, point set registration, and skeleton layout

    A Smoothed Dual Approach for Variational Wasserstein Problems

    Full text link
    Variational problems that involve Wasserstein distances have been recently proposed to summarize and learn from probability measures. Despite being conceptually simple, such problems are computationally challenging because they involve minimizing over quantities (Wasserstein distances) that are themselves hard to compute. We show that the dual formulation of Wasserstein variational problems introduced recently by Carlier et al. (2014) can be regularized using an entropic smoothing, which leads to smooth, differentiable, convex optimization problems that are simpler to implement and numerically more stable. We illustrate the versatility of this approach by applying it to the computation of Wasserstein barycenters and gradient flows of spacial regularization functionals

    Entropic Wasserstein Gradient Flows

    Full text link
    This article details a novel numerical scheme to approximate gradient flows for optimal transport (i.e. Wasserstein) metrics. These flows have proved useful to tackle theoretically and numerically non-linear diffusion equations that model for instance porous media or crowd evolutions. These gradient flows define a suitable notion of weak solutions for these evolutions and they can be approximated in a stable way using discrete flows. These discrete flows are implicit Euler time stepping according to the Wasserstein metric. A bottleneck of these approaches is the high computational load induced by the resolution of each step. Indeed, this corresponds to the resolution of a convex optimization problem involving a Wasserstein distance to the previous iterate. Following several recent works on the approximation of Wasserstein distances, we consider a discrete flow induced by an entropic regularization of the transportation coupling. This entropic regularization allows one to trade the initial Wasserstein fidelity term for a Kulback-Leibler divergence, which is easier to deal with numerically. We show how KL proximal schemes, and in particular Dykstra's algorithm, can be used to compute each step of the regularized flow. The resulting algorithm is both fast, parallelizable and versatile, because it only requires multiplications by a Gibbs kernel. On Euclidean domains discretized on an uniform grid, this corresponds to a linear filtering (for instance a Gaussian filtering when cc is the squared Euclidean distance) which can be computed in nearly linear time. On more general domains, such as (possibly non-convex) shapes or on manifolds discretized by a triangular mesh, following a recently proposed numerical scheme for optimal transport, this Gibbs kernel multiplication is approximated by a short-time heat diffusion

    Variational Wasserstein Barycenters for Geometric Clustering

    Full text link
    We propose to compute Wasserstein barycenters (WBs) by solving for Monge maps with variational principle. We discuss the metric properties of WBs and explore their connections, especially the connections of Monge WBs, to K-means clustering and co-clustering. We also discuss the feasibility of Monge WBs on unbalanced measures and spherical domains. We propose two new problems -- regularized K-means and Wasserstein barycenter compression. We demonstrate the use of VWBs in solving these clustering-related problems

    Optimal Transport for Domain Adaptation

    Get PDF
    Domain adaptation from one data space (or domain) to another is one of the most challenging tasks of modern data analytics. If the adaptation is done correctly, models built on a specific data space become more robust when confronted to data depicting the same semantic concepts (the classes), but observed by another observation system with its own specificities. Among the many strategies proposed to adapt a domain to another, finding a common representation has shown excellent properties: by finding a common representation for both domains, a single classifier can be effective in both and use labelled samples from the source domain to predict the unlabelled samples of the target domain. In this paper, we propose a regularized unsupervised optimal transportation model to perform the alignment of the representations in the source and target domains. We learn a transportation plan matching both PDFs, which constrains labelled samples in the source domain to remain close during transport. This way, we exploit at the same time the few labeled information in the source and the unlabelled distributions observed in both domains. Experiments in toy and challenging real visual adaptation examples show the interest of the method, that consistently outperforms state of the art approaches

    Fast Optimal Transport Averaging of Neuroimaging Data

    Full text link
    Knowing how the Human brain is anatomically and functionally organized at the level of a group of healthy individuals or patients is the primary goal of neuroimaging research. Yet computing an average of brain imaging data defined over a voxel grid or a triangulation remains a challenge. Data are large, the geometry of the brain is complex and the between subjects variability leads to spatially or temporally non-overlapping effects of interest. To address the problem of variability, data are commonly smoothed before group linear averaging. In this work we build on ideas originally introduced by Kantorovich to propose a new algorithm that can average efficiently non-normalized data defined over arbitrary discrete domains using transportation metrics. We show how Kantorovich means can be linked to Wasserstein barycenters in order to take advantage of an entropic smoothing approach. It leads to a smooth convex optimization problem and an algorithm with strong convergence guarantees. We illustrate the versatility of this tool and its empirical behavior on functional neuroimaging data, functional MRI and magnetoencephalography (MEG) source estimates, defined on voxel grids and triangulations of the folded cortical surface.Comment: Information Processing in Medical Imaging (IPMI), Jun 2015, Isle of Skye, United Kingdom. Springer, 201

    Dynamical Optimal Transport on Discrete Surfaces

    Full text link
    We propose a technique for interpolating between probability distributions on discrete surfaces, based on the theory of optimal transport. Unlike previous attempts that use linear programming, our method is based on a dynamical formulation of quadratic optimal transport proposed for flat domains by Benamou and Brenier [2000], adapted to discrete surfaces. Our structure-preserving construction yields a Riemannian metric on the (finite-dimensional) space of probability distributions on a discrete surface, which translates the so-called Otto calculus to discrete language. From a practical perspective, our technique provides a smooth interpolation between distributions on discrete surfaces with less diffusion than state-of-the-art algorithms involving entropic regularization. Beyond interpolation, we show how our discrete notion of optimal transport extends to other tasks, such as distribution-valued Dirichlet problems and time integration of gradient flows

    Functional inequalities, thick tails and asymptotics for the critical mass Patlak-Keller-Segel model

    Get PDF
    We investigate the long time behavior of the critical mass Patlak-Keller-Segel equation. This equation has a one parameter family of steady-state solutions ρλ\rho_\lambda, λ>0\lambda>0, with thick tails whose second moment is not bounded. We show that these steady state solutions are stable, and find basins of attraction for them using an entropy functional Hλ{\mathcal H}_\lambda coming from the critical fast diffusion equation in R2\R^2. We construct solutions of Patlak-Keller-Segel equation satisfying an entropy-entropy dissipation inequality for Hλ{\mathcal H}_\lambda. While the entropy dissipation for Hλ{\mathcal H}_\lambda is strictly positive, it turns out to be a difference of two terms, neither of which need to be small when the dissipation is small. We introduce a strategy of "controlled concentration" to deal with this issue, and then use the regularity obtained from the entropy-entropy dissipation inequality to prove the existence of basins of attraction for each stationary state composed by certain initial data converging towards ρλ\rho_\lambda. In the present paper, we do not provide any estimate of the rate of convergence, but we discuss how this would result from a stability result for a certain sharp Gagliardo-Nirenberg-Sobolev inequality.Comment: This version of the paper improves on the previous version by removing the small size condition on the value of the second Lyapunov functional of the initial data. The improved methodology makes greater use of techniques from optimal mass transportation, and so the second and third sections have changed places, and the current third section completely rewritte
    • 

    corecore